slub: add 'likely' macro to inc_slabs_node()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slub.c
index ba2ca53f6c3aafdd3165c3ae5115fb719d0c17bd..21b3f004f614f3886529d548f2aa06a3dc12ab72 100644 (file)
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -1005,7 +1005,7 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
         * dilemma by deferring the increment of the count during
         * bootstrap (see early_kmem_cache_node_alloc).
         */
-       if (n) {
+       if (likely(n)) {
                atomic_long_inc(&n->nr_slabs);
                atomic_long_add(objects, &n->total_objects);
        }
@@ -1493,7 +1493,7 @@ static inline void remove_partial(struct kmem_cache_node *n,
  */
 static inline void *acquire_slab(struct kmem_cache *s,
                struct kmem_cache_node *n, struct page *page,
-               int mode)
+               int mode, int *objects)
 {
        void *freelist;
        unsigned long counters;
@@ -1507,6 +1507,7 @@ static inline void *acquire_slab(struct kmem_cache *s,
        freelist = page->freelist;
        counters = page->counters;
        new.counters = counters;
+       *objects = new.objects - new.inuse;
        if (mode) {
                new.inuse = page->objects;
                new.freelist = NULL;
@@ -1528,7 +1529,7 @@ static inline void *acquire_slab(struct kmem_cache *s,
        return freelist;
 }
 
-static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
+static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
 
 /*
@@ -1539,6 +1540,8 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
 {
        struct page *page, *page2;
        void *object = NULL;
+       int available = 0;
+       int objects;
 
        /*
         * Racy check. If we mistakenly see no partial slabs then we
@@ -1552,22 +1555,21 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
        spin_lock(&n->list_lock);
        list_for_each_entry_safe(page, page2, &n->partial, lru) {
                void *t;
-               int available;
 
                if (!pfmemalloc_match(page, flags))
                        continue;
 
-               t = acquire_slab(s, n, page, object == NULL);
+               t = acquire_slab(s, n, page, object == NULL, &objects);
                if (!t)
                        break;
 
+               available += objects;
                if (!object) {
                        c->page = page;
                        stat(s, ALLOC_FROM_PARTIAL);
                        object = t;
-                       available =  page->objects - page->inuse;
                } else {
-                       available = put_cpu_partial(s, page, 0);
+                       put_cpu_partial(s, page, 0);
                        stat(s, CPU_PARTIAL_NODE);
                }
                if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
@@ -1946,7 +1948,7 @@ static void unfreeze_partials(struct kmem_cache *s,
  * If we did not find a slot then simply move all the partials to the
  * per node partial list.
  */
-static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
+static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
 {
        struct page *oldpage;
        int pages;
@@ -1984,7 +1986,6 @@ static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
                page->next = oldpage;
 
        } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
-       return pobjects;
 }
 
 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
@@ -2775,7 +2776,7 @@ init_kmem_cache_node(struct kmem_cache_node *n)
 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
 {
        BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
-                       SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
+                       KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
 
        /*
         * Must align to double word boundary for the double cmpxchg
@@ -2982,7 +2983,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
                s->allocflags |= __GFP_COMP;
 
        if (s->flags & SLAB_CACHE_DMA)
-               s->allocflags |= SLUB_DMA;
+               s->allocflags |= GFP_DMA;
 
        if (s->flags & SLAB_RECLAIM_ACCOUNT)
                s->allocflags |= __GFP_RECLAIMABLE;
@@ -3174,13 +3175,6 @@ int __kmem_cache_shutdown(struct kmem_cache *s)
  *             Kmalloc subsystem
  *******************************************************************/
 
-struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
-EXPORT_SYMBOL(kmalloc_caches);
-
-#ifdef CONFIG_ZONE_DMA
-static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
-#endif
-
 static int __init setup_slub_min_order(char *str)
 {
        get_option(&str, &slub_min_order);
@@ -3217,73 +3211,15 @@ static int __init setup_slub_nomerge(char *str)
 
 __setup("slub_nomerge", setup_slub_nomerge);
 
-/*
- * Conversion table for small slabs sizes / 8 to the index in the
- * kmalloc array. This is necessary for slabs < 192 since we have non power
- * of two cache sizes there. The size of larger slabs can be determined using
- * fls.
- */
-static s8 size_index[24] = {
-       3,      /* 8 */
-       4,      /* 16 */
-       5,      /* 24 */
-       5,      /* 32 */
-       6,      /* 40 */
-       6,      /* 48 */
-       6,      /* 56 */
-       6,      /* 64 */
-       1,      /* 72 */
-       1,      /* 80 */
-       1,      /* 88 */
-       1,      /* 96 */
-       7,      /* 104 */
-       7,      /* 112 */
-       7,      /* 120 */
-       7,      /* 128 */
-       2,      /* 136 */
-       2,      /* 144 */
-       2,      /* 152 */
-       2,      /* 160 */
-       2,      /* 168 */
-       2,      /* 176 */
-       2,      /* 184 */
-       2       /* 192 */
-};
-
-static inline int size_index_elem(size_t bytes)
-{
-       return (bytes - 1) / 8;
-}
-
-static struct kmem_cache *get_slab(size_t size, gfp_t flags)
-{
-       int index;
-
-       if (size <= 192) {
-               if (!size)
-                       return ZERO_SIZE_PTR;
-
-               index = size_index[size_index_elem(size)];
-       } else
-               index = fls(size - 1);
-
-#ifdef CONFIG_ZONE_DMA
-       if (unlikely((flags & SLUB_DMA)))
-               return kmalloc_dma_caches[index];
-
-#endif
-       return kmalloc_caches[index];
-}
-
 void *__kmalloc(size_t size, gfp_t flags)
 {
        struct kmem_cache *s;
        void *ret;
 
-       if (unlikely(size > SLUB_MAX_SIZE))
+       if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
                return kmalloc_large(size, flags);
 
-       s = get_slab(size, flags);
+       s = kmalloc_slab(size, flags);
 
        if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
@@ -3316,7 +3252,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
        struct kmem_cache *s;
        void *ret;
 
-       if (unlikely(size > SLUB_MAX_SIZE)) {
+       if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
                ret = kmalloc_large_node(size, flags, node);
 
                trace_kmalloc_node(_RET_IP_, ret,
@@ -3326,7 +3262,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
                return ret;
        }
 
-       s = get_slab(size, flags);
+       s = kmalloc_slab(size, flags);
 
        if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
@@ -3617,6 +3553,12 @@ static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
 
        memcpy(s, static_cache, kmem_cache->object_size);
 
+       /*
+        * This runs very early, and only the boot processor is supposed to be
+        * up.  Even if it weren't true, IRQs are not up so we couldn't fire
+        * IPIs around.
+        */
+       __flush_cpu_slab(s, smp_processor_id());
        for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
                struct page *p;
@@ -3639,8 +3581,6 @@ void __init kmem_cache_init(void)
 {
        static __initdata struct kmem_cache boot_kmem_cache,
                boot_kmem_cache_node;
-       int i;
-       int caches = 2;
 
        if (debug_guardpage_minorder())
                slub_max_order = 0;
@@ -3671,103 +3611,16 @@ void __init kmem_cache_init(void)
        kmem_cache_node = bootstrap(&boot_kmem_cache_node);
 
        /* Now we can use the kmem_cache to allocate kmalloc slabs */
-
-       /*
-        * Patch up the size_index table if we have strange large alignment
-        * requirements for the kmalloc array. This is only the case for
-        * MIPS it seems. The standard arches will not generate any code here.
-        *
-        * Largest permitted alignment is 256 bytes due to the way we
-        * handle the index determination for the smaller caches.
-        *
-        * Make sure that nothing crazy happens if someone starts tinkering
-        * around with ARCH_KMALLOC_MINALIGN
-        */
-       BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
-               (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
-
-       for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
-               int elem = size_index_elem(i);
-               if (elem >= ARRAY_SIZE(size_index))
-                       break;
-               size_index[elem] = KMALLOC_SHIFT_LOW;
-       }
-
-       if (KMALLOC_MIN_SIZE == 64) {
-               /*
-                * The 96 byte size cache is not used if the alignment
-                * is 64 byte.
-                */
-               for (i = 64 + 8; i <= 96; i += 8)
-                       size_index[size_index_elem(i)] = 7;
-       } else if (KMALLOC_MIN_SIZE == 128) {
-               /*
-                * The 192 byte sized cache is not used if the alignment
-                * is 128 byte. Redirect kmalloc to use the 256 byte cache
-                * instead.
-                */
-               for (i = 128 + 8; i <= 192; i += 8)
-                       size_index[size_index_elem(i)] = 8;
-       }
-
-       /* Caches that are not of the two-to-the-power-of size */
-       if (KMALLOC_MIN_SIZE <= 32) {
-               kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
-               caches++;
-       }
-
-       if (KMALLOC_MIN_SIZE <= 64) {
-               kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
-               caches++;
-       }
-
-       for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
-               kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
-               caches++;
-       }
-
-       slab_state = UP;
-
-       /* Provide the correct kmalloc names now that the caches are up */
-       if (KMALLOC_MIN_SIZE <= 32) {
-               kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
-               BUG_ON(!kmalloc_caches[1]->name);
-       }
-
-       if (KMALLOC_MIN_SIZE <= 64) {
-               kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
-               BUG_ON(!kmalloc_caches[2]->name);
-       }
-
-       for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
-               char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
-
-               BUG_ON(!s);
-               kmalloc_caches[i]->name = s;
-       }
+       create_kmalloc_caches(0);
 
 #ifdef CONFIG_SMP
        register_cpu_notifier(&slab_notifier);
 #endif
 
-#ifdef CONFIG_ZONE_DMA
-       for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
-               struct kmem_cache *s = kmalloc_caches[i];
-
-               if (s && s->size) {
-                       char *name = kasprintf(GFP_NOWAIT,
-                                "dma-kmalloc-%d", s->object_size);
-
-                       BUG_ON(!name);
-                       kmalloc_dma_caches[i] = create_kmalloc_cache(name,
-                               s->object_size, SLAB_CACHE_DMA);
-               }
-       }
-#endif
        printk(KERN_INFO
-               "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
+               "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
                " CPUs=%d, Nodes=%d\n",
-               caches, cache_line_size(),
+               cache_line_size(),
                slub_min_order, slub_max_order, slub_min_objects,
                nr_cpu_ids, nr_node_ids);
 }
@@ -3930,10 +3783,10 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
        struct kmem_cache *s;
        void *ret;
 
-       if (unlikely(size > SLUB_MAX_SIZE))
+       if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
                return kmalloc_large(size, gfpflags);
 
-       s = get_slab(size, gfpflags);
+       s = kmalloc_slab(size, gfpflags);
 
        if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
@@ -3953,7 +3806,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
        struct kmem_cache *s;
        void *ret;
 
-       if (unlikely(size > SLUB_MAX_SIZE)) {
+       if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
                ret = kmalloc_large_node(size, gfpflags, node);
 
                trace_kmalloc_node(caller, ret,
@@ -3963,7 +3816,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
                return ret;
        }
 
-       s = get_slab(size, gfpflags);
+       s = kmalloc_slab(size, gfpflags);
 
        if (unlikely(ZERO_OR_NULL_PTR(s)))
                return s;
@@ -4312,7 +4165,7 @@ static void resiliency_test(void)
 {
        u8 *p;
 
-       BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
+       BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
 
        printk(KERN_ERR "SLUB resiliency testing\n");
        printk(KERN_ERR "-----------------------\n");