Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141 if (pfn_valid(pfn))
142 return PageReserved(pfn_to_page(pfn));
143
144 return true;
145 }
146
147 /*
148 * Switches to specified vcpu, until a matching vcpu_put()
149 */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152 int cpu;
153
154 if (mutex_lock_killable(&vcpu->mutex))
155 return -EINTR;
156 cpu = get_cpu();
157 preempt_notifier_register(&vcpu->preempt_notifier);
158 kvm_arch_vcpu_load(vcpu, cpu);
159 put_cpu();
160 return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166 preempt_disable();
167 kvm_arch_vcpu_put(vcpu);
168 preempt_notifier_unregister(&vcpu->preempt_notifier);
169 preempt_enable();
170 mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178
179 /*
180 * We need to wait for the VCPU to reenable interrupts and get out of
181 * READING_SHADOW_PAGE_TABLES mode.
182 */
183 if (req & KVM_REQUEST_WAIT)
184 return mode != OUTSIDE_GUEST_MODE;
185
186 /*
187 * Need to kick a running VCPU, but otherwise there is nothing to do.
188 */
189 return mode == IN_GUEST_MODE;
190 }
191
192 static void ack_flush(void *_completed)
193 {
194 }
195
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198 if (unlikely(!cpus))
199 cpus = cpu_online_mask;
200
201 if (cpumask_empty(cpus))
202 return false;
203
204 smp_call_function_many(cpus, ack_flush, NULL, wait);
205 return true;
206 }
207
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210 int i, cpu, me;
211 cpumask_var_t cpus;
212 bool called;
213 struct kvm_vcpu *vcpu;
214
215 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216
217 me = get_cpu();
218 kvm_for_each_vcpu(i, vcpu, kvm) {
219 kvm_make_request(req, vcpu);
220 cpu = vcpu->cpu;
221
222 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223 continue;
224
225 if (cpus != NULL && cpu != -1 && cpu != me &&
226 kvm_request_needs_ipi(vcpu, req))
227 __cpumask_set_cpu(cpu, cpus);
228 }
229 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230 put_cpu();
231 free_cpumask_var(cpus);
232 return called;
233 }
234
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238 /*
239 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 * kvm_make_all_cpus_request.
241 */
242 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243
244 /*
245 * We want to publish modifications to the page tables before reading
246 * mode. Pairs with a memory barrier in arch-specific code.
247 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250 *
251 * There is already an smp_mb__after_atomic() before
252 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253 * barrier here.
254 */
255 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256 ++kvm->stat.remote_tlb_flush;
257 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269 struct page *page;
270 int r;
271
272 mutex_init(&vcpu->mutex);
273 vcpu->cpu = -1;
274 vcpu->kvm = kvm;
275 vcpu->vcpu_id = id;
276 vcpu->pid = NULL;
277 init_swait_queue_head(&vcpu->wq);
278 kvm_async_pf_vcpu_init(vcpu);
279
280 vcpu->pre_pcpu = -1;
281 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282
283 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284 if (!page) {
285 r = -ENOMEM;
286 goto fail;
287 }
288 vcpu->run = page_address(page);
289
290 kvm_vcpu_set_in_spin_loop(vcpu, false);
291 kvm_vcpu_set_dy_eligible(vcpu, false);
292 vcpu->preempted = false;
293
294 r = kvm_arch_vcpu_init(vcpu);
295 if (r < 0)
296 goto fail_free_run;
297 return 0;
298
299 fail_free_run:
300 free_page((unsigned long)vcpu->run);
301 fail:
302 return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308 /*
309 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 * will change the vcpu->pid pointer and on uninit all file
311 * descriptors are already gone.
312 */
313 put_pid(rcu_dereference_protected(vcpu->pid, 1));
314 kvm_arch_vcpu_uninit(vcpu);
315 free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322 return container_of(mn, struct kvm, mmu_notifier);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address,
328 pte_t pte)
329 {
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 int idx;
332
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335 kvm->mmu_notifier_seq++;
336 kvm_set_spte_hva(kvm, address, pte);
337 spin_unlock(&kvm->mmu_lock);
338 srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 struct mm_struct *mm,
343 unsigned long start,
344 unsigned long end)
345 {
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int need_tlb_flush = 0, idx;
348
349 idx = srcu_read_lock(&kvm->srcu);
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * The count increase must become visible at unlock time as no
353 * spte can be established without taking the mmu_lock and
354 * count is also read inside the mmu_lock critical section.
355 */
356 kvm->mmu_notifier_count++;
357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 need_tlb_flush |= kvm->tlbs_dirty;
359 /* we've to flush the tlb before the pages can be freed */
360 if (need_tlb_flush)
361 kvm_flush_remote_tlbs(kvm);
362
363 spin_unlock(&kvm->mmu_lock);
364 srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 struct mm_struct *mm,
369 unsigned long start,
370 unsigned long end)
371 {
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374 spin_lock(&kvm->mmu_lock);
375 /*
376 * This sequence increase will notify the kvm page fault that
377 * the page that is going to be mapped in the spte could have
378 * been freed.
379 */
380 kvm->mmu_notifier_seq++;
381 smp_wmb();
382 /*
383 * The above sequence increase must be visible before the
384 * below count decrease, which is ensured by the smp_wmb above
385 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 */
387 kvm->mmu_notifier_count--;
388 spin_unlock(&kvm->mmu_lock);
389
390 BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long start,
396 unsigned long end)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403
404 young = kvm_age_hva(kvm, start, end);
405 if (young)
406 kvm_flush_remote_tlbs(kvm);
407
408 spin_unlock(&kvm->mmu_lock);
409 srcu_read_unlock(&kvm->srcu, idx);
410
411 return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 struct mm_struct *mm,
416 unsigned long start,
417 unsigned long end)
418 {
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 int young, idx;
421
422 idx = srcu_read_lock(&kvm->srcu);
423 spin_lock(&kvm->mmu_lock);
424 /*
425 * Even though we do not flush TLB, this will still adversely
426 * affect performance on pre-Haswell Intel EPT, where there is
427 * no EPT Access Bit to clear so that we have to tear down EPT
428 * tables instead. If we find this unacceptable, we can always
429 * add a parameter to kvm_age_hva so that it effectively doesn't
430 * do anything on clear_young.
431 *
432 * Also note that currently we never issue secondary TLB flushes
433 * from clear_young, leaving this job up to the regular system
434 * cadence. If we find this inaccurate, we might come up with a
435 * more sophisticated heuristic later.
436 */
437 young = kvm_age_hva(kvm, start, end);
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
440
441 return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long address)
447 {
448 struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 int young, idx;
450
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453 young = kvm_test_age_hva(kvm, address);
454 spin_unlock(&kvm->mmu_lock);
455 srcu_read_unlock(&kvm->srcu, idx);
456
457 return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 struct mm_struct *mm)
462 {
463 struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 int idx;
465
466 idx = srcu_read_lock(&kvm->srcu);
467 kvm_arch_flush_shadow_all(kvm);
468 srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
473 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
474 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
475 .clear_young = kvm_mmu_notifier_clear_young,
476 .test_young = kvm_mmu_notifier_test_young,
477 .change_pte = kvm_mmu_notifier_change_pte,
478 .release = kvm_mmu_notifier_release,
479 };
480
481 static int kvm_init_mmu_notifier(struct kvm *kvm)
482 {
483 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
484 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
485 }
486
487 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
488
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491 return 0;
492 }
493
494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
495
496 static struct kvm_memslots *kvm_alloc_memslots(void)
497 {
498 int i;
499 struct kvm_memslots *slots;
500
501 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
502 if (!slots)
503 return NULL;
504
505 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
506 slots->id_to_index[i] = slots->memslots[i].id = i;
507
508 return slots;
509 }
510
511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
512 {
513 if (!memslot->dirty_bitmap)
514 return;
515
516 kvfree(memslot->dirty_bitmap);
517 memslot->dirty_bitmap = NULL;
518 }
519
520 /*
521 * Free any memory in @free but not in @dont.
522 */
523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
524 struct kvm_memory_slot *dont)
525 {
526 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 kvm_destroy_dirty_bitmap(free);
528
529 kvm_arch_free_memslot(kvm, free, dont);
530
531 free->npages = 0;
532 }
533
534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
535 {
536 struct kvm_memory_slot *memslot;
537
538 if (!slots)
539 return;
540
541 kvm_for_each_memslot(memslot, slots)
542 kvm_free_memslot(kvm, memslot, NULL);
543
544 kvfree(slots);
545 }
546
547 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
548 {
549 int i;
550
551 if (!kvm->debugfs_dentry)
552 return;
553
554 debugfs_remove_recursive(kvm->debugfs_dentry);
555
556 if (kvm->debugfs_stat_data) {
557 for (i = 0; i < kvm_debugfs_num_entries; i++)
558 kfree(kvm->debugfs_stat_data[i]);
559 kfree(kvm->debugfs_stat_data);
560 }
561 }
562
563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
564 {
565 char dir_name[ITOA_MAX_LEN * 2];
566 struct kvm_stat_data *stat_data;
567 struct kvm_stats_debugfs_item *p;
568
569 if (!debugfs_initialized())
570 return 0;
571
572 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
573 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
574 kvm_debugfs_dir);
575 if (!kvm->debugfs_dentry)
576 return -ENOMEM;
577
578 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
579 sizeof(*kvm->debugfs_stat_data),
580 GFP_KERNEL);
581 if (!kvm->debugfs_stat_data)
582 return -ENOMEM;
583
584 for (p = debugfs_entries; p->name; p++) {
585 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
586 if (!stat_data)
587 return -ENOMEM;
588
589 stat_data->kvm = kvm;
590 stat_data->offset = p->offset;
591 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
592 if (!debugfs_create_file(p->name, 0644,
593 kvm->debugfs_dentry,
594 stat_data,
595 stat_fops_per_vm[p->kind]))
596 return -ENOMEM;
597 }
598 return 0;
599 }
600
601 static struct kvm *kvm_create_vm(unsigned long type)
602 {
603 int r, i;
604 struct kvm *kvm = kvm_arch_alloc_vm();
605
606 if (!kvm)
607 return ERR_PTR(-ENOMEM);
608
609 spin_lock_init(&kvm->mmu_lock);
610 mmgrab(current->mm);
611 kvm->mm = current->mm;
612 kvm_eventfd_init(kvm);
613 mutex_init(&kvm->lock);
614 mutex_init(&kvm->irq_lock);
615 mutex_init(&kvm->slots_lock);
616 refcount_set(&kvm->users_count, 1);
617 INIT_LIST_HEAD(&kvm->devices);
618
619 r = kvm_arch_init_vm(kvm, type);
620 if (r)
621 goto out_err_no_disable;
622
623 r = hardware_enable_all();
624 if (r)
625 goto out_err_no_disable;
626
627 #ifdef CONFIG_HAVE_KVM_IRQFD
628 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
629 #endif
630
631 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
632
633 r = -ENOMEM;
634 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
635 struct kvm_memslots *slots = kvm_alloc_memslots();
636 if (!slots)
637 goto out_err_no_srcu;
638 /*
639 * Generations must be different for each address space.
640 * Init kvm generation close to the maximum to easily test the
641 * code of handling generation number wrap-around.
642 */
643 slots->generation = i * 2 - 150;
644 rcu_assign_pointer(kvm->memslots[i], slots);
645 }
646
647 if (init_srcu_struct(&kvm->srcu))
648 goto out_err_no_srcu;
649 if (init_srcu_struct(&kvm->irq_srcu))
650 goto out_err_no_irq_srcu;
651 for (i = 0; i < KVM_NR_BUSES; i++) {
652 rcu_assign_pointer(kvm->buses[i],
653 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
654 if (!kvm->buses[i])
655 goto out_err;
656 }
657
658 r = kvm_init_mmu_notifier(kvm);
659 if (r)
660 goto out_err;
661
662 spin_lock(&kvm_lock);
663 list_add(&kvm->vm_list, &vm_list);
664 spin_unlock(&kvm_lock);
665
666 preempt_notifier_inc();
667
668 return kvm;
669
670 out_err:
671 cleanup_srcu_struct(&kvm->irq_srcu);
672 out_err_no_irq_srcu:
673 cleanup_srcu_struct(&kvm->srcu);
674 out_err_no_srcu:
675 hardware_disable_all();
676 out_err_no_disable:
677 for (i = 0; i < KVM_NR_BUSES; i++)
678 kfree(kvm_get_bus(kvm, i));
679 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
680 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
681 kvm_arch_free_vm(kvm);
682 mmdrop(current->mm);
683 return ERR_PTR(r);
684 }
685
686 static void kvm_destroy_devices(struct kvm *kvm)
687 {
688 struct kvm_device *dev, *tmp;
689
690 /*
691 * We do not need to take the kvm->lock here, because nobody else
692 * has a reference to the struct kvm at this point and therefore
693 * cannot access the devices list anyhow.
694 */
695 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
696 list_del(&dev->vm_node);
697 dev->ops->destroy(dev);
698 }
699 }
700
701 static void kvm_destroy_vm(struct kvm *kvm)
702 {
703 int i;
704 struct mm_struct *mm = kvm->mm;
705
706 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
707 kvm_destroy_vm_debugfs(kvm);
708 kvm_arch_sync_events(kvm);
709 spin_lock(&kvm_lock);
710 list_del(&kvm->vm_list);
711 spin_unlock(&kvm_lock);
712 kvm_free_irq_routing(kvm);
713 for (i = 0; i < KVM_NR_BUSES; i++) {
714 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
715
716 if (bus)
717 kvm_io_bus_destroy(bus);
718 kvm->buses[i] = NULL;
719 }
720 kvm_coalesced_mmio_free(kvm);
721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
722 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
723 #else
724 kvm_arch_flush_shadow_all(kvm);
725 #endif
726 kvm_arch_destroy_vm(kvm);
727 kvm_destroy_devices(kvm);
728 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
729 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
730 cleanup_srcu_struct(&kvm->irq_srcu);
731 cleanup_srcu_struct(&kvm->srcu);
732 kvm_arch_free_vm(kvm);
733 preempt_notifier_dec();
734 hardware_disable_all();
735 mmdrop(mm);
736 }
737
738 void kvm_get_kvm(struct kvm *kvm)
739 {
740 refcount_inc(&kvm->users_count);
741 }
742 EXPORT_SYMBOL_GPL(kvm_get_kvm);
743
744 void kvm_put_kvm(struct kvm *kvm)
745 {
746 if (refcount_dec_and_test(&kvm->users_count))
747 kvm_destroy_vm(kvm);
748 }
749 EXPORT_SYMBOL_GPL(kvm_put_kvm);
750
751
752 static int kvm_vm_release(struct inode *inode, struct file *filp)
753 {
754 struct kvm *kvm = filp->private_data;
755
756 kvm_irqfd_release(kvm);
757
758 kvm_put_kvm(kvm);
759 return 0;
760 }
761
762 /*
763 * Allocation size is twice as large as the actual dirty bitmap size.
764 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
765 */
766 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
767 {
768 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
769
770 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
771 if (!memslot->dirty_bitmap)
772 return -ENOMEM;
773
774 return 0;
775 }
776
777 /*
778 * Insert memslot and re-sort memslots based on their GFN,
779 * so binary search could be used to lookup GFN.
780 * Sorting algorithm takes advantage of having initially
781 * sorted array and known changed memslot position.
782 */
783 static void update_memslots(struct kvm_memslots *slots,
784 struct kvm_memory_slot *new)
785 {
786 int id = new->id;
787 int i = slots->id_to_index[id];
788 struct kvm_memory_slot *mslots = slots->memslots;
789
790 WARN_ON(mslots[i].id != id);
791 if (!new->npages) {
792 WARN_ON(!mslots[i].npages);
793 if (mslots[i].npages)
794 slots->used_slots--;
795 } else {
796 if (!mslots[i].npages)
797 slots->used_slots++;
798 }
799
800 while (i < KVM_MEM_SLOTS_NUM - 1 &&
801 new->base_gfn <= mslots[i + 1].base_gfn) {
802 if (!mslots[i + 1].npages)
803 break;
804 mslots[i] = mslots[i + 1];
805 slots->id_to_index[mslots[i].id] = i;
806 i++;
807 }
808
809 /*
810 * The ">=" is needed when creating a slot with base_gfn == 0,
811 * so that it moves before all those with base_gfn == npages == 0.
812 *
813 * On the other hand, if new->npages is zero, the above loop has
814 * already left i pointing to the beginning of the empty part of
815 * mslots, and the ">=" would move the hole backwards in this
816 * case---which is wrong. So skip the loop when deleting a slot.
817 */
818 if (new->npages) {
819 while (i > 0 &&
820 new->base_gfn >= mslots[i - 1].base_gfn) {
821 mslots[i] = mslots[i - 1];
822 slots->id_to_index[mslots[i].id] = i;
823 i--;
824 }
825 } else
826 WARN_ON_ONCE(i != slots->used_slots);
827
828 mslots[i] = *new;
829 slots->id_to_index[mslots[i].id] = i;
830 }
831
832 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
833 {
834 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
835
836 #ifdef __KVM_HAVE_READONLY_MEM
837 valid_flags |= KVM_MEM_READONLY;
838 #endif
839
840 if (mem->flags & ~valid_flags)
841 return -EINVAL;
842
843 return 0;
844 }
845
846 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
847 int as_id, struct kvm_memslots *slots)
848 {
849 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
850
851 /*
852 * Set the low bit in the generation, which disables SPTE caching
853 * until the end of synchronize_srcu_expedited.
854 */
855 WARN_ON(old_memslots->generation & 1);
856 slots->generation = old_memslots->generation + 1;
857
858 rcu_assign_pointer(kvm->memslots[as_id], slots);
859 synchronize_srcu_expedited(&kvm->srcu);
860
861 /*
862 * Increment the new memslot generation a second time. This prevents
863 * vm exits that race with memslot updates from caching a memslot
864 * generation that will (potentially) be valid forever.
865 *
866 * Generations must be unique even across address spaces. We do not need
867 * a global counter for that, instead the generation space is evenly split
868 * across address spaces. For example, with two address spaces, address
869 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
870 * use generations 2, 6, 10, 14, ...
871 */
872 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
873
874 kvm_arch_memslots_updated(kvm, slots);
875
876 return old_memslots;
877 }
878
879 /*
880 * Allocate some memory and give it an address in the guest physical address
881 * space.
882 *
883 * Discontiguous memory is allowed, mostly for framebuffers.
884 *
885 * Must be called holding kvm->slots_lock for write.
886 */
887 int __kvm_set_memory_region(struct kvm *kvm,
888 const struct kvm_userspace_memory_region *mem)
889 {
890 int r;
891 gfn_t base_gfn;
892 unsigned long npages;
893 struct kvm_memory_slot *slot;
894 struct kvm_memory_slot old, new;
895 struct kvm_memslots *slots = NULL, *old_memslots;
896 int as_id, id;
897 enum kvm_mr_change change;
898
899 r = check_memory_region_flags(mem);
900 if (r)
901 goto out;
902
903 r = -EINVAL;
904 as_id = mem->slot >> 16;
905 id = (u16)mem->slot;
906
907 /* General sanity checks */
908 if (mem->memory_size & (PAGE_SIZE - 1))
909 goto out;
910 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
911 goto out;
912 /* We can read the guest memory with __xxx_user() later on. */
913 if ((id < KVM_USER_MEM_SLOTS) &&
914 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
915 !access_ok(VERIFY_WRITE,
916 (void __user *)(unsigned long)mem->userspace_addr,
917 mem->memory_size)))
918 goto out;
919 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
920 goto out;
921 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
922 goto out;
923
924 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
925 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
926 npages = mem->memory_size >> PAGE_SHIFT;
927
928 if (npages > KVM_MEM_MAX_NR_PAGES)
929 goto out;
930
931 new = old = *slot;
932
933 new.id = id;
934 new.base_gfn = base_gfn;
935 new.npages = npages;
936 new.flags = mem->flags;
937
938 if (npages) {
939 if (!old.npages)
940 change = KVM_MR_CREATE;
941 else { /* Modify an existing slot. */
942 if ((mem->userspace_addr != old.userspace_addr) ||
943 (npages != old.npages) ||
944 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
945 goto out;
946
947 if (base_gfn != old.base_gfn)
948 change = KVM_MR_MOVE;
949 else if (new.flags != old.flags)
950 change = KVM_MR_FLAGS_ONLY;
951 else { /* Nothing to change. */
952 r = 0;
953 goto out;
954 }
955 }
956 } else {
957 if (!old.npages)
958 goto out;
959
960 change = KVM_MR_DELETE;
961 new.base_gfn = 0;
962 new.flags = 0;
963 }
964
965 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
966 /* Check for overlaps */
967 r = -EEXIST;
968 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
969 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
970 (slot->id == id))
971 continue;
972 if (!((base_gfn + npages <= slot->base_gfn) ||
973 (base_gfn >= slot->base_gfn + slot->npages)))
974 goto out;
975 }
976 }
977
978 /* Free page dirty bitmap if unneeded */
979 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
980 new.dirty_bitmap = NULL;
981
982 r = -ENOMEM;
983 if (change == KVM_MR_CREATE) {
984 new.userspace_addr = mem->userspace_addr;
985
986 if (kvm_arch_create_memslot(kvm, &new, npages))
987 goto out_free;
988 }
989
990 /* Allocate page dirty bitmap if needed */
991 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
992 if (kvm_create_dirty_bitmap(&new) < 0)
993 goto out_free;
994 }
995
996 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
997 if (!slots)
998 goto out_free;
999 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1000
1001 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1002 slot = id_to_memslot(slots, id);
1003 slot->flags |= KVM_MEMSLOT_INVALID;
1004
1005 old_memslots = install_new_memslots(kvm, as_id, slots);
1006
1007 /* From this point no new shadow pages pointing to a deleted,
1008 * or moved, memslot will be created.
1009 *
1010 * validation of sp->gfn happens in:
1011 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1012 * - kvm_is_visible_gfn (mmu_check_roots)
1013 */
1014 kvm_arch_flush_shadow_memslot(kvm, slot);
1015
1016 /*
1017 * We can re-use the old_memslots from above, the only difference
1018 * from the currently installed memslots is the invalid flag. This
1019 * will get overwritten by update_memslots anyway.
1020 */
1021 slots = old_memslots;
1022 }
1023
1024 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1025 if (r)
1026 goto out_slots;
1027
1028 /* actual memory is freed via old in kvm_free_memslot below */
1029 if (change == KVM_MR_DELETE) {
1030 new.dirty_bitmap = NULL;
1031 memset(&new.arch, 0, sizeof(new.arch));
1032 }
1033
1034 update_memslots(slots, &new);
1035 old_memslots = install_new_memslots(kvm, as_id, slots);
1036
1037 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1038
1039 kvm_free_memslot(kvm, &old, &new);
1040 kvfree(old_memslots);
1041 return 0;
1042
1043 out_slots:
1044 kvfree(slots);
1045 out_free:
1046 kvm_free_memslot(kvm, &new, &old);
1047 out:
1048 return r;
1049 }
1050 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1051
1052 int kvm_set_memory_region(struct kvm *kvm,
1053 const struct kvm_userspace_memory_region *mem)
1054 {
1055 int r;
1056
1057 mutex_lock(&kvm->slots_lock);
1058 r = __kvm_set_memory_region(kvm, mem);
1059 mutex_unlock(&kvm->slots_lock);
1060 return r;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1063
1064 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1065 struct kvm_userspace_memory_region *mem)
1066 {
1067 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1068 return -EINVAL;
1069
1070 return kvm_set_memory_region(kvm, mem);
1071 }
1072
1073 int kvm_get_dirty_log(struct kvm *kvm,
1074 struct kvm_dirty_log *log, int *is_dirty)
1075 {
1076 struct kvm_memslots *slots;
1077 struct kvm_memory_slot *memslot;
1078 int i, as_id, id;
1079 unsigned long n;
1080 unsigned long any = 0;
1081
1082 as_id = log->slot >> 16;
1083 id = (u16)log->slot;
1084 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1085 return -EINVAL;
1086
1087 slots = __kvm_memslots(kvm, as_id);
1088 memslot = id_to_memslot(slots, id);
1089 if (!memslot->dirty_bitmap)
1090 return -ENOENT;
1091
1092 n = kvm_dirty_bitmap_bytes(memslot);
1093
1094 for (i = 0; !any && i < n/sizeof(long); ++i)
1095 any = memslot->dirty_bitmap[i];
1096
1097 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1098 return -EFAULT;
1099
1100 if (any)
1101 *is_dirty = 1;
1102 return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1105
1106 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1107 /**
1108 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1109 * are dirty write protect them for next write.
1110 * @kvm: pointer to kvm instance
1111 * @log: slot id and address to which we copy the log
1112 * @is_dirty: flag set if any page is dirty
1113 *
1114 * We need to keep it in mind that VCPU threads can write to the bitmap
1115 * concurrently. So, to avoid losing track of dirty pages we keep the
1116 * following order:
1117 *
1118 * 1. Take a snapshot of the bit and clear it if needed.
1119 * 2. Write protect the corresponding page.
1120 * 3. Copy the snapshot to the userspace.
1121 * 4. Upon return caller flushes TLB's if needed.
1122 *
1123 * Between 2 and 4, the guest may write to the page using the remaining TLB
1124 * entry. This is not a problem because the page is reported dirty using
1125 * the snapshot taken before and step 4 ensures that writes done after
1126 * exiting to userspace will be logged for the next call.
1127 *
1128 */
1129 int kvm_get_dirty_log_protect(struct kvm *kvm,
1130 struct kvm_dirty_log *log, bool *is_dirty)
1131 {
1132 struct kvm_memslots *slots;
1133 struct kvm_memory_slot *memslot;
1134 int i, as_id, id;
1135 unsigned long n;
1136 unsigned long *dirty_bitmap;
1137 unsigned long *dirty_bitmap_buffer;
1138
1139 as_id = log->slot >> 16;
1140 id = (u16)log->slot;
1141 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1142 return -EINVAL;
1143
1144 slots = __kvm_memslots(kvm, as_id);
1145 memslot = id_to_memslot(slots, id);
1146
1147 dirty_bitmap = memslot->dirty_bitmap;
1148 if (!dirty_bitmap)
1149 return -ENOENT;
1150
1151 n = kvm_dirty_bitmap_bytes(memslot);
1152
1153 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1154 memset(dirty_bitmap_buffer, 0, n);
1155
1156 spin_lock(&kvm->mmu_lock);
1157 *is_dirty = false;
1158 for (i = 0; i < n / sizeof(long); i++) {
1159 unsigned long mask;
1160 gfn_t offset;
1161
1162 if (!dirty_bitmap[i])
1163 continue;
1164
1165 *is_dirty = true;
1166
1167 mask = xchg(&dirty_bitmap[i], 0);
1168 dirty_bitmap_buffer[i] = mask;
1169
1170 if (mask) {
1171 offset = i * BITS_PER_LONG;
1172 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1173 offset, mask);
1174 }
1175 }
1176
1177 spin_unlock(&kvm->mmu_lock);
1178 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1179 return -EFAULT;
1180 return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1183 #endif
1184
1185 bool kvm_largepages_enabled(void)
1186 {
1187 return largepages_enabled;
1188 }
1189
1190 void kvm_disable_largepages(void)
1191 {
1192 largepages_enabled = false;
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1195
1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1197 {
1198 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1199 }
1200 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1201
1202 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1203 {
1204 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1205 }
1206
1207 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1208 {
1209 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1210
1211 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1212 memslot->flags & KVM_MEMSLOT_INVALID)
1213 return false;
1214
1215 return true;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1218
1219 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1220 {
1221 struct vm_area_struct *vma;
1222 unsigned long addr, size;
1223
1224 size = PAGE_SIZE;
1225
1226 addr = gfn_to_hva(kvm, gfn);
1227 if (kvm_is_error_hva(addr))
1228 return PAGE_SIZE;
1229
1230 down_read(&current->mm->mmap_sem);
1231 vma = find_vma(current->mm, addr);
1232 if (!vma)
1233 goto out;
1234
1235 size = vma_kernel_pagesize(vma);
1236
1237 out:
1238 up_read(&current->mm->mmap_sem);
1239
1240 return size;
1241 }
1242
1243 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1244 {
1245 return slot->flags & KVM_MEM_READONLY;
1246 }
1247
1248 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1249 gfn_t *nr_pages, bool write)
1250 {
1251 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1252 return KVM_HVA_ERR_BAD;
1253
1254 if (memslot_is_readonly(slot) && write)
1255 return KVM_HVA_ERR_RO_BAD;
1256
1257 if (nr_pages)
1258 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1259
1260 return __gfn_to_hva_memslot(slot, gfn);
1261 }
1262
1263 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1264 gfn_t *nr_pages)
1265 {
1266 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1267 }
1268
1269 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1270 gfn_t gfn)
1271 {
1272 return gfn_to_hva_many(slot, gfn, NULL);
1273 }
1274 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1275
1276 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1277 {
1278 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1279 }
1280 EXPORT_SYMBOL_GPL(gfn_to_hva);
1281
1282 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1283 {
1284 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1287
1288 /*
1289 * If writable is set to false, the hva returned by this function is only
1290 * allowed to be read.
1291 */
1292 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1293 gfn_t gfn, bool *writable)
1294 {
1295 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1296
1297 if (!kvm_is_error_hva(hva) && writable)
1298 *writable = !memslot_is_readonly(slot);
1299
1300 return hva;
1301 }
1302
1303 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1304 {
1305 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1306
1307 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1308 }
1309
1310 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1311 {
1312 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1313
1314 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1315 }
1316
1317 static int get_user_page_nowait(unsigned long start, int write,
1318 struct page **page)
1319 {
1320 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1321
1322 if (write)
1323 flags |= FOLL_WRITE;
1324
1325 return get_user_pages(start, 1, flags, page, NULL);
1326 }
1327
1328 static inline int check_user_page_hwpoison(unsigned long addr)
1329 {
1330 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1331
1332 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1333 return rc == -EHWPOISON;
1334 }
1335
1336 /*
1337 * The atomic path to get the writable pfn which will be stored in @pfn,
1338 * true indicates success, otherwise false is returned.
1339 */
1340 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1341 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1342 {
1343 struct page *page[1];
1344 int npages;
1345
1346 if (!(async || atomic))
1347 return false;
1348
1349 /*
1350 * Fast pin a writable pfn only if it is a write fault request
1351 * or the caller allows to map a writable pfn for a read fault
1352 * request.
1353 */
1354 if (!(write_fault || writable))
1355 return false;
1356
1357 npages = __get_user_pages_fast(addr, 1, 1, page);
1358 if (npages == 1) {
1359 *pfn = page_to_pfn(page[0]);
1360
1361 if (writable)
1362 *writable = true;
1363 return true;
1364 }
1365
1366 return false;
1367 }
1368
1369 /*
1370 * The slow path to get the pfn of the specified host virtual address,
1371 * 1 indicates success, -errno is returned if error is detected.
1372 */
1373 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1374 bool *writable, kvm_pfn_t *pfn)
1375 {
1376 struct page *page[1];
1377 int npages = 0;
1378
1379 might_sleep();
1380
1381 if (writable)
1382 *writable = write_fault;
1383
1384 if (async) {
1385 down_read(&current->mm->mmap_sem);
1386 npages = get_user_page_nowait(addr, write_fault, page);
1387 up_read(&current->mm->mmap_sem);
1388 } else {
1389 unsigned int flags = FOLL_HWPOISON;
1390
1391 if (write_fault)
1392 flags |= FOLL_WRITE;
1393
1394 npages = get_user_pages_unlocked(addr, 1, page, flags);
1395 }
1396 if (npages != 1)
1397 return npages;
1398
1399 /* map read fault as writable if possible */
1400 if (unlikely(!write_fault) && writable) {
1401 struct page *wpage[1];
1402
1403 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1404 if (npages == 1) {
1405 *writable = true;
1406 put_page(page[0]);
1407 page[0] = wpage[0];
1408 }
1409
1410 npages = 1;
1411 }
1412 *pfn = page_to_pfn(page[0]);
1413 return npages;
1414 }
1415
1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1417 {
1418 if (unlikely(!(vma->vm_flags & VM_READ)))
1419 return false;
1420
1421 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422 return false;
1423
1424 return true;
1425 }
1426
1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428 unsigned long addr, bool *async,
1429 bool write_fault, kvm_pfn_t *p_pfn)
1430 {
1431 unsigned long pfn;
1432 int r;
1433
1434 r = follow_pfn(vma, addr, &pfn);
1435 if (r) {
1436 /*
1437 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1438 * not call the fault handler, so do it here.
1439 */
1440 bool unlocked = false;
1441 r = fixup_user_fault(current, current->mm, addr,
1442 (write_fault ? FAULT_FLAG_WRITE : 0),
1443 &unlocked);
1444 if (unlocked)
1445 return -EAGAIN;
1446 if (r)
1447 return r;
1448
1449 r = follow_pfn(vma, addr, &pfn);
1450 if (r)
1451 return r;
1452
1453 }
1454
1455
1456 /*
1457 * Get a reference here because callers of *hva_to_pfn* and
1458 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1459 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1460 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1461 * simply do nothing for reserved pfns.
1462 *
1463 * Whoever called remap_pfn_range is also going to call e.g.
1464 * unmap_mapping_range before the underlying pages are freed,
1465 * causing a call to our MMU notifier.
1466 */
1467 kvm_get_pfn(pfn);
1468
1469 *p_pfn = pfn;
1470 return 0;
1471 }
1472
1473 /*
1474 * Pin guest page in memory and return its pfn.
1475 * @addr: host virtual address which maps memory to the guest
1476 * @atomic: whether this function can sleep
1477 * @async: whether this function need to wait IO complete if the
1478 * host page is not in the memory
1479 * @write_fault: whether we should get a writable host page
1480 * @writable: whether it allows to map a writable host page for !@write_fault
1481 *
1482 * The function will map a writable host page for these two cases:
1483 * 1): @write_fault = true
1484 * 2): @write_fault = false && @writable, @writable will tell the caller
1485 * whether the mapping is writable.
1486 */
1487 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1488 bool write_fault, bool *writable)
1489 {
1490 struct vm_area_struct *vma;
1491 kvm_pfn_t pfn = 0;
1492 int npages, r;
1493
1494 /* we can do it either atomically or asynchronously, not both */
1495 BUG_ON(atomic && async);
1496
1497 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1498 return pfn;
1499
1500 if (atomic)
1501 return KVM_PFN_ERR_FAULT;
1502
1503 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1504 if (npages == 1)
1505 return pfn;
1506
1507 down_read(&current->mm->mmap_sem);
1508 if (npages == -EHWPOISON ||
1509 (!async && check_user_page_hwpoison(addr))) {
1510 pfn = KVM_PFN_ERR_HWPOISON;
1511 goto exit;
1512 }
1513
1514 retry:
1515 vma = find_vma_intersection(current->mm, addr, addr + 1);
1516
1517 if (vma == NULL)
1518 pfn = KVM_PFN_ERR_FAULT;
1519 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1520 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1521 if (r == -EAGAIN)
1522 goto retry;
1523 if (r < 0)
1524 pfn = KVM_PFN_ERR_FAULT;
1525 } else {
1526 if (async && vma_is_valid(vma, write_fault))
1527 *async = true;
1528 pfn = KVM_PFN_ERR_FAULT;
1529 }
1530 exit:
1531 up_read(&current->mm->mmap_sem);
1532 return pfn;
1533 }
1534
1535 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1536 bool atomic, bool *async, bool write_fault,
1537 bool *writable)
1538 {
1539 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1540
1541 if (addr == KVM_HVA_ERR_RO_BAD) {
1542 if (writable)
1543 *writable = false;
1544 return KVM_PFN_ERR_RO_FAULT;
1545 }
1546
1547 if (kvm_is_error_hva(addr)) {
1548 if (writable)
1549 *writable = false;
1550 return KVM_PFN_NOSLOT;
1551 }
1552
1553 /* Do not map writable pfn in the readonly memslot. */
1554 if (writable && memslot_is_readonly(slot)) {
1555 *writable = false;
1556 writable = NULL;
1557 }
1558
1559 return hva_to_pfn(addr, atomic, async, write_fault,
1560 writable);
1561 }
1562 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1563
1564 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1565 bool *writable)
1566 {
1567 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1568 write_fault, writable);
1569 }
1570 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1571
1572 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1573 {
1574 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1575 }
1576 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1577
1578 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1579 {
1580 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1583
1584 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1585 {
1586 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1587 }
1588 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1589
1590 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1591 {
1592 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1595
1596 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1597 {
1598 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1599 }
1600 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1601
1602 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1603 {
1604 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1607
1608 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1609 struct page **pages, int nr_pages)
1610 {
1611 unsigned long addr;
1612 gfn_t entry = 0;
1613
1614 addr = gfn_to_hva_many(slot, gfn, &entry);
1615 if (kvm_is_error_hva(addr))
1616 return -1;
1617
1618 if (entry < nr_pages)
1619 return 0;
1620
1621 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1622 }
1623 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1624
1625 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1626 {
1627 if (is_error_noslot_pfn(pfn))
1628 return KVM_ERR_PTR_BAD_PAGE;
1629
1630 if (kvm_is_reserved_pfn(pfn)) {
1631 WARN_ON(1);
1632 return KVM_ERR_PTR_BAD_PAGE;
1633 }
1634
1635 return pfn_to_page(pfn);
1636 }
1637
1638 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1639 {
1640 kvm_pfn_t pfn;
1641
1642 pfn = gfn_to_pfn(kvm, gfn);
1643
1644 return kvm_pfn_to_page(pfn);
1645 }
1646 EXPORT_SYMBOL_GPL(gfn_to_page);
1647
1648 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1649 {
1650 kvm_pfn_t pfn;
1651
1652 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1653
1654 return kvm_pfn_to_page(pfn);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1657
1658 void kvm_release_page_clean(struct page *page)
1659 {
1660 WARN_ON(is_error_page(page));
1661
1662 kvm_release_pfn_clean(page_to_pfn(page));
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1665
1666 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1667 {
1668 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1669 put_page(pfn_to_page(pfn));
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1672
1673 void kvm_release_page_dirty(struct page *page)
1674 {
1675 WARN_ON(is_error_page(page));
1676
1677 kvm_release_pfn_dirty(page_to_pfn(page));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1680
1681 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1682 {
1683 kvm_set_pfn_dirty(pfn);
1684 kvm_release_pfn_clean(pfn);
1685 }
1686
1687 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1688 {
1689 if (!kvm_is_reserved_pfn(pfn)) {
1690 struct page *page = pfn_to_page(pfn);
1691
1692 if (!PageReserved(page))
1693 SetPageDirty(page);
1694 }
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1697
1698 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1699 {
1700 if (!kvm_is_reserved_pfn(pfn))
1701 mark_page_accessed(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1704
1705 void kvm_get_pfn(kvm_pfn_t pfn)
1706 {
1707 if (!kvm_is_reserved_pfn(pfn))
1708 get_page(pfn_to_page(pfn));
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1711
1712 static int next_segment(unsigned long len, int offset)
1713 {
1714 if (len > PAGE_SIZE - offset)
1715 return PAGE_SIZE - offset;
1716 else
1717 return len;
1718 }
1719
1720 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1721 void *data, int offset, int len)
1722 {
1723 int r;
1724 unsigned long addr;
1725
1726 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1727 if (kvm_is_error_hva(addr))
1728 return -EFAULT;
1729 r = __copy_from_user(data, (void __user *)addr + offset, len);
1730 if (r)
1731 return -EFAULT;
1732 return 0;
1733 }
1734
1735 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1736 int len)
1737 {
1738 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1739
1740 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1743
1744 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1745 int offset, int len)
1746 {
1747 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1748
1749 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1752
1753 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1754 {
1755 gfn_t gfn = gpa >> PAGE_SHIFT;
1756 int seg;
1757 int offset = offset_in_page(gpa);
1758 int ret;
1759
1760 while ((seg = next_segment(len, offset)) != 0) {
1761 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1762 if (ret < 0)
1763 return ret;
1764 offset = 0;
1765 len -= seg;
1766 data += seg;
1767 ++gfn;
1768 }
1769 return 0;
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_read_guest);
1772
1773 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1774 {
1775 gfn_t gfn = gpa >> PAGE_SHIFT;
1776 int seg;
1777 int offset = offset_in_page(gpa);
1778 int ret;
1779
1780 while ((seg = next_segment(len, offset)) != 0) {
1781 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1782 if (ret < 0)
1783 return ret;
1784 offset = 0;
1785 len -= seg;
1786 data += seg;
1787 ++gfn;
1788 }
1789 return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1792
1793 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1794 void *data, int offset, unsigned long len)
1795 {
1796 int r;
1797 unsigned long addr;
1798
1799 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1800 if (kvm_is_error_hva(addr))
1801 return -EFAULT;
1802 pagefault_disable();
1803 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1804 pagefault_enable();
1805 if (r)
1806 return -EFAULT;
1807 return 0;
1808 }
1809
1810 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1811 unsigned long len)
1812 {
1813 gfn_t gfn = gpa >> PAGE_SHIFT;
1814 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1815 int offset = offset_in_page(gpa);
1816
1817 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1818 }
1819 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1820
1821 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1822 void *data, unsigned long len)
1823 {
1824 gfn_t gfn = gpa >> PAGE_SHIFT;
1825 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1826 int offset = offset_in_page(gpa);
1827
1828 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1831
1832 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1833 const void *data, int offset, int len)
1834 {
1835 int r;
1836 unsigned long addr;
1837
1838 addr = gfn_to_hva_memslot(memslot, gfn);
1839 if (kvm_is_error_hva(addr))
1840 return -EFAULT;
1841 r = __copy_to_user((void __user *)addr + offset, data, len);
1842 if (r)
1843 return -EFAULT;
1844 mark_page_dirty_in_slot(memslot, gfn);
1845 return 0;
1846 }
1847
1848 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1849 const void *data, int offset, int len)
1850 {
1851 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1852
1853 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1856
1857 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1858 const void *data, int offset, int len)
1859 {
1860 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1861
1862 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1865
1866 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1867 unsigned long len)
1868 {
1869 gfn_t gfn = gpa >> PAGE_SHIFT;
1870 int seg;
1871 int offset = offset_in_page(gpa);
1872 int ret;
1873
1874 while ((seg = next_segment(len, offset)) != 0) {
1875 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1876 if (ret < 0)
1877 return ret;
1878 offset = 0;
1879 len -= seg;
1880 data += seg;
1881 ++gfn;
1882 }
1883 return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_write_guest);
1886
1887 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1888 unsigned long len)
1889 {
1890 gfn_t gfn = gpa >> PAGE_SHIFT;
1891 int seg;
1892 int offset = offset_in_page(gpa);
1893 int ret;
1894
1895 while ((seg = next_segment(len, offset)) != 0) {
1896 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1897 if (ret < 0)
1898 return ret;
1899 offset = 0;
1900 len -= seg;
1901 data += seg;
1902 ++gfn;
1903 }
1904 return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1907
1908 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1909 struct gfn_to_hva_cache *ghc,
1910 gpa_t gpa, unsigned long len)
1911 {
1912 int offset = offset_in_page(gpa);
1913 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1914 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1915 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1916 gfn_t nr_pages_avail;
1917
1918 ghc->gpa = gpa;
1919 ghc->generation = slots->generation;
1920 ghc->len = len;
1921 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1922 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1923 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1924 ghc->hva += offset;
1925 } else {
1926 /*
1927 * If the requested region crosses two memslots, we still
1928 * verify that the entire region is valid here.
1929 */
1930 while (start_gfn <= end_gfn) {
1931 nr_pages_avail = 0;
1932 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1933 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1934 &nr_pages_avail);
1935 if (kvm_is_error_hva(ghc->hva))
1936 return -EFAULT;
1937 start_gfn += nr_pages_avail;
1938 }
1939 /* Use the slow path for cross page reads and writes. */
1940 ghc->memslot = NULL;
1941 }
1942 return 0;
1943 }
1944
1945 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1946 gpa_t gpa, unsigned long len)
1947 {
1948 struct kvm_memslots *slots = kvm_memslots(kvm);
1949 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1952
1953 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1954 void *data, int offset, unsigned long len)
1955 {
1956 struct kvm_memslots *slots = kvm_memslots(kvm);
1957 int r;
1958 gpa_t gpa = ghc->gpa + offset;
1959
1960 BUG_ON(len + offset > ghc->len);
1961
1962 if (slots->generation != ghc->generation)
1963 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1964
1965 if (unlikely(!ghc->memslot))
1966 return kvm_write_guest(kvm, gpa, data, len);
1967
1968 if (kvm_is_error_hva(ghc->hva))
1969 return -EFAULT;
1970
1971 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1972 if (r)
1973 return -EFAULT;
1974 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1975
1976 return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1979
1980 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1981 void *data, unsigned long len)
1982 {
1983 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1986
1987 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1988 void *data, unsigned long len)
1989 {
1990 struct kvm_memslots *slots = kvm_memslots(kvm);
1991 int r;
1992
1993 BUG_ON(len > ghc->len);
1994
1995 if (slots->generation != ghc->generation)
1996 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1997
1998 if (unlikely(!ghc->memslot))
1999 return kvm_read_guest(kvm, ghc->gpa, data, len);
2000
2001 if (kvm_is_error_hva(ghc->hva))
2002 return -EFAULT;
2003
2004 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2005 if (r)
2006 return -EFAULT;
2007
2008 return 0;
2009 }
2010 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2011
2012 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2013 {
2014 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2015
2016 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2019
2020 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2021 {
2022 gfn_t gfn = gpa >> PAGE_SHIFT;
2023 int seg;
2024 int offset = offset_in_page(gpa);
2025 int ret;
2026
2027 while ((seg = next_segment(len, offset)) != 0) {
2028 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2029 if (ret < 0)
2030 return ret;
2031 offset = 0;
2032 len -= seg;
2033 ++gfn;
2034 }
2035 return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2038
2039 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2040 gfn_t gfn)
2041 {
2042 if (memslot && memslot->dirty_bitmap) {
2043 unsigned long rel_gfn = gfn - memslot->base_gfn;
2044
2045 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2046 }
2047 }
2048
2049 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2050 {
2051 struct kvm_memory_slot *memslot;
2052
2053 memslot = gfn_to_memslot(kvm, gfn);
2054 mark_page_dirty_in_slot(memslot, gfn);
2055 }
2056 EXPORT_SYMBOL_GPL(mark_page_dirty);
2057
2058 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2059 {
2060 struct kvm_memory_slot *memslot;
2061
2062 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2063 mark_page_dirty_in_slot(memslot, gfn);
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2066
2067 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2068 {
2069 unsigned int old, val, grow;
2070
2071 old = val = vcpu->halt_poll_ns;
2072 grow = READ_ONCE(halt_poll_ns_grow);
2073 /* 10us base */
2074 if (val == 0 && grow)
2075 val = 10000;
2076 else
2077 val *= grow;
2078
2079 if (val > halt_poll_ns)
2080 val = halt_poll_ns;
2081
2082 vcpu->halt_poll_ns = val;
2083 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2084 }
2085
2086 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2087 {
2088 unsigned int old, val, shrink;
2089
2090 old = val = vcpu->halt_poll_ns;
2091 shrink = READ_ONCE(halt_poll_ns_shrink);
2092 if (shrink == 0)
2093 val = 0;
2094 else
2095 val /= shrink;
2096
2097 vcpu->halt_poll_ns = val;
2098 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2099 }
2100
2101 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2102 {
2103 if (kvm_arch_vcpu_runnable(vcpu)) {
2104 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2105 return -EINTR;
2106 }
2107 if (kvm_cpu_has_pending_timer(vcpu))
2108 return -EINTR;
2109 if (signal_pending(current))
2110 return -EINTR;
2111
2112 return 0;
2113 }
2114
2115 /*
2116 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2117 */
2118 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2119 {
2120 ktime_t start, cur;
2121 DECLARE_SWAITQUEUE(wait);
2122 bool waited = false;
2123 u64 block_ns;
2124
2125 start = cur = ktime_get();
2126 if (vcpu->halt_poll_ns) {
2127 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2128
2129 ++vcpu->stat.halt_attempted_poll;
2130 do {
2131 /*
2132 * This sets KVM_REQ_UNHALT if an interrupt
2133 * arrives.
2134 */
2135 if (kvm_vcpu_check_block(vcpu) < 0) {
2136 ++vcpu->stat.halt_successful_poll;
2137 if (!vcpu_valid_wakeup(vcpu))
2138 ++vcpu->stat.halt_poll_invalid;
2139 goto out;
2140 }
2141 cur = ktime_get();
2142 } while (single_task_running() && ktime_before(cur, stop));
2143 }
2144
2145 kvm_arch_vcpu_blocking(vcpu);
2146
2147 for (;;) {
2148 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2149
2150 if (kvm_vcpu_check_block(vcpu) < 0)
2151 break;
2152
2153 waited = true;
2154 schedule();
2155 }
2156
2157 finish_swait(&vcpu->wq, &wait);
2158 cur = ktime_get();
2159
2160 kvm_arch_vcpu_unblocking(vcpu);
2161 out:
2162 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2163
2164 if (!vcpu_valid_wakeup(vcpu))
2165 shrink_halt_poll_ns(vcpu);
2166 else if (halt_poll_ns) {
2167 if (block_ns <= vcpu->halt_poll_ns)
2168 ;
2169 /* we had a long block, shrink polling */
2170 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2171 shrink_halt_poll_ns(vcpu);
2172 /* we had a short halt and our poll time is too small */
2173 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2174 block_ns < halt_poll_ns)
2175 grow_halt_poll_ns(vcpu);
2176 } else
2177 vcpu->halt_poll_ns = 0;
2178
2179 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2180 kvm_arch_vcpu_block_finish(vcpu);
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2183
2184 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2185 {
2186 struct swait_queue_head *wqp;
2187
2188 wqp = kvm_arch_vcpu_wq(vcpu);
2189 if (swait_active(wqp)) {
2190 swake_up(wqp);
2191 ++vcpu->stat.halt_wakeup;
2192 return true;
2193 }
2194
2195 return false;
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2198
2199 #ifndef CONFIG_S390
2200 /*
2201 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2202 */
2203 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2204 {
2205 int me;
2206 int cpu = vcpu->cpu;
2207
2208 if (kvm_vcpu_wake_up(vcpu))
2209 return;
2210
2211 me = get_cpu();
2212 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2213 if (kvm_arch_vcpu_should_kick(vcpu))
2214 smp_send_reschedule(cpu);
2215 put_cpu();
2216 }
2217 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2218 #endif /* !CONFIG_S390 */
2219
2220 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2221 {
2222 struct pid *pid;
2223 struct task_struct *task = NULL;
2224 int ret = 0;
2225
2226 rcu_read_lock();
2227 pid = rcu_dereference(target->pid);
2228 if (pid)
2229 task = get_pid_task(pid, PIDTYPE_PID);
2230 rcu_read_unlock();
2231 if (!task)
2232 return ret;
2233 ret = yield_to(task, 1);
2234 put_task_struct(task);
2235
2236 return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2239
2240 /*
2241 * Helper that checks whether a VCPU is eligible for directed yield.
2242 * Most eligible candidate to yield is decided by following heuristics:
2243 *
2244 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2245 * (preempted lock holder), indicated by @in_spin_loop.
2246 * Set at the beiginning and cleared at the end of interception/PLE handler.
2247 *
2248 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2249 * chance last time (mostly it has become eligible now since we have probably
2250 * yielded to lockholder in last iteration. This is done by toggling
2251 * @dy_eligible each time a VCPU checked for eligibility.)
2252 *
2253 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2254 * to preempted lock-holder could result in wrong VCPU selection and CPU
2255 * burning. Giving priority for a potential lock-holder increases lock
2256 * progress.
2257 *
2258 * Since algorithm is based on heuristics, accessing another VCPU data without
2259 * locking does not harm. It may result in trying to yield to same VCPU, fail
2260 * and continue with next VCPU and so on.
2261 */
2262 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2263 {
2264 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2265 bool eligible;
2266
2267 eligible = !vcpu->spin_loop.in_spin_loop ||
2268 vcpu->spin_loop.dy_eligible;
2269
2270 if (vcpu->spin_loop.in_spin_loop)
2271 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2272
2273 return eligible;
2274 #else
2275 return true;
2276 #endif
2277 }
2278
2279 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2280 {
2281 struct kvm *kvm = me->kvm;
2282 struct kvm_vcpu *vcpu;
2283 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2284 int yielded = 0;
2285 int try = 3;
2286 int pass;
2287 int i;
2288
2289 kvm_vcpu_set_in_spin_loop(me, true);
2290 /*
2291 * We boost the priority of a VCPU that is runnable but not
2292 * currently running, because it got preempted by something
2293 * else and called schedule in __vcpu_run. Hopefully that
2294 * VCPU is holding the lock that we need and will release it.
2295 * We approximate round-robin by starting at the last boosted VCPU.
2296 */
2297 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2298 kvm_for_each_vcpu(i, vcpu, kvm) {
2299 if (!pass && i <= last_boosted_vcpu) {
2300 i = last_boosted_vcpu;
2301 continue;
2302 } else if (pass && i > last_boosted_vcpu)
2303 break;
2304 if (!ACCESS_ONCE(vcpu->preempted))
2305 continue;
2306 if (vcpu == me)
2307 continue;
2308 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2309 continue;
2310 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2311 continue;
2312 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2313 continue;
2314
2315 yielded = kvm_vcpu_yield_to(vcpu);
2316 if (yielded > 0) {
2317 kvm->last_boosted_vcpu = i;
2318 break;
2319 } else if (yielded < 0) {
2320 try--;
2321 if (!try)
2322 break;
2323 }
2324 }
2325 }
2326 kvm_vcpu_set_in_spin_loop(me, false);
2327
2328 /* Ensure vcpu is not eligible during next spinloop */
2329 kvm_vcpu_set_dy_eligible(me, false);
2330 }
2331 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2332
2333 static int kvm_vcpu_fault(struct vm_fault *vmf)
2334 {
2335 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2336 struct page *page;
2337
2338 if (vmf->pgoff == 0)
2339 page = virt_to_page(vcpu->run);
2340 #ifdef CONFIG_X86
2341 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2342 page = virt_to_page(vcpu->arch.pio_data);
2343 #endif
2344 #ifdef CONFIG_KVM_MMIO
2345 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2346 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2347 #endif
2348 else
2349 return kvm_arch_vcpu_fault(vcpu, vmf);
2350 get_page(page);
2351 vmf->page = page;
2352 return 0;
2353 }
2354
2355 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2356 .fault = kvm_vcpu_fault,
2357 };
2358
2359 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2360 {
2361 vma->vm_ops = &kvm_vcpu_vm_ops;
2362 return 0;
2363 }
2364
2365 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2366 {
2367 struct kvm_vcpu *vcpu = filp->private_data;
2368
2369 debugfs_remove_recursive(vcpu->debugfs_dentry);
2370 kvm_put_kvm(vcpu->kvm);
2371 return 0;
2372 }
2373
2374 static struct file_operations kvm_vcpu_fops = {
2375 .release = kvm_vcpu_release,
2376 .unlocked_ioctl = kvm_vcpu_ioctl,
2377 #ifdef CONFIG_KVM_COMPAT
2378 .compat_ioctl = kvm_vcpu_compat_ioctl,
2379 #endif
2380 .mmap = kvm_vcpu_mmap,
2381 .llseek = noop_llseek,
2382 };
2383
2384 /*
2385 * Allocates an inode for the vcpu.
2386 */
2387 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2388 {
2389 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2390 }
2391
2392 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2393 {
2394 char dir_name[ITOA_MAX_LEN * 2];
2395 int ret;
2396
2397 if (!kvm_arch_has_vcpu_debugfs())
2398 return 0;
2399
2400 if (!debugfs_initialized())
2401 return 0;
2402
2403 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2404 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2405 vcpu->kvm->debugfs_dentry);
2406 if (!vcpu->debugfs_dentry)
2407 return -ENOMEM;
2408
2409 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2410 if (ret < 0) {
2411 debugfs_remove_recursive(vcpu->debugfs_dentry);
2412 return ret;
2413 }
2414
2415 return 0;
2416 }
2417
2418 /*
2419 * Creates some virtual cpus. Good luck creating more than one.
2420 */
2421 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2422 {
2423 int r;
2424 struct kvm_vcpu *vcpu;
2425
2426 if (id >= KVM_MAX_VCPU_ID)
2427 return -EINVAL;
2428
2429 mutex_lock(&kvm->lock);
2430 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2431 mutex_unlock(&kvm->lock);
2432 return -EINVAL;
2433 }
2434
2435 kvm->created_vcpus++;
2436 mutex_unlock(&kvm->lock);
2437
2438 vcpu = kvm_arch_vcpu_create(kvm, id);
2439 if (IS_ERR(vcpu)) {
2440 r = PTR_ERR(vcpu);
2441 goto vcpu_decrement;
2442 }
2443
2444 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2445
2446 r = kvm_arch_vcpu_setup(vcpu);
2447 if (r)
2448 goto vcpu_destroy;
2449
2450 r = kvm_create_vcpu_debugfs(vcpu);
2451 if (r)
2452 goto vcpu_destroy;
2453
2454 mutex_lock(&kvm->lock);
2455 if (kvm_get_vcpu_by_id(kvm, id)) {
2456 r = -EEXIST;
2457 goto unlock_vcpu_destroy;
2458 }
2459
2460 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2461
2462 /* Now it's all set up, let userspace reach it */
2463 kvm_get_kvm(kvm);
2464 r = create_vcpu_fd(vcpu);
2465 if (r < 0) {
2466 kvm_put_kvm(kvm);
2467 goto unlock_vcpu_destroy;
2468 }
2469
2470 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2471
2472 /*
2473 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2474 * before kvm->online_vcpu's incremented value.
2475 */
2476 smp_wmb();
2477 atomic_inc(&kvm->online_vcpus);
2478
2479 mutex_unlock(&kvm->lock);
2480 kvm_arch_vcpu_postcreate(vcpu);
2481 return r;
2482
2483 unlock_vcpu_destroy:
2484 mutex_unlock(&kvm->lock);
2485 debugfs_remove_recursive(vcpu->debugfs_dentry);
2486 vcpu_destroy:
2487 kvm_arch_vcpu_destroy(vcpu);
2488 vcpu_decrement:
2489 mutex_lock(&kvm->lock);
2490 kvm->created_vcpus--;
2491 mutex_unlock(&kvm->lock);
2492 return r;
2493 }
2494
2495 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2496 {
2497 if (sigset) {
2498 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2499 vcpu->sigset_active = 1;
2500 vcpu->sigset = *sigset;
2501 } else
2502 vcpu->sigset_active = 0;
2503 return 0;
2504 }
2505
2506 static long kvm_vcpu_ioctl(struct file *filp,
2507 unsigned int ioctl, unsigned long arg)
2508 {
2509 struct kvm_vcpu *vcpu = filp->private_data;
2510 void __user *argp = (void __user *)arg;
2511 int r;
2512 struct kvm_fpu *fpu = NULL;
2513 struct kvm_sregs *kvm_sregs = NULL;
2514
2515 if (vcpu->kvm->mm != current->mm)
2516 return -EIO;
2517
2518 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2519 return -EINVAL;
2520
2521 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2522 /*
2523 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2524 * so vcpu_load() would break it.
2525 */
2526 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2527 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2528 #endif
2529
2530
2531 r = vcpu_load(vcpu);
2532 if (r)
2533 return r;
2534 switch (ioctl) {
2535 case KVM_RUN: {
2536 struct pid *oldpid;
2537 r = -EINVAL;
2538 if (arg)
2539 goto out;
2540 oldpid = rcu_access_pointer(vcpu->pid);
2541 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2542 /* The thread running this VCPU changed. */
2543 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2544
2545 rcu_assign_pointer(vcpu->pid, newpid);
2546 if (oldpid)
2547 synchronize_rcu();
2548 put_pid(oldpid);
2549 }
2550 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2551 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2552 break;
2553 }
2554 case KVM_GET_REGS: {
2555 struct kvm_regs *kvm_regs;
2556
2557 r = -ENOMEM;
2558 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2559 if (!kvm_regs)
2560 goto out;
2561 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2562 if (r)
2563 goto out_free1;
2564 r = -EFAULT;
2565 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2566 goto out_free1;
2567 r = 0;
2568 out_free1:
2569 kfree(kvm_regs);
2570 break;
2571 }
2572 case KVM_SET_REGS: {
2573 struct kvm_regs *kvm_regs;
2574
2575 r = -ENOMEM;
2576 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2577 if (IS_ERR(kvm_regs)) {
2578 r = PTR_ERR(kvm_regs);
2579 goto out;
2580 }
2581 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2582 kfree(kvm_regs);
2583 break;
2584 }
2585 case KVM_GET_SREGS: {
2586 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2587 r = -ENOMEM;
2588 if (!kvm_sregs)
2589 goto out;
2590 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2591 if (r)
2592 goto out;
2593 r = -EFAULT;
2594 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2595 goto out;
2596 r = 0;
2597 break;
2598 }
2599 case KVM_SET_SREGS: {
2600 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2601 if (IS_ERR(kvm_sregs)) {
2602 r = PTR_ERR(kvm_sregs);
2603 kvm_sregs = NULL;
2604 goto out;
2605 }
2606 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2607 break;
2608 }
2609 case KVM_GET_MP_STATE: {
2610 struct kvm_mp_state mp_state;
2611
2612 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2613 if (r)
2614 goto out;
2615 r = -EFAULT;
2616 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2617 goto out;
2618 r = 0;
2619 break;
2620 }
2621 case KVM_SET_MP_STATE: {
2622 struct kvm_mp_state mp_state;
2623
2624 r = -EFAULT;
2625 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2626 goto out;
2627 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2628 break;
2629 }
2630 case KVM_TRANSLATE: {
2631 struct kvm_translation tr;
2632
2633 r = -EFAULT;
2634 if (copy_from_user(&tr, argp, sizeof(tr)))
2635 goto out;
2636 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2637 if (r)
2638 goto out;
2639 r = -EFAULT;
2640 if (copy_to_user(argp, &tr, sizeof(tr)))
2641 goto out;
2642 r = 0;
2643 break;
2644 }
2645 case KVM_SET_GUEST_DEBUG: {
2646 struct kvm_guest_debug dbg;
2647
2648 r = -EFAULT;
2649 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2650 goto out;
2651 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2652 break;
2653 }
2654 case KVM_SET_SIGNAL_MASK: {
2655 struct kvm_signal_mask __user *sigmask_arg = argp;
2656 struct kvm_signal_mask kvm_sigmask;
2657 sigset_t sigset, *p;
2658
2659 p = NULL;
2660 if (argp) {
2661 r = -EFAULT;
2662 if (copy_from_user(&kvm_sigmask, argp,
2663 sizeof(kvm_sigmask)))
2664 goto out;
2665 r = -EINVAL;
2666 if (kvm_sigmask.len != sizeof(sigset))
2667 goto out;
2668 r = -EFAULT;
2669 if (copy_from_user(&sigset, sigmask_arg->sigset,
2670 sizeof(sigset)))
2671 goto out;
2672 p = &sigset;
2673 }
2674 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2675 break;
2676 }
2677 case KVM_GET_FPU: {
2678 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2679 r = -ENOMEM;
2680 if (!fpu)
2681 goto out;
2682 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2683 if (r)
2684 goto out;
2685 r = -EFAULT;
2686 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2687 goto out;
2688 r = 0;
2689 break;
2690 }
2691 case KVM_SET_FPU: {
2692 fpu = memdup_user(argp, sizeof(*fpu));
2693 if (IS_ERR(fpu)) {
2694 r = PTR_ERR(fpu);
2695 fpu = NULL;
2696 goto out;
2697 }
2698 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2699 break;
2700 }
2701 default:
2702 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2703 }
2704 out:
2705 vcpu_put(vcpu);
2706 kfree(fpu);
2707 kfree(kvm_sregs);
2708 return r;
2709 }
2710
2711 #ifdef CONFIG_KVM_COMPAT
2712 static long kvm_vcpu_compat_ioctl(struct file *filp,
2713 unsigned int ioctl, unsigned long arg)
2714 {
2715 struct kvm_vcpu *vcpu = filp->private_data;
2716 void __user *argp = compat_ptr(arg);
2717 int r;
2718
2719 if (vcpu->kvm->mm != current->mm)
2720 return -EIO;
2721
2722 switch (ioctl) {
2723 case KVM_SET_SIGNAL_MASK: {
2724 struct kvm_signal_mask __user *sigmask_arg = argp;
2725 struct kvm_signal_mask kvm_sigmask;
2726 compat_sigset_t csigset;
2727 sigset_t sigset;
2728
2729 if (argp) {
2730 r = -EFAULT;
2731 if (copy_from_user(&kvm_sigmask, argp,
2732 sizeof(kvm_sigmask)))
2733 goto out;
2734 r = -EINVAL;
2735 if (kvm_sigmask.len != sizeof(csigset))
2736 goto out;
2737 r = -EFAULT;
2738 if (copy_from_user(&csigset, sigmask_arg->sigset,
2739 sizeof(csigset)))
2740 goto out;
2741 sigset_from_compat(&sigset, &csigset);
2742 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2743 } else
2744 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2745 break;
2746 }
2747 default:
2748 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2749 }
2750
2751 out:
2752 return r;
2753 }
2754 #endif
2755
2756 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2757 int (*accessor)(struct kvm_device *dev,
2758 struct kvm_device_attr *attr),
2759 unsigned long arg)
2760 {
2761 struct kvm_device_attr attr;
2762
2763 if (!accessor)
2764 return -EPERM;
2765
2766 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2767 return -EFAULT;
2768
2769 return accessor(dev, &attr);
2770 }
2771
2772 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2773 unsigned long arg)
2774 {
2775 struct kvm_device *dev = filp->private_data;
2776
2777 switch (ioctl) {
2778 case KVM_SET_DEVICE_ATTR:
2779 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2780 case KVM_GET_DEVICE_ATTR:
2781 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2782 case KVM_HAS_DEVICE_ATTR:
2783 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2784 default:
2785 if (dev->ops->ioctl)
2786 return dev->ops->ioctl(dev, ioctl, arg);
2787
2788 return -ENOTTY;
2789 }
2790 }
2791
2792 static int kvm_device_release(struct inode *inode, struct file *filp)
2793 {
2794 struct kvm_device *dev = filp->private_data;
2795 struct kvm *kvm = dev->kvm;
2796
2797 kvm_put_kvm(kvm);
2798 return 0;
2799 }
2800
2801 static const struct file_operations kvm_device_fops = {
2802 .unlocked_ioctl = kvm_device_ioctl,
2803 #ifdef CONFIG_KVM_COMPAT
2804 .compat_ioctl = kvm_device_ioctl,
2805 #endif
2806 .release = kvm_device_release,
2807 };
2808
2809 struct kvm_device *kvm_device_from_filp(struct file *filp)
2810 {
2811 if (filp->f_op != &kvm_device_fops)
2812 return NULL;
2813
2814 return filp->private_data;
2815 }
2816
2817 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2818 #ifdef CONFIG_KVM_MPIC
2819 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2820 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2821 #endif
2822 };
2823
2824 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2825 {
2826 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2827 return -ENOSPC;
2828
2829 if (kvm_device_ops_table[type] != NULL)
2830 return -EEXIST;
2831
2832 kvm_device_ops_table[type] = ops;
2833 return 0;
2834 }
2835
2836 void kvm_unregister_device_ops(u32 type)
2837 {
2838 if (kvm_device_ops_table[type] != NULL)
2839 kvm_device_ops_table[type] = NULL;
2840 }
2841
2842 static int kvm_ioctl_create_device(struct kvm *kvm,
2843 struct kvm_create_device *cd)
2844 {
2845 struct kvm_device_ops *ops = NULL;
2846 struct kvm_device *dev;
2847 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2848 int ret;
2849
2850 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2851 return -ENODEV;
2852
2853 ops = kvm_device_ops_table[cd->type];
2854 if (ops == NULL)
2855 return -ENODEV;
2856
2857 if (test)
2858 return 0;
2859
2860 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2861 if (!dev)
2862 return -ENOMEM;
2863
2864 dev->ops = ops;
2865 dev->kvm = kvm;
2866
2867 mutex_lock(&kvm->lock);
2868 ret = ops->create(dev, cd->type);
2869 if (ret < 0) {
2870 mutex_unlock(&kvm->lock);
2871 kfree(dev);
2872 return ret;
2873 }
2874 list_add(&dev->vm_node, &kvm->devices);
2875 mutex_unlock(&kvm->lock);
2876
2877 if (ops->init)
2878 ops->init(dev);
2879
2880 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2881 if (ret < 0) {
2882 mutex_lock(&kvm->lock);
2883 list_del(&dev->vm_node);
2884 mutex_unlock(&kvm->lock);
2885 ops->destroy(dev);
2886 return ret;
2887 }
2888
2889 kvm_get_kvm(kvm);
2890 cd->fd = ret;
2891 return 0;
2892 }
2893
2894 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2895 {
2896 switch (arg) {
2897 case KVM_CAP_USER_MEMORY:
2898 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2899 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2900 case KVM_CAP_INTERNAL_ERROR_DATA:
2901 #ifdef CONFIG_HAVE_KVM_MSI
2902 case KVM_CAP_SIGNAL_MSI:
2903 #endif
2904 #ifdef CONFIG_HAVE_KVM_IRQFD
2905 case KVM_CAP_IRQFD:
2906 case KVM_CAP_IRQFD_RESAMPLE:
2907 #endif
2908 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2909 case KVM_CAP_CHECK_EXTENSION_VM:
2910 return 1;
2911 #ifdef CONFIG_KVM_MMIO
2912 case KVM_CAP_COALESCED_MMIO:
2913 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2914 #endif
2915 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2916 case KVM_CAP_IRQ_ROUTING:
2917 return KVM_MAX_IRQ_ROUTES;
2918 #endif
2919 #if KVM_ADDRESS_SPACE_NUM > 1
2920 case KVM_CAP_MULTI_ADDRESS_SPACE:
2921 return KVM_ADDRESS_SPACE_NUM;
2922 #endif
2923 case KVM_CAP_MAX_VCPU_ID:
2924 return KVM_MAX_VCPU_ID;
2925 default:
2926 break;
2927 }
2928 return kvm_vm_ioctl_check_extension(kvm, arg);
2929 }
2930
2931 static long kvm_vm_ioctl(struct file *filp,
2932 unsigned int ioctl, unsigned long arg)
2933 {
2934 struct kvm *kvm = filp->private_data;
2935 void __user *argp = (void __user *)arg;
2936 int r;
2937
2938 if (kvm->mm != current->mm)
2939 return -EIO;
2940 switch (ioctl) {
2941 case KVM_CREATE_VCPU:
2942 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2943 break;
2944 case KVM_SET_USER_MEMORY_REGION: {
2945 struct kvm_userspace_memory_region kvm_userspace_mem;
2946
2947 r = -EFAULT;
2948 if (copy_from_user(&kvm_userspace_mem, argp,
2949 sizeof(kvm_userspace_mem)))
2950 goto out;
2951
2952 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2953 break;
2954 }
2955 case KVM_GET_DIRTY_LOG: {
2956 struct kvm_dirty_log log;
2957
2958 r = -EFAULT;
2959 if (copy_from_user(&log, argp, sizeof(log)))
2960 goto out;
2961 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2962 break;
2963 }
2964 #ifdef CONFIG_KVM_MMIO
2965 case KVM_REGISTER_COALESCED_MMIO: {
2966 struct kvm_coalesced_mmio_zone zone;
2967
2968 r = -EFAULT;
2969 if (copy_from_user(&zone, argp, sizeof(zone)))
2970 goto out;
2971 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2972 break;
2973 }
2974 case KVM_UNREGISTER_COALESCED_MMIO: {
2975 struct kvm_coalesced_mmio_zone zone;
2976
2977 r = -EFAULT;
2978 if (copy_from_user(&zone, argp, sizeof(zone)))
2979 goto out;
2980 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2981 break;
2982 }
2983 #endif
2984 case KVM_IRQFD: {
2985 struct kvm_irqfd data;
2986
2987 r = -EFAULT;
2988 if (copy_from_user(&data, argp, sizeof(data)))
2989 goto out;
2990 r = kvm_irqfd(kvm, &data);
2991 break;
2992 }
2993 case KVM_IOEVENTFD: {
2994 struct kvm_ioeventfd data;
2995
2996 r = -EFAULT;
2997 if (copy_from_user(&data, argp, sizeof(data)))
2998 goto out;
2999 r = kvm_ioeventfd(kvm, &data);
3000 break;
3001 }
3002 #ifdef CONFIG_HAVE_KVM_MSI
3003 case KVM_SIGNAL_MSI: {
3004 struct kvm_msi msi;
3005
3006 r = -EFAULT;
3007 if (copy_from_user(&msi, argp, sizeof(msi)))
3008 goto out;
3009 r = kvm_send_userspace_msi(kvm, &msi);
3010 break;
3011 }
3012 #endif
3013 #ifdef __KVM_HAVE_IRQ_LINE
3014 case KVM_IRQ_LINE_STATUS:
3015 case KVM_IRQ_LINE: {
3016 struct kvm_irq_level irq_event;
3017
3018 r = -EFAULT;
3019 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3020 goto out;
3021
3022 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3023 ioctl == KVM_IRQ_LINE_STATUS);
3024 if (r)
3025 goto out;
3026
3027 r = -EFAULT;
3028 if (ioctl == KVM_IRQ_LINE_STATUS) {
3029 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3030 goto out;
3031 }
3032
3033 r = 0;
3034 break;
3035 }
3036 #endif
3037 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3038 case KVM_SET_GSI_ROUTING: {
3039 struct kvm_irq_routing routing;
3040 struct kvm_irq_routing __user *urouting;
3041 struct kvm_irq_routing_entry *entries = NULL;
3042
3043 r = -EFAULT;
3044 if (copy_from_user(&routing, argp, sizeof(routing)))
3045 goto out;
3046 r = -EINVAL;
3047 if (!kvm_arch_can_set_irq_routing(kvm))
3048 goto out;
3049 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3050 goto out;
3051 if (routing.flags)
3052 goto out;
3053 if (routing.nr) {
3054 r = -ENOMEM;
3055 entries = vmalloc(routing.nr * sizeof(*entries));
3056 if (!entries)
3057 goto out;
3058 r = -EFAULT;
3059 urouting = argp;
3060 if (copy_from_user(entries, urouting->entries,
3061 routing.nr * sizeof(*entries)))
3062 goto out_free_irq_routing;
3063 }
3064 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3065 routing.flags);
3066 out_free_irq_routing:
3067 vfree(entries);
3068 break;
3069 }
3070 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3071 case KVM_CREATE_DEVICE: {
3072 struct kvm_create_device cd;
3073
3074 r = -EFAULT;
3075 if (copy_from_user(&cd, argp, sizeof(cd)))
3076 goto out;
3077
3078 r = kvm_ioctl_create_device(kvm, &cd);
3079 if (r)
3080 goto out;
3081
3082 r = -EFAULT;
3083 if (copy_to_user(argp, &cd, sizeof(cd)))
3084 goto out;
3085
3086 r = 0;
3087 break;
3088 }
3089 case KVM_CHECK_EXTENSION:
3090 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3091 break;
3092 default:
3093 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3094 }
3095 out:
3096 return r;
3097 }
3098
3099 #ifdef CONFIG_KVM_COMPAT
3100 struct compat_kvm_dirty_log {
3101 __u32 slot;
3102 __u32 padding1;
3103 union {
3104 compat_uptr_t dirty_bitmap; /* one bit per page */
3105 __u64 padding2;
3106 };
3107 };
3108
3109 static long kvm_vm_compat_ioctl(struct file *filp,
3110 unsigned int ioctl, unsigned long arg)
3111 {
3112 struct kvm *kvm = filp->private_data;
3113 int r;
3114
3115 if (kvm->mm != current->mm)
3116 return -EIO;
3117 switch (ioctl) {
3118 case KVM_GET_DIRTY_LOG: {
3119 struct compat_kvm_dirty_log compat_log;
3120 struct kvm_dirty_log log;
3121
3122 if (copy_from_user(&compat_log, (void __user *)arg,
3123 sizeof(compat_log)))
3124 return -EFAULT;
3125 log.slot = compat_log.slot;
3126 log.padding1 = compat_log.padding1;
3127 log.padding2 = compat_log.padding2;
3128 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3129
3130 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3131 break;
3132 }
3133 default:
3134 r = kvm_vm_ioctl(filp, ioctl, arg);
3135 }
3136 return r;
3137 }
3138 #endif
3139
3140 static struct file_operations kvm_vm_fops = {
3141 .release = kvm_vm_release,
3142 .unlocked_ioctl = kvm_vm_ioctl,
3143 #ifdef CONFIG_KVM_COMPAT
3144 .compat_ioctl = kvm_vm_compat_ioctl,
3145 #endif
3146 .llseek = noop_llseek,
3147 };
3148
3149 static int kvm_dev_ioctl_create_vm(unsigned long type)
3150 {
3151 int r;
3152 struct kvm *kvm;
3153 struct file *file;
3154
3155 kvm = kvm_create_vm(type);
3156 if (IS_ERR(kvm))
3157 return PTR_ERR(kvm);
3158 #ifdef CONFIG_KVM_MMIO
3159 r = kvm_coalesced_mmio_init(kvm);
3160 if (r < 0) {
3161 kvm_put_kvm(kvm);
3162 return r;
3163 }
3164 #endif
3165 r = get_unused_fd_flags(O_CLOEXEC);
3166 if (r < 0) {
3167 kvm_put_kvm(kvm);
3168 return r;
3169 }
3170 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3171 if (IS_ERR(file)) {
3172 put_unused_fd(r);
3173 kvm_put_kvm(kvm);
3174 return PTR_ERR(file);
3175 }
3176
3177 /*
3178 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3179 * already set, with ->release() being kvm_vm_release(). In error
3180 * cases it will be called by the final fput(file) and will take
3181 * care of doing kvm_put_kvm(kvm).
3182 */
3183 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3184 put_unused_fd(r);
3185 fput(file);
3186 return -ENOMEM;
3187 }
3188 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3189
3190 fd_install(r, file);
3191 return r;
3192 }
3193
3194 static long kvm_dev_ioctl(struct file *filp,
3195 unsigned int ioctl, unsigned long arg)
3196 {
3197 long r = -EINVAL;
3198
3199 switch (ioctl) {
3200 case KVM_GET_API_VERSION:
3201 if (arg)
3202 goto out;
3203 r = KVM_API_VERSION;
3204 break;
3205 case KVM_CREATE_VM:
3206 r = kvm_dev_ioctl_create_vm(arg);
3207 break;
3208 case KVM_CHECK_EXTENSION:
3209 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3210 break;
3211 case KVM_GET_VCPU_MMAP_SIZE:
3212 if (arg)
3213 goto out;
3214 r = PAGE_SIZE; /* struct kvm_run */
3215 #ifdef CONFIG_X86
3216 r += PAGE_SIZE; /* pio data page */
3217 #endif
3218 #ifdef CONFIG_KVM_MMIO
3219 r += PAGE_SIZE; /* coalesced mmio ring page */
3220 #endif
3221 break;
3222 case KVM_TRACE_ENABLE:
3223 case KVM_TRACE_PAUSE:
3224 case KVM_TRACE_DISABLE:
3225 r = -EOPNOTSUPP;
3226 break;
3227 default:
3228 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3229 }
3230 out:
3231 return r;
3232 }
3233
3234 static struct file_operations kvm_chardev_ops = {
3235 .unlocked_ioctl = kvm_dev_ioctl,
3236 .compat_ioctl = kvm_dev_ioctl,
3237 .llseek = noop_llseek,
3238 };
3239
3240 static struct miscdevice kvm_dev = {
3241 KVM_MINOR,
3242 "kvm",
3243 &kvm_chardev_ops,
3244 };
3245
3246 static void hardware_enable_nolock(void *junk)
3247 {
3248 int cpu = raw_smp_processor_id();
3249 int r;
3250
3251 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3252 return;
3253
3254 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3255
3256 r = kvm_arch_hardware_enable();
3257
3258 if (r) {
3259 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3260 atomic_inc(&hardware_enable_failed);
3261 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3262 }
3263 }
3264
3265 static int kvm_starting_cpu(unsigned int cpu)
3266 {
3267 raw_spin_lock(&kvm_count_lock);
3268 if (kvm_usage_count)
3269 hardware_enable_nolock(NULL);
3270 raw_spin_unlock(&kvm_count_lock);
3271 return 0;
3272 }
3273
3274 static void hardware_disable_nolock(void *junk)
3275 {
3276 int cpu = raw_smp_processor_id();
3277
3278 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3279 return;
3280 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3281 kvm_arch_hardware_disable();
3282 }
3283
3284 static int kvm_dying_cpu(unsigned int cpu)
3285 {
3286 raw_spin_lock(&kvm_count_lock);
3287 if (kvm_usage_count)
3288 hardware_disable_nolock(NULL);
3289 raw_spin_unlock(&kvm_count_lock);
3290 return 0;
3291 }
3292
3293 static void hardware_disable_all_nolock(void)
3294 {
3295 BUG_ON(!kvm_usage_count);
3296
3297 kvm_usage_count--;
3298 if (!kvm_usage_count)
3299 on_each_cpu(hardware_disable_nolock, NULL, 1);
3300 }
3301
3302 static void hardware_disable_all(void)
3303 {
3304 raw_spin_lock(&kvm_count_lock);
3305 hardware_disable_all_nolock();
3306 raw_spin_unlock(&kvm_count_lock);
3307 }
3308
3309 static int hardware_enable_all(void)
3310 {
3311 int r = 0;
3312
3313 raw_spin_lock(&kvm_count_lock);
3314
3315 kvm_usage_count++;
3316 if (kvm_usage_count == 1) {
3317 atomic_set(&hardware_enable_failed, 0);
3318 on_each_cpu(hardware_enable_nolock, NULL, 1);
3319
3320 if (atomic_read(&hardware_enable_failed)) {
3321 hardware_disable_all_nolock();
3322 r = -EBUSY;
3323 }
3324 }
3325
3326 raw_spin_unlock(&kvm_count_lock);
3327
3328 return r;
3329 }
3330
3331 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3332 void *v)
3333 {
3334 /*
3335 * Some (well, at least mine) BIOSes hang on reboot if
3336 * in vmx root mode.
3337 *
3338 * And Intel TXT required VMX off for all cpu when system shutdown.
3339 */
3340 pr_info("kvm: exiting hardware virtualization\n");
3341 kvm_rebooting = true;
3342 on_each_cpu(hardware_disable_nolock, NULL, 1);
3343 return NOTIFY_OK;
3344 }
3345
3346 static struct notifier_block kvm_reboot_notifier = {
3347 .notifier_call = kvm_reboot,
3348 .priority = 0,
3349 };
3350
3351 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3352 {
3353 int i;
3354
3355 for (i = 0; i < bus->dev_count; i++) {
3356 struct kvm_io_device *pos = bus->range[i].dev;
3357
3358 kvm_iodevice_destructor(pos);
3359 }
3360 kfree(bus);
3361 }
3362
3363 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3364 const struct kvm_io_range *r2)
3365 {
3366 gpa_t addr1 = r1->addr;
3367 gpa_t addr2 = r2->addr;
3368
3369 if (addr1 < addr2)
3370 return -1;
3371
3372 /* If r2->len == 0, match the exact address. If r2->len != 0,
3373 * accept any overlapping write. Any order is acceptable for
3374 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3375 * we process all of them.
3376 */
3377 if (r2->len) {
3378 addr1 += r1->len;
3379 addr2 += r2->len;
3380 }
3381
3382 if (addr1 > addr2)
3383 return 1;
3384
3385 return 0;
3386 }
3387
3388 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3389 {
3390 return kvm_io_bus_cmp(p1, p2);
3391 }
3392
3393 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3394 gpa_t addr, int len)
3395 {
3396 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3397 .addr = addr,
3398 .len = len,
3399 .dev = dev,
3400 };
3401
3402 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3403 kvm_io_bus_sort_cmp, NULL);
3404
3405 return 0;
3406 }
3407
3408 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3409 gpa_t addr, int len)
3410 {
3411 struct kvm_io_range *range, key;
3412 int off;
3413
3414 key = (struct kvm_io_range) {
3415 .addr = addr,
3416 .len = len,
3417 };
3418
3419 range = bsearch(&key, bus->range, bus->dev_count,
3420 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3421 if (range == NULL)
3422 return -ENOENT;
3423
3424 off = range - bus->range;
3425
3426 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3427 off--;
3428
3429 return off;
3430 }
3431
3432 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3433 struct kvm_io_range *range, const void *val)
3434 {
3435 int idx;
3436
3437 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3438 if (idx < 0)
3439 return -EOPNOTSUPP;
3440
3441 while (idx < bus->dev_count &&
3442 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3443 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3444 range->len, val))
3445 return idx;
3446 idx++;
3447 }
3448
3449 return -EOPNOTSUPP;
3450 }
3451
3452 /* kvm_io_bus_write - called under kvm->slots_lock */
3453 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3454 int len, const void *val)
3455 {
3456 struct kvm_io_bus *bus;
3457 struct kvm_io_range range;
3458 int r;
3459
3460 range = (struct kvm_io_range) {
3461 .addr = addr,
3462 .len = len,
3463 };
3464
3465 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3466 if (!bus)
3467 return -ENOMEM;
3468 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3469 return r < 0 ? r : 0;
3470 }
3471
3472 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3473 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3474 gpa_t addr, int len, const void *val, long cookie)
3475 {
3476 struct kvm_io_bus *bus;
3477 struct kvm_io_range range;
3478
3479 range = (struct kvm_io_range) {
3480 .addr = addr,
3481 .len = len,
3482 };
3483
3484 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3485 if (!bus)
3486 return -ENOMEM;
3487
3488 /* First try the device referenced by cookie. */
3489 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3490 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3491 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3492 val))
3493 return cookie;
3494
3495 /*
3496 * cookie contained garbage; fall back to search and return the
3497 * correct cookie value.
3498 */
3499 return __kvm_io_bus_write(vcpu, bus, &range, val);
3500 }
3501
3502 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3503 struct kvm_io_range *range, void *val)
3504 {
3505 int idx;
3506
3507 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3508 if (idx < 0)
3509 return -EOPNOTSUPP;
3510
3511 while (idx < bus->dev_count &&
3512 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3513 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3514 range->len, val))
3515 return idx;
3516 idx++;
3517 }
3518
3519 return -EOPNOTSUPP;
3520 }
3521 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3522
3523 /* kvm_io_bus_read - called under kvm->slots_lock */
3524 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3525 int len, void *val)
3526 {
3527 struct kvm_io_bus *bus;
3528 struct kvm_io_range range;
3529 int r;
3530
3531 range = (struct kvm_io_range) {
3532 .addr = addr,
3533 .len = len,
3534 };
3535
3536 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3537 if (!bus)
3538 return -ENOMEM;
3539 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3540 return r < 0 ? r : 0;
3541 }
3542
3543
3544 /* Caller must hold slots_lock. */
3545 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3546 int len, struct kvm_io_device *dev)
3547 {
3548 struct kvm_io_bus *new_bus, *bus;
3549
3550 bus = kvm_get_bus(kvm, bus_idx);
3551 if (!bus)
3552 return -ENOMEM;
3553
3554 /* exclude ioeventfd which is limited by maximum fd */
3555 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3556 return -ENOSPC;
3557
3558 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3559 sizeof(struct kvm_io_range)), GFP_KERNEL);
3560 if (!new_bus)
3561 return -ENOMEM;
3562 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3563 sizeof(struct kvm_io_range)));
3564 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3565 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3566 synchronize_srcu_expedited(&kvm->srcu);
3567 kfree(bus);
3568
3569 return 0;
3570 }
3571
3572 /* Caller must hold slots_lock. */
3573 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3574 struct kvm_io_device *dev)
3575 {
3576 int i;
3577 struct kvm_io_bus *new_bus, *bus;
3578
3579 bus = kvm_get_bus(kvm, bus_idx);
3580 if (!bus)
3581 return;
3582
3583 for (i = 0; i < bus->dev_count; i++)
3584 if (bus->range[i].dev == dev) {
3585 break;
3586 }
3587
3588 if (i == bus->dev_count)
3589 return;
3590
3591 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3592 sizeof(struct kvm_io_range)), GFP_KERNEL);
3593 if (!new_bus) {
3594 pr_err("kvm: failed to shrink bus, removing it completely\n");
3595 goto broken;
3596 }
3597
3598 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3599 new_bus->dev_count--;
3600 memcpy(new_bus->range + i, bus->range + i + 1,
3601 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3602
3603 broken:
3604 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3605 synchronize_srcu_expedited(&kvm->srcu);
3606 kfree(bus);
3607 return;
3608 }
3609
3610 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3611 gpa_t addr)
3612 {
3613 struct kvm_io_bus *bus;
3614 int dev_idx, srcu_idx;
3615 struct kvm_io_device *iodev = NULL;
3616
3617 srcu_idx = srcu_read_lock(&kvm->srcu);
3618
3619 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3620 if (!bus)
3621 goto out_unlock;
3622
3623 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3624 if (dev_idx < 0)
3625 goto out_unlock;
3626
3627 iodev = bus->range[dev_idx].dev;
3628
3629 out_unlock:
3630 srcu_read_unlock(&kvm->srcu, srcu_idx);
3631
3632 return iodev;
3633 }
3634 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3635
3636 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3637 int (*get)(void *, u64 *), int (*set)(void *, u64),
3638 const char *fmt)
3639 {
3640 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3641 inode->i_private;
3642
3643 /* The debugfs files are a reference to the kvm struct which
3644 * is still valid when kvm_destroy_vm is called.
3645 * To avoid the race between open and the removal of the debugfs
3646 * directory we test against the users count.
3647 */
3648 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3649 return -ENOENT;
3650
3651 if (simple_attr_open(inode, file, get, set, fmt)) {
3652 kvm_put_kvm(stat_data->kvm);
3653 return -ENOMEM;
3654 }
3655
3656 return 0;
3657 }
3658
3659 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3660 {
3661 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3662 inode->i_private;
3663
3664 simple_attr_release(inode, file);
3665 kvm_put_kvm(stat_data->kvm);
3666
3667 return 0;
3668 }
3669
3670 static int vm_stat_get_per_vm(void *data, u64 *val)
3671 {
3672 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3673
3674 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3675
3676 return 0;
3677 }
3678
3679 static int vm_stat_clear_per_vm(void *data, u64 val)
3680 {
3681 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3682
3683 if (val)
3684 return -EINVAL;
3685
3686 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3687
3688 return 0;
3689 }
3690
3691 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3692 {
3693 __simple_attr_check_format("%llu\n", 0ull);
3694 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3695 vm_stat_clear_per_vm, "%llu\n");
3696 }
3697
3698 static const struct file_operations vm_stat_get_per_vm_fops = {
3699 .owner = THIS_MODULE,
3700 .open = vm_stat_get_per_vm_open,
3701 .release = kvm_debugfs_release,
3702 .read = simple_attr_read,
3703 .write = simple_attr_write,
3704 .llseek = no_llseek,
3705 };
3706
3707 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3708 {
3709 int i;
3710 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3711 struct kvm_vcpu *vcpu;
3712
3713 *val = 0;
3714
3715 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3716 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3717
3718 return 0;
3719 }
3720
3721 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3722 {
3723 int i;
3724 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3725 struct kvm_vcpu *vcpu;
3726
3727 if (val)
3728 return -EINVAL;
3729
3730 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3731 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3732
3733 return 0;
3734 }
3735
3736 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3737 {
3738 __simple_attr_check_format("%llu\n", 0ull);
3739 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3740 vcpu_stat_clear_per_vm, "%llu\n");
3741 }
3742
3743 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3744 .owner = THIS_MODULE,
3745 .open = vcpu_stat_get_per_vm_open,
3746 .release = kvm_debugfs_release,
3747 .read = simple_attr_read,
3748 .write = simple_attr_write,
3749 .llseek = no_llseek,
3750 };
3751
3752 static const struct file_operations *stat_fops_per_vm[] = {
3753 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3754 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3755 };
3756
3757 static int vm_stat_get(void *_offset, u64 *val)
3758 {
3759 unsigned offset = (long)_offset;
3760 struct kvm *kvm;
3761 struct kvm_stat_data stat_tmp = {.offset = offset};
3762 u64 tmp_val;
3763
3764 *val = 0;
3765 spin_lock(&kvm_lock);
3766 list_for_each_entry(kvm, &vm_list, vm_list) {
3767 stat_tmp.kvm = kvm;
3768 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3769 *val += tmp_val;
3770 }
3771 spin_unlock(&kvm_lock);
3772 return 0;
3773 }
3774
3775 static int vm_stat_clear(void *_offset, u64 val)
3776 {
3777 unsigned offset = (long)_offset;
3778 struct kvm *kvm;
3779 struct kvm_stat_data stat_tmp = {.offset = offset};
3780
3781 if (val)
3782 return -EINVAL;
3783
3784 spin_lock(&kvm_lock);
3785 list_for_each_entry(kvm, &vm_list, vm_list) {
3786 stat_tmp.kvm = kvm;
3787 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3788 }
3789 spin_unlock(&kvm_lock);
3790
3791 return 0;
3792 }
3793
3794 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3795
3796 static int vcpu_stat_get(void *_offset, u64 *val)
3797 {
3798 unsigned offset = (long)_offset;
3799 struct kvm *kvm;
3800 struct kvm_stat_data stat_tmp = {.offset = offset};
3801 u64 tmp_val;
3802
3803 *val = 0;
3804 spin_lock(&kvm_lock);
3805 list_for_each_entry(kvm, &vm_list, vm_list) {
3806 stat_tmp.kvm = kvm;
3807 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3808 *val += tmp_val;
3809 }
3810 spin_unlock(&kvm_lock);
3811 return 0;
3812 }
3813
3814 static int vcpu_stat_clear(void *_offset, u64 val)
3815 {
3816 unsigned offset = (long)_offset;
3817 struct kvm *kvm;
3818 struct kvm_stat_data stat_tmp = {.offset = offset};
3819
3820 if (val)
3821 return -EINVAL;
3822
3823 spin_lock(&kvm_lock);
3824 list_for_each_entry(kvm, &vm_list, vm_list) {
3825 stat_tmp.kvm = kvm;
3826 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3827 }
3828 spin_unlock(&kvm_lock);
3829
3830 return 0;
3831 }
3832
3833 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3834 "%llu\n");
3835
3836 static const struct file_operations *stat_fops[] = {
3837 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3838 [KVM_STAT_VM] = &vm_stat_fops,
3839 };
3840
3841 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3842 {
3843 struct kobj_uevent_env *env;
3844 unsigned long long created, active;
3845
3846 if (!kvm_dev.this_device || !kvm)
3847 return;
3848
3849 spin_lock(&kvm_lock);
3850 if (type == KVM_EVENT_CREATE_VM) {
3851 kvm_createvm_count++;
3852 kvm_active_vms++;
3853 } else if (type == KVM_EVENT_DESTROY_VM) {
3854 kvm_active_vms--;
3855 }
3856 created = kvm_createvm_count;
3857 active = kvm_active_vms;
3858 spin_unlock(&kvm_lock);
3859
3860 env = kzalloc(sizeof(*env), GFP_KERNEL);
3861 if (!env)
3862 return;
3863
3864 add_uevent_var(env, "CREATED=%llu", created);
3865 add_uevent_var(env, "COUNT=%llu", active);
3866
3867 if (type == KVM_EVENT_CREATE_VM) {
3868 add_uevent_var(env, "EVENT=create");
3869 kvm->userspace_pid = task_pid_nr(current);
3870 } else if (type == KVM_EVENT_DESTROY_VM) {
3871 add_uevent_var(env, "EVENT=destroy");
3872 }
3873 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3874
3875 if (kvm->debugfs_dentry) {
3876 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3877
3878 if (p) {
3879 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3880 if (!IS_ERR(tmp))
3881 add_uevent_var(env, "STATS_PATH=%s", tmp);
3882 kfree(p);
3883 }
3884 }
3885 /* no need for checks, since we are adding at most only 5 keys */
3886 env->envp[env->envp_idx++] = NULL;
3887 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3888 kfree(env);
3889 }
3890
3891 static int kvm_init_debug(void)
3892 {
3893 int r = -EEXIST;
3894 struct kvm_stats_debugfs_item *p;
3895
3896 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3897 if (kvm_debugfs_dir == NULL)
3898 goto out;
3899
3900 kvm_debugfs_num_entries = 0;
3901 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3902 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3903 (void *)(long)p->offset,
3904 stat_fops[p->kind]))
3905 goto out_dir;
3906 }
3907
3908 return 0;
3909
3910 out_dir:
3911 debugfs_remove_recursive(kvm_debugfs_dir);
3912 out:
3913 return r;
3914 }
3915
3916 static int kvm_suspend(void)
3917 {
3918 if (kvm_usage_count)
3919 hardware_disable_nolock(NULL);
3920 return 0;
3921 }
3922
3923 static void kvm_resume(void)
3924 {
3925 if (kvm_usage_count) {
3926 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3927 hardware_enable_nolock(NULL);
3928 }
3929 }
3930
3931 static struct syscore_ops kvm_syscore_ops = {
3932 .suspend = kvm_suspend,
3933 .resume = kvm_resume,
3934 };
3935
3936 static inline
3937 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3938 {
3939 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3940 }
3941
3942 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3943 {
3944 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3945
3946 if (vcpu->preempted)
3947 vcpu->preempted = false;
3948
3949 kvm_arch_sched_in(vcpu, cpu);
3950
3951 kvm_arch_vcpu_load(vcpu, cpu);
3952 }
3953
3954 static void kvm_sched_out(struct preempt_notifier *pn,
3955 struct task_struct *next)
3956 {
3957 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3958
3959 if (current->state == TASK_RUNNING)
3960 vcpu->preempted = true;
3961 kvm_arch_vcpu_put(vcpu);
3962 }
3963
3964 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3965 struct module *module)
3966 {
3967 int r;
3968 int cpu;
3969
3970 r = kvm_arch_init(opaque);
3971 if (r)
3972 goto out_fail;
3973
3974 /*
3975 * kvm_arch_init makes sure there's at most one caller
3976 * for architectures that support multiple implementations,
3977 * like intel and amd on x86.
3978 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3979 * conflicts in case kvm is already setup for another implementation.
3980 */
3981 r = kvm_irqfd_init();
3982 if (r)
3983 goto out_irqfd;
3984
3985 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3986 r = -ENOMEM;
3987 goto out_free_0;
3988 }
3989
3990 r = kvm_arch_hardware_setup();
3991 if (r < 0)
3992 goto out_free_0a;
3993
3994 for_each_online_cpu(cpu) {
3995 smp_call_function_single(cpu,
3996 kvm_arch_check_processor_compat,
3997 &r, 1);
3998 if (r < 0)
3999 goto out_free_1;
4000 }
4001
4002 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4003 kvm_starting_cpu, kvm_dying_cpu);
4004 if (r)
4005 goto out_free_2;
4006 register_reboot_notifier(&kvm_reboot_notifier);
4007
4008 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4009 if (!vcpu_align)
4010 vcpu_align = __alignof__(struct kvm_vcpu);
4011 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4012 0, NULL);
4013 if (!kvm_vcpu_cache) {
4014 r = -ENOMEM;
4015 goto out_free_3;
4016 }
4017
4018 r = kvm_async_pf_init();
4019 if (r)
4020 goto out_free;
4021
4022 kvm_chardev_ops.owner = module;
4023 kvm_vm_fops.owner = module;
4024 kvm_vcpu_fops.owner = module;
4025
4026 r = misc_register(&kvm_dev);
4027 if (r) {
4028 pr_err("kvm: misc device register failed\n");
4029 goto out_unreg;
4030 }
4031
4032 register_syscore_ops(&kvm_syscore_ops);
4033
4034 kvm_preempt_ops.sched_in = kvm_sched_in;
4035 kvm_preempt_ops.sched_out = kvm_sched_out;
4036
4037 r = kvm_init_debug();
4038 if (r) {
4039 pr_err("kvm: create debugfs files failed\n");
4040 goto out_undebugfs;
4041 }
4042
4043 r = kvm_vfio_ops_init();
4044 WARN_ON(r);
4045
4046 return 0;
4047
4048 out_undebugfs:
4049 unregister_syscore_ops(&kvm_syscore_ops);
4050 misc_deregister(&kvm_dev);
4051 out_unreg:
4052 kvm_async_pf_deinit();
4053 out_free:
4054 kmem_cache_destroy(kvm_vcpu_cache);
4055 out_free_3:
4056 unregister_reboot_notifier(&kvm_reboot_notifier);
4057 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4058 out_free_2:
4059 out_free_1:
4060 kvm_arch_hardware_unsetup();
4061 out_free_0a:
4062 free_cpumask_var(cpus_hardware_enabled);
4063 out_free_0:
4064 kvm_irqfd_exit();
4065 out_irqfd:
4066 kvm_arch_exit();
4067 out_fail:
4068 return r;
4069 }
4070 EXPORT_SYMBOL_GPL(kvm_init);
4071
4072 void kvm_exit(void)
4073 {
4074 debugfs_remove_recursive(kvm_debugfs_dir);
4075 misc_deregister(&kvm_dev);
4076 kmem_cache_destroy(kvm_vcpu_cache);
4077 kvm_async_pf_deinit();
4078 unregister_syscore_ops(&kvm_syscore_ops);
4079 unregister_reboot_notifier(&kvm_reboot_notifier);
4080 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4081 on_each_cpu(hardware_disable_nolock, NULL, 1);
4082 kvm_arch_hardware_unsetup();
4083 kvm_arch_exit();
4084 kvm_irqfd_exit();
4085 free_cpumask_var(cpus_hardware_enabled);
4086 kvm_vfio_ops_exit();
4087 }
4088 EXPORT_SYMBOL_GPL(kvm_exit);