KVM: fix spin_lock_init order on x86
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode */
174 smp_mb();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 long dirty_count = kvm->tlbs_dirty;
195
196 smp_mb();
197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 ++kvm->stat.remote_tlb_flush;
199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210 {
211 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212 }
213
214 void kvm_make_scan_ioapic_request(struct kvm *kvm)
215 {
216 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 vcpu->halt_poll_ns = 0;
230 init_waitqueue_head(&vcpu->wq);
231 kvm_async_pf_vcpu_init(vcpu);
232
233 vcpu->pre_pcpu = -1;
234 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
235
236 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
237 if (!page) {
238 r = -ENOMEM;
239 goto fail;
240 }
241 vcpu->run = page_address(page);
242
243 kvm_vcpu_set_in_spin_loop(vcpu, false);
244 kvm_vcpu_set_dy_eligible(vcpu, false);
245 vcpu->preempted = false;
246
247 r = kvm_arch_vcpu_init(vcpu);
248 if (r < 0)
249 goto fail_free_run;
250 return 0;
251
252 fail_free_run:
253 free_page((unsigned long)vcpu->run);
254 fail:
255 return r;
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
258
259 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
260 {
261 put_pid(vcpu->pid);
262 kvm_arch_vcpu_uninit(vcpu);
263 free_page((unsigned long)vcpu->run);
264 }
265 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
266
267 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
268 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
269 {
270 return container_of(mn, struct kvm, mmu_notifier);
271 }
272
273 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
274 struct mm_struct *mm,
275 unsigned long address)
276 {
277 struct kvm *kvm = mmu_notifier_to_kvm(mn);
278 int need_tlb_flush, idx;
279
280 /*
281 * When ->invalidate_page runs, the linux pte has been zapped
282 * already but the page is still allocated until
283 * ->invalidate_page returns. So if we increase the sequence
284 * here the kvm page fault will notice if the spte can't be
285 * established because the page is going to be freed. If
286 * instead the kvm page fault establishes the spte before
287 * ->invalidate_page runs, kvm_unmap_hva will release it
288 * before returning.
289 *
290 * The sequence increase only need to be seen at spin_unlock
291 * time, and not at spin_lock time.
292 *
293 * Increasing the sequence after the spin_unlock would be
294 * unsafe because the kvm page fault could then establish the
295 * pte after kvm_unmap_hva returned, without noticing the page
296 * is going to be freed.
297 */
298 idx = srcu_read_lock(&kvm->srcu);
299 spin_lock(&kvm->mmu_lock);
300
301 kvm->mmu_notifier_seq++;
302 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
303 /* we've to flush the tlb before the pages can be freed */
304 if (need_tlb_flush)
305 kvm_flush_remote_tlbs(kvm);
306
307 spin_unlock(&kvm->mmu_lock);
308
309 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
310
311 srcu_read_unlock(&kvm->srcu, idx);
312 }
313
314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
315 struct mm_struct *mm,
316 unsigned long address,
317 pte_t pte)
318 {
319 struct kvm *kvm = mmu_notifier_to_kvm(mn);
320 int idx;
321
322 idx = srcu_read_lock(&kvm->srcu);
323 spin_lock(&kvm->mmu_lock);
324 kvm->mmu_notifier_seq++;
325 kvm_set_spte_hva(kvm, address, pte);
326 spin_unlock(&kvm->mmu_lock);
327 srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long start,
333 unsigned long end)
334 {
335 struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 int need_tlb_flush = 0, idx;
337
338 idx = srcu_read_lock(&kvm->srcu);
339 spin_lock(&kvm->mmu_lock);
340 /*
341 * The count increase must become visible at unlock time as no
342 * spte can be established without taking the mmu_lock and
343 * count is also read inside the mmu_lock critical section.
344 */
345 kvm->mmu_notifier_count++;
346 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
347 need_tlb_flush |= kvm->tlbs_dirty;
348 /* we've to flush the tlb before the pages can be freed */
349 if (need_tlb_flush)
350 kvm_flush_remote_tlbs(kvm);
351
352 spin_unlock(&kvm->mmu_lock);
353 srcu_read_unlock(&kvm->srcu, idx);
354 }
355
356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
357 struct mm_struct *mm,
358 unsigned long start,
359 unsigned long end)
360 {
361 struct kvm *kvm = mmu_notifier_to_kvm(mn);
362
363 spin_lock(&kvm->mmu_lock);
364 /*
365 * This sequence increase will notify the kvm page fault that
366 * the page that is going to be mapped in the spte could have
367 * been freed.
368 */
369 kvm->mmu_notifier_seq++;
370 smp_wmb();
371 /*
372 * The above sequence increase must be visible before the
373 * below count decrease, which is ensured by the smp_wmb above
374 * in conjunction with the smp_rmb in mmu_notifier_retry().
375 */
376 kvm->mmu_notifier_count--;
377 spin_unlock(&kvm->mmu_lock);
378
379 BUG_ON(kvm->mmu_notifier_count < 0);
380 }
381
382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
383 struct mm_struct *mm,
384 unsigned long start,
385 unsigned long end)
386 {
387 struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 int young, idx;
389
390 idx = srcu_read_lock(&kvm->srcu);
391 spin_lock(&kvm->mmu_lock);
392
393 young = kvm_age_hva(kvm, start, end);
394 if (young)
395 kvm_flush_remote_tlbs(kvm);
396
397 spin_unlock(&kvm->mmu_lock);
398 srcu_read_unlock(&kvm->srcu, idx);
399
400 return young;
401 }
402
403 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
404 struct mm_struct *mm,
405 unsigned long start,
406 unsigned long end)
407 {
408 struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 int young, idx;
410
411 idx = srcu_read_lock(&kvm->srcu);
412 spin_lock(&kvm->mmu_lock);
413 /*
414 * Even though we do not flush TLB, this will still adversely
415 * affect performance on pre-Haswell Intel EPT, where there is
416 * no EPT Access Bit to clear so that we have to tear down EPT
417 * tables instead. If we find this unacceptable, we can always
418 * add a parameter to kvm_age_hva so that it effectively doesn't
419 * do anything on clear_young.
420 *
421 * Also note that currently we never issue secondary TLB flushes
422 * from clear_young, leaving this job up to the regular system
423 * cadence. If we find this inaccurate, we might come up with a
424 * more sophisticated heuristic later.
425 */
426 young = kvm_age_hva(kvm, start, end);
427 spin_unlock(&kvm->mmu_lock);
428 srcu_read_unlock(&kvm->srcu, idx);
429
430 return young;
431 }
432
433 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
434 struct mm_struct *mm,
435 unsigned long address)
436 {
437 struct kvm *kvm = mmu_notifier_to_kvm(mn);
438 int young, idx;
439
440 idx = srcu_read_lock(&kvm->srcu);
441 spin_lock(&kvm->mmu_lock);
442 young = kvm_test_age_hva(kvm, address);
443 spin_unlock(&kvm->mmu_lock);
444 srcu_read_unlock(&kvm->srcu, idx);
445
446 return young;
447 }
448
449 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
450 struct mm_struct *mm)
451 {
452 struct kvm *kvm = mmu_notifier_to_kvm(mn);
453 int idx;
454
455 idx = srcu_read_lock(&kvm->srcu);
456 kvm_arch_flush_shadow_all(kvm);
457 srcu_read_unlock(&kvm->srcu, idx);
458 }
459
460 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
461 .invalidate_page = kvm_mmu_notifier_invalidate_page,
462 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
463 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
464 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
465 .clear_young = kvm_mmu_notifier_clear_young,
466 .test_young = kvm_mmu_notifier_test_young,
467 .change_pte = kvm_mmu_notifier_change_pte,
468 .release = kvm_mmu_notifier_release,
469 };
470
471 static int kvm_init_mmu_notifier(struct kvm *kvm)
472 {
473 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
474 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
475 }
476
477 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
478
479 static int kvm_init_mmu_notifier(struct kvm *kvm)
480 {
481 return 0;
482 }
483
484 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
485
486 static struct kvm_memslots *kvm_alloc_memslots(void)
487 {
488 int i;
489 struct kvm_memslots *slots;
490
491 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
492 if (!slots)
493 return NULL;
494
495 /*
496 * Init kvm generation close to the maximum to easily test the
497 * code of handling generation number wrap-around.
498 */
499 slots->generation = -150;
500 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
501 slots->id_to_index[i] = slots->memslots[i].id = i;
502
503 return slots;
504 }
505
506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507 {
508 if (!memslot->dirty_bitmap)
509 return;
510
511 kvfree(memslot->dirty_bitmap);
512 memslot->dirty_bitmap = NULL;
513 }
514
515 /*
516 * Free any memory in @free but not in @dont.
517 */
518 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
519 struct kvm_memory_slot *dont)
520 {
521 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
522 kvm_destroy_dirty_bitmap(free);
523
524 kvm_arch_free_memslot(kvm, free, dont);
525
526 free->npages = 0;
527 }
528
529 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
530 {
531 struct kvm_memory_slot *memslot;
532
533 if (!slots)
534 return;
535
536 kvm_for_each_memslot(memslot, slots)
537 kvm_free_memslot(kvm, memslot, NULL);
538
539 kvfree(slots);
540 }
541
542 static struct kvm *kvm_create_vm(unsigned long type)
543 {
544 int r, i;
545 struct kvm *kvm = kvm_arch_alloc_vm();
546
547 if (!kvm)
548 return ERR_PTR(-ENOMEM);
549
550 spin_lock_init(&kvm->mmu_lock);
551 atomic_inc(&current->mm->mm_count);
552 kvm->mm = current->mm;
553 kvm_eventfd_init(kvm);
554 mutex_init(&kvm->lock);
555 mutex_init(&kvm->irq_lock);
556 mutex_init(&kvm->slots_lock);
557 atomic_set(&kvm->users_count, 1);
558 INIT_LIST_HEAD(&kvm->devices);
559
560 r = kvm_arch_init_vm(kvm, type);
561 if (r)
562 goto out_err_no_disable;
563
564 r = hardware_enable_all();
565 if (r)
566 goto out_err_no_disable;
567
568 #ifdef CONFIG_HAVE_KVM_IRQFD
569 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
570 #endif
571
572 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
573
574 r = -ENOMEM;
575 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
576 kvm->memslots[i] = kvm_alloc_memslots();
577 if (!kvm->memslots[i])
578 goto out_err_no_srcu;
579 }
580
581 if (init_srcu_struct(&kvm->srcu))
582 goto out_err_no_srcu;
583 if (init_srcu_struct(&kvm->irq_srcu))
584 goto out_err_no_irq_srcu;
585 for (i = 0; i < KVM_NR_BUSES; i++) {
586 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
587 GFP_KERNEL);
588 if (!kvm->buses[i])
589 goto out_err;
590 }
591
592 r = kvm_init_mmu_notifier(kvm);
593 if (r)
594 goto out_err;
595
596 spin_lock(&kvm_lock);
597 list_add(&kvm->vm_list, &vm_list);
598 spin_unlock(&kvm_lock);
599
600 preempt_notifier_inc();
601
602 return kvm;
603
604 out_err:
605 cleanup_srcu_struct(&kvm->irq_srcu);
606 out_err_no_irq_srcu:
607 cleanup_srcu_struct(&kvm->srcu);
608 out_err_no_srcu:
609 hardware_disable_all();
610 out_err_no_disable:
611 for (i = 0; i < KVM_NR_BUSES; i++)
612 kfree(kvm->buses[i]);
613 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
614 kvm_free_memslots(kvm, kvm->memslots[i]);
615 kvm_arch_free_vm(kvm);
616 mmdrop(current->mm);
617 return ERR_PTR(r);
618 }
619
620 /*
621 * Avoid using vmalloc for a small buffer.
622 * Should not be used when the size is statically known.
623 */
624 void *kvm_kvzalloc(unsigned long size)
625 {
626 if (size > PAGE_SIZE)
627 return vzalloc(size);
628 else
629 return kzalloc(size, GFP_KERNEL);
630 }
631
632 static void kvm_destroy_devices(struct kvm *kvm)
633 {
634 struct list_head *node, *tmp;
635
636 list_for_each_safe(node, tmp, &kvm->devices) {
637 struct kvm_device *dev =
638 list_entry(node, struct kvm_device, vm_node);
639
640 list_del(node);
641 dev->ops->destroy(dev);
642 }
643 }
644
645 static void kvm_destroy_vm(struct kvm *kvm)
646 {
647 int i;
648 struct mm_struct *mm = kvm->mm;
649
650 kvm_arch_sync_events(kvm);
651 spin_lock(&kvm_lock);
652 list_del(&kvm->vm_list);
653 spin_unlock(&kvm_lock);
654 kvm_free_irq_routing(kvm);
655 for (i = 0; i < KVM_NR_BUSES; i++)
656 kvm_io_bus_destroy(kvm->buses[i]);
657 kvm_coalesced_mmio_free(kvm);
658 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
659 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
660 #else
661 kvm_arch_flush_shadow_all(kvm);
662 #endif
663 kvm_arch_destroy_vm(kvm);
664 kvm_destroy_devices(kvm);
665 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
666 kvm_free_memslots(kvm, kvm->memslots[i]);
667 cleanup_srcu_struct(&kvm->irq_srcu);
668 cleanup_srcu_struct(&kvm->srcu);
669 kvm_arch_free_vm(kvm);
670 preempt_notifier_dec();
671 hardware_disable_all();
672 mmdrop(mm);
673 }
674
675 void kvm_get_kvm(struct kvm *kvm)
676 {
677 atomic_inc(&kvm->users_count);
678 }
679 EXPORT_SYMBOL_GPL(kvm_get_kvm);
680
681 void kvm_put_kvm(struct kvm *kvm)
682 {
683 if (atomic_dec_and_test(&kvm->users_count))
684 kvm_destroy_vm(kvm);
685 }
686 EXPORT_SYMBOL_GPL(kvm_put_kvm);
687
688
689 static int kvm_vm_release(struct inode *inode, struct file *filp)
690 {
691 struct kvm *kvm = filp->private_data;
692
693 kvm_irqfd_release(kvm);
694
695 kvm_put_kvm(kvm);
696 return 0;
697 }
698
699 /*
700 * Allocation size is twice as large as the actual dirty bitmap size.
701 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
702 */
703 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
704 {
705 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
706
707 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
708 if (!memslot->dirty_bitmap)
709 return -ENOMEM;
710
711 return 0;
712 }
713
714 /*
715 * Insert memslot and re-sort memslots based on their GFN,
716 * so binary search could be used to lookup GFN.
717 * Sorting algorithm takes advantage of having initially
718 * sorted array and known changed memslot position.
719 */
720 static void update_memslots(struct kvm_memslots *slots,
721 struct kvm_memory_slot *new)
722 {
723 int id = new->id;
724 int i = slots->id_to_index[id];
725 struct kvm_memory_slot *mslots = slots->memslots;
726
727 WARN_ON(mslots[i].id != id);
728 if (!new->npages) {
729 WARN_ON(!mslots[i].npages);
730 if (mslots[i].npages)
731 slots->used_slots--;
732 } else {
733 if (!mslots[i].npages)
734 slots->used_slots++;
735 }
736
737 while (i < KVM_MEM_SLOTS_NUM - 1 &&
738 new->base_gfn <= mslots[i + 1].base_gfn) {
739 if (!mslots[i + 1].npages)
740 break;
741 mslots[i] = mslots[i + 1];
742 slots->id_to_index[mslots[i].id] = i;
743 i++;
744 }
745
746 /*
747 * The ">=" is needed when creating a slot with base_gfn == 0,
748 * so that it moves before all those with base_gfn == npages == 0.
749 *
750 * On the other hand, if new->npages is zero, the above loop has
751 * already left i pointing to the beginning of the empty part of
752 * mslots, and the ">=" would move the hole backwards in this
753 * case---which is wrong. So skip the loop when deleting a slot.
754 */
755 if (new->npages) {
756 while (i > 0 &&
757 new->base_gfn >= mslots[i - 1].base_gfn) {
758 mslots[i] = mslots[i - 1];
759 slots->id_to_index[mslots[i].id] = i;
760 i--;
761 }
762 } else
763 WARN_ON_ONCE(i != slots->used_slots);
764
765 mslots[i] = *new;
766 slots->id_to_index[mslots[i].id] = i;
767 }
768
769 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
770 {
771 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
772
773 #ifdef __KVM_HAVE_READONLY_MEM
774 valid_flags |= KVM_MEM_READONLY;
775 #endif
776
777 if (mem->flags & ~valid_flags)
778 return -EINVAL;
779
780 return 0;
781 }
782
783 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
784 int as_id, struct kvm_memslots *slots)
785 {
786 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
787
788 /*
789 * Set the low bit in the generation, which disables SPTE caching
790 * until the end of synchronize_srcu_expedited.
791 */
792 WARN_ON(old_memslots->generation & 1);
793 slots->generation = old_memslots->generation + 1;
794
795 rcu_assign_pointer(kvm->memslots[as_id], slots);
796 synchronize_srcu_expedited(&kvm->srcu);
797
798 /*
799 * Increment the new memslot generation a second time. This prevents
800 * vm exits that race with memslot updates from caching a memslot
801 * generation that will (potentially) be valid forever.
802 */
803 slots->generation++;
804
805 kvm_arch_memslots_updated(kvm, slots);
806
807 return old_memslots;
808 }
809
810 /*
811 * Allocate some memory and give it an address in the guest physical address
812 * space.
813 *
814 * Discontiguous memory is allowed, mostly for framebuffers.
815 *
816 * Must be called holding kvm->slots_lock for write.
817 */
818 int __kvm_set_memory_region(struct kvm *kvm,
819 const struct kvm_userspace_memory_region *mem)
820 {
821 int r;
822 gfn_t base_gfn;
823 unsigned long npages;
824 struct kvm_memory_slot *slot;
825 struct kvm_memory_slot old, new;
826 struct kvm_memslots *slots = NULL, *old_memslots;
827 int as_id, id;
828 enum kvm_mr_change change;
829
830 r = check_memory_region_flags(mem);
831 if (r)
832 goto out;
833
834 r = -EINVAL;
835 as_id = mem->slot >> 16;
836 id = (u16)mem->slot;
837
838 /* General sanity checks */
839 if (mem->memory_size & (PAGE_SIZE - 1))
840 goto out;
841 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
842 goto out;
843 /* We can read the guest memory with __xxx_user() later on. */
844 if ((id < KVM_USER_MEM_SLOTS) &&
845 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
846 !access_ok(VERIFY_WRITE,
847 (void __user *)(unsigned long)mem->userspace_addr,
848 mem->memory_size)))
849 goto out;
850 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
851 goto out;
852 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
853 goto out;
854
855 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
856 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
857 npages = mem->memory_size >> PAGE_SHIFT;
858
859 if (npages > KVM_MEM_MAX_NR_PAGES)
860 goto out;
861
862 new = old = *slot;
863
864 new.id = id;
865 new.base_gfn = base_gfn;
866 new.npages = npages;
867 new.flags = mem->flags;
868
869 if (npages) {
870 if (!old.npages)
871 change = KVM_MR_CREATE;
872 else { /* Modify an existing slot. */
873 if ((mem->userspace_addr != old.userspace_addr) ||
874 (npages != old.npages) ||
875 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
876 goto out;
877
878 if (base_gfn != old.base_gfn)
879 change = KVM_MR_MOVE;
880 else if (new.flags != old.flags)
881 change = KVM_MR_FLAGS_ONLY;
882 else { /* Nothing to change. */
883 r = 0;
884 goto out;
885 }
886 }
887 } else {
888 if (!old.npages)
889 goto out;
890
891 change = KVM_MR_DELETE;
892 new.base_gfn = 0;
893 new.flags = 0;
894 }
895
896 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
897 /* Check for overlaps */
898 r = -EEXIST;
899 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
900 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
901 (slot->id == id))
902 continue;
903 if (!((base_gfn + npages <= slot->base_gfn) ||
904 (base_gfn >= slot->base_gfn + slot->npages)))
905 goto out;
906 }
907 }
908
909 /* Free page dirty bitmap if unneeded */
910 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
911 new.dirty_bitmap = NULL;
912
913 r = -ENOMEM;
914 if (change == KVM_MR_CREATE) {
915 new.userspace_addr = mem->userspace_addr;
916
917 if (kvm_arch_create_memslot(kvm, &new, npages))
918 goto out_free;
919 }
920
921 /* Allocate page dirty bitmap if needed */
922 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
923 if (kvm_create_dirty_bitmap(&new) < 0)
924 goto out_free;
925 }
926
927 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
928 if (!slots)
929 goto out_free;
930 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
931
932 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
933 slot = id_to_memslot(slots, id);
934 slot->flags |= KVM_MEMSLOT_INVALID;
935
936 old_memslots = install_new_memslots(kvm, as_id, slots);
937
938 /* slot was deleted or moved, clear iommu mapping */
939 kvm_iommu_unmap_pages(kvm, &old);
940 /* From this point no new shadow pages pointing to a deleted,
941 * or moved, memslot will be created.
942 *
943 * validation of sp->gfn happens in:
944 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
945 * - kvm_is_visible_gfn (mmu_check_roots)
946 */
947 kvm_arch_flush_shadow_memslot(kvm, slot);
948
949 /*
950 * We can re-use the old_memslots from above, the only difference
951 * from the currently installed memslots is the invalid flag. This
952 * will get overwritten by update_memslots anyway.
953 */
954 slots = old_memslots;
955 }
956
957 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
958 if (r)
959 goto out_slots;
960
961 /* actual memory is freed via old in kvm_free_memslot below */
962 if (change == KVM_MR_DELETE) {
963 new.dirty_bitmap = NULL;
964 memset(&new.arch, 0, sizeof(new.arch));
965 }
966
967 update_memslots(slots, &new);
968 old_memslots = install_new_memslots(kvm, as_id, slots);
969
970 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
971
972 kvm_free_memslot(kvm, &old, &new);
973 kvfree(old_memslots);
974
975 /*
976 * IOMMU mapping: New slots need to be mapped. Old slots need to be
977 * un-mapped and re-mapped if their base changes. Since base change
978 * unmapping is handled above with slot deletion, mapping alone is
979 * needed here. Anything else the iommu might care about for existing
980 * slots (size changes, userspace addr changes and read-only flag
981 * changes) is disallowed above, so any other attribute changes getting
982 * here can be skipped.
983 */
984 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
985 r = kvm_iommu_map_pages(kvm, &new);
986 return r;
987 }
988
989 return 0;
990
991 out_slots:
992 kvfree(slots);
993 out_free:
994 kvm_free_memslot(kvm, &new, &old);
995 out:
996 return r;
997 }
998 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
999
1000 int kvm_set_memory_region(struct kvm *kvm,
1001 const struct kvm_userspace_memory_region *mem)
1002 {
1003 int r;
1004
1005 mutex_lock(&kvm->slots_lock);
1006 r = __kvm_set_memory_region(kvm, mem);
1007 mutex_unlock(&kvm->slots_lock);
1008 return r;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1011
1012 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1013 struct kvm_userspace_memory_region *mem)
1014 {
1015 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1016 return -EINVAL;
1017
1018 return kvm_set_memory_region(kvm, mem);
1019 }
1020
1021 int kvm_get_dirty_log(struct kvm *kvm,
1022 struct kvm_dirty_log *log, int *is_dirty)
1023 {
1024 struct kvm_memslots *slots;
1025 struct kvm_memory_slot *memslot;
1026 int r, i, as_id, id;
1027 unsigned long n;
1028 unsigned long any = 0;
1029
1030 r = -EINVAL;
1031 as_id = log->slot >> 16;
1032 id = (u16)log->slot;
1033 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1034 goto out;
1035
1036 slots = __kvm_memslots(kvm, as_id);
1037 memslot = id_to_memslot(slots, id);
1038 r = -ENOENT;
1039 if (!memslot->dirty_bitmap)
1040 goto out;
1041
1042 n = kvm_dirty_bitmap_bytes(memslot);
1043
1044 for (i = 0; !any && i < n/sizeof(long); ++i)
1045 any = memslot->dirty_bitmap[i];
1046
1047 r = -EFAULT;
1048 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1049 goto out;
1050
1051 if (any)
1052 *is_dirty = 1;
1053
1054 r = 0;
1055 out:
1056 return r;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1059
1060 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1061 /**
1062 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1063 * are dirty write protect them for next write.
1064 * @kvm: pointer to kvm instance
1065 * @log: slot id and address to which we copy the log
1066 * @is_dirty: flag set if any page is dirty
1067 *
1068 * We need to keep it in mind that VCPU threads can write to the bitmap
1069 * concurrently. So, to avoid losing track of dirty pages we keep the
1070 * following order:
1071 *
1072 * 1. Take a snapshot of the bit and clear it if needed.
1073 * 2. Write protect the corresponding page.
1074 * 3. Copy the snapshot to the userspace.
1075 * 4. Upon return caller flushes TLB's if needed.
1076 *
1077 * Between 2 and 4, the guest may write to the page using the remaining TLB
1078 * entry. This is not a problem because the page is reported dirty using
1079 * the snapshot taken before and step 4 ensures that writes done after
1080 * exiting to userspace will be logged for the next call.
1081 *
1082 */
1083 int kvm_get_dirty_log_protect(struct kvm *kvm,
1084 struct kvm_dirty_log *log, bool *is_dirty)
1085 {
1086 struct kvm_memslots *slots;
1087 struct kvm_memory_slot *memslot;
1088 int r, i, as_id, id;
1089 unsigned long n;
1090 unsigned long *dirty_bitmap;
1091 unsigned long *dirty_bitmap_buffer;
1092
1093 r = -EINVAL;
1094 as_id = log->slot >> 16;
1095 id = (u16)log->slot;
1096 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097 goto out;
1098
1099 slots = __kvm_memslots(kvm, as_id);
1100 memslot = id_to_memslot(slots, id);
1101
1102 dirty_bitmap = memslot->dirty_bitmap;
1103 r = -ENOENT;
1104 if (!dirty_bitmap)
1105 goto out;
1106
1107 n = kvm_dirty_bitmap_bytes(memslot);
1108
1109 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1110 memset(dirty_bitmap_buffer, 0, n);
1111
1112 spin_lock(&kvm->mmu_lock);
1113 *is_dirty = false;
1114 for (i = 0; i < n / sizeof(long); i++) {
1115 unsigned long mask;
1116 gfn_t offset;
1117
1118 if (!dirty_bitmap[i])
1119 continue;
1120
1121 *is_dirty = true;
1122
1123 mask = xchg(&dirty_bitmap[i], 0);
1124 dirty_bitmap_buffer[i] = mask;
1125
1126 if (mask) {
1127 offset = i * BITS_PER_LONG;
1128 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1129 offset, mask);
1130 }
1131 }
1132
1133 spin_unlock(&kvm->mmu_lock);
1134
1135 r = -EFAULT;
1136 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1137 goto out;
1138
1139 r = 0;
1140 out:
1141 return r;
1142 }
1143 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1144 #endif
1145
1146 bool kvm_largepages_enabled(void)
1147 {
1148 return largepages_enabled;
1149 }
1150
1151 void kvm_disable_largepages(void)
1152 {
1153 largepages_enabled = false;
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1156
1157 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1158 {
1159 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1160 }
1161 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1162
1163 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1164 {
1165 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1166 }
1167
1168 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1169 {
1170 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1171
1172 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1173 memslot->flags & KVM_MEMSLOT_INVALID)
1174 return 0;
1175
1176 return 1;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1179
1180 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1181 {
1182 struct vm_area_struct *vma;
1183 unsigned long addr, size;
1184
1185 size = PAGE_SIZE;
1186
1187 addr = gfn_to_hva(kvm, gfn);
1188 if (kvm_is_error_hva(addr))
1189 return PAGE_SIZE;
1190
1191 down_read(&current->mm->mmap_sem);
1192 vma = find_vma(current->mm, addr);
1193 if (!vma)
1194 goto out;
1195
1196 size = vma_kernel_pagesize(vma);
1197
1198 out:
1199 up_read(&current->mm->mmap_sem);
1200
1201 return size;
1202 }
1203
1204 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1205 {
1206 return slot->flags & KVM_MEM_READONLY;
1207 }
1208
1209 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210 gfn_t *nr_pages, bool write)
1211 {
1212 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1213 return KVM_HVA_ERR_BAD;
1214
1215 if (memslot_is_readonly(slot) && write)
1216 return KVM_HVA_ERR_RO_BAD;
1217
1218 if (nr_pages)
1219 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1220
1221 return __gfn_to_hva_memslot(slot, gfn);
1222 }
1223
1224 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1225 gfn_t *nr_pages)
1226 {
1227 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1228 }
1229
1230 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1231 gfn_t gfn)
1232 {
1233 return gfn_to_hva_many(slot, gfn, NULL);
1234 }
1235 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1236
1237 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1238 {
1239 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_hva);
1242
1243 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1244 {
1245 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1248
1249 /*
1250 * If writable is set to false, the hva returned by this function is only
1251 * allowed to be read.
1252 */
1253 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1254 gfn_t gfn, bool *writable)
1255 {
1256 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1257
1258 if (!kvm_is_error_hva(hva) && writable)
1259 *writable = !memslot_is_readonly(slot);
1260
1261 return hva;
1262 }
1263
1264 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1265 {
1266 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1267
1268 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1269 }
1270
1271 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1272 {
1273 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1274
1275 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1276 }
1277
1278 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1279 unsigned long start, int write, struct page **page)
1280 {
1281 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1282
1283 if (write)
1284 flags |= FOLL_WRITE;
1285
1286 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1287 }
1288
1289 static inline int check_user_page_hwpoison(unsigned long addr)
1290 {
1291 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1292
1293 rc = __get_user_pages(current, current->mm, addr, 1,
1294 flags, NULL, NULL, NULL);
1295 return rc == -EHWPOISON;
1296 }
1297
1298 /*
1299 * The atomic path to get the writable pfn which will be stored in @pfn,
1300 * true indicates success, otherwise false is returned.
1301 */
1302 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1303 bool write_fault, bool *writable, pfn_t *pfn)
1304 {
1305 struct page *page[1];
1306 int npages;
1307
1308 if (!(async || atomic))
1309 return false;
1310
1311 /*
1312 * Fast pin a writable pfn only if it is a write fault request
1313 * or the caller allows to map a writable pfn for a read fault
1314 * request.
1315 */
1316 if (!(write_fault || writable))
1317 return false;
1318
1319 npages = __get_user_pages_fast(addr, 1, 1, page);
1320 if (npages == 1) {
1321 *pfn = page_to_pfn(page[0]);
1322
1323 if (writable)
1324 *writable = true;
1325 return true;
1326 }
1327
1328 return false;
1329 }
1330
1331 /*
1332 * The slow path to get the pfn of the specified host virtual address,
1333 * 1 indicates success, -errno is returned if error is detected.
1334 */
1335 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1336 bool *writable, pfn_t *pfn)
1337 {
1338 struct page *page[1];
1339 int npages = 0;
1340
1341 might_sleep();
1342
1343 if (writable)
1344 *writable = write_fault;
1345
1346 if (async) {
1347 down_read(&current->mm->mmap_sem);
1348 npages = get_user_page_nowait(current, current->mm,
1349 addr, write_fault, page);
1350 up_read(&current->mm->mmap_sem);
1351 } else
1352 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1353 write_fault, 0, page,
1354 FOLL_TOUCH|FOLL_HWPOISON);
1355 if (npages != 1)
1356 return npages;
1357
1358 /* map read fault as writable if possible */
1359 if (unlikely(!write_fault) && writable) {
1360 struct page *wpage[1];
1361
1362 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1363 if (npages == 1) {
1364 *writable = true;
1365 put_page(page[0]);
1366 page[0] = wpage[0];
1367 }
1368
1369 npages = 1;
1370 }
1371 *pfn = page_to_pfn(page[0]);
1372 return npages;
1373 }
1374
1375 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1376 {
1377 if (unlikely(!(vma->vm_flags & VM_READ)))
1378 return false;
1379
1380 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1381 return false;
1382
1383 return true;
1384 }
1385
1386 /*
1387 * Pin guest page in memory and return its pfn.
1388 * @addr: host virtual address which maps memory to the guest
1389 * @atomic: whether this function can sleep
1390 * @async: whether this function need to wait IO complete if the
1391 * host page is not in the memory
1392 * @write_fault: whether we should get a writable host page
1393 * @writable: whether it allows to map a writable host page for !@write_fault
1394 *
1395 * The function will map a writable host page for these two cases:
1396 * 1): @write_fault = true
1397 * 2): @write_fault = false && @writable, @writable will tell the caller
1398 * whether the mapping is writable.
1399 */
1400 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1401 bool write_fault, bool *writable)
1402 {
1403 struct vm_area_struct *vma;
1404 pfn_t pfn = 0;
1405 int npages;
1406
1407 /* we can do it either atomically or asynchronously, not both */
1408 BUG_ON(atomic && async);
1409
1410 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1411 return pfn;
1412
1413 if (atomic)
1414 return KVM_PFN_ERR_FAULT;
1415
1416 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1417 if (npages == 1)
1418 return pfn;
1419
1420 down_read(&current->mm->mmap_sem);
1421 if (npages == -EHWPOISON ||
1422 (!async && check_user_page_hwpoison(addr))) {
1423 pfn = KVM_PFN_ERR_HWPOISON;
1424 goto exit;
1425 }
1426
1427 vma = find_vma_intersection(current->mm, addr, addr + 1);
1428
1429 if (vma == NULL)
1430 pfn = KVM_PFN_ERR_FAULT;
1431 else if ((vma->vm_flags & VM_PFNMAP)) {
1432 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1433 vma->vm_pgoff;
1434 BUG_ON(!kvm_is_reserved_pfn(pfn));
1435 } else {
1436 if (async && vma_is_valid(vma, write_fault))
1437 *async = true;
1438 pfn = KVM_PFN_ERR_FAULT;
1439 }
1440 exit:
1441 up_read(&current->mm->mmap_sem);
1442 return pfn;
1443 }
1444
1445 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1446 bool *async, bool write_fault, bool *writable)
1447 {
1448 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1449
1450 if (addr == KVM_HVA_ERR_RO_BAD)
1451 return KVM_PFN_ERR_RO_FAULT;
1452
1453 if (kvm_is_error_hva(addr))
1454 return KVM_PFN_NOSLOT;
1455
1456 /* Do not map writable pfn in the readonly memslot. */
1457 if (writable && memslot_is_readonly(slot)) {
1458 *writable = false;
1459 writable = NULL;
1460 }
1461
1462 return hva_to_pfn(addr, atomic, async, write_fault,
1463 writable);
1464 }
1465 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1466
1467 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1468 bool *writable)
1469 {
1470 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1471 write_fault, writable);
1472 }
1473 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1474
1475 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1476 {
1477 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1478 }
1479 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1480
1481 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1482 {
1483 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1484 }
1485 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1486
1487 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1488 {
1489 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1490 }
1491 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1492
1493 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1494 {
1495 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1496 }
1497 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1498
1499 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1500 {
1501 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1502 }
1503 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1504
1505 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1506 {
1507 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1510
1511 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1512 struct page **pages, int nr_pages)
1513 {
1514 unsigned long addr;
1515 gfn_t entry;
1516
1517 addr = gfn_to_hva_many(slot, gfn, &entry);
1518 if (kvm_is_error_hva(addr))
1519 return -1;
1520
1521 if (entry < nr_pages)
1522 return 0;
1523
1524 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1525 }
1526 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1527
1528 static struct page *kvm_pfn_to_page(pfn_t pfn)
1529 {
1530 if (is_error_noslot_pfn(pfn))
1531 return KVM_ERR_PTR_BAD_PAGE;
1532
1533 if (kvm_is_reserved_pfn(pfn)) {
1534 WARN_ON(1);
1535 return KVM_ERR_PTR_BAD_PAGE;
1536 }
1537
1538 return pfn_to_page(pfn);
1539 }
1540
1541 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1542 {
1543 pfn_t pfn;
1544
1545 pfn = gfn_to_pfn(kvm, gfn);
1546
1547 return kvm_pfn_to_page(pfn);
1548 }
1549 EXPORT_SYMBOL_GPL(gfn_to_page);
1550
1551 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1552 {
1553 pfn_t pfn;
1554
1555 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1556
1557 return kvm_pfn_to_page(pfn);
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1560
1561 void kvm_release_page_clean(struct page *page)
1562 {
1563 WARN_ON(is_error_page(page));
1564
1565 kvm_release_pfn_clean(page_to_pfn(page));
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1568
1569 void kvm_release_pfn_clean(pfn_t pfn)
1570 {
1571 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1572 put_page(pfn_to_page(pfn));
1573 }
1574 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1575
1576 void kvm_release_page_dirty(struct page *page)
1577 {
1578 WARN_ON(is_error_page(page));
1579
1580 kvm_release_pfn_dirty(page_to_pfn(page));
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1583
1584 static void kvm_release_pfn_dirty(pfn_t pfn)
1585 {
1586 kvm_set_pfn_dirty(pfn);
1587 kvm_release_pfn_clean(pfn);
1588 }
1589
1590 void kvm_set_pfn_dirty(pfn_t pfn)
1591 {
1592 if (!kvm_is_reserved_pfn(pfn)) {
1593 struct page *page = pfn_to_page(pfn);
1594
1595 if (!PageReserved(page))
1596 SetPageDirty(page);
1597 }
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1600
1601 void kvm_set_pfn_accessed(pfn_t pfn)
1602 {
1603 if (!kvm_is_reserved_pfn(pfn))
1604 mark_page_accessed(pfn_to_page(pfn));
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1607
1608 void kvm_get_pfn(pfn_t pfn)
1609 {
1610 if (!kvm_is_reserved_pfn(pfn))
1611 get_page(pfn_to_page(pfn));
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1614
1615 static int next_segment(unsigned long len, int offset)
1616 {
1617 if (len > PAGE_SIZE - offset)
1618 return PAGE_SIZE - offset;
1619 else
1620 return len;
1621 }
1622
1623 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1624 void *data, int offset, int len)
1625 {
1626 int r;
1627 unsigned long addr;
1628
1629 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1630 if (kvm_is_error_hva(addr))
1631 return -EFAULT;
1632 r = __copy_from_user(data, (void __user *)addr + offset, len);
1633 if (r)
1634 return -EFAULT;
1635 return 0;
1636 }
1637
1638 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1639 int len)
1640 {
1641 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1642
1643 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1644 }
1645 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1646
1647 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1648 int offset, int len)
1649 {
1650 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1651
1652 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1653 }
1654 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1655
1656 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1657 {
1658 gfn_t gfn = gpa >> PAGE_SHIFT;
1659 int seg;
1660 int offset = offset_in_page(gpa);
1661 int ret;
1662
1663 while ((seg = next_segment(len, offset)) != 0) {
1664 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1665 if (ret < 0)
1666 return ret;
1667 offset = 0;
1668 len -= seg;
1669 data += seg;
1670 ++gfn;
1671 }
1672 return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_read_guest);
1675
1676 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1677 {
1678 gfn_t gfn = gpa >> PAGE_SHIFT;
1679 int seg;
1680 int offset = offset_in_page(gpa);
1681 int ret;
1682
1683 while ((seg = next_segment(len, offset)) != 0) {
1684 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1685 if (ret < 0)
1686 return ret;
1687 offset = 0;
1688 len -= seg;
1689 data += seg;
1690 ++gfn;
1691 }
1692 return 0;
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1695
1696 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1697 void *data, int offset, unsigned long len)
1698 {
1699 int r;
1700 unsigned long addr;
1701
1702 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1703 if (kvm_is_error_hva(addr))
1704 return -EFAULT;
1705 pagefault_disable();
1706 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1707 pagefault_enable();
1708 if (r)
1709 return -EFAULT;
1710 return 0;
1711 }
1712
1713 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1714 unsigned long len)
1715 {
1716 gfn_t gfn = gpa >> PAGE_SHIFT;
1717 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1718 int offset = offset_in_page(gpa);
1719
1720 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1723
1724 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1725 void *data, unsigned long len)
1726 {
1727 gfn_t gfn = gpa >> PAGE_SHIFT;
1728 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1729 int offset = offset_in_page(gpa);
1730
1731 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1734
1735 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1736 const void *data, int offset, int len)
1737 {
1738 int r;
1739 unsigned long addr;
1740
1741 addr = gfn_to_hva_memslot(memslot, gfn);
1742 if (kvm_is_error_hva(addr))
1743 return -EFAULT;
1744 r = __copy_to_user((void __user *)addr + offset, data, len);
1745 if (r)
1746 return -EFAULT;
1747 mark_page_dirty_in_slot(memslot, gfn);
1748 return 0;
1749 }
1750
1751 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1752 const void *data, int offset, int len)
1753 {
1754 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1755
1756 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1759
1760 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1761 const void *data, int offset, int len)
1762 {
1763 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1764
1765 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1768
1769 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1770 unsigned long len)
1771 {
1772 gfn_t gfn = gpa >> PAGE_SHIFT;
1773 int seg;
1774 int offset = offset_in_page(gpa);
1775 int ret;
1776
1777 while ((seg = next_segment(len, offset)) != 0) {
1778 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1779 if (ret < 0)
1780 return ret;
1781 offset = 0;
1782 len -= seg;
1783 data += seg;
1784 ++gfn;
1785 }
1786 return 0;
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_write_guest);
1789
1790 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1791 unsigned long len)
1792 {
1793 gfn_t gfn = gpa >> PAGE_SHIFT;
1794 int seg;
1795 int offset = offset_in_page(gpa);
1796 int ret;
1797
1798 while ((seg = next_segment(len, offset)) != 0) {
1799 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1800 if (ret < 0)
1801 return ret;
1802 offset = 0;
1803 len -= seg;
1804 data += seg;
1805 ++gfn;
1806 }
1807 return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1810
1811 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1812 gpa_t gpa, unsigned long len)
1813 {
1814 struct kvm_memslots *slots = kvm_memslots(kvm);
1815 int offset = offset_in_page(gpa);
1816 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1817 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1818 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1819 gfn_t nr_pages_avail;
1820
1821 ghc->gpa = gpa;
1822 ghc->generation = slots->generation;
1823 ghc->len = len;
1824 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1825 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1826 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1827 ghc->hva += offset;
1828 } else {
1829 /*
1830 * If the requested region crosses two memslots, we still
1831 * verify that the entire region is valid here.
1832 */
1833 while (start_gfn <= end_gfn) {
1834 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1835 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1836 &nr_pages_avail);
1837 if (kvm_is_error_hva(ghc->hva))
1838 return -EFAULT;
1839 start_gfn += nr_pages_avail;
1840 }
1841 /* Use the slow path for cross page reads and writes. */
1842 ghc->memslot = NULL;
1843 }
1844 return 0;
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1847
1848 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1849 void *data, unsigned long len)
1850 {
1851 struct kvm_memslots *slots = kvm_memslots(kvm);
1852 int r;
1853
1854 BUG_ON(len > ghc->len);
1855
1856 if (slots->generation != ghc->generation)
1857 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1858
1859 if (unlikely(!ghc->memslot))
1860 return kvm_write_guest(kvm, ghc->gpa, data, len);
1861
1862 if (kvm_is_error_hva(ghc->hva))
1863 return -EFAULT;
1864
1865 r = __copy_to_user((void __user *)ghc->hva, data, len);
1866 if (r)
1867 return -EFAULT;
1868 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1869
1870 return 0;
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1873
1874 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1875 void *data, unsigned long len)
1876 {
1877 struct kvm_memslots *slots = kvm_memslots(kvm);
1878 int r;
1879
1880 BUG_ON(len > ghc->len);
1881
1882 if (slots->generation != ghc->generation)
1883 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1884
1885 if (unlikely(!ghc->memslot))
1886 return kvm_read_guest(kvm, ghc->gpa, data, len);
1887
1888 if (kvm_is_error_hva(ghc->hva))
1889 return -EFAULT;
1890
1891 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1892 if (r)
1893 return -EFAULT;
1894
1895 return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1898
1899 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1900 {
1901 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1902
1903 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1906
1907 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1908 {
1909 gfn_t gfn = gpa >> PAGE_SHIFT;
1910 int seg;
1911 int offset = offset_in_page(gpa);
1912 int ret;
1913
1914 while ((seg = next_segment(len, offset)) != 0) {
1915 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1916 if (ret < 0)
1917 return ret;
1918 offset = 0;
1919 len -= seg;
1920 ++gfn;
1921 }
1922 return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1925
1926 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1927 gfn_t gfn)
1928 {
1929 if (memslot && memslot->dirty_bitmap) {
1930 unsigned long rel_gfn = gfn - memslot->base_gfn;
1931
1932 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1933 }
1934 }
1935
1936 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1937 {
1938 struct kvm_memory_slot *memslot;
1939
1940 memslot = gfn_to_memslot(kvm, gfn);
1941 mark_page_dirty_in_slot(memslot, gfn);
1942 }
1943 EXPORT_SYMBOL_GPL(mark_page_dirty);
1944
1945 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1946 {
1947 struct kvm_memory_slot *memslot;
1948
1949 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1950 mark_page_dirty_in_slot(memslot, gfn);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1953
1954 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1955 {
1956 int old, val;
1957
1958 old = val = vcpu->halt_poll_ns;
1959 /* 10us base */
1960 if (val == 0 && halt_poll_ns_grow)
1961 val = 10000;
1962 else
1963 val *= halt_poll_ns_grow;
1964
1965 if (val > halt_poll_ns)
1966 val = halt_poll_ns;
1967
1968 vcpu->halt_poll_ns = val;
1969 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1970 }
1971
1972 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1973 {
1974 int old, val;
1975
1976 old = val = vcpu->halt_poll_ns;
1977 if (halt_poll_ns_shrink == 0)
1978 val = 0;
1979 else
1980 val /= halt_poll_ns_shrink;
1981
1982 vcpu->halt_poll_ns = val;
1983 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1984 }
1985
1986 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1987 {
1988 if (kvm_arch_vcpu_runnable(vcpu)) {
1989 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1990 return -EINTR;
1991 }
1992 if (kvm_cpu_has_pending_timer(vcpu))
1993 return -EINTR;
1994 if (signal_pending(current))
1995 return -EINTR;
1996
1997 return 0;
1998 }
1999
2000 /*
2001 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2002 */
2003 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2004 {
2005 ktime_t start, cur;
2006 DEFINE_WAIT(wait);
2007 bool waited = false;
2008 u64 block_ns;
2009
2010 start = cur = ktime_get();
2011 if (vcpu->halt_poll_ns) {
2012 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2013
2014 ++vcpu->stat.halt_attempted_poll;
2015 do {
2016 /*
2017 * This sets KVM_REQ_UNHALT if an interrupt
2018 * arrives.
2019 */
2020 if (kvm_vcpu_check_block(vcpu) < 0) {
2021 ++vcpu->stat.halt_successful_poll;
2022 goto out;
2023 }
2024 cur = ktime_get();
2025 } while (single_task_running() && ktime_before(cur, stop));
2026 }
2027
2028 kvm_arch_vcpu_blocking(vcpu);
2029
2030 for (;;) {
2031 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2032
2033 if (kvm_vcpu_check_block(vcpu) < 0)
2034 break;
2035
2036 waited = true;
2037 schedule();
2038 }
2039
2040 finish_wait(&vcpu->wq, &wait);
2041 cur = ktime_get();
2042
2043 kvm_arch_vcpu_unblocking(vcpu);
2044 out:
2045 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2046
2047 if (halt_poll_ns) {
2048 if (block_ns <= vcpu->halt_poll_ns)
2049 ;
2050 /* we had a long block, shrink polling */
2051 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2052 shrink_halt_poll_ns(vcpu);
2053 /* we had a short halt and our poll time is too small */
2054 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2055 block_ns < halt_poll_ns)
2056 grow_halt_poll_ns(vcpu);
2057 } else
2058 vcpu->halt_poll_ns = 0;
2059
2060 trace_kvm_vcpu_wakeup(block_ns, waited);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2063
2064 #ifndef CONFIG_S390
2065 /*
2066 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2067 */
2068 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2069 {
2070 int me;
2071 int cpu = vcpu->cpu;
2072 wait_queue_head_t *wqp;
2073
2074 wqp = kvm_arch_vcpu_wq(vcpu);
2075 if (waitqueue_active(wqp)) {
2076 wake_up_interruptible(wqp);
2077 ++vcpu->stat.halt_wakeup;
2078 }
2079
2080 me = get_cpu();
2081 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2082 if (kvm_arch_vcpu_should_kick(vcpu))
2083 smp_send_reschedule(cpu);
2084 put_cpu();
2085 }
2086 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2087 #endif /* !CONFIG_S390 */
2088
2089 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2090 {
2091 struct pid *pid;
2092 struct task_struct *task = NULL;
2093 int ret = 0;
2094
2095 rcu_read_lock();
2096 pid = rcu_dereference(target->pid);
2097 if (pid)
2098 task = get_pid_task(pid, PIDTYPE_PID);
2099 rcu_read_unlock();
2100 if (!task)
2101 return ret;
2102 ret = yield_to(task, 1);
2103 put_task_struct(task);
2104
2105 return ret;
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2108
2109 /*
2110 * Helper that checks whether a VCPU is eligible for directed yield.
2111 * Most eligible candidate to yield is decided by following heuristics:
2112 *
2113 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2114 * (preempted lock holder), indicated by @in_spin_loop.
2115 * Set at the beiginning and cleared at the end of interception/PLE handler.
2116 *
2117 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2118 * chance last time (mostly it has become eligible now since we have probably
2119 * yielded to lockholder in last iteration. This is done by toggling
2120 * @dy_eligible each time a VCPU checked for eligibility.)
2121 *
2122 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2123 * to preempted lock-holder could result in wrong VCPU selection and CPU
2124 * burning. Giving priority for a potential lock-holder increases lock
2125 * progress.
2126 *
2127 * Since algorithm is based on heuristics, accessing another VCPU data without
2128 * locking does not harm. It may result in trying to yield to same VCPU, fail
2129 * and continue with next VCPU and so on.
2130 */
2131 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2132 {
2133 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2134 bool eligible;
2135
2136 eligible = !vcpu->spin_loop.in_spin_loop ||
2137 vcpu->spin_loop.dy_eligible;
2138
2139 if (vcpu->spin_loop.in_spin_loop)
2140 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2141
2142 return eligible;
2143 #else
2144 return true;
2145 #endif
2146 }
2147
2148 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2149 {
2150 struct kvm *kvm = me->kvm;
2151 struct kvm_vcpu *vcpu;
2152 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2153 int yielded = 0;
2154 int try = 3;
2155 int pass;
2156 int i;
2157
2158 kvm_vcpu_set_in_spin_loop(me, true);
2159 /*
2160 * We boost the priority of a VCPU that is runnable but not
2161 * currently running, because it got preempted by something
2162 * else and called schedule in __vcpu_run. Hopefully that
2163 * VCPU is holding the lock that we need and will release it.
2164 * We approximate round-robin by starting at the last boosted VCPU.
2165 */
2166 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2167 kvm_for_each_vcpu(i, vcpu, kvm) {
2168 if (!pass && i <= last_boosted_vcpu) {
2169 i = last_boosted_vcpu;
2170 continue;
2171 } else if (pass && i > last_boosted_vcpu)
2172 break;
2173 if (!ACCESS_ONCE(vcpu->preempted))
2174 continue;
2175 if (vcpu == me)
2176 continue;
2177 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2178 continue;
2179 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2180 continue;
2181
2182 yielded = kvm_vcpu_yield_to(vcpu);
2183 if (yielded > 0) {
2184 kvm->last_boosted_vcpu = i;
2185 break;
2186 } else if (yielded < 0) {
2187 try--;
2188 if (!try)
2189 break;
2190 }
2191 }
2192 }
2193 kvm_vcpu_set_in_spin_loop(me, false);
2194
2195 /* Ensure vcpu is not eligible during next spinloop */
2196 kvm_vcpu_set_dy_eligible(me, false);
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2199
2200 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2201 {
2202 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2203 struct page *page;
2204
2205 if (vmf->pgoff == 0)
2206 page = virt_to_page(vcpu->run);
2207 #ifdef CONFIG_X86
2208 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2209 page = virt_to_page(vcpu->arch.pio_data);
2210 #endif
2211 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2212 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2213 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2214 #endif
2215 else
2216 return kvm_arch_vcpu_fault(vcpu, vmf);
2217 get_page(page);
2218 vmf->page = page;
2219 return 0;
2220 }
2221
2222 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2223 .fault = kvm_vcpu_fault,
2224 };
2225
2226 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2227 {
2228 vma->vm_ops = &kvm_vcpu_vm_ops;
2229 return 0;
2230 }
2231
2232 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2233 {
2234 struct kvm_vcpu *vcpu = filp->private_data;
2235
2236 kvm_put_kvm(vcpu->kvm);
2237 return 0;
2238 }
2239
2240 static struct file_operations kvm_vcpu_fops = {
2241 .release = kvm_vcpu_release,
2242 .unlocked_ioctl = kvm_vcpu_ioctl,
2243 #ifdef CONFIG_KVM_COMPAT
2244 .compat_ioctl = kvm_vcpu_compat_ioctl,
2245 #endif
2246 .mmap = kvm_vcpu_mmap,
2247 .llseek = noop_llseek,
2248 };
2249
2250 /*
2251 * Allocates an inode for the vcpu.
2252 */
2253 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2254 {
2255 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2256 }
2257
2258 /*
2259 * Creates some virtual cpus. Good luck creating more than one.
2260 */
2261 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2262 {
2263 int r;
2264 struct kvm_vcpu *vcpu, *v;
2265
2266 if (id >= KVM_MAX_VCPUS)
2267 return -EINVAL;
2268
2269 vcpu = kvm_arch_vcpu_create(kvm, id);
2270 if (IS_ERR(vcpu))
2271 return PTR_ERR(vcpu);
2272
2273 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2274
2275 r = kvm_arch_vcpu_setup(vcpu);
2276 if (r)
2277 goto vcpu_destroy;
2278
2279 mutex_lock(&kvm->lock);
2280 if (!kvm_vcpu_compatible(vcpu)) {
2281 r = -EINVAL;
2282 goto unlock_vcpu_destroy;
2283 }
2284 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2285 r = -EINVAL;
2286 goto unlock_vcpu_destroy;
2287 }
2288
2289 kvm_for_each_vcpu(r, v, kvm)
2290 if (v->vcpu_id == id) {
2291 r = -EEXIST;
2292 goto unlock_vcpu_destroy;
2293 }
2294
2295 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2296
2297 /* Now it's all set up, let userspace reach it */
2298 kvm_get_kvm(kvm);
2299 r = create_vcpu_fd(vcpu);
2300 if (r < 0) {
2301 kvm_put_kvm(kvm);
2302 goto unlock_vcpu_destroy;
2303 }
2304
2305 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2306
2307 /*
2308 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2309 * before kvm->online_vcpu's incremented value.
2310 */
2311 smp_wmb();
2312 atomic_inc(&kvm->online_vcpus);
2313
2314 mutex_unlock(&kvm->lock);
2315 kvm_arch_vcpu_postcreate(vcpu);
2316 return r;
2317
2318 unlock_vcpu_destroy:
2319 mutex_unlock(&kvm->lock);
2320 vcpu_destroy:
2321 kvm_arch_vcpu_destroy(vcpu);
2322 return r;
2323 }
2324
2325 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2326 {
2327 if (sigset) {
2328 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2329 vcpu->sigset_active = 1;
2330 vcpu->sigset = *sigset;
2331 } else
2332 vcpu->sigset_active = 0;
2333 return 0;
2334 }
2335
2336 static long kvm_vcpu_ioctl(struct file *filp,
2337 unsigned int ioctl, unsigned long arg)
2338 {
2339 struct kvm_vcpu *vcpu = filp->private_data;
2340 void __user *argp = (void __user *)arg;
2341 int r;
2342 struct kvm_fpu *fpu = NULL;
2343 struct kvm_sregs *kvm_sregs = NULL;
2344
2345 if (vcpu->kvm->mm != current->mm)
2346 return -EIO;
2347
2348 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2349 return -EINVAL;
2350
2351 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2352 /*
2353 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2354 * so vcpu_load() would break it.
2355 */
2356 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2357 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2358 #endif
2359
2360
2361 r = vcpu_load(vcpu);
2362 if (r)
2363 return r;
2364 switch (ioctl) {
2365 case KVM_RUN:
2366 r = -EINVAL;
2367 if (arg)
2368 goto out;
2369 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2370 /* The thread running this VCPU changed. */
2371 struct pid *oldpid = vcpu->pid;
2372 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2373
2374 rcu_assign_pointer(vcpu->pid, newpid);
2375 if (oldpid)
2376 synchronize_rcu();
2377 put_pid(oldpid);
2378 }
2379 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2380 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2381 break;
2382 case KVM_GET_REGS: {
2383 struct kvm_regs *kvm_regs;
2384
2385 r = -ENOMEM;
2386 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2387 if (!kvm_regs)
2388 goto out;
2389 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2390 if (r)
2391 goto out_free1;
2392 r = -EFAULT;
2393 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2394 goto out_free1;
2395 r = 0;
2396 out_free1:
2397 kfree(kvm_regs);
2398 break;
2399 }
2400 case KVM_SET_REGS: {
2401 struct kvm_regs *kvm_regs;
2402
2403 r = -ENOMEM;
2404 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2405 if (IS_ERR(kvm_regs)) {
2406 r = PTR_ERR(kvm_regs);
2407 goto out;
2408 }
2409 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2410 kfree(kvm_regs);
2411 break;
2412 }
2413 case KVM_GET_SREGS: {
2414 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2415 r = -ENOMEM;
2416 if (!kvm_sregs)
2417 goto out;
2418 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2419 if (r)
2420 goto out;
2421 r = -EFAULT;
2422 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2423 goto out;
2424 r = 0;
2425 break;
2426 }
2427 case KVM_SET_SREGS: {
2428 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2429 if (IS_ERR(kvm_sregs)) {
2430 r = PTR_ERR(kvm_sregs);
2431 kvm_sregs = NULL;
2432 goto out;
2433 }
2434 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2435 break;
2436 }
2437 case KVM_GET_MP_STATE: {
2438 struct kvm_mp_state mp_state;
2439
2440 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2441 if (r)
2442 goto out;
2443 r = -EFAULT;
2444 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2445 goto out;
2446 r = 0;
2447 break;
2448 }
2449 case KVM_SET_MP_STATE: {
2450 struct kvm_mp_state mp_state;
2451
2452 r = -EFAULT;
2453 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2454 goto out;
2455 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2456 break;
2457 }
2458 case KVM_TRANSLATE: {
2459 struct kvm_translation tr;
2460
2461 r = -EFAULT;
2462 if (copy_from_user(&tr, argp, sizeof(tr)))
2463 goto out;
2464 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2465 if (r)
2466 goto out;
2467 r = -EFAULT;
2468 if (copy_to_user(argp, &tr, sizeof(tr)))
2469 goto out;
2470 r = 0;
2471 break;
2472 }
2473 case KVM_SET_GUEST_DEBUG: {
2474 struct kvm_guest_debug dbg;
2475
2476 r = -EFAULT;
2477 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2478 goto out;
2479 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2480 break;
2481 }
2482 case KVM_SET_SIGNAL_MASK: {
2483 struct kvm_signal_mask __user *sigmask_arg = argp;
2484 struct kvm_signal_mask kvm_sigmask;
2485 sigset_t sigset, *p;
2486
2487 p = NULL;
2488 if (argp) {
2489 r = -EFAULT;
2490 if (copy_from_user(&kvm_sigmask, argp,
2491 sizeof(kvm_sigmask)))
2492 goto out;
2493 r = -EINVAL;
2494 if (kvm_sigmask.len != sizeof(sigset))
2495 goto out;
2496 r = -EFAULT;
2497 if (copy_from_user(&sigset, sigmask_arg->sigset,
2498 sizeof(sigset)))
2499 goto out;
2500 p = &sigset;
2501 }
2502 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2503 break;
2504 }
2505 case KVM_GET_FPU: {
2506 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2507 r = -ENOMEM;
2508 if (!fpu)
2509 goto out;
2510 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2511 if (r)
2512 goto out;
2513 r = -EFAULT;
2514 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2515 goto out;
2516 r = 0;
2517 break;
2518 }
2519 case KVM_SET_FPU: {
2520 fpu = memdup_user(argp, sizeof(*fpu));
2521 if (IS_ERR(fpu)) {
2522 r = PTR_ERR(fpu);
2523 fpu = NULL;
2524 goto out;
2525 }
2526 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2527 break;
2528 }
2529 default:
2530 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2531 }
2532 out:
2533 vcpu_put(vcpu);
2534 kfree(fpu);
2535 kfree(kvm_sregs);
2536 return r;
2537 }
2538
2539 #ifdef CONFIG_KVM_COMPAT
2540 static long kvm_vcpu_compat_ioctl(struct file *filp,
2541 unsigned int ioctl, unsigned long arg)
2542 {
2543 struct kvm_vcpu *vcpu = filp->private_data;
2544 void __user *argp = compat_ptr(arg);
2545 int r;
2546
2547 if (vcpu->kvm->mm != current->mm)
2548 return -EIO;
2549
2550 switch (ioctl) {
2551 case KVM_SET_SIGNAL_MASK: {
2552 struct kvm_signal_mask __user *sigmask_arg = argp;
2553 struct kvm_signal_mask kvm_sigmask;
2554 compat_sigset_t csigset;
2555 sigset_t sigset;
2556
2557 if (argp) {
2558 r = -EFAULT;
2559 if (copy_from_user(&kvm_sigmask, argp,
2560 sizeof(kvm_sigmask)))
2561 goto out;
2562 r = -EINVAL;
2563 if (kvm_sigmask.len != sizeof(csigset))
2564 goto out;
2565 r = -EFAULT;
2566 if (copy_from_user(&csigset, sigmask_arg->sigset,
2567 sizeof(csigset)))
2568 goto out;
2569 sigset_from_compat(&sigset, &csigset);
2570 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2571 } else
2572 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2573 break;
2574 }
2575 default:
2576 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2577 }
2578
2579 out:
2580 return r;
2581 }
2582 #endif
2583
2584 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2585 int (*accessor)(struct kvm_device *dev,
2586 struct kvm_device_attr *attr),
2587 unsigned long arg)
2588 {
2589 struct kvm_device_attr attr;
2590
2591 if (!accessor)
2592 return -EPERM;
2593
2594 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2595 return -EFAULT;
2596
2597 return accessor(dev, &attr);
2598 }
2599
2600 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2601 unsigned long arg)
2602 {
2603 struct kvm_device *dev = filp->private_data;
2604
2605 switch (ioctl) {
2606 case KVM_SET_DEVICE_ATTR:
2607 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2608 case KVM_GET_DEVICE_ATTR:
2609 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2610 case KVM_HAS_DEVICE_ATTR:
2611 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2612 default:
2613 if (dev->ops->ioctl)
2614 return dev->ops->ioctl(dev, ioctl, arg);
2615
2616 return -ENOTTY;
2617 }
2618 }
2619
2620 static int kvm_device_release(struct inode *inode, struct file *filp)
2621 {
2622 struct kvm_device *dev = filp->private_data;
2623 struct kvm *kvm = dev->kvm;
2624
2625 kvm_put_kvm(kvm);
2626 return 0;
2627 }
2628
2629 static const struct file_operations kvm_device_fops = {
2630 .unlocked_ioctl = kvm_device_ioctl,
2631 #ifdef CONFIG_KVM_COMPAT
2632 .compat_ioctl = kvm_device_ioctl,
2633 #endif
2634 .release = kvm_device_release,
2635 };
2636
2637 struct kvm_device *kvm_device_from_filp(struct file *filp)
2638 {
2639 if (filp->f_op != &kvm_device_fops)
2640 return NULL;
2641
2642 return filp->private_data;
2643 }
2644
2645 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2646 #ifdef CONFIG_KVM_MPIC
2647 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2648 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2649 #endif
2650
2651 #ifdef CONFIG_KVM_XICS
2652 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2653 #endif
2654 };
2655
2656 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2657 {
2658 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2659 return -ENOSPC;
2660
2661 if (kvm_device_ops_table[type] != NULL)
2662 return -EEXIST;
2663
2664 kvm_device_ops_table[type] = ops;
2665 return 0;
2666 }
2667
2668 void kvm_unregister_device_ops(u32 type)
2669 {
2670 if (kvm_device_ops_table[type] != NULL)
2671 kvm_device_ops_table[type] = NULL;
2672 }
2673
2674 static int kvm_ioctl_create_device(struct kvm *kvm,
2675 struct kvm_create_device *cd)
2676 {
2677 struct kvm_device_ops *ops = NULL;
2678 struct kvm_device *dev;
2679 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2680 int ret;
2681
2682 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2683 return -ENODEV;
2684
2685 ops = kvm_device_ops_table[cd->type];
2686 if (ops == NULL)
2687 return -ENODEV;
2688
2689 if (test)
2690 return 0;
2691
2692 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2693 if (!dev)
2694 return -ENOMEM;
2695
2696 dev->ops = ops;
2697 dev->kvm = kvm;
2698
2699 ret = ops->create(dev, cd->type);
2700 if (ret < 0) {
2701 kfree(dev);
2702 return ret;
2703 }
2704
2705 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2706 if (ret < 0) {
2707 ops->destroy(dev);
2708 return ret;
2709 }
2710
2711 list_add(&dev->vm_node, &kvm->devices);
2712 kvm_get_kvm(kvm);
2713 cd->fd = ret;
2714 return 0;
2715 }
2716
2717 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2718 {
2719 switch (arg) {
2720 case KVM_CAP_USER_MEMORY:
2721 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2722 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2723 case KVM_CAP_INTERNAL_ERROR_DATA:
2724 #ifdef CONFIG_HAVE_KVM_MSI
2725 case KVM_CAP_SIGNAL_MSI:
2726 #endif
2727 #ifdef CONFIG_HAVE_KVM_IRQFD
2728 case KVM_CAP_IRQFD:
2729 case KVM_CAP_IRQFD_RESAMPLE:
2730 #endif
2731 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2732 case KVM_CAP_CHECK_EXTENSION_VM:
2733 return 1;
2734 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2735 case KVM_CAP_IRQ_ROUTING:
2736 return KVM_MAX_IRQ_ROUTES;
2737 #endif
2738 #if KVM_ADDRESS_SPACE_NUM > 1
2739 case KVM_CAP_MULTI_ADDRESS_SPACE:
2740 return KVM_ADDRESS_SPACE_NUM;
2741 #endif
2742 default:
2743 break;
2744 }
2745 return kvm_vm_ioctl_check_extension(kvm, arg);
2746 }
2747
2748 static long kvm_vm_ioctl(struct file *filp,
2749 unsigned int ioctl, unsigned long arg)
2750 {
2751 struct kvm *kvm = filp->private_data;
2752 void __user *argp = (void __user *)arg;
2753 int r;
2754
2755 if (kvm->mm != current->mm)
2756 return -EIO;
2757 switch (ioctl) {
2758 case KVM_CREATE_VCPU:
2759 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2760 break;
2761 case KVM_SET_USER_MEMORY_REGION: {
2762 struct kvm_userspace_memory_region kvm_userspace_mem;
2763
2764 r = -EFAULT;
2765 if (copy_from_user(&kvm_userspace_mem, argp,
2766 sizeof(kvm_userspace_mem)))
2767 goto out;
2768
2769 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2770 break;
2771 }
2772 case KVM_GET_DIRTY_LOG: {
2773 struct kvm_dirty_log log;
2774
2775 r = -EFAULT;
2776 if (copy_from_user(&log, argp, sizeof(log)))
2777 goto out;
2778 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2779 break;
2780 }
2781 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2782 case KVM_REGISTER_COALESCED_MMIO: {
2783 struct kvm_coalesced_mmio_zone zone;
2784
2785 r = -EFAULT;
2786 if (copy_from_user(&zone, argp, sizeof(zone)))
2787 goto out;
2788 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2789 break;
2790 }
2791 case KVM_UNREGISTER_COALESCED_MMIO: {
2792 struct kvm_coalesced_mmio_zone zone;
2793
2794 r = -EFAULT;
2795 if (copy_from_user(&zone, argp, sizeof(zone)))
2796 goto out;
2797 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2798 break;
2799 }
2800 #endif
2801 case KVM_IRQFD: {
2802 struct kvm_irqfd data;
2803
2804 r = -EFAULT;
2805 if (copy_from_user(&data, argp, sizeof(data)))
2806 goto out;
2807 r = kvm_irqfd(kvm, &data);
2808 break;
2809 }
2810 case KVM_IOEVENTFD: {
2811 struct kvm_ioeventfd data;
2812
2813 r = -EFAULT;
2814 if (copy_from_user(&data, argp, sizeof(data)))
2815 goto out;
2816 r = kvm_ioeventfd(kvm, &data);
2817 break;
2818 }
2819 #ifdef CONFIG_HAVE_KVM_MSI
2820 case KVM_SIGNAL_MSI: {
2821 struct kvm_msi msi;
2822
2823 r = -EFAULT;
2824 if (copy_from_user(&msi, argp, sizeof(msi)))
2825 goto out;
2826 r = kvm_send_userspace_msi(kvm, &msi);
2827 break;
2828 }
2829 #endif
2830 #ifdef __KVM_HAVE_IRQ_LINE
2831 case KVM_IRQ_LINE_STATUS:
2832 case KVM_IRQ_LINE: {
2833 struct kvm_irq_level irq_event;
2834
2835 r = -EFAULT;
2836 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2837 goto out;
2838
2839 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2840 ioctl == KVM_IRQ_LINE_STATUS);
2841 if (r)
2842 goto out;
2843
2844 r = -EFAULT;
2845 if (ioctl == KVM_IRQ_LINE_STATUS) {
2846 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2847 goto out;
2848 }
2849
2850 r = 0;
2851 break;
2852 }
2853 #endif
2854 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2855 case KVM_SET_GSI_ROUTING: {
2856 struct kvm_irq_routing routing;
2857 struct kvm_irq_routing __user *urouting;
2858 struct kvm_irq_routing_entry *entries;
2859
2860 r = -EFAULT;
2861 if (copy_from_user(&routing, argp, sizeof(routing)))
2862 goto out;
2863 r = -EINVAL;
2864 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2865 goto out;
2866 if (routing.flags)
2867 goto out;
2868 r = -ENOMEM;
2869 entries = vmalloc(routing.nr * sizeof(*entries));
2870 if (!entries)
2871 goto out;
2872 r = -EFAULT;
2873 urouting = argp;
2874 if (copy_from_user(entries, urouting->entries,
2875 routing.nr * sizeof(*entries)))
2876 goto out_free_irq_routing;
2877 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2878 routing.flags);
2879 out_free_irq_routing:
2880 vfree(entries);
2881 break;
2882 }
2883 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2884 case KVM_CREATE_DEVICE: {
2885 struct kvm_create_device cd;
2886
2887 r = -EFAULT;
2888 if (copy_from_user(&cd, argp, sizeof(cd)))
2889 goto out;
2890
2891 r = kvm_ioctl_create_device(kvm, &cd);
2892 if (r)
2893 goto out;
2894
2895 r = -EFAULT;
2896 if (copy_to_user(argp, &cd, sizeof(cd)))
2897 goto out;
2898
2899 r = 0;
2900 break;
2901 }
2902 case KVM_CHECK_EXTENSION:
2903 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2904 break;
2905 default:
2906 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2907 }
2908 out:
2909 return r;
2910 }
2911
2912 #ifdef CONFIG_KVM_COMPAT
2913 struct compat_kvm_dirty_log {
2914 __u32 slot;
2915 __u32 padding1;
2916 union {
2917 compat_uptr_t dirty_bitmap; /* one bit per page */
2918 __u64 padding2;
2919 };
2920 };
2921
2922 static long kvm_vm_compat_ioctl(struct file *filp,
2923 unsigned int ioctl, unsigned long arg)
2924 {
2925 struct kvm *kvm = filp->private_data;
2926 int r;
2927
2928 if (kvm->mm != current->mm)
2929 return -EIO;
2930 switch (ioctl) {
2931 case KVM_GET_DIRTY_LOG: {
2932 struct compat_kvm_dirty_log compat_log;
2933 struct kvm_dirty_log log;
2934
2935 r = -EFAULT;
2936 if (copy_from_user(&compat_log, (void __user *)arg,
2937 sizeof(compat_log)))
2938 goto out;
2939 log.slot = compat_log.slot;
2940 log.padding1 = compat_log.padding1;
2941 log.padding2 = compat_log.padding2;
2942 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2943
2944 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2945 break;
2946 }
2947 default:
2948 r = kvm_vm_ioctl(filp, ioctl, arg);
2949 }
2950
2951 out:
2952 return r;
2953 }
2954 #endif
2955
2956 static struct file_operations kvm_vm_fops = {
2957 .release = kvm_vm_release,
2958 .unlocked_ioctl = kvm_vm_ioctl,
2959 #ifdef CONFIG_KVM_COMPAT
2960 .compat_ioctl = kvm_vm_compat_ioctl,
2961 #endif
2962 .llseek = noop_llseek,
2963 };
2964
2965 static int kvm_dev_ioctl_create_vm(unsigned long type)
2966 {
2967 int r;
2968 struct kvm *kvm;
2969
2970 kvm = kvm_create_vm(type);
2971 if (IS_ERR(kvm))
2972 return PTR_ERR(kvm);
2973 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2974 r = kvm_coalesced_mmio_init(kvm);
2975 if (r < 0) {
2976 kvm_put_kvm(kvm);
2977 return r;
2978 }
2979 #endif
2980 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2981 if (r < 0)
2982 kvm_put_kvm(kvm);
2983
2984 return r;
2985 }
2986
2987 static long kvm_dev_ioctl(struct file *filp,
2988 unsigned int ioctl, unsigned long arg)
2989 {
2990 long r = -EINVAL;
2991
2992 switch (ioctl) {
2993 case KVM_GET_API_VERSION:
2994 if (arg)
2995 goto out;
2996 r = KVM_API_VERSION;
2997 break;
2998 case KVM_CREATE_VM:
2999 r = kvm_dev_ioctl_create_vm(arg);
3000 break;
3001 case KVM_CHECK_EXTENSION:
3002 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3003 break;
3004 case KVM_GET_VCPU_MMAP_SIZE:
3005 if (arg)
3006 goto out;
3007 r = PAGE_SIZE; /* struct kvm_run */
3008 #ifdef CONFIG_X86
3009 r += PAGE_SIZE; /* pio data page */
3010 #endif
3011 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3012 r += PAGE_SIZE; /* coalesced mmio ring page */
3013 #endif
3014 break;
3015 case KVM_TRACE_ENABLE:
3016 case KVM_TRACE_PAUSE:
3017 case KVM_TRACE_DISABLE:
3018 r = -EOPNOTSUPP;
3019 break;
3020 default:
3021 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3022 }
3023 out:
3024 return r;
3025 }
3026
3027 static struct file_operations kvm_chardev_ops = {
3028 .unlocked_ioctl = kvm_dev_ioctl,
3029 .compat_ioctl = kvm_dev_ioctl,
3030 .llseek = noop_llseek,
3031 };
3032
3033 static struct miscdevice kvm_dev = {
3034 KVM_MINOR,
3035 "kvm",
3036 &kvm_chardev_ops,
3037 };
3038
3039 static void hardware_enable_nolock(void *junk)
3040 {
3041 int cpu = raw_smp_processor_id();
3042 int r;
3043
3044 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3045 return;
3046
3047 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3048
3049 r = kvm_arch_hardware_enable();
3050
3051 if (r) {
3052 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3053 atomic_inc(&hardware_enable_failed);
3054 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3055 }
3056 }
3057
3058 static void hardware_enable(void)
3059 {
3060 raw_spin_lock(&kvm_count_lock);
3061 if (kvm_usage_count)
3062 hardware_enable_nolock(NULL);
3063 raw_spin_unlock(&kvm_count_lock);
3064 }
3065
3066 static void hardware_disable_nolock(void *junk)
3067 {
3068 int cpu = raw_smp_processor_id();
3069
3070 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3071 return;
3072 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3073 kvm_arch_hardware_disable();
3074 }
3075
3076 static void hardware_disable(void)
3077 {
3078 raw_spin_lock(&kvm_count_lock);
3079 if (kvm_usage_count)
3080 hardware_disable_nolock(NULL);
3081 raw_spin_unlock(&kvm_count_lock);
3082 }
3083
3084 static void hardware_disable_all_nolock(void)
3085 {
3086 BUG_ON(!kvm_usage_count);
3087
3088 kvm_usage_count--;
3089 if (!kvm_usage_count)
3090 on_each_cpu(hardware_disable_nolock, NULL, 1);
3091 }
3092
3093 static void hardware_disable_all(void)
3094 {
3095 raw_spin_lock(&kvm_count_lock);
3096 hardware_disable_all_nolock();
3097 raw_spin_unlock(&kvm_count_lock);
3098 }
3099
3100 static int hardware_enable_all(void)
3101 {
3102 int r = 0;
3103
3104 raw_spin_lock(&kvm_count_lock);
3105
3106 kvm_usage_count++;
3107 if (kvm_usage_count == 1) {
3108 atomic_set(&hardware_enable_failed, 0);
3109 on_each_cpu(hardware_enable_nolock, NULL, 1);
3110
3111 if (atomic_read(&hardware_enable_failed)) {
3112 hardware_disable_all_nolock();
3113 r = -EBUSY;
3114 }
3115 }
3116
3117 raw_spin_unlock(&kvm_count_lock);
3118
3119 return r;
3120 }
3121
3122 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3123 void *v)
3124 {
3125 val &= ~CPU_TASKS_FROZEN;
3126 switch (val) {
3127 case CPU_DYING:
3128 hardware_disable();
3129 break;
3130 case CPU_STARTING:
3131 hardware_enable();
3132 break;
3133 }
3134 return NOTIFY_OK;
3135 }
3136
3137 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3138 void *v)
3139 {
3140 /*
3141 * Some (well, at least mine) BIOSes hang on reboot if
3142 * in vmx root mode.
3143 *
3144 * And Intel TXT required VMX off for all cpu when system shutdown.
3145 */
3146 pr_info("kvm: exiting hardware virtualization\n");
3147 kvm_rebooting = true;
3148 on_each_cpu(hardware_disable_nolock, NULL, 1);
3149 return NOTIFY_OK;
3150 }
3151
3152 static struct notifier_block kvm_reboot_notifier = {
3153 .notifier_call = kvm_reboot,
3154 .priority = 0,
3155 };
3156
3157 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3158 {
3159 int i;
3160
3161 for (i = 0; i < bus->dev_count; i++) {
3162 struct kvm_io_device *pos = bus->range[i].dev;
3163
3164 kvm_iodevice_destructor(pos);
3165 }
3166 kfree(bus);
3167 }
3168
3169 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3170 const struct kvm_io_range *r2)
3171 {
3172 gpa_t addr1 = r1->addr;
3173 gpa_t addr2 = r2->addr;
3174
3175 if (addr1 < addr2)
3176 return -1;
3177
3178 /* If r2->len == 0, match the exact address. If r2->len != 0,
3179 * accept any overlapping write. Any order is acceptable for
3180 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3181 * we process all of them.
3182 */
3183 if (r2->len) {
3184 addr1 += r1->len;
3185 addr2 += r2->len;
3186 }
3187
3188 if (addr1 > addr2)
3189 return 1;
3190
3191 return 0;
3192 }
3193
3194 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3195 {
3196 return kvm_io_bus_cmp(p1, p2);
3197 }
3198
3199 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3200 gpa_t addr, int len)
3201 {
3202 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3203 .addr = addr,
3204 .len = len,
3205 .dev = dev,
3206 };
3207
3208 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3209 kvm_io_bus_sort_cmp, NULL);
3210
3211 return 0;
3212 }
3213
3214 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3215 gpa_t addr, int len)
3216 {
3217 struct kvm_io_range *range, key;
3218 int off;
3219
3220 key = (struct kvm_io_range) {
3221 .addr = addr,
3222 .len = len,
3223 };
3224
3225 range = bsearch(&key, bus->range, bus->dev_count,
3226 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3227 if (range == NULL)
3228 return -ENOENT;
3229
3230 off = range - bus->range;
3231
3232 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3233 off--;
3234
3235 return off;
3236 }
3237
3238 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3239 struct kvm_io_range *range, const void *val)
3240 {
3241 int idx;
3242
3243 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3244 if (idx < 0)
3245 return -EOPNOTSUPP;
3246
3247 while (idx < bus->dev_count &&
3248 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3249 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3250 range->len, val))
3251 return idx;
3252 idx++;
3253 }
3254
3255 return -EOPNOTSUPP;
3256 }
3257
3258 /* kvm_io_bus_write - called under kvm->slots_lock */
3259 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3260 int len, const void *val)
3261 {
3262 struct kvm_io_bus *bus;
3263 struct kvm_io_range range;
3264 int r;
3265
3266 range = (struct kvm_io_range) {
3267 .addr = addr,
3268 .len = len,
3269 };
3270
3271 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3272 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3273 return r < 0 ? r : 0;
3274 }
3275
3276 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3277 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3278 gpa_t addr, int len, const void *val, long cookie)
3279 {
3280 struct kvm_io_bus *bus;
3281 struct kvm_io_range range;
3282
3283 range = (struct kvm_io_range) {
3284 .addr = addr,
3285 .len = len,
3286 };
3287
3288 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3289
3290 /* First try the device referenced by cookie. */
3291 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3292 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3293 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3294 val))
3295 return cookie;
3296
3297 /*
3298 * cookie contained garbage; fall back to search and return the
3299 * correct cookie value.
3300 */
3301 return __kvm_io_bus_write(vcpu, bus, &range, val);
3302 }
3303
3304 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3305 struct kvm_io_range *range, void *val)
3306 {
3307 int idx;
3308
3309 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3310 if (idx < 0)
3311 return -EOPNOTSUPP;
3312
3313 while (idx < bus->dev_count &&
3314 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3315 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3316 range->len, val))
3317 return idx;
3318 idx++;
3319 }
3320
3321 return -EOPNOTSUPP;
3322 }
3323 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3324
3325 /* kvm_io_bus_read - called under kvm->slots_lock */
3326 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3327 int len, void *val)
3328 {
3329 struct kvm_io_bus *bus;
3330 struct kvm_io_range range;
3331 int r;
3332
3333 range = (struct kvm_io_range) {
3334 .addr = addr,
3335 .len = len,
3336 };
3337
3338 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3339 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3340 return r < 0 ? r : 0;
3341 }
3342
3343
3344 /* Caller must hold slots_lock. */
3345 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3346 int len, struct kvm_io_device *dev)
3347 {
3348 struct kvm_io_bus *new_bus, *bus;
3349
3350 bus = kvm->buses[bus_idx];
3351 /* exclude ioeventfd which is limited by maximum fd */
3352 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3353 return -ENOSPC;
3354
3355 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3356 sizeof(struct kvm_io_range)), GFP_KERNEL);
3357 if (!new_bus)
3358 return -ENOMEM;
3359 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3360 sizeof(struct kvm_io_range)));
3361 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3362 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3363 synchronize_srcu_expedited(&kvm->srcu);
3364 kfree(bus);
3365
3366 return 0;
3367 }
3368
3369 /* Caller must hold slots_lock. */
3370 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3371 struct kvm_io_device *dev)
3372 {
3373 int i, r;
3374 struct kvm_io_bus *new_bus, *bus;
3375
3376 bus = kvm->buses[bus_idx];
3377 r = -ENOENT;
3378 for (i = 0; i < bus->dev_count; i++)
3379 if (bus->range[i].dev == dev) {
3380 r = 0;
3381 break;
3382 }
3383
3384 if (r)
3385 return r;
3386
3387 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3388 sizeof(struct kvm_io_range)), GFP_KERNEL);
3389 if (!new_bus)
3390 return -ENOMEM;
3391
3392 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3393 new_bus->dev_count--;
3394 memcpy(new_bus->range + i, bus->range + i + 1,
3395 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3396
3397 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3398 synchronize_srcu_expedited(&kvm->srcu);
3399 kfree(bus);
3400 return r;
3401 }
3402
3403 static struct notifier_block kvm_cpu_notifier = {
3404 .notifier_call = kvm_cpu_hotplug,
3405 };
3406
3407 static int vm_stat_get(void *_offset, u64 *val)
3408 {
3409 unsigned offset = (long)_offset;
3410 struct kvm *kvm;
3411
3412 *val = 0;
3413 spin_lock(&kvm_lock);
3414 list_for_each_entry(kvm, &vm_list, vm_list)
3415 *val += *(u32 *)((void *)kvm + offset);
3416 spin_unlock(&kvm_lock);
3417 return 0;
3418 }
3419
3420 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3421
3422 static int vcpu_stat_get(void *_offset, u64 *val)
3423 {
3424 unsigned offset = (long)_offset;
3425 struct kvm *kvm;
3426 struct kvm_vcpu *vcpu;
3427 int i;
3428
3429 *val = 0;
3430 spin_lock(&kvm_lock);
3431 list_for_each_entry(kvm, &vm_list, vm_list)
3432 kvm_for_each_vcpu(i, vcpu, kvm)
3433 *val += *(u32 *)((void *)vcpu + offset);
3434
3435 spin_unlock(&kvm_lock);
3436 return 0;
3437 }
3438
3439 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3440
3441 static const struct file_operations *stat_fops[] = {
3442 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3443 [KVM_STAT_VM] = &vm_stat_fops,
3444 };
3445
3446 static int kvm_init_debug(void)
3447 {
3448 int r = -EEXIST;
3449 struct kvm_stats_debugfs_item *p;
3450
3451 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3452 if (kvm_debugfs_dir == NULL)
3453 goto out;
3454
3455 for (p = debugfs_entries; p->name; ++p) {
3456 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3457 (void *)(long)p->offset,
3458 stat_fops[p->kind]);
3459 if (p->dentry == NULL)
3460 goto out_dir;
3461 }
3462
3463 return 0;
3464
3465 out_dir:
3466 debugfs_remove_recursive(kvm_debugfs_dir);
3467 out:
3468 return r;
3469 }
3470
3471 static void kvm_exit_debug(void)
3472 {
3473 struct kvm_stats_debugfs_item *p;
3474
3475 for (p = debugfs_entries; p->name; ++p)
3476 debugfs_remove(p->dentry);
3477 debugfs_remove(kvm_debugfs_dir);
3478 }
3479
3480 static int kvm_suspend(void)
3481 {
3482 if (kvm_usage_count)
3483 hardware_disable_nolock(NULL);
3484 return 0;
3485 }
3486
3487 static void kvm_resume(void)
3488 {
3489 if (kvm_usage_count) {
3490 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3491 hardware_enable_nolock(NULL);
3492 }
3493 }
3494
3495 static struct syscore_ops kvm_syscore_ops = {
3496 .suspend = kvm_suspend,
3497 .resume = kvm_resume,
3498 };
3499
3500 static inline
3501 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3502 {
3503 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3504 }
3505
3506 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3507 {
3508 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3509
3510 if (vcpu->preempted)
3511 vcpu->preempted = false;
3512
3513 kvm_arch_sched_in(vcpu, cpu);
3514
3515 kvm_arch_vcpu_load(vcpu, cpu);
3516 }
3517
3518 static void kvm_sched_out(struct preempt_notifier *pn,
3519 struct task_struct *next)
3520 {
3521 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3522
3523 if (current->state == TASK_RUNNING)
3524 vcpu->preempted = true;
3525 kvm_arch_vcpu_put(vcpu);
3526 }
3527
3528 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3529 struct module *module)
3530 {
3531 int r;
3532 int cpu;
3533
3534 r = kvm_arch_init(opaque);
3535 if (r)
3536 goto out_fail;
3537
3538 /*
3539 * kvm_arch_init makes sure there's at most one caller
3540 * for architectures that support multiple implementations,
3541 * like intel and amd on x86.
3542 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3543 * conflicts in case kvm is already setup for another implementation.
3544 */
3545 r = kvm_irqfd_init();
3546 if (r)
3547 goto out_irqfd;
3548
3549 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3550 r = -ENOMEM;
3551 goto out_free_0;
3552 }
3553
3554 r = kvm_arch_hardware_setup();
3555 if (r < 0)
3556 goto out_free_0a;
3557
3558 for_each_online_cpu(cpu) {
3559 smp_call_function_single(cpu,
3560 kvm_arch_check_processor_compat,
3561 &r, 1);
3562 if (r < 0)
3563 goto out_free_1;
3564 }
3565
3566 r = register_cpu_notifier(&kvm_cpu_notifier);
3567 if (r)
3568 goto out_free_2;
3569 register_reboot_notifier(&kvm_reboot_notifier);
3570
3571 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3572 if (!vcpu_align)
3573 vcpu_align = __alignof__(struct kvm_vcpu);
3574 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3575 0, NULL);
3576 if (!kvm_vcpu_cache) {
3577 r = -ENOMEM;
3578 goto out_free_3;
3579 }
3580
3581 r = kvm_async_pf_init();
3582 if (r)
3583 goto out_free;
3584
3585 kvm_chardev_ops.owner = module;
3586 kvm_vm_fops.owner = module;
3587 kvm_vcpu_fops.owner = module;
3588
3589 r = misc_register(&kvm_dev);
3590 if (r) {
3591 pr_err("kvm: misc device register failed\n");
3592 goto out_unreg;
3593 }
3594
3595 register_syscore_ops(&kvm_syscore_ops);
3596
3597 kvm_preempt_ops.sched_in = kvm_sched_in;
3598 kvm_preempt_ops.sched_out = kvm_sched_out;
3599
3600 r = kvm_init_debug();
3601 if (r) {
3602 pr_err("kvm: create debugfs files failed\n");
3603 goto out_undebugfs;
3604 }
3605
3606 r = kvm_vfio_ops_init();
3607 WARN_ON(r);
3608
3609 return 0;
3610
3611 out_undebugfs:
3612 unregister_syscore_ops(&kvm_syscore_ops);
3613 misc_deregister(&kvm_dev);
3614 out_unreg:
3615 kvm_async_pf_deinit();
3616 out_free:
3617 kmem_cache_destroy(kvm_vcpu_cache);
3618 out_free_3:
3619 unregister_reboot_notifier(&kvm_reboot_notifier);
3620 unregister_cpu_notifier(&kvm_cpu_notifier);
3621 out_free_2:
3622 out_free_1:
3623 kvm_arch_hardware_unsetup();
3624 out_free_0a:
3625 free_cpumask_var(cpus_hardware_enabled);
3626 out_free_0:
3627 kvm_irqfd_exit();
3628 out_irqfd:
3629 kvm_arch_exit();
3630 out_fail:
3631 return r;
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_init);
3634
3635 void kvm_exit(void)
3636 {
3637 kvm_exit_debug();
3638 misc_deregister(&kvm_dev);
3639 kmem_cache_destroy(kvm_vcpu_cache);
3640 kvm_async_pf_deinit();
3641 unregister_syscore_ops(&kvm_syscore_ops);
3642 unregister_reboot_notifier(&kvm_reboot_notifier);
3643 unregister_cpu_notifier(&kvm_cpu_notifier);
3644 on_each_cpu(hardware_disable_nolock, NULL, 1);
3645 kvm_arch_hardware_unsetup();
3646 kvm_arch_exit();
3647 kvm_irqfd_exit();
3648 free_cpumask_var(cpus_hardware_enabled);
3649 kvm_vfio_ops_exit();
3650 }
3651 EXPORT_SYMBOL_GPL(kvm_exit);