Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 void kvm_make_update_eoibitmap_request(struct kvm *kvm)
221 {
222 make_all_cpus_request(kvm, KVM_REQ_EOIBITMAP);
223 }
224
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
226 {
227 struct page *page;
228 int r;
229
230 mutex_init(&vcpu->mutex);
231 vcpu->cpu = -1;
232 vcpu->kvm = kvm;
233 vcpu->vcpu_id = id;
234 vcpu->pid = NULL;
235 init_waitqueue_head(&vcpu->wq);
236 kvm_async_pf_vcpu_init(vcpu);
237
238 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
239 if (!page) {
240 r = -ENOMEM;
241 goto fail;
242 }
243 vcpu->run = page_address(page);
244
245 kvm_vcpu_set_in_spin_loop(vcpu, false);
246 kvm_vcpu_set_dy_eligible(vcpu, false);
247
248 r = kvm_arch_vcpu_init(vcpu);
249 if (r < 0)
250 goto fail_free_run;
251 return 0;
252
253 fail_free_run:
254 free_page((unsigned long)vcpu->run);
255 fail:
256 return r;
257 }
258 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
259
260 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
261 {
262 put_pid(vcpu->pid);
263 kvm_arch_vcpu_uninit(vcpu);
264 free_page((unsigned long)vcpu->run);
265 }
266 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
267
268 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
269 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
270 {
271 return container_of(mn, struct kvm, mmu_notifier);
272 }
273
274 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
275 struct mm_struct *mm,
276 unsigned long address)
277 {
278 struct kvm *kvm = mmu_notifier_to_kvm(mn);
279 int need_tlb_flush, idx;
280
281 /*
282 * When ->invalidate_page runs, the linux pte has been zapped
283 * already but the page is still allocated until
284 * ->invalidate_page returns. So if we increase the sequence
285 * here the kvm page fault will notice if the spte can't be
286 * established because the page is going to be freed. If
287 * instead the kvm page fault establishes the spte before
288 * ->invalidate_page runs, kvm_unmap_hva will release it
289 * before returning.
290 *
291 * The sequence increase only need to be seen at spin_unlock
292 * time, and not at spin_lock time.
293 *
294 * Increasing the sequence after the spin_unlock would be
295 * unsafe because the kvm page fault could then establish the
296 * pte after kvm_unmap_hva returned, without noticing the page
297 * is going to be freed.
298 */
299 idx = srcu_read_lock(&kvm->srcu);
300 spin_lock(&kvm->mmu_lock);
301
302 kvm->mmu_notifier_seq++;
303 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
304 /* we've to flush the tlb before the pages can be freed */
305 if (need_tlb_flush)
306 kvm_flush_remote_tlbs(kvm);
307
308 spin_unlock(&kvm->mmu_lock);
309 srcu_read_unlock(&kvm->srcu, idx);
310 }
311
312 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
313 struct mm_struct *mm,
314 unsigned long address,
315 pte_t pte)
316 {
317 struct kvm *kvm = mmu_notifier_to_kvm(mn);
318 int idx;
319
320 idx = srcu_read_lock(&kvm->srcu);
321 spin_lock(&kvm->mmu_lock);
322 kvm->mmu_notifier_seq++;
323 kvm_set_spte_hva(kvm, address, pte);
324 spin_unlock(&kvm->mmu_lock);
325 srcu_read_unlock(&kvm->srcu, idx);
326 }
327
328 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
329 struct mm_struct *mm,
330 unsigned long start,
331 unsigned long end)
332 {
333 struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 int need_tlb_flush = 0, idx;
335
336 idx = srcu_read_lock(&kvm->srcu);
337 spin_lock(&kvm->mmu_lock);
338 /*
339 * The count increase must become visible at unlock time as no
340 * spte can be established without taking the mmu_lock and
341 * count is also read inside the mmu_lock critical section.
342 */
343 kvm->mmu_notifier_count++;
344 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
345 need_tlb_flush |= kvm->tlbs_dirty;
346 /* we've to flush the tlb before the pages can be freed */
347 if (need_tlb_flush)
348 kvm_flush_remote_tlbs(kvm);
349
350 spin_unlock(&kvm->mmu_lock);
351 srcu_read_unlock(&kvm->srcu, idx);
352 }
353
354 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
355 struct mm_struct *mm,
356 unsigned long start,
357 unsigned long end)
358 {
359 struct kvm *kvm = mmu_notifier_to_kvm(mn);
360
361 spin_lock(&kvm->mmu_lock);
362 /*
363 * This sequence increase will notify the kvm page fault that
364 * the page that is going to be mapped in the spte could have
365 * been freed.
366 */
367 kvm->mmu_notifier_seq++;
368 smp_wmb();
369 /*
370 * The above sequence increase must be visible before the
371 * below count decrease, which is ensured by the smp_wmb above
372 * in conjunction with the smp_rmb in mmu_notifier_retry().
373 */
374 kvm->mmu_notifier_count--;
375 spin_unlock(&kvm->mmu_lock);
376
377 BUG_ON(kvm->mmu_notifier_count < 0);
378 }
379
380 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
381 struct mm_struct *mm,
382 unsigned long address)
383 {
384 struct kvm *kvm = mmu_notifier_to_kvm(mn);
385 int young, idx;
386
387 idx = srcu_read_lock(&kvm->srcu);
388 spin_lock(&kvm->mmu_lock);
389
390 young = kvm_age_hva(kvm, address);
391 if (young)
392 kvm_flush_remote_tlbs(kvm);
393
394 spin_unlock(&kvm->mmu_lock);
395 srcu_read_unlock(&kvm->srcu, idx);
396
397 return young;
398 }
399
400 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
401 struct mm_struct *mm,
402 unsigned long address)
403 {
404 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 int young, idx;
406
407 idx = srcu_read_lock(&kvm->srcu);
408 spin_lock(&kvm->mmu_lock);
409 young = kvm_test_age_hva(kvm, address);
410 spin_unlock(&kvm->mmu_lock);
411 srcu_read_unlock(&kvm->srcu, idx);
412
413 return young;
414 }
415
416 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
417 struct mm_struct *mm)
418 {
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 int idx;
421
422 idx = srcu_read_lock(&kvm->srcu);
423 kvm_arch_flush_shadow_all(kvm);
424 srcu_read_unlock(&kvm->srcu, idx);
425 }
426
427 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
428 .invalidate_page = kvm_mmu_notifier_invalidate_page,
429 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
430 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
431 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
432 .test_young = kvm_mmu_notifier_test_young,
433 .change_pte = kvm_mmu_notifier_change_pte,
434 .release = kvm_mmu_notifier_release,
435 };
436
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 {
439 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
440 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
441 }
442
443 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
444
445 static int kvm_init_mmu_notifier(struct kvm *kvm)
446 {
447 return 0;
448 }
449
450 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
451
452 static void kvm_init_memslots_id(struct kvm *kvm)
453 {
454 int i;
455 struct kvm_memslots *slots = kvm->memslots;
456
457 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
458 slots->id_to_index[i] = slots->memslots[i].id = i;
459 }
460
461 static struct kvm *kvm_create_vm(unsigned long type)
462 {
463 int r, i;
464 struct kvm *kvm = kvm_arch_alloc_vm();
465
466 if (!kvm)
467 return ERR_PTR(-ENOMEM);
468
469 r = kvm_arch_init_vm(kvm, type);
470 if (r)
471 goto out_err_nodisable;
472
473 r = hardware_enable_all();
474 if (r)
475 goto out_err_nodisable;
476
477 #ifdef CONFIG_HAVE_KVM_IRQCHIP
478 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
479 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
480 #endif
481
482 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
483
484 r = -ENOMEM;
485 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
486 if (!kvm->memslots)
487 goto out_err_nosrcu;
488 kvm_init_memslots_id(kvm);
489 if (init_srcu_struct(&kvm->srcu))
490 goto out_err_nosrcu;
491 for (i = 0; i < KVM_NR_BUSES; i++) {
492 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
493 GFP_KERNEL);
494 if (!kvm->buses[i])
495 goto out_err;
496 }
497
498 spin_lock_init(&kvm->mmu_lock);
499 kvm->mm = current->mm;
500 atomic_inc(&kvm->mm->mm_count);
501 kvm_eventfd_init(kvm);
502 mutex_init(&kvm->lock);
503 mutex_init(&kvm->irq_lock);
504 mutex_init(&kvm->slots_lock);
505 atomic_set(&kvm->users_count, 1);
506
507 r = kvm_init_mmu_notifier(kvm);
508 if (r)
509 goto out_err;
510
511 raw_spin_lock(&kvm_lock);
512 list_add(&kvm->vm_list, &vm_list);
513 raw_spin_unlock(&kvm_lock);
514
515 return kvm;
516
517 out_err:
518 cleanup_srcu_struct(&kvm->srcu);
519 out_err_nosrcu:
520 hardware_disable_all();
521 out_err_nodisable:
522 for (i = 0; i < KVM_NR_BUSES; i++)
523 kfree(kvm->buses[i]);
524 kfree(kvm->memslots);
525 kvm_arch_free_vm(kvm);
526 return ERR_PTR(r);
527 }
528
529 /*
530 * Avoid using vmalloc for a small buffer.
531 * Should not be used when the size is statically known.
532 */
533 void *kvm_kvzalloc(unsigned long size)
534 {
535 if (size > PAGE_SIZE)
536 return vzalloc(size);
537 else
538 return kzalloc(size, GFP_KERNEL);
539 }
540
541 void kvm_kvfree(const void *addr)
542 {
543 if (is_vmalloc_addr(addr))
544 vfree(addr);
545 else
546 kfree(addr);
547 }
548
549 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
550 {
551 if (!memslot->dirty_bitmap)
552 return;
553
554 kvm_kvfree(memslot->dirty_bitmap);
555 memslot->dirty_bitmap = NULL;
556 }
557
558 /*
559 * Free any memory in @free but not in @dont.
560 */
561 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
562 struct kvm_memory_slot *dont)
563 {
564 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
565 kvm_destroy_dirty_bitmap(free);
566
567 kvm_arch_free_memslot(free, dont);
568
569 free->npages = 0;
570 }
571
572 void kvm_free_physmem(struct kvm *kvm)
573 {
574 struct kvm_memslots *slots = kvm->memslots;
575 struct kvm_memory_slot *memslot;
576
577 kvm_for_each_memslot(memslot, slots)
578 kvm_free_physmem_slot(memslot, NULL);
579
580 kfree(kvm->memslots);
581 }
582
583 static void kvm_destroy_vm(struct kvm *kvm)
584 {
585 int i;
586 struct mm_struct *mm = kvm->mm;
587
588 kvm_arch_sync_events(kvm);
589 raw_spin_lock(&kvm_lock);
590 list_del(&kvm->vm_list);
591 raw_spin_unlock(&kvm_lock);
592 kvm_free_irq_routing(kvm);
593 for (i = 0; i < KVM_NR_BUSES; i++)
594 kvm_io_bus_destroy(kvm->buses[i]);
595 kvm_coalesced_mmio_free(kvm);
596 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
597 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
598 #else
599 kvm_arch_flush_shadow_all(kvm);
600 #endif
601 kvm_arch_destroy_vm(kvm);
602 kvm_free_physmem(kvm);
603 cleanup_srcu_struct(&kvm->srcu);
604 kvm_arch_free_vm(kvm);
605 hardware_disable_all();
606 mmdrop(mm);
607 }
608
609 void kvm_get_kvm(struct kvm *kvm)
610 {
611 atomic_inc(&kvm->users_count);
612 }
613 EXPORT_SYMBOL_GPL(kvm_get_kvm);
614
615 void kvm_put_kvm(struct kvm *kvm)
616 {
617 if (atomic_dec_and_test(&kvm->users_count))
618 kvm_destroy_vm(kvm);
619 }
620 EXPORT_SYMBOL_GPL(kvm_put_kvm);
621
622
623 static int kvm_vm_release(struct inode *inode, struct file *filp)
624 {
625 struct kvm *kvm = filp->private_data;
626
627 kvm_irqfd_release(kvm);
628
629 kvm_put_kvm(kvm);
630 return 0;
631 }
632
633 /*
634 * Allocation size is twice as large as the actual dirty bitmap size.
635 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
636 */
637 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
638 {
639 #ifndef CONFIG_S390
640 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
641
642 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
643 if (!memslot->dirty_bitmap)
644 return -ENOMEM;
645
646 #endif /* !CONFIG_S390 */
647 return 0;
648 }
649
650 static int cmp_memslot(const void *slot1, const void *slot2)
651 {
652 struct kvm_memory_slot *s1, *s2;
653
654 s1 = (struct kvm_memory_slot *)slot1;
655 s2 = (struct kvm_memory_slot *)slot2;
656
657 if (s1->npages < s2->npages)
658 return 1;
659 if (s1->npages > s2->npages)
660 return -1;
661
662 return 0;
663 }
664
665 /*
666 * Sort the memslots base on its size, so the larger slots
667 * will get better fit.
668 */
669 static void sort_memslots(struct kvm_memslots *slots)
670 {
671 int i;
672
673 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
674 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
675
676 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
677 slots->id_to_index[slots->memslots[i].id] = i;
678 }
679
680 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
681 u64 last_generation)
682 {
683 if (new) {
684 int id = new->id;
685 struct kvm_memory_slot *old = id_to_memslot(slots, id);
686 unsigned long npages = old->npages;
687
688 *old = *new;
689 if (new->npages != npages)
690 sort_memslots(slots);
691 }
692
693 slots->generation = last_generation + 1;
694 }
695
696 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
697 {
698 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
699
700 #ifdef KVM_CAP_READONLY_MEM
701 valid_flags |= KVM_MEM_READONLY;
702 #endif
703
704 if (mem->flags & ~valid_flags)
705 return -EINVAL;
706
707 return 0;
708 }
709
710 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
711 struct kvm_memslots *slots, struct kvm_memory_slot *new)
712 {
713 struct kvm_memslots *old_memslots = kvm->memslots;
714
715 update_memslots(slots, new, kvm->memslots->generation);
716 rcu_assign_pointer(kvm->memslots, slots);
717 synchronize_srcu_expedited(&kvm->srcu);
718 return old_memslots;
719 }
720
721 /*
722 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
723 * - create a new memory slot
724 * - delete an existing memory slot
725 * - modify an existing memory slot
726 * -- move it in the guest physical memory space
727 * -- just change its flags
728 *
729 * Since flags can be changed by some of these operations, the following
730 * differentiation is the best we can do for __kvm_set_memory_region():
731 */
732 enum kvm_mr_change {
733 KVM_MR_CREATE,
734 KVM_MR_DELETE,
735 KVM_MR_MOVE,
736 KVM_MR_FLAGS_ONLY,
737 };
738
739 /*
740 * Allocate some memory and give it an address in the guest physical address
741 * space.
742 *
743 * Discontiguous memory is allowed, mostly for framebuffers.
744 *
745 * Must be called holding mmap_sem for write.
746 */
747 int __kvm_set_memory_region(struct kvm *kvm,
748 struct kvm_userspace_memory_region *mem,
749 bool user_alloc)
750 {
751 int r;
752 gfn_t base_gfn;
753 unsigned long npages;
754 struct kvm_memory_slot *slot;
755 struct kvm_memory_slot old, new;
756 struct kvm_memslots *slots = NULL, *old_memslots;
757 enum kvm_mr_change change;
758
759 r = check_memory_region_flags(mem);
760 if (r)
761 goto out;
762
763 r = -EINVAL;
764 /* General sanity checks */
765 if (mem->memory_size & (PAGE_SIZE - 1))
766 goto out;
767 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
768 goto out;
769 /* We can read the guest memory with __xxx_user() later on. */
770 if (user_alloc &&
771 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
772 !access_ok(VERIFY_WRITE,
773 (void __user *)(unsigned long)mem->userspace_addr,
774 mem->memory_size)))
775 goto out;
776 if (mem->slot >= KVM_MEM_SLOTS_NUM)
777 goto out;
778 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
779 goto out;
780
781 slot = id_to_memslot(kvm->memslots, mem->slot);
782 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
783 npages = mem->memory_size >> PAGE_SHIFT;
784
785 r = -EINVAL;
786 if (npages > KVM_MEM_MAX_NR_PAGES)
787 goto out;
788
789 if (!npages)
790 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
791
792 new = old = *slot;
793
794 new.id = mem->slot;
795 new.base_gfn = base_gfn;
796 new.npages = npages;
797 new.flags = mem->flags;
798
799 r = -EINVAL;
800 if (npages) {
801 if (!old.npages)
802 change = KVM_MR_CREATE;
803 else { /* Modify an existing slot. */
804 if ((mem->userspace_addr != old.userspace_addr) ||
805 (npages != old.npages) ||
806 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
807 goto out;
808
809 if (base_gfn != old.base_gfn)
810 change = KVM_MR_MOVE;
811 else if (new.flags != old.flags)
812 change = KVM_MR_FLAGS_ONLY;
813 else { /* Nothing to change. */
814 r = 0;
815 goto out;
816 }
817 }
818 } else if (old.npages) {
819 change = KVM_MR_DELETE;
820 } else /* Modify a non-existent slot: disallowed. */
821 goto out;
822
823 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
824 /* Check for overlaps */
825 r = -EEXIST;
826 kvm_for_each_memslot(slot, kvm->memslots) {
827 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
828 (slot->id == mem->slot))
829 continue;
830 if (!((base_gfn + npages <= slot->base_gfn) ||
831 (base_gfn >= slot->base_gfn + slot->npages)))
832 goto out;
833 }
834 }
835
836 /* Free page dirty bitmap if unneeded */
837 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
838 new.dirty_bitmap = NULL;
839
840 r = -ENOMEM;
841 if (change == KVM_MR_CREATE) {
842 new.userspace_addr = mem->userspace_addr;
843
844 if (kvm_arch_create_memslot(&new, npages))
845 goto out_free;
846 }
847
848 /* Allocate page dirty bitmap if needed */
849 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
850 if (kvm_create_dirty_bitmap(&new) < 0)
851 goto out_free;
852 }
853
854 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
855 r = -ENOMEM;
856 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
857 GFP_KERNEL);
858 if (!slots)
859 goto out_free;
860 slot = id_to_memslot(slots, mem->slot);
861 slot->flags |= KVM_MEMSLOT_INVALID;
862
863 old_memslots = install_new_memslots(kvm, slots, NULL);
864
865 /* slot was deleted or moved, clear iommu mapping */
866 kvm_iommu_unmap_pages(kvm, &old);
867 /* From this point no new shadow pages pointing to a deleted,
868 * or moved, memslot will be created.
869 *
870 * validation of sp->gfn happens in:
871 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
872 * - kvm_is_visible_gfn (mmu_check_roots)
873 */
874 kvm_arch_flush_shadow_memslot(kvm, slot);
875 slots = old_memslots;
876 }
877
878 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
879 if (r)
880 goto out_slots;
881
882 r = -ENOMEM;
883 /*
884 * We can re-use the old_memslots from above, the only difference
885 * from the currently installed memslots is the invalid flag. This
886 * will get overwritten by update_memslots anyway.
887 */
888 if (!slots) {
889 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
890 GFP_KERNEL);
891 if (!slots)
892 goto out_free;
893 }
894
895 /*
896 * IOMMU mapping: New slots need to be mapped. Old slots need to be
897 * un-mapped and re-mapped if their base changes. Since base change
898 * unmapping is handled above with slot deletion, mapping alone is
899 * needed here. Anything else the iommu might care about for existing
900 * slots (size changes, userspace addr changes and read-only flag
901 * changes) is disallowed above, so any other attribute changes getting
902 * here can be skipped.
903 */
904 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
905 r = kvm_iommu_map_pages(kvm, &new);
906 if (r)
907 goto out_slots;
908 }
909
910 /* actual memory is freed via old in kvm_free_physmem_slot below */
911 if (change == KVM_MR_DELETE) {
912 new.dirty_bitmap = NULL;
913 memset(&new.arch, 0, sizeof(new.arch));
914 }
915
916 old_memslots = install_new_memslots(kvm, slots, &new);
917
918 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
919
920 kvm_free_physmem_slot(&old, &new);
921 kfree(old_memslots);
922
923 return 0;
924
925 out_slots:
926 kfree(slots);
927 out_free:
928 kvm_free_physmem_slot(&new, &old);
929 out:
930 return r;
931 }
932 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
933
934 int kvm_set_memory_region(struct kvm *kvm,
935 struct kvm_userspace_memory_region *mem,
936 bool user_alloc)
937 {
938 int r;
939
940 mutex_lock(&kvm->slots_lock);
941 r = __kvm_set_memory_region(kvm, mem, user_alloc);
942 mutex_unlock(&kvm->slots_lock);
943 return r;
944 }
945 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
946
947 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
948 struct
949 kvm_userspace_memory_region *mem,
950 bool user_alloc)
951 {
952 if (mem->slot >= KVM_USER_MEM_SLOTS)
953 return -EINVAL;
954 return kvm_set_memory_region(kvm, mem, user_alloc);
955 }
956
957 int kvm_get_dirty_log(struct kvm *kvm,
958 struct kvm_dirty_log *log, int *is_dirty)
959 {
960 struct kvm_memory_slot *memslot;
961 int r, i;
962 unsigned long n;
963 unsigned long any = 0;
964
965 r = -EINVAL;
966 if (log->slot >= KVM_USER_MEM_SLOTS)
967 goto out;
968
969 memslot = id_to_memslot(kvm->memslots, log->slot);
970 r = -ENOENT;
971 if (!memslot->dirty_bitmap)
972 goto out;
973
974 n = kvm_dirty_bitmap_bytes(memslot);
975
976 for (i = 0; !any && i < n/sizeof(long); ++i)
977 any = memslot->dirty_bitmap[i];
978
979 r = -EFAULT;
980 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
981 goto out;
982
983 if (any)
984 *is_dirty = 1;
985
986 r = 0;
987 out:
988 return r;
989 }
990
991 bool kvm_largepages_enabled(void)
992 {
993 return largepages_enabled;
994 }
995
996 void kvm_disable_largepages(void)
997 {
998 largepages_enabled = false;
999 }
1000 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1001
1002 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1003 {
1004 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1005 }
1006 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1007
1008 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1009 {
1010 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1011
1012 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1013 memslot->flags & KVM_MEMSLOT_INVALID)
1014 return 0;
1015
1016 return 1;
1017 }
1018 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1019
1020 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1021 {
1022 struct vm_area_struct *vma;
1023 unsigned long addr, size;
1024
1025 size = PAGE_SIZE;
1026
1027 addr = gfn_to_hva(kvm, gfn);
1028 if (kvm_is_error_hva(addr))
1029 return PAGE_SIZE;
1030
1031 down_read(&current->mm->mmap_sem);
1032 vma = find_vma(current->mm, addr);
1033 if (!vma)
1034 goto out;
1035
1036 size = vma_kernel_pagesize(vma);
1037
1038 out:
1039 up_read(&current->mm->mmap_sem);
1040
1041 return size;
1042 }
1043
1044 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1045 {
1046 return slot->flags & KVM_MEM_READONLY;
1047 }
1048
1049 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1050 gfn_t *nr_pages, bool write)
1051 {
1052 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1053 return KVM_HVA_ERR_BAD;
1054
1055 if (memslot_is_readonly(slot) && write)
1056 return KVM_HVA_ERR_RO_BAD;
1057
1058 if (nr_pages)
1059 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1060
1061 return __gfn_to_hva_memslot(slot, gfn);
1062 }
1063
1064 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1065 gfn_t *nr_pages)
1066 {
1067 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1068 }
1069
1070 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1071 gfn_t gfn)
1072 {
1073 return gfn_to_hva_many(slot, gfn, NULL);
1074 }
1075 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1076
1077 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1078 {
1079 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1080 }
1081 EXPORT_SYMBOL_GPL(gfn_to_hva);
1082
1083 /*
1084 * The hva returned by this function is only allowed to be read.
1085 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1086 */
1087 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1088 {
1089 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1090 }
1091
1092 static int kvm_read_hva(void *data, void __user *hva, int len)
1093 {
1094 return __copy_from_user(data, hva, len);
1095 }
1096
1097 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1098 {
1099 return __copy_from_user_inatomic(data, hva, len);
1100 }
1101
1102 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1103 unsigned long start, int write, struct page **page)
1104 {
1105 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1106
1107 if (write)
1108 flags |= FOLL_WRITE;
1109
1110 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1111 }
1112
1113 static inline int check_user_page_hwpoison(unsigned long addr)
1114 {
1115 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1116
1117 rc = __get_user_pages(current, current->mm, addr, 1,
1118 flags, NULL, NULL, NULL);
1119 return rc == -EHWPOISON;
1120 }
1121
1122 /*
1123 * The atomic path to get the writable pfn which will be stored in @pfn,
1124 * true indicates success, otherwise false is returned.
1125 */
1126 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1127 bool write_fault, bool *writable, pfn_t *pfn)
1128 {
1129 struct page *page[1];
1130 int npages;
1131
1132 if (!(async || atomic))
1133 return false;
1134
1135 /*
1136 * Fast pin a writable pfn only if it is a write fault request
1137 * or the caller allows to map a writable pfn for a read fault
1138 * request.
1139 */
1140 if (!(write_fault || writable))
1141 return false;
1142
1143 npages = __get_user_pages_fast(addr, 1, 1, page);
1144 if (npages == 1) {
1145 *pfn = page_to_pfn(page[0]);
1146
1147 if (writable)
1148 *writable = true;
1149 return true;
1150 }
1151
1152 return false;
1153 }
1154
1155 /*
1156 * The slow path to get the pfn of the specified host virtual address,
1157 * 1 indicates success, -errno is returned if error is detected.
1158 */
1159 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1160 bool *writable, pfn_t *pfn)
1161 {
1162 struct page *page[1];
1163 int npages = 0;
1164
1165 might_sleep();
1166
1167 if (writable)
1168 *writable = write_fault;
1169
1170 if (async) {
1171 down_read(&current->mm->mmap_sem);
1172 npages = get_user_page_nowait(current, current->mm,
1173 addr, write_fault, page);
1174 up_read(&current->mm->mmap_sem);
1175 } else
1176 npages = get_user_pages_fast(addr, 1, write_fault,
1177 page);
1178 if (npages != 1)
1179 return npages;
1180
1181 /* map read fault as writable if possible */
1182 if (unlikely(!write_fault) && writable) {
1183 struct page *wpage[1];
1184
1185 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1186 if (npages == 1) {
1187 *writable = true;
1188 put_page(page[0]);
1189 page[0] = wpage[0];
1190 }
1191
1192 npages = 1;
1193 }
1194 *pfn = page_to_pfn(page[0]);
1195 return npages;
1196 }
1197
1198 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1199 {
1200 if (unlikely(!(vma->vm_flags & VM_READ)))
1201 return false;
1202
1203 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1204 return false;
1205
1206 return true;
1207 }
1208
1209 /*
1210 * Pin guest page in memory and return its pfn.
1211 * @addr: host virtual address which maps memory to the guest
1212 * @atomic: whether this function can sleep
1213 * @async: whether this function need to wait IO complete if the
1214 * host page is not in the memory
1215 * @write_fault: whether we should get a writable host page
1216 * @writable: whether it allows to map a writable host page for !@write_fault
1217 *
1218 * The function will map a writable host page for these two cases:
1219 * 1): @write_fault = true
1220 * 2): @write_fault = false && @writable, @writable will tell the caller
1221 * whether the mapping is writable.
1222 */
1223 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1224 bool write_fault, bool *writable)
1225 {
1226 struct vm_area_struct *vma;
1227 pfn_t pfn = 0;
1228 int npages;
1229
1230 /* we can do it either atomically or asynchronously, not both */
1231 BUG_ON(atomic && async);
1232
1233 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1234 return pfn;
1235
1236 if (atomic)
1237 return KVM_PFN_ERR_FAULT;
1238
1239 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1240 if (npages == 1)
1241 return pfn;
1242
1243 down_read(&current->mm->mmap_sem);
1244 if (npages == -EHWPOISON ||
1245 (!async && check_user_page_hwpoison(addr))) {
1246 pfn = KVM_PFN_ERR_HWPOISON;
1247 goto exit;
1248 }
1249
1250 vma = find_vma_intersection(current->mm, addr, addr + 1);
1251
1252 if (vma == NULL)
1253 pfn = KVM_PFN_ERR_FAULT;
1254 else if ((vma->vm_flags & VM_PFNMAP)) {
1255 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1256 vma->vm_pgoff;
1257 BUG_ON(!kvm_is_mmio_pfn(pfn));
1258 } else {
1259 if (async && vma_is_valid(vma, write_fault))
1260 *async = true;
1261 pfn = KVM_PFN_ERR_FAULT;
1262 }
1263 exit:
1264 up_read(&current->mm->mmap_sem);
1265 return pfn;
1266 }
1267
1268 static pfn_t
1269 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1270 bool *async, bool write_fault, bool *writable)
1271 {
1272 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1273
1274 if (addr == KVM_HVA_ERR_RO_BAD)
1275 return KVM_PFN_ERR_RO_FAULT;
1276
1277 if (kvm_is_error_hva(addr))
1278 return KVM_PFN_NOSLOT;
1279
1280 /* Do not map writable pfn in the readonly memslot. */
1281 if (writable && memslot_is_readonly(slot)) {
1282 *writable = false;
1283 writable = NULL;
1284 }
1285
1286 return hva_to_pfn(addr, atomic, async, write_fault,
1287 writable);
1288 }
1289
1290 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1291 bool write_fault, bool *writable)
1292 {
1293 struct kvm_memory_slot *slot;
1294
1295 if (async)
1296 *async = false;
1297
1298 slot = gfn_to_memslot(kvm, gfn);
1299
1300 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1301 writable);
1302 }
1303
1304 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1305 {
1306 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1309
1310 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1311 bool write_fault, bool *writable)
1312 {
1313 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1314 }
1315 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1316
1317 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1318 {
1319 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1320 }
1321 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1322
1323 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1324 bool *writable)
1325 {
1326 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1327 }
1328 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1329
1330 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1331 {
1332 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1333 }
1334
1335 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1336 {
1337 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1338 }
1339 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1340
1341 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1342 int nr_pages)
1343 {
1344 unsigned long addr;
1345 gfn_t entry;
1346
1347 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1348 if (kvm_is_error_hva(addr))
1349 return -1;
1350
1351 if (entry < nr_pages)
1352 return 0;
1353
1354 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1355 }
1356 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1357
1358 static struct page *kvm_pfn_to_page(pfn_t pfn)
1359 {
1360 if (is_error_noslot_pfn(pfn))
1361 return KVM_ERR_PTR_BAD_PAGE;
1362
1363 if (kvm_is_mmio_pfn(pfn)) {
1364 WARN_ON(1);
1365 return KVM_ERR_PTR_BAD_PAGE;
1366 }
1367
1368 return pfn_to_page(pfn);
1369 }
1370
1371 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1372 {
1373 pfn_t pfn;
1374
1375 pfn = gfn_to_pfn(kvm, gfn);
1376
1377 return kvm_pfn_to_page(pfn);
1378 }
1379
1380 EXPORT_SYMBOL_GPL(gfn_to_page);
1381
1382 void kvm_release_page_clean(struct page *page)
1383 {
1384 WARN_ON(is_error_page(page));
1385
1386 kvm_release_pfn_clean(page_to_pfn(page));
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1389
1390 void kvm_release_pfn_clean(pfn_t pfn)
1391 {
1392 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1393 put_page(pfn_to_page(pfn));
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1396
1397 void kvm_release_page_dirty(struct page *page)
1398 {
1399 WARN_ON(is_error_page(page));
1400
1401 kvm_release_pfn_dirty(page_to_pfn(page));
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1404
1405 void kvm_release_pfn_dirty(pfn_t pfn)
1406 {
1407 kvm_set_pfn_dirty(pfn);
1408 kvm_release_pfn_clean(pfn);
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1411
1412 void kvm_set_page_dirty(struct page *page)
1413 {
1414 kvm_set_pfn_dirty(page_to_pfn(page));
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1417
1418 void kvm_set_pfn_dirty(pfn_t pfn)
1419 {
1420 if (!kvm_is_mmio_pfn(pfn)) {
1421 struct page *page = pfn_to_page(pfn);
1422 if (!PageReserved(page))
1423 SetPageDirty(page);
1424 }
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1427
1428 void kvm_set_pfn_accessed(pfn_t pfn)
1429 {
1430 if (!kvm_is_mmio_pfn(pfn))
1431 mark_page_accessed(pfn_to_page(pfn));
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1434
1435 void kvm_get_pfn(pfn_t pfn)
1436 {
1437 if (!kvm_is_mmio_pfn(pfn))
1438 get_page(pfn_to_page(pfn));
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1441
1442 static int next_segment(unsigned long len, int offset)
1443 {
1444 if (len > PAGE_SIZE - offset)
1445 return PAGE_SIZE - offset;
1446 else
1447 return len;
1448 }
1449
1450 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1451 int len)
1452 {
1453 int r;
1454 unsigned long addr;
1455
1456 addr = gfn_to_hva_read(kvm, gfn);
1457 if (kvm_is_error_hva(addr))
1458 return -EFAULT;
1459 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1460 if (r)
1461 return -EFAULT;
1462 return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1465
1466 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1467 {
1468 gfn_t gfn = gpa >> PAGE_SHIFT;
1469 int seg;
1470 int offset = offset_in_page(gpa);
1471 int ret;
1472
1473 while ((seg = next_segment(len, offset)) != 0) {
1474 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1475 if (ret < 0)
1476 return ret;
1477 offset = 0;
1478 len -= seg;
1479 data += seg;
1480 ++gfn;
1481 }
1482 return 0;
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_read_guest);
1485
1486 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1487 unsigned long len)
1488 {
1489 int r;
1490 unsigned long addr;
1491 gfn_t gfn = gpa >> PAGE_SHIFT;
1492 int offset = offset_in_page(gpa);
1493
1494 addr = gfn_to_hva_read(kvm, gfn);
1495 if (kvm_is_error_hva(addr))
1496 return -EFAULT;
1497 pagefault_disable();
1498 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1499 pagefault_enable();
1500 if (r)
1501 return -EFAULT;
1502 return 0;
1503 }
1504 EXPORT_SYMBOL(kvm_read_guest_atomic);
1505
1506 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1507 int offset, int len)
1508 {
1509 int r;
1510 unsigned long addr;
1511
1512 addr = gfn_to_hva(kvm, gfn);
1513 if (kvm_is_error_hva(addr))
1514 return -EFAULT;
1515 r = __copy_to_user((void __user *)addr + offset, data, len);
1516 if (r)
1517 return -EFAULT;
1518 mark_page_dirty(kvm, gfn);
1519 return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1522
1523 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1524 unsigned long len)
1525 {
1526 gfn_t gfn = gpa >> PAGE_SHIFT;
1527 int seg;
1528 int offset = offset_in_page(gpa);
1529 int ret;
1530
1531 while ((seg = next_segment(len, offset)) != 0) {
1532 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1533 if (ret < 0)
1534 return ret;
1535 offset = 0;
1536 len -= seg;
1537 data += seg;
1538 ++gfn;
1539 }
1540 return 0;
1541 }
1542
1543 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1544 gpa_t gpa)
1545 {
1546 struct kvm_memslots *slots = kvm_memslots(kvm);
1547 int offset = offset_in_page(gpa);
1548 gfn_t gfn = gpa >> PAGE_SHIFT;
1549
1550 ghc->gpa = gpa;
1551 ghc->generation = slots->generation;
1552 ghc->memslot = gfn_to_memslot(kvm, gfn);
1553 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1554 if (!kvm_is_error_hva(ghc->hva))
1555 ghc->hva += offset;
1556 else
1557 return -EFAULT;
1558
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1562
1563 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1564 void *data, unsigned long len)
1565 {
1566 struct kvm_memslots *slots = kvm_memslots(kvm);
1567 int r;
1568
1569 if (slots->generation != ghc->generation)
1570 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1571
1572 if (kvm_is_error_hva(ghc->hva))
1573 return -EFAULT;
1574
1575 r = __copy_to_user((void __user *)ghc->hva, data, len);
1576 if (r)
1577 return -EFAULT;
1578 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1579
1580 return 0;
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1583
1584 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1585 void *data, unsigned long len)
1586 {
1587 struct kvm_memslots *slots = kvm_memslots(kvm);
1588 int r;
1589
1590 if (slots->generation != ghc->generation)
1591 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1592
1593 if (kvm_is_error_hva(ghc->hva))
1594 return -EFAULT;
1595
1596 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1597 if (r)
1598 return -EFAULT;
1599
1600 return 0;
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1603
1604 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1605 {
1606 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1607 offset, len);
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1610
1611 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1612 {
1613 gfn_t gfn = gpa >> PAGE_SHIFT;
1614 int seg;
1615 int offset = offset_in_page(gpa);
1616 int ret;
1617
1618 while ((seg = next_segment(len, offset)) != 0) {
1619 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1620 if (ret < 0)
1621 return ret;
1622 offset = 0;
1623 len -= seg;
1624 ++gfn;
1625 }
1626 return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1629
1630 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1631 gfn_t gfn)
1632 {
1633 if (memslot && memslot->dirty_bitmap) {
1634 unsigned long rel_gfn = gfn - memslot->base_gfn;
1635
1636 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1637 }
1638 }
1639
1640 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1641 {
1642 struct kvm_memory_slot *memslot;
1643
1644 memslot = gfn_to_memslot(kvm, gfn);
1645 mark_page_dirty_in_slot(kvm, memslot, gfn);
1646 }
1647
1648 /*
1649 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1650 */
1651 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1652 {
1653 DEFINE_WAIT(wait);
1654
1655 for (;;) {
1656 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1657
1658 if (kvm_arch_vcpu_runnable(vcpu)) {
1659 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1660 break;
1661 }
1662 if (kvm_cpu_has_pending_timer(vcpu))
1663 break;
1664 if (signal_pending(current))
1665 break;
1666
1667 schedule();
1668 }
1669
1670 finish_wait(&vcpu->wq, &wait);
1671 }
1672
1673 #ifndef CONFIG_S390
1674 /*
1675 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1676 */
1677 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1678 {
1679 int me;
1680 int cpu = vcpu->cpu;
1681 wait_queue_head_t *wqp;
1682
1683 wqp = kvm_arch_vcpu_wq(vcpu);
1684 if (waitqueue_active(wqp)) {
1685 wake_up_interruptible(wqp);
1686 ++vcpu->stat.halt_wakeup;
1687 }
1688
1689 me = get_cpu();
1690 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1691 if (kvm_arch_vcpu_should_kick(vcpu))
1692 smp_send_reschedule(cpu);
1693 put_cpu();
1694 }
1695 #endif /* !CONFIG_S390 */
1696
1697 void kvm_resched(struct kvm_vcpu *vcpu)
1698 {
1699 if (!need_resched())
1700 return;
1701 cond_resched();
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_resched);
1704
1705 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1706 {
1707 struct pid *pid;
1708 struct task_struct *task = NULL;
1709 bool ret = false;
1710
1711 rcu_read_lock();
1712 pid = rcu_dereference(target->pid);
1713 if (pid)
1714 task = get_pid_task(target->pid, PIDTYPE_PID);
1715 rcu_read_unlock();
1716 if (!task)
1717 return ret;
1718 if (task->flags & PF_VCPU) {
1719 put_task_struct(task);
1720 return ret;
1721 }
1722 ret = yield_to(task, 1);
1723 put_task_struct(task);
1724
1725 return ret;
1726 }
1727 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1728
1729 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1730 /*
1731 * Helper that checks whether a VCPU is eligible for directed yield.
1732 * Most eligible candidate to yield is decided by following heuristics:
1733 *
1734 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1735 * (preempted lock holder), indicated by @in_spin_loop.
1736 * Set at the beiginning and cleared at the end of interception/PLE handler.
1737 *
1738 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1739 * chance last time (mostly it has become eligible now since we have probably
1740 * yielded to lockholder in last iteration. This is done by toggling
1741 * @dy_eligible each time a VCPU checked for eligibility.)
1742 *
1743 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1744 * to preempted lock-holder could result in wrong VCPU selection and CPU
1745 * burning. Giving priority for a potential lock-holder increases lock
1746 * progress.
1747 *
1748 * Since algorithm is based on heuristics, accessing another VCPU data without
1749 * locking does not harm. It may result in trying to yield to same VCPU, fail
1750 * and continue with next VCPU and so on.
1751 */
1752 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1753 {
1754 bool eligible;
1755
1756 eligible = !vcpu->spin_loop.in_spin_loop ||
1757 (vcpu->spin_loop.in_spin_loop &&
1758 vcpu->spin_loop.dy_eligible);
1759
1760 if (vcpu->spin_loop.in_spin_loop)
1761 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1762
1763 return eligible;
1764 }
1765 #endif
1766
1767 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1768 {
1769 struct kvm *kvm = me->kvm;
1770 struct kvm_vcpu *vcpu;
1771 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1772 int yielded = 0;
1773 int try = 3;
1774 int pass;
1775 int i;
1776
1777 kvm_vcpu_set_in_spin_loop(me, true);
1778 /*
1779 * We boost the priority of a VCPU that is runnable but not
1780 * currently running, because it got preempted by something
1781 * else and called schedule in __vcpu_run. Hopefully that
1782 * VCPU is holding the lock that we need and will release it.
1783 * We approximate round-robin by starting at the last boosted VCPU.
1784 */
1785 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1786 kvm_for_each_vcpu(i, vcpu, kvm) {
1787 if (!pass && i <= last_boosted_vcpu) {
1788 i = last_boosted_vcpu;
1789 continue;
1790 } else if (pass && i > last_boosted_vcpu)
1791 break;
1792 if (vcpu == me)
1793 continue;
1794 if (waitqueue_active(&vcpu->wq))
1795 continue;
1796 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1797 continue;
1798
1799 yielded = kvm_vcpu_yield_to(vcpu);
1800 if (yielded > 0) {
1801 kvm->last_boosted_vcpu = i;
1802 break;
1803 } else if (yielded < 0) {
1804 try--;
1805 if (!try)
1806 break;
1807 }
1808 }
1809 }
1810 kvm_vcpu_set_in_spin_loop(me, false);
1811
1812 /* Ensure vcpu is not eligible during next spinloop */
1813 kvm_vcpu_set_dy_eligible(me, false);
1814 }
1815 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1816
1817 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1818 {
1819 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1820 struct page *page;
1821
1822 if (vmf->pgoff == 0)
1823 page = virt_to_page(vcpu->run);
1824 #ifdef CONFIG_X86
1825 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1826 page = virt_to_page(vcpu->arch.pio_data);
1827 #endif
1828 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1829 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1830 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1831 #endif
1832 else
1833 return kvm_arch_vcpu_fault(vcpu, vmf);
1834 get_page(page);
1835 vmf->page = page;
1836 return 0;
1837 }
1838
1839 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1840 .fault = kvm_vcpu_fault,
1841 };
1842
1843 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1844 {
1845 vma->vm_ops = &kvm_vcpu_vm_ops;
1846 return 0;
1847 }
1848
1849 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1850 {
1851 struct kvm_vcpu *vcpu = filp->private_data;
1852
1853 kvm_put_kvm(vcpu->kvm);
1854 return 0;
1855 }
1856
1857 static struct file_operations kvm_vcpu_fops = {
1858 .release = kvm_vcpu_release,
1859 .unlocked_ioctl = kvm_vcpu_ioctl,
1860 #ifdef CONFIG_COMPAT
1861 .compat_ioctl = kvm_vcpu_compat_ioctl,
1862 #endif
1863 .mmap = kvm_vcpu_mmap,
1864 .llseek = noop_llseek,
1865 };
1866
1867 /*
1868 * Allocates an inode for the vcpu.
1869 */
1870 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1871 {
1872 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1873 }
1874
1875 /*
1876 * Creates some virtual cpus. Good luck creating more than one.
1877 */
1878 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1879 {
1880 int r;
1881 struct kvm_vcpu *vcpu, *v;
1882
1883 vcpu = kvm_arch_vcpu_create(kvm, id);
1884 if (IS_ERR(vcpu))
1885 return PTR_ERR(vcpu);
1886
1887 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1888
1889 r = kvm_arch_vcpu_setup(vcpu);
1890 if (r)
1891 goto vcpu_destroy;
1892
1893 mutex_lock(&kvm->lock);
1894 if (!kvm_vcpu_compatible(vcpu)) {
1895 r = -EINVAL;
1896 goto unlock_vcpu_destroy;
1897 }
1898 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1899 r = -EINVAL;
1900 goto unlock_vcpu_destroy;
1901 }
1902
1903 kvm_for_each_vcpu(r, v, kvm)
1904 if (v->vcpu_id == id) {
1905 r = -EEXIST;
1906 goto unlock_vcpu_destroy;
1907 }
1908
1909 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1910
1911 /* Now it's all set up, let userspace reach it */
1912 kvm_get_kvm(kvm);
1913 r = create_vcpu_fd(vcpu);
1914 if (r < 0) {
1915 kvm_put_kvm(kvm);
1916 goto unlock_vcpu_destroy;
1917 }
1918
1919 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1920 smp_wmb();
1921 atomic_inc(&kvm->online_vcpus);
1922
1923 mutex_unlock(&kvm->lock);
1924 kvm_arch_vcpu_postcreate(vcpu);
1925 return r;
1926
1927 unlock_vcpu_destroy:
1928 mutex_unlock(&kvm->lock);
1929 vcpu_destroy:
1930 kvm_arch_vcpu_destroy(vcpu);
1931 return r;
1932 }
1933
1934 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1935 {
1936 if (sigset) {
1937 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1938 vcpu->sigset_active = 1;
1939 vcpu->sigset = *sigset;
1940 } else
1941 vcpu->sigset_active = 0;
1942 return 0;
1943 }
1944
1945 static long kvm_vcpu_ioctl(struct file *filp,
1946 unsigned int ioctl, unsigned long arg)
1947 {
1948 struct kvm_vcpu *vcpu = filp->private_data;
1949 void __user *argp = (void __user *)arg;
1950 int r;
1951 struct kvm_fpu *fpu = NULL;
1952 struct kvm_sregs *kvm_sregs = NULL;
1953
1954 if (vcpu->kvm->mm != current->mm)
1955 return -EIO;
1956
1957 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1958 /*
1959 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1960 * so vcpu_load() would break it.
1961 */
1962 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1963 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1964 #endif
1965
1966
1967 r = vcpu_load(vcpu);
1968 if (r)
1969 return r;
1970 switch (ioctl) {
1971 case KVM_RUN:
1972 r = -EINVAL;
1973 if (arg)
1974 goto out;
1975 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1976 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1977 break;
1978 case KVM_GET_REGS: {
1979 struct kvm_regs *kvm_regs;
1980
1981 r = -ENOMEM;
1982 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1983 if (!kvm_regs)
1984 goto out;
1985 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1986 if (r)
1987 goto out_free1;
1988 r = -EFAULT;
1989 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1990 goto out_free1;
1991 r = 0;
1992 out_free1:
1993 kfree(kvm_regs);
1994 break;
1995 }
1996 case KVM_SET_REGS: {
1997 struct kvm_regs *kvm_regs;
1998
1999 r = -ENOMEM;
2000 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2001 if (IS_ERR(kvm_regs)) {
2002 r = PTR_ERR(kvm_regs);
2003 goto out;
2004 }
2005 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2006 kfree(kvm_regs);
2007 break;
2008 }
2009 case KVM_GET_SREGS: {
2010 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2011 r = -ENOMEM;
2012 if (!kvm_sregs)
2013 goto out;
2014 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2015 if (r)
2016 goto out;
2017 r = -EFAULT;
2018 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2019 goto out;
2020 r = 0;
2021 break;
2022 }
2023 case KVM_SET_SREGS: {
2024 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2025 if (IS_ERR(kvm_sregs)) {
2026 r = PTR_ERR(kvm_sregs);
2027 kvm_sregs = NULL;
2028 goto out;
2029 }
2030 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2031 break;
2032 }
2033 case KVM_GET_MP_STATE: {
2034 struct kvm_mp_state mp_state;
2035
2036 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2037 if (r)
2038 goto out;
2039 r = -EFAULT;
2040 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2041 goto out;
2042 r = 0;
2043 break;
2044 }
2045 case KVM_SET_MP_STATE: {
2046 struct kvm_mp_state mp_state;
2047
2048 r = -EFAULT;
2049 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2050 goto out;
2051 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2052 break;
2053 }
2054 case KVM_TRANSLATE: {
2055 struct kvm_translation tr;
2056
2057 r = -EFAULT;
2058 if (copy_from_user(&tr, argp, sizeof tr))
2059 goto out;
2060 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2061 if (r)
2062 goto out;
2063 r = -EFAULT;
2064 if (copy_to_user(argp, &tr, sizeof tr))
2065 goto out;
2066 r = 0;
2067 break;
2068 }
2069 case KVM_SET_GUEST_DEBUG: {
2070 struct kvm_guest_debug dbg;
2071
2072 r = -EFAULT;
2073 if (copy_from_user(&dbg, argp, sizeof dbg))
2074 goto out;
2075 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2076 break;
2077 }
2078 case KVM_SET_SIGNAL_MASK: {
2079 struct kvm_signal_mask __user *sigmask_arg = argp;
2080 struct kvm_signal_mask kvm_sigmask;
2081 sigset_t sigset, *p;
2082
2083 p = NULL;
2084 if (argp) {
2085 r = -EFAULT;
2086 if (copy_from_user(&kvm_sigmask, argp,
2087 sizeof kvm_sigmask))
2088 goto out;
2089 r = -EINVAL;
2090 if (kvm_sigmask.len != sizeof sigset)
2091 goto out;
2092 r = -EFAULT;
2093 if (copy_from_user(&sigset, sigmask_arg->sigset,
2094 sizeof sigset))
2095 goto out;
2096 p = &sigset;
2097 }
2098 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2099 break;
2100 }
2101 case KVM_GET_FPU: {
2102 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2103 r = -ENOMEM;
2104 if (!fpu)
2105 goto out;
2106 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2107 if (r)
2108 goto out;
2109 r = -EFAULT;
2110 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2111 goto out;
2112 r = 0;
2113 break;
2114 }
2115 case KVM_SET_FPU: {
2116 fpu = memdup_user(argp, sizeof(*fpu));
2117 if (IS_ERR(fpu)) {
2118 r = PTR_ERR(fpu);
2119 fpu = NULL;
2120 goto out;
2121 }
2122 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2123 break;
2124 }
2125 default:
2126 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2127 }
2128 out:
2129 vcpu_put(vcpu);
2130 kfree(fpu);
2131 kfree(kvm_sregs);
2132 return r;
2133 }
2134
2135 #ifdef CONFIG_COMPAT
2136 static long kvm_vcpu_compat_ioctl(struct file *filp,
2137 unsigned int ioctl, unsigned long arg)
2138 {
2139 struct kvm_vcpu *vcpu = filp->private_data;
2140 void __user *argp = compat_ptr(arg);
2141 int r;
2142
2143 if (vcpu->kvm->mm != current->mm)
2144 return -EIO;
2145
2146 switch (ioctl) {
2147 case KVM_SET_SIGNAL_MASK: {
2148 struct kvm_signal_mask __user *sigmask_arg = argp;
2149 struct kvm_signal_mask kvm_sigmask;
2150 compat_sigset_t csigset;
2151 sigset_t sigset;
2152
2153 if (argp) {
2154 r = -EFAULT;
2155 if (copy_from_user(&kvm_sigmask, argp,
2156 sizeof kvm_sigmask))
2157 goto out;
2158 r = -EINVAL;
2159 if (kvm_sigmask.len != sizeof csigset)
2160 goto out;
2161 r = -EFAULT;
2162 if (copy_from_user(&csigset, sigmask_arg->sigset,
2163 sizeof csigset))
2164 goto out;
2165 sigset_from_compat(&sigset, &csigset);
2166 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2167 } else
2168 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2169 break;
2170 }
2171 default:
2172 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2173 }
2174
2175 out:
2176 return r;
2177 }
2178 #endif
2179
2180 static long kvm_vm_ioctl(struct file *filp,
2181 unsigned int ioctl, unsigned long arg)
2182 {
2183 struct kvm *kvm = filp->private_data;
2184 void __user *argp = (void __user *)arg;
2185 int r;
2186
2187 if (kvm->mm != current->mm)
2188 return -EIO;
2189 switch (ioctl) {
2190 case KVM_CREATE_VCPU:
2191 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2192 break;
2193 case KVM_SET_USER_MEMORY_REGION: {
2194 struct kvm_userspace_memory_region kvm_userspace_mem;
2195
2196 r = -EFAULT;
2197 if (copy_from_user(&kvm_userspace_mem, argp,
2198 sizeof kvm_userspace_mem))
2199 goto out;
2200
2201 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, true);
2202 break;
2203 }
2204 case KVM_GET_DIRTY_LOG: {
2205 struct kvm_dirty_log log;
2206
2207 r = -EFAULT;
2208 if (copy_from_user(&log, argp, sizeof log))
2209 goto out;
2210 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2211 break;
2212 }
2213 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2214 case KVM_REGISTER_COALESCED_MMIO: {
2215 struct kvm_coalesced_mmio_zone zone;
2216 r = -EFAULT;
2217 if (copy_from_user(&zone, argp, sizeof zone))
2218 goto out;
2219 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2220 break;
2221 }
2222 case KVM_UNREGISTER_COALESCED_MMIO: {
2223 struct kvm_coalesced_mmio_zone zone;
2224 r = -EFAULT;
2225 if (copy_from_user(&zone, argp, sizeof zone))
2226 goto out;
2227 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2228 break;
2229 }
2230 #endif
2231 case KVM_IRQFD: {
2232 struct kvm_irqfd data;
2233
2234 r = -EFAULT;
2235 if (copy_from_user(&data, argp, sizeof data))
2236 goto out;
2237 r = kvm_irqfd(kvm, &data);
2238 break;
2239 }
2240 case KVM_IOEVENTFD: {
2241 struct kvm_ioeventfd data;
2242
2243 r = -EFAULT;
2244 if (copy_from_user(&data, argp, sizeof data))
2245 goto out;
2246 r = kvm_ioeventfd(kvm, &data);
2247 break;
2248 }
2249 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2250 case KVM_SET_BOOT_CPU_ID:
2251 r = 0;
2252 mutex_lock(&kvm->lock);
2253 if (atomic_read(&kvm->online_vcpus) != 0)
2254 r = -EBUSY;
2255 else
2256 kvm->bsp_vcpu_id = arg;
2257 mutex_unlock(&kvm->lock);
2258 break;
2259 #endif
2260 #ifdef CONFIG_HAVE_KVM_MSI
2261 case KVM_SIGNAL_MSI: {
2262 struct kvm_msi msi;
2263
2264 r = -EFAULT;
2265 if (copy_from_user(&msi, argp, sizeof msi))
2266 goto out;
2267 r = kvm_send_userspace_msi(kvm, &msi);
2268 break;
2269 }
2270 #endif
2271 #ifdef __KVM_HAVE_IRQ_LINE
2272 case KVM_IRQ_LINE_STATUS:
2273 case KVM_IRQ_LINE: {
2274 struct kvm_irq_level irq_event;
2275
2276 r = -EFAULT;
2277 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2278 goto out;
2279
2280 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2281 if (r)
2282 goto out;
2283
2284 r = -EFAULT;
2285 if (ioctl == KVM_IRQ_LINE_STATUS) {
2286 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2287 goto out;
2288 }
2289
2290 r = 0;
2291 break;
2292 }
2293 #endif
2294 default:
2295 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2296 if (r == -ENOTTY)
2297 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2298 }
2299 out:
2300 return r;
2301 }
2302
2303 #ifdef CONFIG_COMPAT
2304 struct compat_kvm_dirty_log {
2305 __u32 slot;
2306 __u32 padding1;
2307 union {
2308 compat_uptr_t dirty_bitmap; /* one bit per page */
2309 __u64 padding2;
2310 };
2311 };
2312
2313 static long kvm_vm_compat_ioctl(struct file *filp,
2314 unsigned int ioctl, unsigned long arg)
2315 {
2316 struct kvm *kvm = filp->private_data;
2317 int r;
2318
2319 if (kvm->mm != current->mm)
2320 return -EIO;
2321 switch (ioctl) {
2322 case KVM_GET_DIRTY_LOG: {
2323 struct compat_kvm_dirty_log compat_log;
2324 struct kvm_dirty_log log;
2325
2326 r = -EFAULT;
2327 if (copy_from_user(&compat_log, (void __user *)arg,
2328 sizeof(compat_log)))
2329 goto out;
2330 log.slot = compat_log.slot;
2331 log.padding1 = compat_log.padding1;
2332 log.padding2 = compat_log.padding2;
2333 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2334
2335 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2336 break;
2337 }
2338 default:
2339 r = kvm_vm_ioctl(filp, ioctl, arg);
2340 }
2341
2342 out:
2343 return r;
2344 }
2345 #endif
2346
2347 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2348 {
2349 struct page *page[1];
2350 unsigned long addr;
2351 int npages;
2352 gfn_t gfn = vmf->pgoff;
2353 struct kvm *kvm = vma->vm_file->private_data;
2354
2355 addr = gfn_to_hva(kvm, gfn);
2356 if (kvm_is_error_hva(addr))
2357 return VM_FAULT_SIGBUS;
2358
2359 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2360 NULL);
2361 if (unlikely(npages != 1))
2362 return VM_FAULT_SIGBUS;
2363
2364 vmf->page = page[0];
2365 return 0;
2366 }
2367
2368 static const struct vm_operations_struct kvm_vm_vm_ops = {
2369 .fault = kvm_vm_fault,
2370 };
2371
2372 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2373 {
2374 vma->vm_ops = &kvm_vm_vm_ops;
2375 return 0;
2376 }
2377
2378 static struct file_operations kvm_vm_fops = {
2379 .release = kvm_vm_release,
2380 .unlocked_ioctl = kvm_vm_ioctl,
2381 #ifdef CONFIG_COMPAT
2382 .compat_ioctl = kvm_vm_compat_ioctl,
2383 #endif
2384 .mmap = kvm_vm_mmap,
2385 .llseek = noop_llseek,
2386 };
2387
2388 static int kvm_dev_ioctl_create_vm(unsigned long type)
2389 {
2390 int r;
2391 struct kvm *kvm;
2392
2393 kvm = kvm_create_vm(type);
2394 if (IS_ERR(kvm))
2395 return PTR_ERR(kvm);
2396 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2397 r = kvm_coalesced_mmio_init(kvm);
2398 if (r < 0) {
2399 kvm_put_kvm(kvm);
2400 return r;
2401 }
2402 #endif
2403 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2404 if (r < 0)
2405 kvm_put_kvm(kvm);
2406
2407 return r;
2408 }
2409
2410 static long kvm_dev_ioctl_check_extension_generic(long arg)
2411 {
2412 switch (arg) {
2413 case KVM_CAP_USER_MEMORY:
2414 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2415 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2416 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2417 case KVM_CAP_SET_BOOT_CPU_ID:
2418 #endif
2419 case KVM_CAP_INTERNAL_ERROR_DATA:
2420 #ifdef CONFIG_HAVE_KVM_MSI
2421 case KVM_CAP_SIGNAL_MSI:
2422 #endif
2423 return 1;
2424 #ifdef KVM_CAP_IRQ_ROUTING
2425 case KVM_CAP_IRQ_ROUTING:
2426 return KVM_MAX_IRQ_ROUTES;
2427 #endif
2428 default:
2429 break;
2430 }
2431 return kvm_dev_ioctl_check_extension(arg);
2432 }
2433
2434 static long kvm_dev_ioctl(struct file *filp,
2435 unsigned int ioctl, unsigned long arg)
2436 {
2437 long r = -EINVAL;
2438
2439 switch (ioctl) {
2440 case KVM_GET_API_VERSION:
2441 r = -EINVAL;
2442 if (arg)
2443 goto out;
2444 r = KVM_API_VERSION;
2445 break;
2446 case KVM_CREATE_VM:
2447 r = kvm_dev_ioctl_create_vm(arg);
2448 break;
2449 case KVM_CHECK_EXTENSION:
2450 r = kvm_dev_ioctl_check_extension_generic(arg);
2451 break;
2452 case KVM_GET_VCPU_MMAP_SIZE:
2453 r = -EINVAL;
2454 if (arg)
2455 goto out;
2456 r = PAGE_SIZE; /* struct kvm_run */
2457 #ifdef CONFIG_X86
2458 r += PAGE_SIZE; /* pio data page */
2459 #endif
2460 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2461 r += PAGE_SIZE; /* coalesced mmio ring page */
2462 #endif
2463 break;
2464 case KVM_TRACE_ENABLE:
2465 case KVM_TRACE_PAUSE:
2466 case KVM_TRACE_DISABLE:
2467 r = -EOPNOTSUPP;
2468 break;
2469 default:
2470 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2471 }
2472 out:
2473 return r;
2474 }
2475
2476 static struct file_operations kvm_chardev_ops = {
2477 .unlocked_ioctl = kvm_dev_ioctl,
2478 .compat_ioctl = kvm_dev_ioctl,
2479 .llseek = noop_llseek,
2480 };
2481
2482 static struct miscdevice kvm_dev = {
2483 KVM_MINOR,
2484 "kvm",
2485 &kvm_chardev_ops,
2486 };
2487
2488 static void hardware_enable_nolock(void *junk)
2489 {
2490 int cpu = raw_smp_processor_id();
2491 int r;
2492
2493 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2494 return;
2495
2496 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2497
2498 r = kvm_arch_hardware_enable(NULL);
2499
2500 if (r) {
2501 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2502 atomic_inc(&hardware_enable_failed);
2503 printk(KERN_INFO "kvm: enabling virtualization on "
2504 "CPU%d failed\n", cpu);
2505 }
2506 }
2507
2508 static void hardware_enable(void *junk)
2509 {
2510 raw_spin_lock(&kvm_lock);
2511 hardware_enable_nolock(junk);
2512 raw_spin_unlock(&kvm_lock);
2513 }
2514
2515 static void hardware_disable_nolock(void *junk)
2516 {
2517 int cpu = raw_smp_processor_id();
2518
2519 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2520 return;
2521 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2522 kvm_arch_hardware_disable(NULL);
2523 }
2524
2525 static void hardware_disable(void *junk)
2526 {
2527 raw_spin_lock(&kvm_lock);
2528 hardware_disable_nolock(junk);
2529 raw_spin_unlock(&kvm_lock);
2530 }
2531
2532 static void hardware_disable_all_nolock(void)
2533 {
2534 BUG_ON(!kvm_usage_count);
2535
2536 kvm_usage_count--;
2537 if (!kvm_usage_count)
2538 on_each_cpu(hardware_disable_nolock, NULL, 1);
2539 }
2540
2541 static void hardware_disable_all(void)
2542 {
2543 raw_spin_lock(&kvm_lock);
2544 hardware_disable_all_nolock();
2545 raw_spin_unlock(&kvm_lock);
2546 }
2547
2548 static int hardware_enable_all(void)
2549 {
2550 int r = 0;
2551
2552 raw_spin_lock(&kvm_lock);
2553
2554 kvm_usage_count++;
2555 if (kvm_usage_count == 1) {
2556 atomic_set(&hardware_enable_failed, 0);
2557 on_each_cpu(hardware_enable_nolock, NULL, 1);
2558
2559 if (atomic_read(&hardware_enable_failed)) {
2560 hardware_disable_all_nolock();
2561 r = -EBUSY;
2562 }
2563 }
2564
2565 raw_spin_unlock(&kvm_lock);
2566
2567 return r;
2568 }
2569
2570 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2571 void *v)
2572 {
2573 int cpu = (long)v;
2574
2575 if (!kvm_usage_count)
2576 return NOTIFY_OK;
2577
2578 val &= ~CPU_TASKS_FROZEN;
2579 switch (val) {
2580 case CPU_DYING:
2581 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2582 cpu);
2583 hardware_disable(NULL);
2584 break;
2585 case CPU_STARTING:
2586 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2587 cpu);
2588 hardware_enable(NULL);
2589 break;
2590 }
2591 return NOTIFY_OK;
2592 }
2593
2594
2595 asmlinkage void kvm_spurious_fault(void)
2596 {
2597 /* Fault while not rebooting. We want the trace. */
2598 BUG();
2599 }
2600 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2601
2602 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2603 void *v)
2604 {
2605 /*
2606 * Some (well, at least mine) BIOSes hang on reboot if
2607 * in vmx root mode.
2608 *
2609 * And Intel TXT required VMX off for all cpu when system shutdown.
2610 */
2611 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2612 kvm_rebooting = true;
2613 on_each_cpu(hardware_disable_nolock, NULL, 1);
2614 return NOTIFY_OK;
2615 }
2616
2617 static struct notifier_block kvm_reboot_notifier = {
2618 .notifier_call = kvm_reboot,
2619 .priority = 0,
2620 };
2621
2622 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2623 {
2624 int i;
2625
2626 for (i = 0; i < bus->dev_count; i++) {
2627 struct kvm_io_device *pos = bus->range[i].dev;
2628
2629 kvm_iodevice_destructor(pos);
2630 }
2631 kfree(bus);
2632 }
2633
2634 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2635 {
2636 const struct kvm_io_range *r1 = p1;
2637 const struct kvm_io_range *r2 = p2;
2638
2639 if (r1->addr < r2->addr)
2640 return -1;
2641 if (r1->addr + r1->len > r2->addr + r2->len)
2642 return 1;
2643 return 0;
2644 }
2645
2646 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2647 gpa_t addr, int len)
2648 {
2649 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2650 .addr = addr,
2651 .len = len,
2652 .dev = dev,
2653 };
2654
2655 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2656 kvm_io_bus_sort_cmp, NULL);
2657
2658 return 0;
2659 }
2660
2661 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2662 gpa_t addr, int len)
2663 {
2664 struct kvm_io_range *range, key;
2665 int off;
2666
2667 key = (struct kvm_io_range) {
2668 .addr = addr,
2669 .len = len,
2670 };
2671
2672 range = bsearch(&key, bus->range, bus->dev_count,
2673 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2674 if (range == NULL)
2675 return -ENOENT;
2676
2677 off = range - bus->range;
2678
2679 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2680 off--;
2681
2682 return off;
2683 }
2684
2685 /* kvm_io_bus_write - called under kvm->slots_lock */
2686 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2687 int len, const void *val)
2688 {
2689 int idx;
2690 struct kvm_io_bus *bus;
2691 struct kvm_io_range range;
2692
2693 range = (struct kvm_io_range) {
2694 .addr = addr,
2695 .len = len,
2696 };
2697
2698 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2699 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2700 if (idx < 0)
2701 return -EOPNOTSUPP;
2702
2703 while (idx < bus->dev_count &&
2704 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2705 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2706 return 0;
2707 idx++;
2708 }
2709
2710 return -EOPNOTSUPP;
2711 }
2712
2713 /* kvm_io_bus_read - called under kvm->slots_lock */
2714 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2715 int len, void *val)
2716 {
2717 int idx;
2718 struct kvm_io_bus *bus;
2719 struct kvm_io_range range;
2720
2721 range = (struct kvm_io_range) {
2722 .addr = addr,
2723 .len = len,
2724 };
2725
2726 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2727 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2728 if (idx < 0)
2729 return -EOPNOTSUPP;
2730
2731 while (idx < bus->dev_count &&
2732 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2733 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2734 return 0;
2735 idx++;
2736 }
2737
2738 return -EOPNOTSUPP;
2739 }
2740
2741 /* Caller must hold slots_lock. */
2742 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2743 int len, struct kvm_io_device *dev)
2744 {
2745 struct kvm_io_bus *new_bus, *bus;
2746
2747 bus = kvm->buses[bus_idx];
2748 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2749 return -ENOSPC;
2750
2751 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2752 sizeof(struct kvm_io_range)), GFP_KERNEL);
2753 if (!new_bus)
2754 return -ENOMEM;
2755 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2756 sizeof(struct kvm_io_range)));
2757 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2758 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2759 synchronize_srcu_expedited(&kvm->srcu);
2760 kfree(bus);
2761
2762 return 0;
2763 }
2764
2765 /* Caller must hold slots_lock. */
2766 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2767 struct kvm_io_device *dev)
2768 {
2769 int i, r;
2770 struct kvm_io_bus *new_bus, *bus;
2771
2772 bus = kvm->buses[bus_idx];
2773 r = -ENOENT;
2774 for (i = 0; i < bus->dev_count; i++)
2775 if (bus->range[i].dev == dev) {
2776 r = 0;
2777 break;
2778 }
2779
2780 if (r)
2781 return r;
2782
2783 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2784 sizeof(struct kvm_io_range)), GFP_KERNEL);
2785 if (!new_bus)
2786 return -ENOMEM;
2787
2788 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2789 new_bus->dev_count--;
2790 memcpy(new_bus->range + i, bus->range + i + 1,
2791 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2792
2793 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2794 synchronize_srcu_expedited(&kvm->srcu);
2795 kfree(bus);
2796 return r;
2797 }
2798
2799 static struct notifier_block kvm_cpu_notifier = {
2800 .notifier_call = kvm_cpu_hotplug,
2801 };
2802
2803 static int vm_stat_get(void *_offset, u64 *val)
2804 {
2805 unsigned offset = (long)_offset;
2806 struct kvm *kvm;
2807
2808 *val = 0;
2809 raw_spin_lock(&kvm_lock);
2810 list_for_each_entry(kvm, &vm_list, vm_list)
2811 *val += *(u32 *)((void *)kvm + offset);
2812 raw_spin_unlock(&kvm_lock);
2813 return 0;
2814 }
2815
2816 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2817
2818 static int vcpu_stat_get(void *_offset, u64 *val)
2819 {
2820 unsigned offset = (long)_offset;
2821 struct kvm *kvm;
2822 struct kvm_vcpu *vcpu;
2823 int i;
2824
2825 *val = 0;
2826 raw_spin_lock(&kvm_lock);
2827 list_for_each_entry(kvm, &vm_list, vm_list)
2828 kvm_for_each_vcpu(i, vcpu, kvm)
2829 *val += *(u32 *)((void *)vcpu + offset);
2830
2831 raw_spin_unlock(&kvm_lock);
2832 return 0;
2833 }
2834
2835 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2836
2837 static const struct file_operations *stat_fops[] = {
2838 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2839 [KVM_STAT_VM] = &vm_stat_fops,
2840 };
2841
2842 static int kvm_init_debug(void)
2843 {
2844 int r = -EFAULT;
2845 struct kvm_stats_debugfs_item *p;
2846
2847 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2848 if (kvm_debugfs_dir == NULL)
2849 goto out;
2850
2851 for (p = debugfs_entries; p->name; ++p) {
2852 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2853 (void *)(long)p->offset,
2854 stat_fops[p->kind]);
2855 if (p->dentry == NULL)
2856 goto out_dir;
2857 }
2858
2859 return 0;
2860
2861 out_dir:
2862 debugfs_remove_recursive(kvm_debugfs_dir);
2863 out:
2864 return r;
2865 }
2866
2867 static void kvm_exit_debug(void)
2868 {
2869 struct kvm_stats_debugfs_item *p;
2870
2871 for (p = debugfs_entries; p->name; ++p)
2872 debugfs_remove(p->dentry);
2873 debugfs_remove(kvm_debugfs_dir);
2874 }
2875
2876 static int kvm_suspend(void)
2877 {
2878 if (kvm_usage_count)
2879 hardware_disable_nolock(NULL);
2880 return 0;
2881 }
2882
2883 static void kvm_resume(void)
2884 {
2885 if (kvm_usage_count) {
2886 WARN_ON(raw_spin_is_locked(&kvm_lock));
2887 hardware_enable_nolock(NULL);
2888 }
2889 }
2890
2891 static struct syscore_ops kvm_syscore_ops = {
2892 .suspend = kvm_suspend,
2893 .resume = kvm_resume,
2894 };
2895
2896 static inline
2897 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2898 {
2899 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2900 }
2901
2902 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2903 {
2904 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2905
2906 kvm_arch_vcpu_load(vcpu, cpu);
2907 }
2908
2909 static void kvm_sched_out(struct preempt_notifier *pn,
2910 struct task_struct *next)
2911 {
2912 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2913
2914 kvm_arch_vcpu_put(vcpu);
2915 }
2916
2917 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2918 struct module *module)
2919 {
2920 int r;
2921 int cpu;
2922
2923 r = kvm_arch_init(opaque);
2924 if (r)
2925 goto out_fail;
2926
2927 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2928 r = -ENOMEM;
2929 goto out_free_0;
2930 }
2931
2932 r = kvm_arch_hardware_setup();
2933 if (r < 0)
2934 goto out_free_0a;
2935
2936 for_each_online_cpu(cpu) {
2937 smp_call_function_single(cpu,
2938 kvm_arch_check_processor_compat,
2939 &r, 1);
2940 if (r < 0)
2941 goto out_free_1;
2942 }
2943
2944 r = register_cpu_notifier(&kvm_cpu_notifier);
2945 if (r)
2946 goto out_free_2;
2947 register_reboot_notifier(&kvm_reboot_notifier);
2948
2949 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2950 if (!vcpu_align)
2951 vcpu_align = __alignof__(struct kvm_vcpu);
2952 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2953 0, NULL);
2954 if (!kvm_vcpu_cache) {
2955 r = -ENOMEM;
2956 goto out_free_3;
2957 }
2958
2959 r = kvm_async_pf_init();
2960 if (r)
2961 goto out_free;
2962
2963 kvm_chardev_ops.owner = module;
2964 kvm_vm_fops.owner = module;
2965 kvm_vcpu_fops.owner = module;
2966
2967 r = misc_register(&kvm_dev);
2968 if (r) {
2969 printk(KERN_ERR "kvm: misc device register failed\n");
2970 goto out_unreg;
2971 }
2972
2973 register_syscore_ops(&kvm_syscore_ops);
2974
2975 kvm_preempt_ops.sched_in = kvm_sched_in;
2976 kvm_preempt_ops.sched_out = kvm_sched_out;
2977
2978 r = kvm_init_debug();
2979 if (r) {
2980 printk(KERN_ERR "kvm: create debugfs files failed\n");
2981 goto out_undebugfs;
2982 }
2983
2984 return 0;
2985
2986 out_undebugfs:
2987 unregister_syscore_ops(&kvm_syscore_ops);
2988 out_unreg:
2989 kvm_async_pf_deinit();
2990 out_free:
2991 kmem_cache_destroy(kvm_vcpu_cache);
2992 out_free_3:
2993 unregister_reboot_notifier(&kvm_reboot_notifier);
2994 unregister_cpu_notifier(&kvm_cpu_notifier);
2995 out_free_2:
2996 out_free_1:
2997 kvm_arch_hardware_unsetup();
2998 out_free_0a:
2999 free_cpumask_var(cpus_hardware_enabled);
3000 out_free_0:
3001 kvm_arch_exit();
3002 out_fail:
3003 return r;
3004 }
3005 EXPORT_SYMBOL_GPL(kvm_init);
3006
3007 void kvm_exit(void)
3008 {
3009 kvm_exit_debug();
3010 misc_deregister(&kvm_dev);
3011 kmem_cache_destroy(kvm_vcpu_cache);
3012 kvm_async_pf_deinit();
3013 unregister_syscore_ops(&kvm_syscore_ops);
3014 unregister_reboot_notifier(&kvm_reboot_notifier);
3015 unregister_cpu_notifier(&kvm_cpu_notifier);
3016 on_each_cpu(hardware_disable_nolock, NULL, 1);
3017 kvm_arch_hardware_unsetup();
3018 kvm_arch_exit();
3019 free_cpumask_var(cpus_hardware_enabled);
3020 }
3021 EXPORT_SYMBOL_GPL(kvm_exit);