aes->areq->complete(aes->areq, 0);
/* Handle new request */
- return mtk_aes_handle_queue(cryp, aes->id, NULL);
+ tasklet_schedule(&aes->queue_task);
+ return 0;
}
static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
},
};
+static void mtk_aes_queue_task(unsigned long data)
+{
+ struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
+
+ mtk_aes_handle_queue(aes->cryp, aes->id, NULL);
+}
+
static void mtk_aes_done_task(unsigned long data)
{
struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
mtk_aes_write(cryp, RDR_THRESH(aes->id),
MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
- tasklet_schedule(&aes->task);
+ tasklet_schedule(&aes->done_task);
} else {
dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
}
spin_lock_init(&aes[i]->lock);
crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);
- tasklet_init(&aes[i]->task, mtk_aes_done_task,
+ tasklet_init(&aes[i]->queue_task, mtk_aes_queue_task,
+ (unsigned long)aes[i]);
+ tasklet_init(&aes[i]->done_task, mtk_aes_done_task,
(unsigned long)aes[i]);
}
int i;
for (i = 0; i < MTK_REC_NUM; i++) {
- tasklet_kill(&cryp->aes[i]->task);
+ tasklet_kill(&cryp->aes[i]->done_task);
+ tasklet_kill(&cryp->aes[i]->queue_task);
+
free_page((unsigned long)cryp->aes[i]->buf);
kfree(cryp->aes[i]);
}
* @cryp: pointer to Cryptographic device
* @queue: crypto request queue
* @areq: pointer to async request
- * @task: the tasklet is use in AES interrupt
+ * @done_task: the tasklet is use in AES interrupt
+ * @queue_task: the tasklet is used to dequeue request
* @ctx: pointer to current context
* @src: the structure that holds source sg list info
* @dst: the structure that holds destination sg list info
struct mtk_cryp *cryp;
struct crypto_queue queue;
struct crypto_async_request *areq;
- struct tasklet_struct task;
+ struct tasklet_struct done_task;
+ struct tasklet_struct queue_task;
struct mtk_aes_base_ctx *ctx;
struct mtk_aes_dma src;
struct mtk_aes_dma dst;
* @cryp: pointer to Cryptographic device
* @queue: crypto request queue
* @req: pointer to ahash request
- * @task: the tasklet is use in SHA interrupt
+ * @done_task: the tasklet is use in SHA interrupt
+ * @queue_task: the tasklet is used to dequeue request
* @id: the current use of ring
* @flags: it's describing SHA operation state
* @lock: the async queue lock
struct mtk_cryp *cryp;
struct crypto_queue queue;
struct ahash_request *req;
- struct tasklet_struct task;
+ struct tasklet_struct done_task;
+ struct tasklet_struct queue_task;
u8 id;
unsigned long flags;
sha->req->base.complete(&sha->req->base, err);
/* Handle new request */
- mtk_sha_handle_queue(cryp, sha->id - MTK_RING2, NULL);
+ tasklet_schedule(&sha->queue_task);
}
static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
},
};
+static void mtk_sha_queue_task(unsigned long data)
+{
+ struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
+
+ mtk_sha_handle_queue(sha->cryp, sha->id - MTK_RING2, NULL);
+}
+
static void mtk_sha_done_task(unsigned long data)
{
struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
mtk_sha_write(cryp, RDR_THRESH(sha->id),
MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
- tasklet_schedule(&sha->task);
+ tasklet_schedule(&sha->done_task);
} else {
dev_warn(cryp->dev, "SHA interrupt when no active requests.\n");
}
spin_lock_init(&sha[i]->lock);
crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);
- tasklet_init(&sha[i]->task, mtk_sha_done_task,
+ tasklet_init(&sha[i]->queue_task, mtk_sha_queue_task,
+ (unsigned long)sha[i]);
+ tasklet_init(&sha[i]->done_task, mtk_sha_done_task,
(unsigned long)sha[i]);
}
int i;
for (i = 0; i < MTK_REC_NUM; i++) {
- tasklet_kill(&cryp->sha[i]->task);
+ tasklet_kill(&cryp->sha[i]->done_task);
+ tasklet_kill(&cryp->sha[i]->queue_task);
+
kfree(cryp->sha[i]);
}
}