KVM: x86: trace "exit to userspace" event
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm-generic/bitops/le.h>
56
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/kvm.h>
62
63 MODULE_AUTHOR("Qumranet");
64 MODULE_LICENSE("GPL");
65
66 /*
67 * Ordering of locks:
68 *
69 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
70 */
71
72 DEFINE_SPINLOCK(kvm_lock);
73 LIST_HEAD(vm_list);
74
75 static cpumask_var_t cpus_hardware_enabled;
76 static int kvm_usage_count = 0;
77 static atomic_t hardware_enable_failed;
78
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83
84 struct dentry *kvm_debugfs_dir;
85
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 unsigned long arg);
88 static int hardware_enable_all(void);
89 static void hardware_disable_all(void);
90
91 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
92
93 static bool kvm_rebooting;
94
95 static bool largepages_enabled = true;
96
97 static struct page *hwpoison_page;
98 static pfn_t hwpoison_pfn;
99
100 static struct page *fault_page;
101 static pfn_t fault_pfn;
102
103 inline int kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 struct page *page = compound_head(pfn_to_page(pfn));
107 return PageReserved(page);
108 }
109
110 return true;
111 }
112
113 /*
114 * Switches to specified vcpu, until a matching vcpu_put()
115 */
116 void vcpu_load(struct kvm_vcpu *vcpu)
117 {
118 int cpu;
119
120 mutex_lock(&vcpu->mutex);
121 cpu = get_cpu();
122 preempt_notifier_register(&vcpu->preempt_notifier);
123 kvm_arch_vcpu_load(vcpu, cpu);
124 put_cpu();
125 }
126
127 void vcpu_put(struct kvm_vcpu *vcpu)
128 {
129 preempt_disable();
130 kvm_arch_vcpu_put(vcpu);
131 preempt_notifier_unregister(&vcpu->preempt_notifier);
132 preempt_enable();
133 mutex_unlock(&vcpu->mutex);
134 }
135
136 static void ack_flush(void *_completed)
137 {
138 }
139
140 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
141 {
142 int i, cpu, me;
143 cpumask_var_t cpus;
144 bool called = true;
145 struct kvm_vcpu *vcpu;
146
147 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
148
149 raw_spin_lock(&kvm->requests_lock);
150 me = smp_processor_id();
151 kvm_for_each_vcpu(i, vcpu, kvm) {
152 if (kvm_make_check_request(req, vcpu))
153 continue;
154 cpu = vcpu->cpu;
155 if (cpus != NULL && cpu != -1 && cpu != me)
156 cpumask_set_cpu(cpu, cpus);
157 }
158 if (unlikely(cpus == NULL))
159 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
160 else if (!cpumask_empty(cpus))
161 smp_call_function_many(cpus, ack_flush, NULL, 1);
162 else
163 called = false;
164 raw_spin_unlock(&kvm->requests_lock);
165 free_cpumask_var(cpus);
166 return called;
167 }
168
169 void kvm_flush_remote_tlbs(struct kvm *kvm)
170 {
171 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
172 ++kvm->stat.remote_tlb_flush;
173 }
174
175 void kvm_reload_remote_mmus(struct kvm *kvm)
176 {
177 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
178 }
179
180 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
181 {
182 struct page *page;
183 int r;
184
185 mutex_init(&vcpu->mutex);
186 vcpu->cpu = -1;
187 vcpu->kvm = kvm;
188 vcpu->vcpu_id = id;
189 init_waitqueue_head(&vcpu->wq);
190 kvm_async_pf_vcpu_init(vcpu);
191
192 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
193 if (!page) {
194 r = -ENOMEM;
195 goto fail;
196 }
197 vcpu->run = page_address(page);
198
199 r = kvm_arch_vcpu_init(vcpu);
200 if (r < 0)
201 goto fail_free_run;
202 return 0;
203
204 fail_free_run:
205 free_page((unsigned long)vcpu->run);
206 fail:
207 return r;
208 }
209 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
210
211 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
212 {
213 kvm_arch_vcpu_uninit(vcpu);
214 free_page((unsigned long)vcpu->run);
215 }
216 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
217
218 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
219 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
220 {
221 return container_of(mn, struct kvm, mmu_notifier);
222 }
223
224 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
225 struct mm_struct *mm,
226 unsigned long address)
227 {
228 struct kvm *kvm = mmu_notifier_to_kvm(mn);
229 int need_tlb_flush, idx;
230
231 /*
232 * When ->invalidate_page runs, the linux pte has been zapped
233 * already but the page is still allocated until
234 * ->invalidate_page returns. So if we increase the sequence
235 * here the kvm page fault will notice if the spte can't be
236 * established because the page is going to be freed. If
237 * instead the kvm page fault establishes the spte before
238 * ->invalidate_page runs, kvm_unmap_hva will release it
239 * before returning.
240 *
241 * The sequence increase only need to be seen at spin_unlock
242 * time, and not at spin_lock time.
243 *
244 * Increasing the sequence after the spin_unlock would be
245 * unsafe because the kvm page fault could then establish the
246 * pte after kvm_unmap_hva returned, without noticing the page
247 * is going to be freed.
248 */
249 idx = srcu_read_lock(&kvm->srcu);
250 spin_lock(&kvm->mmu_lock);
251 kvm->mmu_notifier_seq++;
252 need_tlb_flush = kvm_unmap_hva(kvm, address);
253 spin_unlock(&kvm->mmu_lock);
254 srcu_read_unlock(&kvm->srcu, idx);
255
256 /* we've to flush the tlb before the pages can be freed */
257 if (need_tlb_flush)
258 kvm_flush_remote_tlbs(kvm);
259
260 }
261
262 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
263 struct mm_struct *mm,
264 unsigned long address,
265 pte_t pte)
266 {
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int idx;
269
270 idx = srcu_read_lock(&kvm->srcu);
271 spin_lock(&kvm->mmu_lock);
272 kvm->mmu_notifier_seq++;
273 kvm_set_spte_hva(kvm, address, pte);
274 spin_unlock(&kvm->mmu_lock);
275 srcu_read_unlock(&kvm->srcu, idx);
276 }
277
278 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
279 struct mm_struct *mm,
280 unsigned long start,
281 unsigned long end)
282 {
283 struct kvm *kvm = mmu_notifier_to_kvm(mn);
284 int need_tlb_flush = 0, idx;
285
286 idx = srcu_read_lock(&kvm->srcu);
287 spin_lock(&kvm->mmu_lock);
288 /*
289 * The count increase must become visible at unlock time as no
290 * spte can be established without taking the mmu_lock and
291 * count is also read inside the mmu_lock critical section.
292 */
293 kvm->mmu_notifier_count++;
294 for (; start < end; start += PAGE_SIZE)
295 need_tlb_flush |= kvm_unmap_hva(kvm, start);
296 spin_unlock(&kvm->mmu_lock);
297 srcu_read_unlock(&kvm->srcu, idx);
298
299 /* we've to flush the tlb before the pages can be freed */
300 if (need_tlb_flush)
301 kvm_flush_remote_tlbs(kvm);
302 }
303
304 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
305 struct mm_struct *mm,
306 unsigned long start,
307 unsigned long end)
308 {
309 struct kvm *kvm = mmu_notifier_to_kvm(mn);
310
311 spin_lock(&kvm->mmu_lock);
312 /*
313 * This sequence increase will notify the kvm page fault that
314 * the page that is going to be mapped in the spte could have
315 * been freed.
316 */
317 kvm->mmu_notifier_seq++;
318 /*
319 * The above sequence increase must be visible before the
320 * below count decrease but both values are read by the kvm
321 * page fault under mmu_lock spinlock so we don't need to add
322 * a smb_wmb() here in between the two.
323 */
324 kvm->mmu_notifier_count--;
325 spin_unlock(&kvm->mmu_lock);
326
327 BUG_ON(kvm->mmu_notifier_count < 0);
328 }
329
330 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long address)
333 {
334 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 int young, idx;
336
337 idx = srcu_read_lock(&kvm->srcu);
338 spin_lock(&kvm->mmu_lock);
339 young = kvm_age_hva(kvm, address);
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342
343 if (young)
344 kvm_flush_remote_tlbs(kvm);
345
346 return young;
347 }
348
349 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
350 struct mm_struct *mm)
351 {
352 struct kvm *kvm = mmu_notifier_to_kvm(mn);
353 int idx;
354
355 idx = srcu_read_lock(&kvm->srcu);
356 kvm_arch_flush_shadow(kvm);
357 srcu_read_unlock(&kvm->srcu, idx);
358 }
359
360 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
361 .invalidate_page = kvm_mmu_notifier_invalidate_page,
362 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
363 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
364 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
365 .change_pte = kvm_mmu_notifier_change_pte,
366 .release = kvm_mmu_notifier_release,
367 };
368
369 static int kvm_init_mmu_notifier(struct kvm *kvm)
370 {
371 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
372 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
373 }
374
375 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
376
377 static int kvm_init_mmu_notifier(struct kvm *kvm)
378 {
379 return 0;
380 }
381
382 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
383
384 static struct kvm *kvm_create_vm(void)
385 {
386 int r = 0, i;
387 struct kvm *kvm = kvm_arch_create_vm();
388
389 if (IS_ERR(kvm))
390 goto out;
391
392 r = hardware_enable_all();
393 if (r)
394 goto out_err_nodisable;
395
396 #ifdef CONFIG_HAVE_KVM_IRQCHIP
397 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
398 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
399 #endif
400
401 r = -ENOMEM;
402 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
403 if (!kvm->memslots)
404 goto out_err;
405 if (init_srcu_struct(&kvm->srcu))
406 goto out_err;
407 for (i = 0; i < KVM_NR_BUSES; i++) {
408 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
409 GFP_KERNEL);
410 if (!kvm->buses[i]) {
411 cleanup_srcu_struct(&kvm->srcu);
412 goto out_err;
413 }
414 }
415
416 r = kvm_init_mmu_notifier(kvm);
417 if (r) {
418 cleanup_srcu_struct(&kvm->srcu);
419 goto out_err;
420 }
421
422 kvm->mm = current->mm;
423 atomic_inc(&kvm->mm->mm_count);
424 spin_lock_init(&kvm->mmu_lock);
425 raw_spin_lock_init(&kvm->requests_lock);
426 kvm_eventfd_init(kvm);
427 mutex_init(&kvm->lock);
428 mutex_init(&kvm->irq_lock);
429 mutex_init(&kvm->slots_lock);
430 atomic_set(&kvm->users_count, 1);
431 spin_lock(&kvm_lock);
432 list_add(&kvm->vm_list, &vm_list);
433 spin_unlock(&kvm_lock);
434 out:
435 return kvm;
436
437 out_err:
438 hardware_disable_all();
439 out_err_nodisable:
440 for (i = 0; i < KVM_NR_BUSES; i++)
441 kfree(kvm->buses[i]);
442 kfree(kvm->memslots);
443 kfree(kvm);
444 return ERR_PTR(r);
445 }
446
447 /*
448 * Free any memory in @free but not in @dont.
449 */
450 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
451 struct kvm_memory_slot *dont)
452 {
453 int i;
454
455 if (!dont || free->rmap != dont->rmap)
456 vfree(free->rmap);
457
458 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
459 vfree(free->dirty_bitmap);
460
461
462 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
463 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
464 vfree(free->lpage_info[i]);
465 free->lpage_info[i] = NULL;
466 }
467 }
468
469 free->npages = 0;
470 free->dirty_bitmap = NULL;
471 free->rmap = NULL;
472 }
473
474 void kvm_free_physmem(struct kvm *kvm)
475 {
476 int i;
477 struct kvm_memslots *slots = kvm->memslots;
478
479 for (i = 0; i < slots->nmemslots; ++i)
480 kvm_free_physmem_slot(&slots->memslots[i], NULL);
481
482 kfree(kvm->memslots);
483 }
484
485 static void kvm_destroy_vm(struct kvm *kvm)
486 {
487 int i;
488 struct mm_struct *mm = kvm->mm;
489
490 kvm_arch_sync_events(kvm);
491 spin_lock(&kvm_lock);
492 list_del(&kvm->vm_list);
493 spin_unlock(&kvm_lock);
494 kvm_free_irq_routing(kvm);
495 for (i = 0; i < KVM_NR_BUSES; i++)
496 kvm_io_bus_destroy(kvm->buses[i]);
497 kvm_coalesced_mmio_free(kvm);
498 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
499 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
500 #else
501 kvm_arch_flush_shadow(kvm);
502 #endif
503 kvm_arch_destroy_vm(kvm);
504 hardware_disable_all();
505 mmdrop(mm);
506 }
507
508 void kvm_get_kvm(struct kvm *kvm)
509 {
510 atomic_inc(&kvm->users_count);
511 }
512 EXPORT_SYMBOL_GPL(kvm_get_kvm);
513
514 void kvm_put_kvm(struct kvm *kvm)
515 {
516 if (atomic_dec_and_test(&kvm->users_count))
517 kvm_destroy_vm(kvm);
518 }
519 EXPORT_SYMBOL_GPL(kvm_put_kvm);
520
521
522 static int kvm_vm_release(struct inode *inode, struct file *filp)
523 {
524 struct kvm *kvm = filp->private_data;
525
526 kvm_irqfd_release(kvm);
527
528 kvm_put_kvm(kvm);
529 return 0;
530 }
531
532 /*
533 * Allocate some memory and give it an address in the guest physical address
534 * space.
535 *
536 * Discontiguous memory is allowed, mostly for framebuffers.
537 *
538 * Must be called holding mmap_sem for write.
539 */
540 int __kvm_set_memory_region(struct kvm *kvm,
541 struct kvm_userspace_memory_region *mem,
542 int user_alloc)
543 {
544 int r, flush_shadow = 0;
545 gfn_t base_gfn;
546 unsigned long npages;
547 unsigned long i;
548 struct kvm_memory_slot *memslot;
549 struct kvm_memory_slot old, new;
550 struct kvm_memslots *slots, *old_memslots;
551
552 r = -EINVAL;
553 /* General sanity checks */
554 if (mem->memory_size & (PAGE_SIZE - 1))
555 goto out;
556 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
557 goto out;
558 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
559 goto out;
560 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
561 goto out;
562 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
563 goto out;
564
565 memslot = &kvm->memslots->memslots[mem->slot];
566 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
567 npages = mem->memory_size >> PAGE_SHIFT;
568
569 r = -EINVAL;
570 if (npages > KVM_MEM_MAX_NR_PAGES)
571 goto out;
572
573 if (!npages)
574 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
575
576 new = old = *memslot;
577
578 new.id = mem->slot;
579 new.base_gfn = base_gfn;
580 new.npages = npages;
581 new.flags = mem->flags;
582
583 /* Disallow changing a memory slot's size. */
584 r = -EINVAL;
585 if (npages && old.npages && npages != old.npages)
586 goto out_free;
587
588 /* Check for overlaps */
589 r = -EEXIST;
590 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
591 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
592
593 if (s == memslot || !s->npages)
594 continue;
595 if (!((base_gfn + npages <= s->base_gfn) ||
596 (base_gfn >= s->base_gfn + s->npages)))
597 goto out_free;
598 }
599
600 /* Free page dirty bitmap if unneeded */
601 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
602 new.dirty_bitmap = NULL;
603
604 r = -ENOMEM;
605
606 /* Allocate if a slot is being created */
607 #ifndef CONFIG_S390
608 if (npages && !new.rmap) {
609 new.rmap = vmalloc(npages * sizeof(*new.rmap));
610
611 if (!new.rmap)
612 goto out_free;
613
614 memset(new.rmap, 0, npages * sizeof(*new.rmap));
615
616 new.user_alloc = user_alloc;
617 new.userspace_addr = mem->userspace_addr;
618 }
619 if (!npages)
620 goto skip_lpage;
621
622 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
623 unsigned long ugfn;
624 unsigned long j;
625 int lpages;
626 int level = i + 2;
627
628 /* Avoid unused variable warning if no large pages */
629 (void)level;
630
631 if (new.lpage_info[i])
632 continue;
633
634 lpages = 1 + ((base_gfn + npages - 1)
635 >> KVM_HPAGE_GFN_SHIFT(level));
636 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
637
638 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
639
640 if (!new.lpage_info[i])
641 goto out_free;
642
643 memset(new.lpage_info[i], 0,
644 lpages * sizeof(*new.lpage_info[i]));
645
646 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
647 new.lpage_info[i][0].write_count = 1;
648 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
649 new.lpage_info[i][lpages - 1].write_count = 1;
650 ugfn = new.userspace_addr >> PAGE_SHIFT;
651 /*
652 * If the gfn and userspace address are not aligned wrt each
653 * other, or if explicitly asked to, disable large page
654 * support for this slot
655 */
656 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
657 !largepages_enabled)
658 for (j = 0; j < lpages; ++j)
659 new.lpage_info[i][j].write_count = 1;
660 }
661
662 skip_lpage:
663
664 /* Allocate page dirty bitmap if needed */
665 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
666 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
667
668 new.dirty_bitmap = vmalloc(dirty_bytes);
669 if (!new.dirty_bitmap)
670 goto out_free;
671 memset(new.dirty_bitmap, 0, dirty_bytes);
672 /* destroy any largepage mappings for dirty tracking */
673 if (old.npages)
674 flush_shadow = 1;
675 }
676 #else /* not defined CONFIG_S390 */
677 new.user_alloc = user_alloc;
678 if (user_alloc)
679 new.userspace_addr = mem->userspace_addr;
680 #endif /* not defined CONFIG_S390 */
681
682 if (!npages) {
683 r = -ENOMEM;
684 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
685 if (!slots)
686 goto out_free;
687 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
688 if (mem->slot >= slots->nmemslots)
689 slots->nmemslots = mem->slot + 1;
690 slots->generation++;
691 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
692
693 old_memslots = kvm->memslots;
694 rcu_assign_pointer(kvm->memslots, slots);
695 synchronize_srcu_expedited(&kvm->srcu);
696 /* From this point no new shadow pages pointing to a deleted
697 * memslot will be created.
698 *
699 * validation of sp->gfn happens in:
700 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
701 * - kvm_is_visible_gfn (mmu_check_roots)
702 */
703 kvm_arch_flush_shadow(kvm);
704 kfree(old_memslots);
705 }
706
707 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
708 if (r)
709 goto out_free;
710
711 /* map the pages in iommu page table */
712 if (npages) {
713 r = kvm_iommu_map_pages(kvm, &new);
714 if (r)
715 goto out_free;
716 }
717
718 r = -ENOMEM;
719 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
720 if (!slots)
721 goto out_free;
722 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
723 if (mem->slot >= slots->nmemslots)
724 slots->nmemslots = mem->slot + 1;
725 slots->generation++;
726
727 /* actual memory is freed via old in kvm_free_physmem_slot below */
728 if (!npages) {
729 new.rmap = NULL;
730 new.dirty_bitmap = NULL;
731 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
732 new.lpage_info[i] = NULL;
733 }
734
735 slots->memslots[mem->slot] = new;
736 old_memslots = kvm->memslots;
737 rcu_assign_pointer(kvm->memslots, slots);
738 synchronize_srcu_expedited(&kvm->srcu);
739
740 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
741
742 kvm_free_physmem_slot(&old, &new);
743 kfree(old_memslots);
744
745 if (flush_shadow)
746 kvm_arch_flush_shadow(kvm);
747
748 return 0;
749
750 out_free:
751 kvm_free_physmem_slot(&new, &old);
752 out:
753 return r;
754
755 }
756 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
757
758 int kvm_set_memory_region(struct kvm *kvm,
759 struct kvm_userspace_memory_region *mem,
760 int user_alloc)
761 {
762 int r;
763
764 mutex_lock(&kvm->slots_lock);
765 r = __kvm_set_memory_region(kvm, mem, user_alloc);
766 mutex_unlock(&kvm->slots_lock);
767 return r;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
770
771 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
772 struct
773 kvm_userspace_memory_region *mem,
774 int user_alloc)
775 {
776 if (mem->slot >= KVM_MEMORY_SLOTS)
777 return -EINVAL;
778 return kvm_set_memory_region(kvm, mem, user_alloc);
779 }
780
781 int kvm_get_dirty_log(struct kvm *kvm,
782 struct kvm_dirty_log *log, int *is_dirty)
783 {
784 struct kvm_memory_slot *memslot;
785 int r, i;
786 unsigned long n;
787 unsigned long any = 0;
788
789 r = -EINVAL;
790 if (log->slot >= KVM_MEMORY_SLOTS)
791 goto out;
792
793 memslot = &kvm->memslots->memslots[log->slot];
794 r = -ENOENT;
795 if (!memslot->dirty_bitmap)
796 goto out;
797
798 n = kvm_dirty_bitmap_bytes(memslot);
799
800 for (i = 0; !any && i < n/sizeof(long); ++i)
801 any = memslot->dirty_bitmap[i];
802
803 r = -EFAULT;
804 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
805 goto out;
806
807 if (any)
808 *is_dirty = 1;
809
810 r = 0;
811 out:
812 return r;
813 }
814
815 void kvm_disable_largepages(void)
816 {
817 largepages_enabled = false;
818 }
819 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
820
821 int is_error_page(struct page *page)
822 {
823 return page == bad_page || page == hwpoison_page || page == fault_page;
824 }
825 EXPORT_SYMBOL_GPL(is_error_page);
826
827 int is_error_pfn(pfn_t pfn)
828 {
829 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
830 }
831 EXPORT_SYMBOL_GPL(is_error_pfn);
832
833 int is_hwpoison_pfn(pfn_t pfn)
834 {
835 return pfn == hwpoison_pfn;
836 }
837 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
838
839 int is_fault_pfn(pfn_t pfn)
840 {
841 return pfn == fault_pfn;
842 }
843 EXPORT_SYMBOL_GPL(is_fault_pfn);
844
845 static inline unsigned long bad_hva(void)
846 {
847 return PAGE_OFFSET;
848 }
849
850 int kvm_is_error_hva(unsigned long addr)
851 {
852 return addr == bad_hva();
853 }
854 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
855
856 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
857 gfn_t gfn)
858 {
859 int i;
860
861 for (i = 0; i < slots->nmemslots; ++i) {
862 struct kvm_memory_slot *memslot = &slots->memslots[i];
863
864 if (gfn >= memslot->base_gfn
865 && gfn < memslot->base_gfn + memslot->npages)
866 return memslot;
867 }
868 return NULL;
869 }
870
871 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
872 {
873 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
874 }
875 EXPORT_SYMBOL_GPL(gfn_to_memslot);
876
877 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
878 {
879 int i;
880 struct kvm_memslots *slots = kvm_memslots(kvm);
881
882 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
883 struct kvm_memory_slot *memslot = &slots->memslots[i];
884
885 if (memslot->flags & KVM_MEMSLOT_INVALID)
886 continue;
887
888 if (gfn >= memslot->base_gfn
889 && gfn < memslot->base_gfn + memslot->npages)
890 return 1;
891 }
892 return 0;
893 }
894 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
895
896 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
897 {
898 struct vm_area_struct *vma;
899 unsigned long addr, size;
900
901 size = PAGE_SIZE;
902
903 addr = gfn_to_hva(kvm, gfn);
904 if (kvm_is_error_hva(addr))
905 return PAGE_SIZE;
906
907 down_read(&current->mm->mmap_sem);
908 vma = find_vma(current->mm, addr);
909 if (!vma)
910 goto out;
911
912 size = vma_kernel_pagesize(vma);
913
914 out:
915 up_read(&current->mm->mmap_sem);
916
917 return size;
918 }
919
920 int memslot_id(struct kvm *kvm, gfn_t gfn)
921 {
922 int i;
923 struct kvm_memslots *slots = kvm_memslots(kvm);
924 struct kvm_memory_slot *memslot = NULL;
925
926 for (i = 0; i < slots->nmemslots; ++i) {
927 memslot = &slots->memslots[i];
928
929 if (gfn >= memslot->base_gfn
930 && gfn < memslot->base_gfn + memslot->npages)
931 break;
932 }
933
934 return memslot - slots->memslots;
935 }
936
937 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
938 gfn_t *nr_pages)
939 {
940 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
941 return bad_hva();
942
943 if (nr_pages)
944 *nr_pages = slot->npages - (gfn - slot->base_gfn);
945
946 return gfn_to_hva_memslot(slot, gfn);
947 }
948
949 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
950 {
951 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
952 }
953 EXPORT_SYMBOL_GPL(gfn_to_hva);
954
955 static pfn_t get_fault_pfn(void)
956 {
957 get_page(fault_page);
958 return fault_pfn;
959 }
960
961 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
962 bool *async, bool write_fault, bool *writable)
963 {
964 struct page *page[1];
965 int npages = 0;
966 pfn_t pfn;
967
968 /* we can do it either atomically or asynchronously, not both */
969 BUG_ON(atomic && async);
970
971 BUG_ON(!write_fault && !writable);
972
973 if (writable)
974 *writable = true;
975
976 if (atomic || async)
977 npages = __get_user_pages_fast(addr, 1, 1, page);
978
979 if (unlikely(npages != 1) && !atomic) {
980 might_sleep();
981
982 if (writable)
983 *writable = write_fault;
984
985 npages = get_user_pages_fast(addr, 1, write_fault, page);
986
987 /* map read fault as writable if possible */
988 if (unlikely(!write_fault) && npages == 1) {
989 struct page *wpage[1];
990
991 npages = __get_user_pages_fast(addr, 1, 1, wpage);
992 if (npages == 1) {
993 *writable = true;
994 put_page(page[0]);
995 page[0] = wpage[0];
996 }
997 npages = 1;
998 }
999 }
1000
1001 if (unlikely(npages != 1)) {
1002 struct vm_area_struct *vma;
1003
1004 if (atomic)
1005 return get_fault_pfn();
1006
1007 down_read(&current->mm->mmap_sem);
1008 if (is_hwpoison_address(addr)) {
1009 up_read(&current->mm->mmap_sem);
1010 get_page(hwpoison_page);
1011 return page_to_pfn(hwpoison_page);
1012 }
1013
1014 vma = find_vma_intersection(current->mm, addr, addr+1);
1015
1016 if (vma == NULL)
1017 pfn = get_fault_pfn();
1018 else if ((vma->vm_flags & VM_PFNMAP)) {
1019 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1020 vma->vm_pgoff;
1021 BUG_ON(!kvm_is_mmio_pfn(pfn));
1022 } else {
1023 if (async && (vma->vm_flags & VM_WRITE))
1024 *async = true;
1025 pfn = get_fault_pfn();
1026 }
1027 up_read(&current->mm->mmap_sem);
1028 } else
1029 pfn = page_to_pfn(page[0]);
1030
1031 return pfn;
1032 }
1033
1034 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1035 {
1036 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1037 }
1038 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1039
1040 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1041 bool write_fault, bool *writable)
1042 {
1043 unsigned long addr;
1044
1045 if (async)
1046 *async = false;
1047
1048 addr = gfn_to_hva(kvm, gfn);
1049 if (kvm_is_error_hva(addr)) {
1050 get_page(bad_page);
1051 return page_to_pfn(bad_page);
1052 }
1053
1054 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1055 }
1056
1057 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1058 {
1059 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1060 }
1061 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1062
1063 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1064 bool write_fault, bool *writable)
1065 {
1066 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1067 }
1068 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1069
1070 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1071 {
1072 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1073 }
1074 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1075
1076 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1077 bool *writable)
1078 {
1079 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1080 }
1081 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1082
1083 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1084 struct kvm_memory_slot *slot, gfn_t gfn)
1085 {
1086 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1087 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1088 }
1089
1090 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1091 int nr_pages)
1092 {
1093 unsigned long addr;
1094 gfn_t entry;
1095
1096 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1097 if (kvm_is_error_hva(addr))
1098 return -1;
1099
1100 if (entry < nr_pages)
1101 return 0;
1102
1103 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1104 }
1105 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1106
1107 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1108 {
1109 pfn_t pfn;
1110
1111 pfn = gfn_to_pfn(kvm, gfn);
1112 if (!kvm_is_mmio_pfn(pfn))
1113 return pfn_to_page(pfn);
1114
1115 WARN_ON(kvm_is_mmio_pfn(pfn));
1116
1117 get_page(bad_page);
1118 return bad_page;
1119 }
1120
1121 EXPORT_SYMBOL_GPL(gfn_to_page);
1122
1123 void kvm_release_page_clean(struct page *page)
1124 {
1125 kvm_release_pfn_clean(page_to_pfn(page));
1126 }
1127 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1128
1129 void kvm_release_pfn_clean(pfn_t pfn)
1130 {
1131 if (!kvm_is_mmio_pfn(pfn))
1132 put_page(pfn_to_page(pfn));
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1135
1136 void kvm_release_page_dirty(struct page *page)
1137 {
1138 kvm_release_pfn_dirty(page_to_pfn(page));
1139 }
1140 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1141
1142 void kvm_release_pfn_dirty(pfn_t pfn)
1143 {
1144 kvm_set_pfn_dirty(pfn);
1145 kvm_release_pfn_clean(pfn);
1146 }
1147 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1148
1149 void kvm_set_page_dirty(struct page *page)
1150 {
1151 kvm_set_pfn_dirty(page_to_pfn(page));
1152 }
1153 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1154
1155 void kvm_set_pfn_dirty(pfn_t pfn)
1156 {
1157 if (!kvm_is_mmio_pfn(pfn)) {
1158 struct page *page = pfn_to_page(pfn);
1159 if (!PageReserved(page))
1160 SetPageDirty(page);
1161 }
1162 }
1163 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1164
1165 void kvm_set_pfn_accessed(pfn_t pfn)
1166 {
1167 if (!kvm_is_mmio_pfn(pfn))
1168 mark_page_accessed(pfn_to_page(pfn));
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1171
1172 void kvm_get_pfn(pfn_t pfn)
1173 {
1174 if (!kvm_is_mmio_pfn(pfn))
1175 get_page(pfn_to_page(pfn));
1176 }
1177 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1178
1179 static int next_segment(unsigned long len, int offset)
1180 {
1181 if (len > PAGE_SIZE - offset)
1182 return PAGE_SIZE - offset;
1183 else
1184 return len;
1185 }
1186
1187 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1188 int len)
1189 {
1190 int r;
1191 unsigned long addr;
1192
1193 addr = gfn_to_hva(kvm, gfn);
1194 if (kvm_is_error_hva(addr))
1195 return -EFAULT;
1196 r = copy_from_user(data, (void __user *)addr + offset, len);
1197 if (r)
1198 return -EFAULT;
1199 return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1202
1203 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1204 {
1205 gfn_t gfn = gpa >> PAGE_SHIFT;
1206 int seg;
1207 int offset = offset_in_page(gpa);
1208 int ret;
1209
1210 while ((seg = next_segment(len, offset)) != 0) {
1211 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1212 if (ret < 0)
1213 return ret;
1214 offset = 0;
1215 len -= seg;
1216 data += seg;
1217 ++gfn;
1218 }
1219 return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_read_guest);
1222
1223 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1224 unsigned long len)
1225 {
1226 int r;
1227 unsigned long addr;
1228 gfn_t gfn = gpa >> PAGE_SHIFT;
1229 int offset = offset_in_page(gpa);
1230
1231 addr = gfn_to_hva(kvm, gfn);
1232 if (kvm_is_error_hva(addr))
1233 return -EFAULT;
1234 pagefault_disable();
1235 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1236 pagefault_enable();
1237 if (r)
1238 return -EFAULT;
1239 return 0;
1240 }
1241 EXPORT_SYMBOL(kvm_read_guest_atomic);
1242
1243 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1244 int offset, int len)
1245 {
1246 int r;
1247 unsigned long addr;
1248
1249 addr = gfn_to_hva(kvm, gfn);
1250 if (kvm_is_error_hva(addr))
1251 return -EFAULT;
1252 r = copy_to_user((void __user *)addr + offset, data, len);
1253 if (r)
1254 return -EFAULT;
1255 mark_page_dirty(kvm, gfn);
1256 return 0;
1257 }
1258 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1259
1260 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1261 unsigned long len)
1262 {
1263 gfn_t gfn = gpa >> PAGE_SHIFT;
1264 int seg;
1265 int offset = offset_in_page(gpa);
1266 int ret;
1267
1268 while ((seg = next_segment(len, offset)) != 0) {
1269 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1270 if (ret < 0)
1271 return ret;
1272 offset = 0;
1273 len -= seg;
1274 data += seg;
1275 ++gfn;
1276 }
1277 return 0;
1278 }
1279
1280 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1281 gpa_t gpa)
1282 {
1283 struct kvm_memslots *slots = kvm_memslots(kvm);
1284 int offset = offset_in_page(gpa);
1285 gfn_t gfn = gpa >> PAGE_SHIFT;
1286
1287 ghc->gpa = gpa;
1288 ghc->generation = slots->generation;
1289 ghc->memslot = __gfn_to_memslot(slots, gfn);
1290 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1291 if (!kvm_is_error_hva(ghc->hva))
1292 ghc->hva += offset;
1293 else
1294 return -EFAULT;
1295
1296 return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1299
1300 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1301 void *data, unsigned long len)
1302 {
1303 struct kvm_memslots *slots = kvm_memslots(kvm);
1304 int r;
1305
1306 if (slots->generation != ghc->generation)
1307 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1308
1309 if (kvm_is_error_hva(ghc->hva))
1310 return -EFAULT;
1311
1312 r = copy_to_user((void __user *)ghc->hva, data, len);
1313 if (r)
1314 return -EFAULT;
1315 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1316
1317 return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1320
1321 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1322 {
1323 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1326
1327 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1328 {
1329 gfn_t gfn = gpa >> PAGE_SHIFT;
1330 int seg;
1331 int offset = offset_in_page(gpa);
1332 int ret;
1333
1334 while ((seg = next_segment(len, offset)) != 0) {
1335 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1336 if (ret < 0)
1337 return ret;
1338 offset = 0;
1339 len -= seg;
1340 ++gfn;
1341 }
1342 return 0;
1343 }
1344 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1345
1346 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1347 gfn_t gfn)
1348 {
1349 if (memslot && memslot->dirty_bitmap) {
1350 unsigned long rel_gfn = gfn - memslot->base_gfn;
1351
1352 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1353 }
1354 }
1355
1356 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1357 {
1358 struct kvm_memory_slot *memslot;
1359
1360 memslot = gfn_to_memslot(kvm, gfn);
1361 mark_page_dirty_in_slot(kvm, memslot, gfn);
1362 }
1363
1364 /*
1365 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1366 */
1367 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1368 {
1369 DEFINE_WAIT(wait);
1370
1371 for (;;) {
1372 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1373
1374 if (kvm_arch_vcpu_runnable(vcpu)) {
1375 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1376 break;
1377 }
1378 if (kvm_cpu_has_pending_timer(vcpu))
1379 break;
1380 if (signal_pending(current))
1381 break;
1382
1383 schedule();
1384 }
1385
1386 finish_wait(&vcpu->wq, &wait);
1387 }
1388
1389 void kvm_resched(struct kvm_vcpu *vcpu)
1390 {
1391 if (!need_resched())
1392 return;
1393 cond_resched();
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_resched);
1396
1397 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1398 {
1399 ktime_t expires;
1400 DEFINE_WAIT(wait);
1401
1402 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1403
1404 /* Sleep for 100 us, and hope lock-holder got scheduled */
1405 expires = ktime_add_ns(ktime_get(), 100000UL);
1406 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1407
1408 finish_wait(&vcpu->wq, &wait);
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1411
1412 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1413 {
1414 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1415 struct page *page;
1416
1417 if (vmf->pgoff == 0)
1418 page = virt_to_page(vcpu->run);
1419 #ifdef CONFIG_X86
1420 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1421 page = virt_to_page(vcpu->arch.pio_data);
1422 #endif
1423 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1424 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1425 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1426 #endif
1427 else
1428 return VM_FAULT_SIGBUS;
1429 get_page(page);
1430 vmf->page = page;
1431 return 0;
1432 }
1433
1434 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1435 .fault = kvm_vcpu_fault,
1436 };
1437
1438 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1439 {
1440 vma->vm_ops = &kvm_vcpu_vm_ops;
1441 return 0;
1442 }
1443
1444 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1445 {
1446 struct kvm_vcpu *vcpu = filp->private_data;
1447
1448 kvm_put_kvm(vcpu->kvm);
1449 return 0;
1450 }
1451
1452 static struct file_operations kvm_vcpu_fops = {
1453 .release = kvm_vcpu_release,
1454 .unlocked_ioctl = kvm_vcpu_ioctl,
1455 .compat_ioctl = kvm_vcpu_ioctl,
1456 .mmap = kvm_vcpu_mmap,
1457 .llseek = noop_llseek,
1458 };
1459
1460 /*
1461 * Allocates an inode for the vcpu.
1462 */
1463 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1464 {
1465 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1466 }
1467
1468 /*
1469 * Creates some virtual cpus. Good luck creating more than one.
1470 */
1471 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1472 {
1473 int r;
1474 struct kvm_vcpu *vcpu, *v;
1475
1476 vcpu = kvm_arch_vcpu_create(kvm, id);
1477 if (IS_ERR(vcpu))
1478 return PTR_ERR(vcpu);
1479
1480 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1481
1482 r = kvm_arch_vcpu_setup(vcpu);
1483 if (r)
1484 return r;
1485
1486 mutex_lock(&kvm->lock);
1487 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1488 r = -EINVAL;
1489 goto vcpu_destroy;
1490 }
1491
1492 kvm_for_each_vcpu(r, v, kvm)
1493 if (v->vcpu_id == id) {
1494 r = -EEXIST;
1495 goto vcpu_destroy;
1496 }
1497
1498 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1499
1500 /* Now it's all set up, let userspace reach it */
1501 kvm_get_kvm(kvm);
1502 r = create_vcpu_fd(vcpu);
1503 if (r < 0) {
1504 kvm_put_kvm(kvm);
1505 goto vcpu_destroy;
1506 }
1507
1508 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1509 smp_wmb();
1510 atomic_inc(&kvm->online_vcpus);
1511
1512 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1513 if (kvm->bsp_vcpu_id == id)
1514 kvm->bsp_vcpu = vcpu;
1515 #endif
1516 mutex_unlock(&kvm->lock);
1517 return r;
1518
1519 vcpu_destroy:
1520 mutex_unlock(&kvm->lock);
1521 kvm_arch_vcpu_destroy(vcpu);
1522 return r;
1523 }
1524
1525 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1526 {
1527 if (sigset) {
1528 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1529 vcpu->sigset_active = 1;
1530 vcpu->sigset = *sigset;
1531 } else
1532 vcpu->sigset_active = 0;
1533 return 0;
1534 }
1535
1536 static long kvm_vcpu_ioctl(struct file *filp,
1537 unsigned int ioctl, unsigned long arg)
1538 {
1539 struct kvm_vcpu *vcpu = filp->private_data;
1540 void __user *argp = (void __user *)arg;
1541 int r;
1542 struct kvm_fpu *fpu = NULL;
1543 struct kvm_sregs *kvm_sregs = NULL;
1544
1545 if (vcpu->kvm->mm != current->mm)
1546 return -EIO;
1547
1548 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1549 /*
1550 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1551 * so vcpu_load() would break it.
1552 */
1553 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1554 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1555 #endif
1556
1557
1558 vcpu_load(vcpu);
1559 switch (ioctl) {
1560 case KVM_RUN:
1561 r = -EINVAL;
1562 if (arg)
1563 goto out;
1564 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1565 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1566 break;
1567 case KVM_GET_REGS: {
1568 struct kvm_regs *kvm_regs;
1569
1570 r = -ENOMEM;
1571 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1572 if (!kvm_regs)
1573 goto out;
1574 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1575 if (r)
1576 goto out_free1;
1577 r = -EFAULT;
1578 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1579 goto out_free1;
1580 r = 0;
1581 out_free1:
1582 kfree(kvm_regs);
1583 break;
1584 }
1585 case KVM_SET_REGS: {
1586 struct kvm_regs *kvm_regs;
1587
1588 r = -ENOMEM;
1589 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1590 if (!kvm_regs)
1591 goto out;
1592 r = -EFAULT;
1593 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1594 goto out_free2;
1595 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1596 if (r)
1597 goto out_free2;
1598 r = 0;
1599 out_free2:
1600 kfree(kvm_regs);
1601 break;
1602 }
1603 case KVM_GET_SREGS: {
1604 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1605 r = -ENOMEM;
1606 if (!kvm_sregs)
1607 goto out;
1608 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1609 if (r)
1610 goto out;
1611 r = -EFAULT;
1612 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1613 goto out;
1614 r = 0;
1615 break;
1616 }
1617 case KVM_SET_SREGS: {
1618 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1619 r = -ENOMEM;
1620 if (!kvm_sregs)
1621 goto out;
1622 r = -EFAULT;
1623 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1624 goto out;
1625 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1626 if (r)
1627 goto out;
1628 r = 0;
1629 break;
1630 }
1631 case KVM_GET_MP_STATE: {
1632 struct kvm_mp_state mp_state;
1633
1634 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1635 if (r)
1636 goto out;
1637 r = -EFAULT;
1638 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1639 goto out;
1640 r = 0;
1641 break;
1642 }
1643 case KVM_SET_MP_STATE: {
1644 struct kvm_mp_state mp_state;
1645
1646 r = -EFAULT;
1647 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1648 goto out;
1649 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1650 if (r)
1651 goto out;
1652 r = 0;
1653 break;
1654 }
1655 case KVM_TRANSLATE: {
1656 struct kvm_translation tr;
1657
1658 r = -EFAULT;
1659 if (copy_from_user(&tr, argp, sizeof tr))
1660 goto out;
1661 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1662 if (r)
1663 goto out;
1664 r = -EFAULT;
1665 if (copy_to_user(argp, &tr, sizeof tr))
1666 goto out;
1667 r = 0;
1668 break;
1669 }
1670 case KVM_SET_GUEST_DEBUG: {
1671 struct kvm_guest_debug dbg;
1672
1673 r = -EFAULT;
1674 if (copy_from_user(&dbg, argp, sizeof dbg))
1675 goto out;
1676 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1677 if (r)
1678 goto out;
1679 r = 0;
1680 break;
1681 }
1682 case KVM_SET_SIGNAL_MASK: {
1683 struct kvm_signal_mask __user *sigmask_arg = argp;
1684 struct kvm_signal_mask kvm_sigmask;
1685 sigset_t sigset, *p;
1686
1687 p = NULL;
1688 if (argp) {
1689 r = -EFAULT;
1690 if (copy_from_user(&kvm_sigmask, argp,
1691 sizeof kvm_sigmask))
1692 goto out;
1693 r = -EINVAL;
1694 if (kvm_sigmask.len != sizeof sigset)
1695 goto out;
1696 r = -EFAULT;
1697 if (copy_from_user(&sigset, sigmask_arg->sigset,
1698 sizeof sigset))
1699 goto out;
1700 p = &sigset;
1701 }
1702 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1703 break;
1704 }
1705 case KVM_GET_FPU: {
1706 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1707 r = -ENOMEM;
1708 if (!fpu)
1709 goto out;
1710 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1711 if (r)
1712 goto out;
1713 r = -EFAULT;
1714 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1715 goto out;
1716 r = 0;
1717 break;
1718 }
1719 case KVM_SET_FPU: {
1720 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1721 r = -ENOMEM;
1722 if (!fpu)
1723 goto out;
1724 r = -EFAULT;
1725 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1726 goto out;
1727 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1728 if (r)
1729 goto out;
1730 r = 0;
1731 break;
1732 }
1733 default:
1734 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1735 }
1736 out:
1737 vcpu_put(vcpu);
1738 kfree(fpu);
1739 kfree(kvm_sregs);
1740 return r;
1741 }
1742
1743 static long kvm_vm_ioctl(struct file *filp,
1744 unsigned int ioctl, unsigned long arg)
1745 {
1746 struct kvm *kvm = filp->private_data;
1747 void __user *argp = (void __user *)arg;
1748 int r;
1749
1750 if (kvm->mm != current->mm)
1751 return -EIO;
1752 switch (ioctl) {
1753 case KVM_CREATE_VCPU:
1754 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1755 if (r < 0)
1756 goto out;
1757 break;
1758 case KVM_SET_USER_MEMORY_REGION: {
1759 struct kvm_userspace_memory_region kvm_userspace_mem;
1760
1761 r = -EFAULT;
1762 if (copy_from_user(&kvm_userspace_mem, argp,
1763 sizeof kvm_userspace_mem))
1764 goto out;
1765
1766 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1767 if (r)
1768 goto out;
1769 break;
1770 }
1771 case KVM_GET_DIRTY_LOG: {
1772 struct kvm_dirty_log log;
1773
1774 r = -EFAULT;
1775 if (copy_from_user(&log, argp, sizeof log))
1776 goto out;
1777 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1778 if (r)
1779 goto out;
1780 break;
1781 }
1782 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1783 case KVM_REGISTER_COALESCED_MMIO: {
1784 struct kvm_coalesced_mmio_zone zone;
1785 r = -EFAULT;
1786 if (copy_from_user(&zone, argp, sizeof zone))
1787 goto out;
1788 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1789 if (r)
1790 goto out;
1791 r = 0;
1792 break;
1793 }
1794 case KVM_UNREGISTER_COALESCED_MMIO: {
1795 struct kvm_coalesced_mmio_zone zone;
1796 r = -EFAULT;
1797 if (copy_from_user(&zone, argp, sizeof zone))
1798 goto out;
1799 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1800 if (r)
1801 goto out;
1802 r = 0;
1803 break;
1804 }
1805 #endif
1806 case KVM_IRQFD: {
1807 struct kvm_irqfd data;
1808
1809 r = -EFAULT;
1810 if (copy_from_user(&data, argp, sizeof data))
1811 goto out;
1812 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1813 break;
1814 }
1815 case KVM_IOEVENTFD: {
1816 struct kvm_ioeventfd data;
1817
1818 r = -EFAULT;
1819 if (copy_from_user(&data, argp, sizeof data))
1820 goto out;
1821 r = kvm_ioeventfd(kvm, &data);
1822 break;
1823 }
1824 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1825 case KVM_SET_BOOT_CPU_ID:
1826 r = 0;
1827 mutex_lock(&kvm->lock);
1828 if (atomic_read(&kvm->online_vcpus) != 0)
1829 r = -EBUSY;
1830 else
1831 kvm->bsp_vcpu_id = arg;
1832 mutex_unlock(&kvm->lock);
1833 break;
1834 #endif
1835 default:
1836 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1837 if (r == -ENOTTY)
1838 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1839 }
1840 out:
1841 return r;
1842 }
1843
1844 #ifdef CONFIG_COMPAT
1845 struct compat_kvm_dirty_log {
1846 __u32 slot;
1847 __u32 padding1;
1848 union {
1849 compat_uptr_t dirty_bitmap; /* one bit per page */
1850 __u64 padding2;
1851 };
1852 };
1853
1854 static long kvm_vm_compat_ioctl(struct file *filp,
1855 unsigned int ioctl, unsigned long arg)
1856 {
1857 struct kvm *kvm = filp->private_data;
1858 int r;
1859
1860 if (kvm->mm != current->mm)
1861 return -EIO;
1862 switch (ioctl) {
1863 case KVM_GET_DIRTY_LOG: {
1864 struct compat_kvm_dirty_log compat_log;
1865 struct kvm_dirty_log log;
1866
1867 r = -EFAULT;
1868 if (copy_from_user(&compat_log, (void __user *)arg,
1869 sizeof(compat_log)))
1870 goto out;
1871 log.slot = compat_log.slot;
1872 log.padding1 = compat_log.padding1;
1873 log.padding2 = compat_log.padding2;
1874 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1875
1876 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1877 if (r)
1878 goto out;
1879 break;
1880 }
1881 default:
1882 r = kvm_vm_ioctl(filp, ioctl, arg);
1883 }
1884
1885 out:
1886 return r;
1887 }
1888 #endif
1889
1890 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1891 {
1892 struct page *page[1];
1893 unsigned long addr;
1894 int npages;
1895 gfn_t gfn = vmf->pgoff;
1896 struct kvm *kvm = vma->vm_file->private_data;
1897
1898 addr = gfn_to_hva(kvm, gfn);
1899 if (kvm_is_error_hva(addr))
1900 return VM_FAULT_SIGBUS;
1901
1902 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1903 NULL);
1904 if (unlikely(npages != 1))
1905 return VM_FAULT_SIGBUS;
1906
1907 vmf->page = page[0];
1908 return 0;
1909 }
1910
1911 static const struct vm_operations_struct kvm_vm_vm_ops = {
1912 .fault = kvm_vm_fault,
1913 };
1914
1915 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1916 {
1917 vma->vm_ops = &kvm_vm_vm_ops;
1918 return 0;
1919 }
1920
1921 static struct file_operations kvm_vm_fops = {
1922 .release = kvm_vm_release,
1923 .unlocked_ioctl = kvm_vm_ioctl,
1924 #ifdef CONFIG_COMPAT
1925 .compat_ioctl = kvm_vm_compat_ioctl,
1926 #endif
1927 .mmap = kvm_vm_mmap,
1928 .llseek = noop_llseek,
1929 };
1930
1931 static int kvm_dev_ioctl_create_vm(void)
1932 {
1933 int fd, r;
1934 struct kvm *kvm;
1935
1936 kvm = kvm_create_vm();
1937 if (IS_ERR(kvm))
1938 return PTR_ERR(kvm);
1939 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1940 r = kvm_coalesced_mmio_init(kvm);
1941 if (r < 0) {
1942 kvm_put_kvm(kvm);
1943 return r;
1944 }
1945 #endif
1946 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1947 if (fd < 0)
1948 kvm_put_kvm(kvm);
1949
1950 return fd;
1951 }
1952
1953 static long kvm_dev_ioctl_check_extension_generic(long arg)
1954 {
1955 switch (arg) {
1956 case KVM_CAP_USER_MEMORY:
1957 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1958 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1959 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1960 case KVM_CAP_SET_BOOT_CPU_ID:
1961 #endif
1962 case KVM_CAP_INTERNAL_ERROR_DATA:
1963 return 1;
1964 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1965 case KVM_CAP_IRQ_ROUTING:
1966 return KVM_MAX_IRQ_ROUTES;
1967 #endif
1968 default:
1969 break;
1970 }
1971 return kvm_dev_ioctl_check_extension(arg);
1972 }
1973
1974 static long kvm_dev_ioctl(struct file *filp,
1975 unsigned int ioctl, unsigned long arg)
1976 {
1977 long r = -EINVAL;
1978
1979 switch (ioctl) {
1980 case KVM_GET_API_VERSION:
1981 r = -EINVAL;
1982 if (arg)
1983 goto out;
1984 r = KVM_API_VERSION;
1985 break;
1986 case KVM_CREATE_VM:
1987 r = -EINVAL;
1988 if (arg)
1989 goto out;
1990 r = kvm_dev_ioctl_create_vm();
1991 break;
1992 case KVM_CHECK_EXTENSION:
1993 r = kvm_dev_ioctl_check_extension_generic(arg);
1994 break;
1995 case KVM_GET_VCPU_MMAP_SIZE:
1996 r = -EINVAL;
1997 if (arg)
1998 goto out;
1999 r = PAGE_SIZE; /* struct kvm_run */
2000 #ifdef CONFIG_X86
2001 r += PAGE_SIZE; /* pio data page */
2002 #endif
2003 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2004 r += PAGE_SIZE; /* coalesced mmio ring page */
2005 #endif
2006 break;
2007 case KVM_TRACE_ENABLE:
2008 case KVM_TRACE_PAUSE:
2009 case KVM_TRACE_DISABLE:
2010 r = -EOPNOTSUPP;
2011 break;
2012 default:
2013 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2014 }
2015 out:
2016 return r;
2017 }
2018
2019 static struct file_operations kvm_chardev_ops = {
2020 .unlocked_ioctl = kvm_dev_ioctl,
2021 .compat_ioctl = kvm_dev_ioctl,
2022 .llseek = noop_llseek,
2023 };
2024
2025 static struct miscdevice kvm_dev = {
2026 KVM_MINOR,
2027 "kvm",
2028 &kvm_chardev_ops,
2029 };
2030
2031 static void hardware_enable(void *junk)
2032 {
2033 int cpu = raw_smp_processor_id();
2034 int r;
2035
2036 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2037 return;
2038
2039 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2040
2041 r = kvm_arch_hardware_enable(NULL);
2042
2043 if (r) {
2044 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2045 atomic_inc(&hardware_enable_failed);
2046 printk(KERN_INFO "kvm: enabling virtualization on "
2047 "CPU%d failed\n", cpu);
2048 }
2049 }
2050
2051 static void hardware_disable(void *junk)
2052 {
2053 int cpu = raw_smp_processor_id();
2054
2055 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2056 return;
2057 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2058 kvm_arch_hardware_disable(NULL);
2059 }
2060
2061 static void hardware_disable_all_nolock(void)
2062 {
2063 BUG_ON(!kvm_usage_count);
2064
2065 kvm_usage_count--;
2066 if (!kvm_usage_count)
2067 on_each_cpu(hardware_disable, NULL, 1);
2068 }
2069
2070 static void hardware_disable_all(void)
2071 {
2072 spin_lock(&kvm_lock);
2073 hardware_disable_all_nolock();
2074 spin_unlock(&kvm_lock);
2075 }
2076
2077 static int hardware_enable_all(void)
2078 {
2079 int r = 0;
2080
2081 spin_lock(&kvm_lock);
2082
2083 kvm_usage_count++;
2084 if (kvm_usage_count == 1) {
2085 atomic_set(&hardware_enable_failed, 0);
2086 on_each_cpu(hardware_enable, NULL, 1);
2087
2088 if (atomic_read(&hardware_enable_failed)) {
2089 hardware_disable_all_nolock();
2090 r = -EBUSY;
2091 }
2092 }
2093
2094 spin_unlock(&kvm_lock);
2095
2096 return r;
2097 }
2098
2099 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2100 void *v)
2101 {
2102 int cpu = (long)v;
2103
2104 if (!kvm_usage_count)
2105 return NOTIFY_OK;
2106
2107 val &= ~CPU_TASKS_FROZEN;
2108 switch (val) {
2109 case CPU_DYING:
2110 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2111 cpu);
2112 hardware_disable(NULL);
2113 break;
2114 case CPU_STARTING:
2115 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2116 cpu);
2117 spin_lock(&kvm_lock);
2118 hardware_enable(NULL);
2119 spin_unlock(&kvm_lock);
2120 break;
2121 }
2122 return NOTIFY_OK;
2123 }
2124
2125
2126 asmlinkage void kvm_handle_fault_on_reboot(void)
2127 {
2128 if (kvm_rebooting) {
2129 /* spin while reset goes on */
2130 local_irq_enable();
2131 while (true)
2132 cpu_relax();
2133 }
2134 /* Fault while not rebooting. We want the trace. */
2135 BUG();
2136 }
2137 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2138
2139 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2140 void *v)
2141 {
2142 /*
2143 * Some (well, at least mine) BIOSes hang on reboot if
2144 * in vmx root mode.
2145 *
2146 * And Intel TXT required VMX off for all cpu when system shutdown.
2147 */
2148 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2149 kvm_rebooting = true;
2150 on_each_cpu(hardware_disable, NULL, 1);
2151 return NOTIFY_OK;
2152 }
2153
2154 static struct notifier_block kvm_reboot_notifier = {
2155 .notifier_call = kvm_reboot,
2156 .priority = 0,
2157 };
2158
2159 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2160 {
2161 int i;
2162
2163 for (i = 0; i < bus->dev_count; i++) {
2164 struct kvm_io_device *pos = bus->devs[i];
2165
2166 kvm_iodevice_destructor(pos);
2167 }
2168 kfree(bus);
2169 }
2170
2171 /* kvm_io_bus_write - called under kvm->slots_lock */
2172 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2173 int len, const void *val)
2174 {
2175 int i;
2176 struct kvm_io_bus *bus;
2177
2178 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2179 for (i = 0; i < bus->dev_count; i++)
2180 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2181 return 0;
2182 return -EOPNOTSUPP;
2183 }
2184
2185 /* kvm_io_bus_read - called under kvm->slots_lock */
2186 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2187 int len, void *val)
2188 {
2189 int i;
2190 struct kvm_io_bus *bus;
2191
2192 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2193 for (i = 0; i < bus->dev_count; i++)
2194 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2195 return 0;
2196 return -EOPNOTSUPP;
2197 }
2198
2199 /* Caller must hold slots_lock. */
2200 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2201 struct kvm_io_device *dev)
2202 {
2203 struct kvm_io_bus *new_bus, *bus;
2204
2205 bus = kvm->buses[bus_idx];
2206 if (bus->dev_count > NR_IOBUS_DEVS-1)
2207 return -ENOSPC;
2208
2209 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2210 if (!new_bus)
2211 return -ENOMEM;
2212 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2213 new_bus->devs[new_bus->dev_count++] = dev;
2214 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2215 synchronize_srcu_expedited(&kvm->srcu);
2216 kfree(bus);
2217
2218 return 0;
2219 }
2220
2221 /* Caller must hold slots_lock. */
2222 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2223 struct kvm_io_device *dev)
2224 {
2225 int i, r;
2226 struct kvm_io_bus *new_bus, *bus;
2227
2228 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2229 if (!new_bus)
2230 return -ENOMEM;
2231
2232 bus = kvm->buses[bus_idx];
2233 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2234
2235 r = -ENOENT;
2236 for (i = 0; i < new_bus->dev_count; i++)
2237 if (new_bus->devs[i] == dev) {
2238 r = 0;
2239 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2240 break;
2241 }
2242
2243 if (r) {
2244 kfree(new_bus);
2245 return r;
2246 }
2247
2248 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2249 synchronize_srcu_expedited(&kvm->srcu);
2250 kfree(bus);
2251 return r;
2252 }
2253
2254 static struct notifier_block kvm_cpu_notifier = {
2255 .notifier_call = kvm_cpu_hotplug,
2256 };
2257
2258 static int vm_stat_get(void *_offset, u64 *val)
2259 {
2260 unsigned offset = (long)_offset;
2261 struct kvm *kvm;
2262
2263 *val = 0;
2264 spin_lock(&kvm_lock);
2265 list_for_each_entry(kvm, &vm_list, vm_list)
2266 *val += *(u32 *)((void *)kvm + offset);
2267 spin_unlock(&kvm_lock);
2268 return 0;
2269 }
2270
2271 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2272
2273 static int vcpu_stat_get(void *_offset, u64 *val)
2274 {
2275 unsigned offset = (long)_offset;
2276 struct kvm *kvm;
2277 struct kvm_vcpu *vcpu;
2278 int i;
2279
2280 *val = 0;
2281 spin_lock(&kvm_lock);
2282 list_for_each_entry(kvm, &vm_list, vm_list)
2283 kvm_for_each_vcpu(i, vcpu, kvm)
2284 *val += *(u32 *)((void *)vcpu + offset);
2285
2286 spin_unlock(&kvm_lock);
2287 return 0;
2288 }
2289
2290 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2291
2292 static const struct file_operations *stat_fops[] = {
2293 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2294 [KVM_STAT_VM] = &vm_stat_fops,
2295 };
2296
2297 static void kvm_init_debug(void)
2298 {
2299 struct kvm_stats_debugfs_item *p;
2300
2301 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2302 for (p = debugfs_entries; p->name; ++p)
2303 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2304 (void *)(long)p->offset,
2305 stat_fops[p->kind]);
2306 }
2307
2308 static void kvm_exit_debug(void)
2309 {
2310 struct kvm_stats_debugfs_item *p;
2311
2312 for (p = debugfs_entries; p->name; ++p)
2313 debugfs_remove(p->dentry);
2314 debugfs_remove(kvm_debugfs_dir);
2315 }
2316
2317 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2318 {
2319 if (kvm_usage_count)
2320 hardware_disable(NULL);
2321 return 0;
2322 }
2323
2324 static int kvm_resume(struct sys_device *dev)
2325 {
2326 if (kvm_usage_count) {
2327 WARN_ON(spin_is_locked(&kvm_lock));
2328 hardware_enable(NULL);
2329 }
2330 return 0;
2331 }
2332
2333 static struct sysdev_class kvm_sysdev_class = {
2334 .name = "kvm",
2335 .suspend = kvm_suspend,
2336 .resume = kvm_resume,
2337 };
2338
2339 static struct sys_device kvm_sysdev = {
2340 .id = 0,
2341 .cls = &kvm_sysdev_class,
2342 };
2343
2344 struct page *bad_page;
2345 pfn_t bad_pfn;
2346
2347 static inline
2348 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2349 {
2350 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2351 }
2352
2353 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2354 {
2355 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2356
2357 kvm_arch_vcpu_load(vcpu, cpu);
2358 }
2359
2360 static void kvm_sched_out(struct preempt_notifier *pn,
2361 struct task_struct *next)
2362 {
2363 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2364
2365 kvm_arch_vcpu_put(vcpu);
2366 }
2367
2368 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2369 struct module *module)
2370 {
2371 int r;
2372 int cpu;
2373
2374 r = kvm_arch_init(opaque);
2375 if (r)
2376 goto out_fail;
2377
2378 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2379
2380 if (bad_page == NULL) {
2381 r = -ENOMEM;
2382 goto out;
2383 }
2384
2385 bad_pfn = page_to_pfn(bad_page);
2386
2387 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2388
2389 if (hwpoison_page == NULL) {
2390 r = -ENOMEM;
2391 goto out_free_0;
2392 }
2393
2394 hwpoison_pfn = page_to_pfn(hwpoison_page);
2395
2396 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2397
2398 if (fault_page == NULL) {
2399 r = -ENOMEM;
2400 goto out_free_0;
2401 }
2402
2403 fault_pfn = page_to_pfn(fault_page);
2404
2405 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2406 r = -ENOMEM;
2407 goto out_free_0;
2408 }
2409
2410 r = kvm_arch_hardware_setup();
2411 if (r < 0)
2412 goto out_free_0a;
2413
2414 for_each_online_cpu(cpu) {
2415 smp_call_function_single(cpu,
2416 kvm_arch_check_processor_compat,
2417 &r, 1);
2418 if (r < 0)
2419 goto out_free_1;
2420 }
2421
2422 r = register_cpu_notifier(&kvm_cpu_notifier);
2423 if (r)
2424 goto out_free_2;
2425 register_reboot_notifier(&kvm_reboot_notifier);
2426
2427 r = sysdev_class_register(&kvm_sysdev_class);
2428 if (r)
2429 goto out_free_3;
2430
2431 r = sysdev_register(&kvm_sysdev);
2432 if (r)
2433 goto out_free_4;
2434
2435 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2436 if (!vcpu_align)
2437 vcpu_align = __alignof__(struct kvm_vcpu);
2438 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2439 0, NULL);
2440 if (!kvm_vcpu_cache) {
2441 r = -ENOMEM;
2442 goto out_free_5;
2443 }
2444
2445 r = kvm_async_pf_init();
2446 if (r)
2447 goto out_free;
2448
2449 kvm_chardev_ops.owner = module;
2450 kvm_vm_fops.owner = module;
2451 kvm_vcpu_fops.owner = module;
2452
2453 r = misc_register(&kvm_dev);
2454 if (r) {
2455 printk(KERN_ERR "kvm: misc device register failed\n");
2456 goto out_unreg;
2457 }
2458
2459 kvm_preempt_ops.sched_in = kvm_sched_in;
2460 kvm_preempt_ops.sched_out = kvm_sched_out;
2461
2462 kvm_init_debug();
2463
2464 return 0;
2465
2466 out_unreg:
2467 kvm_async_pf_deinit();
2468 out_free:
2469 kmem_cache_destroy(kvm_vcpu_cache);
2470 out_free_5:
2471 sysdev_unregister(&kvm_sysdev);
2472 out_free_4:
2473 sysdev_class_unregister(&kvm_sysdev_class);
2474 out_free_3:
2475 unregister_reboot_notifier(&kvm_reboot_notifier);
2476 unregister_cpu_notifier(&kvm_cpu_notifier);
2477 out_free_2:
2478 out_free_1:
2479 kvm_arch_hardware_unsetup();
2480 out_free_0a:
2481 free_cpumask_var(cpus_hardware_enabled);
2482 out_free_0:
2483 if (fault_page)
2484 __free_page(fault_page);
2485 if (hwpoison_page)
2486 __free_page(hwpoison_page);
2487 __free_page(bad_page);
2488 out:
2489 kvm_arch_exit();
2490 out_fail:
2491 return r;
2492 }
2493 EXPORT_SYMBOL_GPL(kvm_init);
2494
2495 void kvm_exit(void)
2496 {
2497 kvm_exit_debug();
2498 misc_deregister(&kvm_dev);
2499 kmem_cache_destroy(kvm_vcpu_cache);
2500 kvm_async_pf_deinit();
2501 sysdev_unregister(&kvm_sysdev);
2502 sysdev_class_unregister(&kvm_sysdev_class);
2503 unregister_reboot_notifier(&kvm_reboot_notifier);
2504 unregister_cpu_notifier(&kvm_cpu_notifier);
2505 on_each_cpu(hardware_disable, NULL, 1);
2506 kvm_arch_hardware_unsetup();
2507 kvm_arch_exit();
2508 free_cpumask_var(cpus_hardware_enabled);
2509 __free_page(hwpoison_page);
2510 __free_page(bad_page);
2511 }
2512 EXPORT_SYMBOL_GPL(kvm_exit);