#define DRV_VERSION "2.0.0-ko"
#define DRV_DESC "Chelsio T4/T5 Network Driver"
-/*
- * Max interrupt hold-off timer value in us. Queues fall back to this value
- * under extreme memory pressure so it's largish to give the system time to
- * recover.
- */
-#define MAX_SGE_TIMERVAL 200U
-
-enum {
- /*
- * Physical Function provisioning constants.
- */
- PFRES_NVI = 4, /* # of Virtual Interfaces */
- PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
- PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
- */
- PFRES_NEQ = 256, /* # of egress queues */
- PFRES_NIQ = 0, /* # of ingress queues */
- PFRES_TC = 0, /* PCI-E traffic class */
- PFRES_NEXACTF = 128, /* # of exact MPS filters */
-
- PFRES_R_CAPS = FW_CMD_CAP_PF,
- PFRES_WX_CAPS = FW_CMD_CAP_PF,
-
-#ifdef CONFIG_PCI_IOV
- /*
- * Virtual Function provisioning constants. We need two extra Ingress
- * Queues with Interrupt capability to serve as the VF's Firmware
- * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
- * neither will have Free Lists associated with them). For each
- * Ethernet/Control Egress Queue and for each Free List, we need an
- * Egress Context.
- */
- VFRES_NPORTS = 1, /* # of "ports" per VF */
- VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
-
- VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
- VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
- VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
- VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
- VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
- VFRES_TC = 0, /* PCI-E traffic class */
- VFRES_NEXACTF = 16, /* # of exact MPS filters */
-
- VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
- VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
-#endif
-};
-
-/*
- * Provide a Port Access Rights Mask for the specified PF/VF. This is very
- * static and likely not to be useful in the long run. We really need to
- * implement some form of persistent configuration which the firmware
- * controls.
- */
-static unsigned int pfvfres_pmask(struct adapter *adapter,
- unsigned int pf, unsigned int vf)
-{
- unsigned int portn, portvec;
-
- /*
- * Give PF's access to all of the ports.
- */
- if (vf == 0)
- return FW_PFVF_CMD_PMASK_M;
-
- /*
- * For VFs, we'll assign them access to the ports based purely on the
- * PF. We assign active ports in order, wrapping around if there are
- * fewer active ports than PFs: e.g. active port[pf % nports].
- * Unfortunately the adapter's port_info structs haven't been
- * initialized yet so we have to compute this.
- */
- if (adapter->params.nports == 0)
- return 0;
-
- portn = pf % adapter->params.nports;
- portvec = adapter->params.portvec;
- for (;;) {
- /*
- * Isolate the lowest set bit in the port vector. If we're at
- * the port number that we want, return that as the pmask.
- * otherwise mask that bit out of the port vector and
- * decrement our port number ...
- */
- unsigned int pmask = portvec ^ (portvec & (portvec-1));
- if (portn == 0)
- return pmask;
- portn--;
- portvec &= ~pmask;
- }
- /*NOTREACHED*/
-}
-
enum {
MAX_TXQ_ENTRIES = 16384,
MAX_CTRL_TXQ_ENTRIES = 1024,
static uint force_old_init;
module_param(force_old_init, uint, 0644);
-MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
+MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
+ " parameter");
static int dflt_msg_enable = DFLT_MSG_ENABLE;
module_param_array(intr_holdoff, uint, NULL, 0644);
MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
- "0..4 in microseconds");
+ "0..4 in microseconds, deprecated parameter");
static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
module_param_array(intr_cnt, uint, NULL, 0644);
MODULE_PARM_DESC(intr_cnt,
- "thresholds 1..3 for queue interrupt packet counters");
+ "thresholds 1..3 for queue interrupt packet counters, "
+ "deprecated parameter");
/*
* Normally we tell the chip to deliver Ingress Packets into our DMA buffers
#ifdef CONFIG_PCI_IOV
module_param(vf_acls, bool, 0644);
-MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
+MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
+ "deprecated parameter");
/* Configure the number of PCI-E Virtual Function which are to be instantiated
* on SR-IOV Capable Physical Functions.
MODULE_PARM_DESC(select_queue,
"Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
-/*
- * The filter TCAM has a fixed portion and a variable portion. The fixed
- * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
- * ports. The variable portion is 36 bits which can include things like Exact
- * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
- * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
- * far exceed the 36-bit budget for this "compressed" header portion of the
- * filter. Thus, we have a scarce resource which must be carefully managed.
- *
- * By default we set this up to mostly match the set of filter matching
- * capabilities of T3 but with accommodations for some of T4's more
- * interesting features:
- *
- * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
- * [Inner] VLAN (17), Port (3), FCoE (1) }
- */
-enum {
- TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
- TP_VLAN_PRI_MAP_FIRST = FCOE_S,
- TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_S,
-};
-
-static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
+static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
module_param(tp_vlan_pri_map, uint, 0644);
-MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
+MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
+ "deprecated parameter");
static struct dentry *cxgb4_debugfs_root;
if (ret < 0)
goto bye;
- /*
- * Return successfully and note that we're operating with parameters
- * not supplied by the driver, rather than from hard-wired
- * initialization constants burried in the driver.
+ /* Emit Firmware Configuration File information and return
+ * successfully.
*/
- adapter->flags |= USING_SOFT_PARAMS;
dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
"Configuration File \"%s\", version %#x, computed checksum %#x\n",
config_name, finiver, cfcsum);
return ret;
}
-/*
- * Attempt to initialize the adapter via hard-coded, driver supplied
- * parameters ...
- */
-static int adap_init0_no_config(struct adapter *adapter, int reset)
-{
- struct sge *s = &adapter->sge;
- struct fw_caps_config_cmd caps_cmd;
- u32 v;
- int i, ret;
-
- /*
- * Reset device if necessary
- */
- if (reset) {
- ret = t4_fw_reset(adapter, adapter->mbox,
- PIORSTMODE_F | PIORST_F);
- if (ret < 0)
- goto bye;
- }
-
- /*
- * Get device capabilities and select which we'll be using.
- */
- memset(&caps_cmd, 0, sizeof(caps_cmd));
- caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
- FW_CMD_REQUEST_F | FW_CMD_READ_F);
- caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
- ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
- &caps_cmd);
- if (ret < 0)
- goto bye;
-
- if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
- if (!vf_acls)
- caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
- else
- caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
- } else if (vf_acls) {
- dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
- goto bye;
- }
- caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
- FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
- ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
- NULL);
- if (ret < 0)
- goto bye;
-
- /*
- * Tweak configuration based on system architecture, module
- * parameters, etc.
- */
- ret = adap_init0_tweaks(adapter);
- if (ret < 0)
- goto bye;
-
- /*
- * Select RSS Global Mode we want to use. We use "Basic Virtual"
- * mode which maps each Virtual Interface to its own section of
- * the RSS Table and we turn on all map and hash enables ...
- */
- adapter->flags |= RSS_TNLALLLOOKUP;
- ret = t4_config_glbl_rss(adapter, adapter->mbox,
- FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
- FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
- FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F |
- ((adapter->flags & RSS_TNLALLLOOKUP) ?
- FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F : 0));
- if (ret < 0)
- goto bye;
-
- /*
- * Set up our own fundamental resource provisioning ...
- */
- ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
- PFRES_NEQ, PFRES_NETHCTRL,
- PFRES_NIQFLINT, PFRES_NIQ,
- PFRES_TC, PFRES_NVI,
- FW_PFVF_CMD_CMASK_M,
- pfvfres_pmask(adapter, adapter->fn, 0),
- PFRES_NEXACTF,
- PFRES_R_CAPS, PFRES_WX_CAPS);
- if (ret < 0)
- goto bye;
-
- /*
- * Perform low level SGE initialization. We need to do this before we
- * send the firmware the INITIALIZE command because that will cause
- * any other PF Drivers which are waiting for the Master
- * Initialization to proceed forward.
- */
- for (i = 0; i < SGE_NTIMERS - 1; i++)
- s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
- s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
- s->counter_val[0] = 1;
- for (i = 1; i < SGE_NCOUNTERS; i++)
- s->counter_val[i] = min(intr_cnt[i - 1], THRESHOLD_0_M);
- t4_sge_init(adapter);
-
-#ifdef CONFIG_PCI_IOV
- /*
- * Provision resource limits for Virtual Functions. We currently
- * grant them all the same static resource limits except for the Port
- * Access Rights Mask which we're assigning based on the PF. All of
- * the static provisioning stuff for both the PF and VF really needs
- * to be managed in a persistent manner for each device which the
- * firmware controls.
- */
- {
- int pf, vf;
-
- for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
- if (num_vf[pf] <= 0)
- continue;
-
- /* VF numbering starts at 1! */
- for (vf = 1; vf <= num_vf[pf]; vf++) {
- ret = t4_cfg_pfvf(adapter, adapter->mbox,
- pf, vf,
- VFRES_NEQ, VFRES_NETHCTRL,
- VFRES_NIQFLINT, VFRES_NIQ,
- VFRES_TC, VFRES_NVI,
- FW_PFVF_CMD_CMASK_M,
- pfvfres_pmask(
- adapter, pf, vf),
- VFRES_NEXACTF,
- VFRES_R_CAPS, VFRES_WX_CAPS);
- if (ret < 0)
- dev_warn(adapter->pdev_dev,
- "failed to "\
- "provision pf/vf=%d/%d; "
- "err=%d\n", pf, vf, ret);
- }
- }
- }
-#endif
-
- /*
- * Set up the default filter mode. Later we'll want to implement this
- * via a firmware command, etc. ... This needs to be done before the
- * firmare initialization command ... If the selected set of fields
- * isn't equal to the default value, we'll need to make sure that the
- * field selections will fit in the 36-bit budget.
- */
- if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
- int j, bits = 0;
-
- for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
- switch (tp_vlan_pri_map & (1 << j)) {
- case 0:
- /* compressed filter field not enabled */
- break;
- case FCOE_F:
- bits += 1;
- break;
- case PORT_F:
- bits += 3;
- break;
- case VNIC_F:
- bits += 17;
- break;
- case VLAN_F:
- bits += 17;
- break;
- case TOS_F:
- bits += 8;
- break;
- case PROTOCOL_F:
- bits += 8;
- break;
- case ETHERTYPE_F:
- bits += 16;
- break;
- case MACMATCH_F:
- bits += 9;
- break;
- case MPSHITTYPE_F:
- bits += 3;
- break;
- case FRAGMENTATION_F:
- bits += 1;
- break;
- }
-
- if (bits > 36) {
- dev_err(adapter->pdev_dev,
- "tp_vlan_pri_map=%#x needs %d bits > 36;"\
- " using %#x\n", tp_vlan_pri_map, bits,
- TP_VLAN_PRI_MAP_DEFAULT);
- tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
- }
- }
- v = tp_vlan_pri_map;
- t4_write_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
- &v, 1, TP_VLAN_PRI_MAP_A);
-
- /*
- * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
- * to support any of the compressed filter fields above. Newer
- * versions of the firmware do this automatically but it doesn't hurt
- * to set it here. Meanwhile, we do _not_ need to set Lookup Every
- * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
- * since the firmware automatically turns this on and off when we have
- * a non-zero number of filters active (since it does have a
- * performance impact).
- */
- if (tp_vlan_pri_map)
- t4_set_reg_field(adapter, TP_GLOBAL_CONFIG_A,
- FIVETUPLELOOKUP_V(FIVETUPLELOOKUP_M),
- FIVETUPLELOOKUP_V(FIVETUPLELOOKUP_M));
-
- /*
- * Tweak some settings.
- */
- t4_write_reg(adapter, TP_SHIFT_CNT_A, SYNSHIFTMAX_V(6) |
- RXTSHIFTMAXR1_V(4) | RXTSHIFTMAXR2_V(15) |
- PERSHIFTBACKOFFMAX_V(8) | PERSHIFTMAX_V(8) |
- KEEPALIVEMAXR1_V(4) | KEEPALIVEMAXR2_V(9));
-
- /*
- * Get basic stuff going by issuing the Firmware Initialize command.
- * Note that this _must_ be after all PFVF commands ...
- */
- ret = t4_fw_initialize(adapter, adapter->mbox);
- if (ret < 0)
- goto bye;
-
- /*
- * Return successfully!
- */
- dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
- "driver parameters\n");
- return 0;
-
- /*
- * Something bad happened. Return the error ...
- */
-bye:
- return ret;
-}
-
static struct fw_info fw_info_array[] = {
{
.chip = CHELSIO_T4,
adap->params.nports = hweight32(port_vec);
adap->params.portvec = port_vec;
- /*
- * If the firmware is initialized already (and we're not forcing a
- * master initialization), note that we're living with existing
- * adapter parameters. Otherwise, it's time to try initializing the
- * adapter ...
+ /* If the firmware is initialized already, emit a simply note to that
+ * effect. Otherwise, it's time to try initializing the adapter.
*/
if (state == DEV_STATE_INIT) {
dev_info(adap->pdev_dev, "Coming up as %s: "\
"Adapter already initialized\n",
adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
- adap->flags |= USING_SOFT_PARAMS;
} else {
dev_info(adap->pdev_dev, "Coming up as MASTER: "\
"Initializing adapter\n");
- /*
- * If the firmware doesn't support Configuration
- * Files warn user and exit,
+
+ /* Find out whether we're dealing with a version of the
+ * firmware which has configuration file support.
*/
- if (ret < 0)
- dev_warn(adap->pdev_dev, "Firmware doesn't support "
- "configuration file.\n");
- if (force_old_init)
- ret = adap_init0_no_config(adap, reset);
- else {
- /*
- * Find out whether we're dealing with a version of
- * the firmware which has configuration file support.
- */
- params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
- FW_PARAMS_PARAM_X_V(
- FW_PARAMS_PARAM_DEV_CF));
- ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
- params, val);
-
- /*
- * If the firmware doesn't support Configuration
- * Files, use the old Driver-based, hard-wired
- * initialization. Otherwise, try using the
- * Configuration File support and fall back to the
- * Driver-based initialization if there's no
- * Configuration File found.
- */
- if (ret < 0)
- ret = adap_init0_no_config(adap, reset);
- else {
- /*
- * The firmware provides us with a memory
- * buffer where we can load a Configuration
- * File from the host if we want to override
- * the Configuration File in flash.
- */
+ params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
+ FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
+ ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
+ params, val);
- ret = adap_init0_config(adap, reset);
- if (ret == -ENOENT) {
- dev_info(adap->pdev_dev,
- "No Configuration File present "
- "on adapter. Using hard-wired "
- "configuration parameters.\n");
- ret = adap_init0_no_config(adap, reset);
- }
- }
+ /* If the firmware doesn't support Configuration Files,
+ * return an error.
+ */
+ if (ret < 0) {
+ dev_err(adap->pdev_dev, "firmware doesn't support "
+ "Firmware Configuration Files\n");
+ goto bye;
+ }
+
+ /* The firmware provides us with a memory buffer where we can
+ * load a Configuration File from the host if we want to
+ * override the Configuration File in flash.
+ */
+ ret = adap_init0_config(adap, reset);
+ if (ret == -ENOENT) {
+ dev_err(adap->pdev_dev, "no Configuration File "
+ "present on adapter.\n");
+ goto bye;
}
if (ret < 0) {
- dev_err(adap->pdev_dev,
- "could not initialize adapter, error %d\n",
- -ret);
+ dev_err(adap->pdev_dev, "could not initialize "
+ "adapter, error %d\n", -ret);
goto bye;
}
}
- /*
- * If we're living with non-hard-coded parameters (either from a
- * Firmware Configuration File or values programmed by a different PF
- * Driver), give the SGE code a chance to pull in anything that it
- * needs ... Note that this must be called after we retrieve our VPD
- * parameters in order to know how to convert core ticks to seconds.
+ /* Give the SGE code a chance to pull in anything that it needs ...
+ * Note that this must be called after we retrieve our VPD parameters
+ * in order to know how to convert core ticks to seconds, etc.
*/
- if (adap->flags & USING_SOFT_PARAMS) {
- ret = t4_sge_init(adap);
- if (ret < 0)
- goto bye;
- }
+ ret = t4_sge_init(adap);
+ if (ret < 0)
+ goto bye;
if (is_bypass_device(adap->pdev->device))
adap->params.bypass = 1;
}
/**
- * t4_sge_init - initialize SGE
+ * t4_sge_init_soft - grab core SGE values needed by SGE code
* @adap: the adapter
*
- * Performs SGE initialization needed every time after a chip reset.
- * We do not initialize any of the queues here, instead the driver
- * top-level must request them individually.
- *
- * Called in two different modes:
- *
- * 1. Perform actual hardware initialization and record hard-coded
- * parameters which were used. This gets used when we're the
- * Master PF and the Firmware Configuration File support didn't
- * work for some reason.
- *
- * 2. We're not the Master PF or initialization was performed with
- * a Firmware Configuration File. In this case we need to grab
- * any of the SGE operating parameters that we need to have in
- * order to do our job and make sure we can live with them ...
+ * We need to grab the SGE operating parameters that we need to have
+ * in order to do our job and make sure we can live with them.
*/
static int t4_sge_init_soft(struct adapter *adap)
return 0;
}
-static int t4_sge_init_hard(struct adapter *adap)
-{
- struct sge *s = &adap->sge;
-
- /*
- * Set up our basic SGE mode to deliver CPL messages to our Ingress
- * Queue and Packet Date to the Free List.
- */
- t4_set_reg_field(adap, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
-
- /*
- * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
- * and generate an interrupt when this occurs so we can recover.
- */
- if (is_t4(adap->params.chip)) {
- t4_set_reg_field(adap, SGE_DBFIFO_STATUS_A,
- HP_INT_THRESH_V(HP_INT_THRESH_M) |
- LP_INT_THRESH_V(LP_INT_THRESH_M),
- HP_INT_THRESH_V(dbfifo_int_thresh) |
- LP_INT_THRESH_V(dbfifo_int_thresh));
- } else {
- t4_set_reg_field(adap, SGE_DBFIFO_STATUS_A,
- LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
- LP_INT_THRESH_T5_V(dbfifo_int_thresh));
- t4_set_reg_field(adap, SGE_DBFIFO_STATUS2_A,
- HP_INT_THRESH_T5_V(HP_INT_THRESH_T5_M),
- HP_INT_THRESH_T5_V(dbfifo_int_thresh));
- }
- t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
- ENABLE_DROP_F);
-
- /*
- * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
- * t4_fixup_host_params().
- */
- s->fl_pg_order = FL_PG_ORDER;
- if (s->fl_pg_order)
- t4_write_reg(adap,
- SGE_FL_BUFFER_SIZE0_A+RX_LARGE_PG_BUF*sizeof(u32),
- PAGE_SIZE << FL_PG_ORDER);
- t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A+RX_SMALL_MTU_BUF*sizeof(u32),
- FL_MTU_SMALL_BUFSIZE(adap));
- t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A+RX_LARGE_MTU_BUF*sizeof(u32),
- FL_MTU_LARGE_BUFSIZE(adap));
-
- /*
- * Note that the SGE Ingress Packet Count Interrupt Threshold and
- * Timer Holdoff values must be supplied by our caller.
- */
- t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD_A,
- THRESHOLD_0_V(s->counter_val[0]) |
- THRESHOLD_1_V(s->counter_val[1]) |
- THRESHOLD_2_V(s->counter_val[2]) |
- THRESHOLD_3_V(s->counter_val[3]));
- t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1_A,
- TIMERVALUE0_V(us_to_core_ticks(adap, s->timer_val[0])) |
- TIMERVALUE1_V(us_to_core_ticks(adap, s->timer_val[1])));
- t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3_A,
- TIMERVALUE2_V(us_to_core_ticks(adap, s->timer_val[2])) |
- TIMERVALUE3_V(us_to_core_ticks(adap, s->timer_val[3])));
- t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5_A,
- TIMERVALUE4_V(us_to_core_ticks(adap, s->timer_val[4])) |
- TIMERVALUE5_V(us_to_core_ticks(adap, s->timer_val[5])));
-
- return 0;
-}
-
+/**
+ * t4_sge_init - initialize SGE
+ * @adap: the adapter
+ *
+ * Perform low-level SGE code initialization needed every time after a
+ * chip reset.
+ */
int t4_sge_init(struct adapter *adap)
{
struct sge *s = &adap->sge;
s->fl_align = max(ingpadboundary, ingpackboundary);
}
- if (adap->flags & USING_SOFT_PARAMS)
- ret = t4_sge_init_soft(adap);
- else
- ret = t4_sge_init_hard(adap);
+ ret = t4_sge_init_soft(adap);
if (ret < 0)
return ret;