* (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
*/
-#define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
-#define VSID_BITS_256M 36
+/*
+ * This should be computed such that protovosid * vsid_mulitplier
+ * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
+ */
+#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
+#define VSID_BITS_256M 38
#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
-#define VSID_BITS_1T 24
+#define VSID_BITS_1T 26
#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
#define CONTEXT_BITS 19
-#define USER_ESID_BITS 16
-#define USER_ESID_BITS_1T 4
+#define USER_ESID_BITS 18
+#define USER_ESID_BITS_1T 6
#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
})
#endif /* 1 */
-/* This is only valid for addresses >= PAGE_OFFSET */
+/*
+ * This is only valid for addresses >= PAGE_OFFSET
+ * The proto-VSID space is divided into two class
+ * User: 0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
+ * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
+ *
+ * With KERNEL_START at 0xc000000000000000, the proto vsid for
+ * the kernel ends up with 0xc00000000 (36 bits). With 64TB
+ * support we need to have kernel proto-VSID in the
+ * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
+ */
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
{
- if (ssize == MMU_SEGSIZE_256M)
- return vsid_scramble(ea >> SID_SHIFT, 256M);
- return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
+ unsigned long proto_vsid;
+ /*
+ * We need to make sure proto_vsid for the kernel is
+ * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
+ */
+ if (ssize == MMU_SEGSIZE_256M) {
+ proto_vsid = ea >> SID_SHIFT;
+ proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
+ return vsid_scramble(proto_vsid, 256M);
+ }
+ proto_vsid = ea >> SID_SHIFT_1T;
+ proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
+ return vsid_scramble(proto_vsid, 1T);
}
/* Returns the segment size indicator for a user address */
rldimi r10,r11,7,52 /* r10 = first ste of the group */
/* Calculate VSID */
- /* This is a kernel address, so protovsid = ESID */
+ /* This is a kernel address, so protovsid = ESID | 1 << 37 */
+ li r9,0x1
+ rldimi r11,r9,(CONTEXT_BITS + USER_ESID_BITS),0
ASM_VSID_SCRAMBLE(r11, r9, 256M)
rldic r9,r11,12,16 /* r9 = vsid << 12 */
*/
_GLOBAL(slb_miss_kernel_load_linear)
li r11,0
+ li r9,0x1
+ /*
+ * for 1T we shift 12 bits more. slb_finish_load_1T will do
+ * the necessary adjustment
+ */
+ rldimi r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
BEGIN_FTR_SECTION
b slb_finish_load
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
_GLOBAL(slb_miss_kernel_load_io)
li r11,0
6:
+ li r9,0x1
+ /*
+ * for 1T we shift 12 bits more. slb_finish_load_1T will do
+ * the necessary adjustment
+ */
+ rldimi r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
BEGIN_FTR_SECTION
b slb_finish_load
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)