KVM: support device deassignment
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
53
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static int msi2intx = 1;
68 module_param(msi2intx, bool, 0);
69
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72
73 static cpumask_var_t cpus_hardware_enabled;
74
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
77
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
79
80 struct dentry *kvm_debugfs_dir;
81
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 unsigned long arg);
84
85 static bool kvm_rebooting;
86
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
88
89 #ifdef CONFIG_X86
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
91 {
92 int vcpu_id;
93 struct kvm_vcpu *vcpu;
94 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
95 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
96 >> MSI_ADDR_DEST_ID_SHIFT;
97 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
98 >> MSI_DATA_VECTOR_SHIFT;
99 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
100 (unsigned long *)&dev->guest_msi.address_lo);
101 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
102 (unsigned long *)&dev->guest_msi.data);
103 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
104 (unsigned long *)&dev->guest_msi.data);
105 u32 deliver_bitmask;
106
107 BUG_ON(!ioapic);
108
109 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
110 dest_id, dest_mode);
111 /* IOAPIC delivery mode value is the same as MSI here */
112 switch (delivery_mode) {
113 case IOAPIC_LOWEST_PRIORITY:
114 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
115 deliver_bitmask);
116 if (vcpu != NULL)
117 kvm_apic_set_irq(vcpu, vector, trig_mode);
118 else
119 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
120 break;
121 case IOAPIC_FIXED:
122 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
123 if (!(deliver_bitmask & (1 << vcpu_id)))
124 continue;
125 deliver_bitmask &= ~(1 << vcpu_id);
126 vcpu = ioapic->kvm->vcpus[vcpu_id];
127 if (vcpu)
128 kvm_apic_set_irq(vcpu, vector, trig_mode);
129 }
130 break;
131 default:
132 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
133 }
134 }
135 #else
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
137 #endif
138
139 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
140 int assigned_dev_id)
141 {
142 struct list_head *ptr;
143 struct kvm_assigned_dev_kernel *match;
144
145 list_for_each(ptr, head) {
146 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
147 if (match->assigned_dev_id == assigned_dev_id)
148 return match;
149 }
150 return NULL;
151 }
152
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
154 {
155 struct kvm_assigned_dev_kernel *assigned_dev;
156
157 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
158 interrupt_work);
159
160 /* This is taken to safely inject irq inside the guest. When
161 * the interrupt injection (or the ioapic code) uses a
162 * finer-grained lock, update this
163 */
164 mutex_lock(&assigned_dev->kvm->lock);
165 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
166 kvm_set_irq(assigned_dev->kvm,
167 assigned_dev->irq_source_id,
168 assigned_dev->guest_irq, 1);
169 else if (assigned_dev->irq_requested_type &
170 KVM_ASSIGNED_DEV_GUEST_MSI) {
171 assigned_device_msi_dispatch(assigned_dev);
172 enable_irq(assigned_dev->host_irq);
173 assigned_dev->host_irq_disabled = false;
174 }
175 mutex_unlock(&assigned_dev->kvm->lock);
176 kvm_put_kvm(assigned_dev->kvm);
177 }
178
179 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
180 {
181 struct kvm_assigned_dev_kernel *assigned_dev =
182 (struct kvm_assigned_dev_kernel *) dev_id;
183
184 kvm_get_kvm(assigned_dev->kvm);
185
186 schedule_work(&assigned_dev->interrupt_work);
187
188 disable_irq_nosync(irq);
189 assigned_dev->host_irq_disabled = true;
190
191 return IRQ_HANDLED;
192 }
193
194 /* Ack the irq line for an assigned device */
195 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
196 {
197 struct kvm_assigned_dev_kernel *dev;
198
199 if (kian->gsi == -1)
200 return;
201
202 dev = container_of(kian, struct kvm_assigned_dev_kernel,
203 ack_notifier);
204
205 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
206
207 /* The guest irq may be shared so this ack may be
208 * from another device.
209 */
210 if (dev->host_irq_disabled) {
211 enable_irq(dev->host_irq);
212 dev->host_irq_disabled = false;
213 }
214 }
215
216 static void kvm_free_assigned_irq(struct kvm *kvm,
217 struct kvm_assigned_dev_kernel *assigned_dev)
218 {
219 if (!irqchip_in_kernel(kvm))
220 return;
221
222 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
223
224 if (assigned_dev->irq_source_id != -1)
225 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
226 assigned_dev->irq_source_id = -1;
227
228 if (!assigned_dev->irq_requested_type)
229 return;
230
231 if (cancel_work_sync(&assigned_dev->interrupt_work))
232 /* We had pending work. That means we will have to take
233 * care of kvm_put_kvm.
234 */
235 kvm_put_kvm(kvm);
236
237 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
238
239 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
240 pci_disable_msi(assigned_dev->dev);
241
242 assigned_dev->irq_requested_type = 0;
243 }
244
245
246 static void kvm_free_assigned_device(struct kvm *kvm,
247 struct kvm_assigned_dev_kernel
248 *assigned_dev)
249 {
250 kvm_free_assigned_irq(kvm, assigned_dev);
251
252 pci_reset_function(assigned_dev->dev);
253
254 pci_release_regions(assigned_dev->dev);
255 pci_disable_device(assigned_dev->dev);
256 pci_dev_put(assigned_dev->dev);
257
258 list_del(&assigned_dev->list);
259 kfree(assigned_dev);
260 }
261
262 void kvm_free_all_assigned_devices(struct kvm *kvm)
263 {
264 struct list_head *ptr, *ptr2;
265 struct kvm_assigned_dev_kernel *assigned_dev;
266
267 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
268 assigned_dev = list_entry(ptr,
269 struct kvm_assigned_dev_kernel,
270 list);
271
272 kvm_free_assigned_device(kvm, assigned_dev);
273 }
274 }
275
276 static int assigned_device_update_intx(struct kvm *kvm,
277 struct kvm_assigned_dev_kernel *adev,
278 struct kvm_assigned_irq *airq)
279 {
280 adev->guest_irq = airq->guest_irq;
281 adev->ack_notifier.gsi = airq->guest_irq;
282
283 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
284 return 0;
285
286 if (irqchip_in_kernel(kvm)) {
287 if (!msi2intx &&
288 adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) {
289 free_irq(adev->host_irq, (void *)kvm);
290 pci_disable_msi(adev->dev);
291 }
292
293 if (!capable(CAP_SYS_RAWIO))
294 return -EPERM;
295
296 if (airq->host_irq)
297 adev->host_irq = airq->host_irq;
298 else
299 adev->host_irq = adev->dev->irq;
300
301 /* Even though this is PCI, we don't want to use shared
302 * interrupts. Sharing host devices with guest-assigned devices
303 * on the same interrupt line is not a happy situation: there
304 * are going to be long delays in accepting, acking, etc.
305 */
306 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
307 0, "kvm_assigned_intx_device", (void *)adev))
308 return -EIO;
309 }
310
311 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
312 KVM_ASSIGNED_DEV_HOST_INTX;
313 return 0;
314 }
315
316 #ifdef CONFIG_X86
317 static int assigned_device_update_msi(struct kvm *kvm,
318 struct kvm_assigned_dev_kernel *adev,
319 struct kvm_assigned_irq *airq)
320 {
321 int r;
322
323 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
324 /* x86 don't care upper address of guest msi message addr */
325 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
326 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
327 adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
328 adev->guest_msi.data = airq->guest_msi.data;
329 adev->ack_notifier.gsi = -1;
330 } else if (msi2intx) {
331 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
332 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
333 adev->guest_irq = airq->guest_irq;
334 adev->ack_notifier.gsi = airq->guest_irq;
335 }
336
337 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
338 return 0;
339
340 if (irqchip_in_kernel(kvm)) {
341 if (!msi2intx) {
342 if (adev->irq_requested_type &
343 KVM_ASSIGNED_DEV_HOST_INTX)
344 free_irq(adev->host_irq, (void *)adev);
345
346 r = pci_enable_msi(adev->dev);
347 if (r)
348 return r;
349 }
350
351 adev->host_irq = adev->dev->irq;
352 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
353 "kvm_assigned_msi_device", (void *)adev))
354 return -EIO;
355 }
356
357 if (!msi2intx)
358 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
359
360 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
361 return 0;
362 }
363 #endif
364
365 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
366 struct kvm_assigned_irq
367 *assigned_irq)
368 {
369 int r = 0;
370 struct kvm_assigned_dev_kernel *match;
371
372 mutex_lock(&kvm->lock);
373
374 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
375 assigned_irq->assigned_dev_id);
376 if (!match) {
377 mutex_unlock(&kvm->lock);
378 return -EINVAL;
379 }
380
381 if (!match->irq_requested_type) {
382 INIT_WORK(&match->interrupt_work,
383 kvm_assigned_dev_interrupt_work_handler);
384 if (irqchip_in_kernel(kvm)) {
385 /* Register ack nofitier */
386 match->ack_notifier.gsi = -1;
387 match->ack_notifier.irq_acked =
388 kvm_assigned_dev_ack_irq;
389 kvm_register_irq_ack_notifier(kvm,
390 &match->ack_notifier);
391
392 /* Request IRQ source ID */
393 r = kvm_request_irq_source_id(kvm);
394 if (r < 0)
395 goto out_release;
396 else
397 match->irq_source_id = r;
398
399 #ifdef CONFIG_X86
400 /* Determine host device irq type, we can know the
401 * result from dev->msi_enabled */
402 if (msi2intx)
403 pci_enable_msi(match->dev);
404 #endif
405 }
406 }
407
408 if ((!msi2intx &&
409 (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
410 (msi2intx && match->dev->msi_enabled)) {
411 #ifdef CONFIG_X86
412 r = assigned_device_update_msi(kvm, match, assigned_irq);
413 if (r) {
414 printk(KERN_WARNING "kvm: failed to enable "
415 "MSI device!\n");
416 goto out_release;
417 }
418 #else
419 r = -ENOTTY;
420 #endif
421 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
422 /* Host device IRQ 0 means don't support INTx */
423 if (!msi2intx) {
424 printk(KERN_WARNING
425 "kvm: wait device to enable MSI!\n");
426 r = 0;
427 } else {
428 printk(KERN_WARNING
429 "kvm: failed to enable MSI device!\n");
430 r = -ENOTTY;
431 goto out_release;
432 }
433 } else {
434 /* Non-sharing INTx mode */
435 r = assigned_device_update_intx(kvm, match, assigned_irq);
436 if (r) {
437 printk(KERN_WARNING "kvm: failed to enable "
438 "INTx device!\n");
439 goto out_release;
440 }
441 }
442
443 mutex_unlock(&kvm->lock);
444 return r;
445 out_release:
446 mutex_unlock(&kvm->lock);
447 kvm_free_assigned_device(kvm, match);
448 return r;
449 }
450
451 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
452 struct kvm_assigned_pci_dev *assigned_dev)
453 {
454 int r = 0;
455 struct kvm_assigned_dev_kernel *match;
456 struct pci_dev *dev;
457
458 mutex_lock(&kvm->lock);
459
460 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
461 assigned_dev->assigned_dev_id);
462 if (match) {
463 /* device already assigned */
464 r = -EINVAL;
465 goto out;
466 }
467
468 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
469 if (match == NULL) {
470 printk(KERN_INFO "%s: Couldn't allocate memory\n",
471 __func__);
472 r = -ENOMEM;
473 goto out;
474 }
475 dev = pci_get_bus_and_slot(assigned_dev->busnr,
476 assigned_dev->devfn);
477 if (!dev) {
478 printk(KERN_INFO "%s: host device not found\n", __func__);
479 r = -EINVAL;
480 goto out_free;
481 }
482 if (pci_enable_device(dev)) {
483 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
484 r = -EBUSY;
485 goto out_put;
486 }
487 r = pci_request_regions(dev, "kvm_assigned_device");
488 if (r) {
489 printk(KERN_INFO "%s: Could not get access to device regions\n",
490 __func__);
491 goto out_disable;
492 }
493
494 pci_reset_function(dev);
495
496 match->assigned_dev_id = assigned_dev->assigned_dev_id;
497 match->host_busnr = assigned_dev->busnr;
498 match->host_devfn = assigned_dev->devfn;
499 match->dev = dev;
500 match->irq_source_id = -1;
501 match->kvm = kvm;
502
503 list_add(&match->list, &kvm->arch.assigned_dev_head);
504
505 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
506 if (!kvm->arch.intel_iommu_domain) {
507 r = kvm_iommu_map_guest(kvm);
508 if (r)
509 goto out_list_del;
510 }
511 r = kvm_assign_device(kvm, match);
512 if (r)
513 goto out_list_del;
514 }
515
516 out:
517 mutex_unlock(&kvm->lock);
518 return r;
519 out_list_del:
520 list_del(&match->list);
521 pci_release_regions(dev);
522 out_disable:
523 pci_disable_device(dev);
524 out_put:
525 pci_dev_put(dev);
526 out_free:
527 kfree(match);
528 mutex_unlock(&kvm->lock);
529 return r;
530 }
531 #endif
532
533 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
534 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
535 struct kvm_assigned_pci_dev *assigned_dev)
536 {
537 int r = 0;
538 struct kvm_assigned_dev_kernel *match;
539
540 mutex_lock(&kvm->lock);
541
542 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
543 assigned_dev->assigned_dev_id);
544 if (!match) {
545 printk(KERN_INFO "%s: device hasn't been assigned before, "
546 "so cannot be deassigned\n", __func__);
547 r = -EINVAL;
548 goto out;
549 }
550
551 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
552 kvm_deassign_device(kvm, match);
553
554 kvm_free_assigned_device(kvm, match);
555
556 out:
557 mutex_unlock(&kvm->lock);
558 return r;
559 }
560 #endif
561
562 static inline int valid_vcpu(int n)
563 {
564 return likely(n >= 0 && n < KVM_MAX_VCPUS);
565 }
566
567 inline int kvm_is_mmio_pfn(pfn_t pfn)
568 {
569 if (pfn_valid(pfn))
570 return PageReserved(pfn_to_page(pfn));
571
572 return true;
573 }
574
575 /*
576 * Switches to specified vcpu, until a matching vcpu_put()
577 */
578 void vcpu_load(struct kvm_vcpu *vcpu)
579 {
580 int cpu;
581
582 mutex_lock(&vcpu->mutex);
583 cpu = get_cpu();
584 preempt_notifier_register(&vcpu->preempt_notifier);
585 kvm_arch_vcpu_load(vcpu, cpu);
586 put_cpu();
587 }
588
589 void vcpu_put(struct kvm_vcpu *vcpu)
590 {
591 preempt_disable();
592 kvm_arch_vcpu_put(vcpu);
593 preempt_notifier_unregister(&vcpu->preempt_notifier);
594 preempt_enable();
595 mutex_unlock(&vcpu->mutex);
596 }
597
598 static void ack_flush(void *_completed)
599 {
600 }
601
602 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
603 {
604 int i, cpu, me;
605 cpumask_var_t cpus;
606 bool called = true;
607 struct kvm_vcpu *vcpu;
608
609 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
610 cpumask_clear(cpus);
611
612 me = get_cpu();
613 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
614 vcpu = kvm->vcpus[i];
615 if (!vcpu)
616 continue;
617 if (test_and_set_bit(req, &vcpu->requests))
618 continue;
619 cpu = vcpu->cpu;
620 if (cpus != NULL && cpu != -1 && cpu != me)
621 cpumask_set_cpu(cpu, cpus);
622 }
623 if (unlikely(cpus == NULL))
624 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
625 else if (!cpumask_empty(cpus))
626 smp_call_function_many(cpus, ack_flush, NULL, 1);
627 else
628 called = false;
629 put_cpu();
630 free_cpumask_var(cpus);
631 return called;
632 }
633
634 void kvm_flush_remote_tlbs(struct kvm *kvm)
635 {
636 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
637 ++kvm->stat.remote_tlb_flush;
638 }
639
640 void kvm_reload_remote_mmus(struct kvm *kvm)
641 {
642 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
643 }
644
645 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
646 {
647 struct page *page;
648 int r;
649
650 mutex_init(&vcpu->mutex);
651 vcpu->cpu = -1;
652 vcpu->kvm = kvm;
653 vcpu->vcpu_id = id;
654 init_waitqueue_head(&vcpu->wq);
655
656 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
657 if (!page) {
658 r = -ENOMEM;
659 goto fail;
660 }
661 vcpu->run = page_address(page);
662
663 r = kvm_arch_vcpu_init(vcpu);
664 if (r < 0)
665 goto fail_free_run;
666 return 0;
667
668 fail_free_run:
669 free_page((unsigned long)vcpu->run);
670 fail:
671 return r;
672 }
673 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
674
675 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
676 {
677 kvm_arch_vcpu_uninit(vcpu);
678 free_page((unsigned long)vcpu->run);
679 }
680 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
681
682 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
683 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
684 {
685 return container_of(mn, struct kvm, mmu_notifier);
686 }
687
688 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
689 struct mm_struct *mm,
690 unsigned long address)
691 {
692 struct kvm *kvm = mmu_notifier_to_kvm(mn);
693 int need_tlb_flush;
694
695 /*
696 * When ->invalidate_page runs, the linux pte has been zapped
697 * already but the page is still allocated until
698 * ->invalidate_page returns. So if we increase the sequence
699 * here the kvm page fault will notice if the spte can't be
700 * established because the page is going to be freed. If
701 * instead the kvm page fault establishes the spte before
702 * ->invalidate_page runs, kvm_unmap_hva will release it
703 * before returning.
704 *
705 * The sequence increase only need to be seen at spin_unlock
706 * time, and not at spin_lock time.
707 *
708 * Increasing the sequence after the spin_unlock would be
709 * unsafe because the kvm page fault could then establish the
710 * pte after kvm_unmap_hva returned, without noticing the page
711 * is going to be freed.
712 */
713 spin_lock(&kvm->mmu_lock);
714 kvm->mmu_notifier_seq++;
715 need_tlb_flush = kvm_unmap_hva(kvm, address);
716 spin_unlock(&kvm->mmu_lock);
717
718 /* we've to flush the tlb before the pages can be freed */
719 if (need_tlb_flush)
720 kvm_flush_remote_tlbs(kvm);
721
722 }
723
724 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
725 struct mm_struct *mm,
726 unsigned long start,
727 unsigned long end)
728 {
729 struct kvm *kvm = mmu_notifier_to_kvm(mn);
730 int need_tlb_flush = 0;
731
732 spin_lock(&kvm->mmu_lock);
733 /*
734 * The count increase must become visible at unlock time as no
735 * spte can be established without taking the mmu_lock and
736 * count is also read inside the mmu_lock critical section.
737 */
738 kvm->mmu_notifier_count++;
739 for (; start < end; start += PAGE_SIZE)
740 need_tlb_flush |= kvm_unmap_hva(kvm, start);
741 spin_unlock(&kvm->mmu_lock);
742
743 /* we've to flush the tlb before the pages can be freed */
744 if (need_tlb_flush)
745 kvm_flush_remote_tlbs(kvm);
746 }
747
748 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
749 struct mm_struct *mm,
750 unsigned long start,
751 unsigned long end)
752 {
753 struct kvm *kvm = mmu_notifier_to_kvm(mn);
754
755 spin_lock(&kvm->mmu_lock);
756 /*
757 * This sequence increase will notify the kvm page fault that
758 * the page that is going to be mapped in the spte could have
759 * been freed.
760 */
761 kvm->mmu_notifier_seq++;
762 /*
763 * The above sequence increase must be visible before the
764 * below count decrease but both values are read by the kvm
765 * page fault under mmu_lock spinlock so we don't need to add
766 * a smb_wmb() here in between the two.
767 */
768 kvm->mmu_notifier_count--;
769 spin_unlock(&kvm->mmu_lock);
770
771 BUG_ON(kvm->mmu_notifier_count < 0);
772 }
773
774 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
775 struct mm_struct *mm,
776 unsigned long address)
777 {
778 struct kvm *kvm = mmu_notifier_to_kvm(mn);
779 int young;
780
781 spin_lock(&kvm->mmu_lock);
782 young = kvm_age_hva(kvm, address);
783 spin_unlock(&kvm->mmu_lock);
784
785 if (young)
786 kvm_flush_remote_tlbs(kvm);
787
788 return young;
789 }
790
791 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
792 .invalidate_page = kvm_mmu_notifier_invalidate_page,
793 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
794 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
795 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
796 };
797 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
798
799 static struct kvm *kvm_create_vm(void)
800 {
801 struct kvm *kvm = kvm_arch_create_vm();
802 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
803 struct page *page;
804 #endif
805
806 if (IS_ERR(kvm))
807 goto out;
808
809 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
810 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
811 if (!page) {
812 kfree(kvm);
813 return ERR_PTR(-ENOMEM);
814 }
815 kvm->coalesced_mmio_ring =
816 (struct kvm_coalesced_mmio_ring *)page_address(page);
817 #endif
818
819 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
820 {
821 int err;
822 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
823 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
824 if (err) {
825 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
826 put_page(page);
827 #endif
828 kfree(kvm);
829 return ERR_PTR(err);
830 }
831 }
832 #endif
833
834 kvm->mm = current->mm;
835 atomic_inc(&kvm->mm->mm_count);
836 spin_lock_init(&kvm->mmu_lock);
837 kvm_io_bus_init(&kvm->pio_bus);
838 mutex_init(&kvm->lock);
839 kvm_io_bus_init(&kvm->mmio_bus);
840 init_rwsem(&kvm->slots_lock);
841 atomic_set(&kvm->users_count, 1);
842 spin_lock(&kvm_lock);
843 list_add(&kvm->vm_list, &vm_list);
844 spin_unlock(&kvm_lock);
845 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
846 kvm_coalesced_mmio_init(kvm);
847 #endif
848 out:
849 return kvm;
850 }
851
852 /*
853 * Free any memory in @free but not in @dont.
854 */
855 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
856 struct kvm_memory_slot *dont)
857 {
858 if (!dont || free->rmap != dont->rmap)
859 vfree(free->rmap);
860
861 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
862 vfree(free->dirty_bitmap);
863
864 if (!dont || free->lpage_info != dont->lpage_info)
865 vfree(free->lpage_info);
866
867 free->npages = 0;
868 free->dirty_bitmap = NULL;
869 free->rmap = NULL;
870 free->lpage_info = NULL;
871 }
872
873 void kvm_free_physmem(struct kvm *kvm)
874 {
875 int i;
876
877 for (i = 0; i < kvm->nmemslots; ++i)
878 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
879 }
880
881 static void kvm_destroy_vm(struct kvm *kvm)
882 {
883 struct mm_struct *mm = kvm->mm;
884
885 spin_lock(&kvm_lock);
886 list_del(&kvm->vm_list);
887 spin_unlock(&kvm_lock);
888 kvm_io_bus_destroy(&kvm->pio_bus);
889 kvm_io_bus_destroy(&kvm->mmio_bus);
890 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
891 if (kvm->coalesced_mmio_ring != NULL)
892 free_page((unsigned long)kvm->coalesced_mmio_ring);
893 #endif
894 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
895 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
896 #endif
897 kvm_arch_destroy_vm(kvm);
898 mmdrop(mm);
899 }
900
901 void kvm_get_kvm(struct kvm *kvm)
902 {
903 atomic_inc(&kvm->users_count);
904 }
905 EXPORT_SYMBOL_GPL(kvm_get_kvm);
906
907 void kvm_put_kvm(struct kvm *kvm)
908 {
909 if (atomic_dec_and_test(&kvm->users_count))
910 kvm_destroy_vm(kvm);
911 }
912 EXPORT_SYMBOL_GPL(kvm_put_kvm);
913
914
915 static int kvm_vm_release(struct inode *inode, struct file *filp)
916 {
917 struct kvm *kvm = filp->private_data;
918
919 kvm_put_kvm(kvm);
920 return 0;
921 }
922
923 /*
924 * Allocate some memory and give it an address in the guest physical address
925 * space.
926 *
927 * Discontiguous memory is allowed, mostly for framebuffers.
928 *
929 * Must be called holding mmap_sem for write.
930 */
931 int __kvm_set_memory_region(struct kvm *kvm,
932 struct kvm_userspace_memory_region *mem,
933 int user_alloc)
934 {
935 int r;
936 gfn_t base_gfn;
937 unsigned long npages;
938 unsigned long i;
939 struct kvm_memory_slot *memslot;
940 struct kvm_memory_slot old, new;
941
942 r = -EINVAL;
943 /* General sanity checks */
944 if (mem->memory_size & (PAGE_SIZE - 1))
945 goto out;
946 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
947 goto out;
948 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
949 goto out;
950 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
951 goto out;
952 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
953 goto out;
954
955 memslot = &kvm->memslots[mem->slot];
956 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
957 npages = mem->memory_size >> PAGE_SHIFT;
958
959 if (!npages)
960 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
961
962 new = old = *memslot;
963
964 new.base_gfn = base_gfn;
965 new.npages = npages;
966 new.flags = mem->flags;
967
968 /* Disallow changing a memory slot's size. */
969 r = -EINVAL;
970 if (npages && old.npages && npages != old.npages)
971 goto out_free;
972
973 /* Check for overlaps */
974 r = -EEXIST;
975 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
976 struct kvm_memory_slot *s = &kvm->memslots[i];
977
978 if (s == memslot)
979 continue;
980 if (!((base_gfn + npages <= s->base_gfn) ||
981 (base_gfn >= s->base_gfn + s->npages)))
982 goto out_free;
983 }
984
985 /* Free page dirty bitmap if unneeded */
986 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
987 new.dirty_bitmap = NULL;
988
989 r = -ENOMEM;
990
991 /* Allocate if a slot is being created */
992 #ifndef CONFIG_S390
993 if (npages && !new.rmap) {
994 new.rmap = vmalloc(npages * sizeof(struct page *));
995
996 if (!new.rmap)
997 goto out_free;
998
999 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1000
1001 new.user_alloc = user_alloc;
1002 /*
1003 * hva_to_rmmap() serialzies with the mmu_lock and to be
1004 * safe it has to ignore memslots with !user_alloc &&
1005 * !userspace_addr.
1006 */
1007 if (user_alloc)
1008 new.userspace_addr = mem->userspace_addr;
1009 else
1010 new.userspace_addr = 0;
1011 }
1012 if (npages && !new.lpage_info) {
1013 int largepages = npages / KVM_PAGES_PER_HPAGE;
1014 if (npages % KVM_PAGES_PER_HPAGE)
1015 largepages++;
1016 if (base_gfn % KVM_PAGES_PER_HPAGE)
1017 largepages++;
1018
1019 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1020
1021 if (!new.lpage_info)
1022 goto out_free;
1023
1024 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1025
1026 if (base_gfn % KVM_PAGES_PER_HPAGE)
1027 new.lpage_info[0].write_count = 1;
1028 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1029 new.lpage_info[largepages-1].write_count = 1;
1030 }
1031
1032 /* Allocate page dirty bitmap if needed */
1033 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1034 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1035
1036 new.dirty_bitmap = vmalloc(dirty_bytes);
1037 if (!new.dirty_bitmap)
1038 goto out_free;
1039 memset(new.dirty_bitmap, 0, dirty_bytes);
1040 }
1041 #endif /* not defined CONFIG_S390 */
1042
1043 if (!npages)
1044 kvm_arch_flush_shadow(kvm);
1045
1046 spin_lock(&kvm->mmu_lock);
1047 if (mem->slot >= kvm->nmemslots)
1048 kvm->nmemslots = mem->slot + 1;
1049
1050 *memslot = new;
1051 spin_unlock(&kvm->mmu_lock);
1052
1053 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1054 if (r) {
1055 spin_lock(&kvm->mmu_lock);
1056 *memslot = old;
1057 spin_unlock(&kvm->mmu_lock);
1058 goto out_free;
1059 }
1060
1061 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1062 /* Slot deletion case: we have to update the current slot */
1063 if (!npages)
1064 *memslot = old;
1065 #ifdef CONFIG_DMAR
1066 /* map the pages in iommu page table */
1067 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1068 if (r)
1069 goto out;
1070 #endif
1071 return 0;
1072
1073 out_free:
1074 kvm_free_physmem_slot(&new, &old);
1075 out:
1076 return r;
1077
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080
1081 int kvm_set_memory_region(struct kvm *kvm,
1082 struct kvm_userspace_memory_region *mem,
1083 int user_alloc)
1084 {
1085 int r;
1086
1087 down_write(&kvm->slots_lock);
1088 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1089 up_write(&kvm->slots_lock);
1090 return r;
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1093
1094 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1095 struct
1096 kvm_userspace_memory_region *mem,
1097 int user_alloc)
1098 {
1099 if (mem->slot >= KVM_MEMORY_SLOTS)
1100 return -EINVAL;
1101 return kvm_set_memory_region(kvm, mem, user_alloc);
1102 }
1103
1104 int kvm_get_dirty_log(struct kvm *kvm,
1105 struct kvm_dirty_log *log, int *is_dirty)
1106 {
1107 struct kvm_memory_slot *memslot;
1108 int r, i;
1109 int n;
1110 unsigned long any = 0;
1111
1112 r = -EINVAL;
1113 if (log->slot >= KVM_MEMORY_SLOTS)
1114 goto out;
1115
1116 memslot = &kvm->memslots[log->slot];
1117 r = -ENOENT;
1118 if (!memslot->dirty_bitmap)
1119 goto out;
1120
1121 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1122
1123 for (i = 0; !any && i < n/sizeof(long); ++i)
1124 any = memslot->dirty_bitmap[i];
1125
1126 r = -EFAULT;
1127 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1128 goto out;
1129
1130 if (any)
1131 *is_dirty = 1;
1132
1133 r = 0;
1134 out:
1135 return r;
1136 }
1137
1138 int is_error_page(struct page *page)
1139 {
1140 return page == bad_page;
1141 }
1142 EXPORT_SYMBOL_GPL(is_error_page);
1143
1144 int is_error_pfn(pfn_t pfn)
1145 {
1146 return pfn == bad_pfn;
1147 }
1148 EXPORT_SYMBOL_GPL(is_error_pfn);
1149
1150 static inline unsigned long bad_hva(void)
1151 {
1152 return PAGE_OFFSET;
1153 }
1154
1155 int kvm_is_error_hva(unsigned long addr)
1156 {
1157 return addr == bad_hva();
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1160
1161 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1162 {
1163 int i;
1164
1165 for (i = 0; i < kvm->nmemslots; ++i) {
1166 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1167
1168 if (gfn >= memslot->base_gfn
1169 && gfn < memslot->base_gfn + memslot->npages)
1170 return memslot;
1171 }
1172 return NULL;
1173 }
1174 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1175
1176 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1177 {
1178 gfn = unalias_gfn(kvm, gfn);
1179 return gfn_to_memslot_unaliased(kvm, gfn);
1180 }
1181
1182 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1183 {
1184 int i;
1185
1186 gfn = unalias_gfn(kvm, gfn);
1187 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1188 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1189
1190 if (gfn >= memslot->base_gfn
1191 && gfn < memslot->base_gfn + memslot->npages)
1192 return 1;
1193 }
1194 return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1197
1198 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1199 {
1200 struct kvm_memory_slot *slot;
1201
1202 gfn = unalias_gfn(kvm, gfn);
1203 slot = gfn_to_memslot_unaliased(kvm, gfn);
1204 if (!slot)
1205 return bad_hva();
1206 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1207 }
1208 EXPORT_SYMBOL_GPL(gfn_to_hva);
1209
1210 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1211 {
1212 struct page *page[1];
1213 unsigned long addr;
1214 int npages;
1215 pfn_t pfn;
1216
1217 might_sleep();
1218
1219 addr = gfn_to_hva(kvm, gfn);
1220 if (kvm_is_error_hva(addr)) {
1221 get_page(bad_page);
1222 return page_to_pfn(bad_page);
1223 }
1224
1225 npages = get_user_pages_fast(addr, 1, 1, page);
1226
1227 if (unlikely(npages != 1)) {
1228 struct vm_area_struct *vma;
1229
1230 down_read(&current->mm->mmap_sem);
1231 vma = find_vma(current->mm, addr);
1232
1233 if (vma == NULL || addr < vma->vm_start ||
1234 !(vma->vm_flags & VM_PFNMAP)) {
1235 up_read(&current->mm->mmap_sem);
1236 get_page(bad_page);
1237 return page_to_pfn(bad_page);
1238 }
1239
1240 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1241 up_read(&current->mm->mmap_sem);
1242 BUG_ON(!kvm_is_mmio_pfn(pfn));
1243 } else
1244 pfn = page_to_pfn(page[0]);
1245
1246 return pfn;
1247 }
1248
1249 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1250
1251 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1252 {
1253 pfn_t pfn;
1254
1255 pfn = gfn_to_pfn(kvm, gfn);
1256 if (!kvm_is_mmio_pfn(pfn))
1257 return pfn_to_page(pfn);
1258
1259 WARN_ON(kvm_is_mmio_pfn(pfn));
1260
1261 get_page(bad_page);
1262 return bad_page;
1263 }
1264
1265 EXPORT_SYMBOL_GPL(gfn_to_page);
1266
1267 void kvm_release_page_clean(struct page *page)
1268 {
1269 kvm_release_pfn_clean(page_to_pfn(page));
1270 }
1271 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1272
1273 void kvm_release_pfn_clean(pfn_t pfn)
1274 {
1275 if (!kvm_is_mmio_pfn(pfn))
1276 put_page(pfn_to_page(pfn));
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1279
1280 void kvm_release_page_dirty(struct page *page)
1281 {
1282 kvm_release_pfn_dirty(page_to_pfn(page));
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1285
1286 void kvm_release_pfn_dirty(pfn_t pfn)
1287 {
1288 kvm_set_pfn_dirty(pfn);
1289 kvm_release_pfn_clean(pfn);
1290 }
1291 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1292
1293 void kvm_set_page_dirty(struct page *page)
1294 {
1295 kvm_set_pfn_dirty(page_to_pfn(page));
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1298
1299 void kvm_set_pfn_dirty(pfn_t pfn)
1300 {
1301 if (!kvm_is_mmio_pfn(pfn)) {
1302 struct page *page = pfn_to_page(pfn);
1303 if (!PageReserved(page))
1304 SetPageDirty(page);
1305 }
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1308
1309 void kvm_set_pfn_accessed(pfn_t pfn)
1310 {
1311 if (!kvm_is_mmio_pfn(pfn))
1312 mark_page_accessed(pfn_to_page(pfn));
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1315
1316 void kvm_get_pfn(pfn_t pfn)
1317 {
1318 if (!kvm_is_mmio_pfn(pfn))
1319 get_page(pfn_to_page(pfn));
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1322
1323 static int next_segment(unsigned long len, int offset)
1324 {
1325 if (len > PAGE_SIZE - offset)
1326 return PAGE_SIZE - offset;
1327 else
1328 return len;
1329 }
1330
1331 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1332 int len)
1333 {
1334 int r;
1335 unsigned long addr;
1336
1337 addr = gfn_to_hva(kvm, gfn);
1338 if (kvm_is_error_hva(addr))
1339 return -EFAULT;
1340 r = copy_from_user(data, (void __user *)addr + offset, len);
1341 if (r)
1342 return -EFAULT;
1343 return 0;
1344 }
1345 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1346
1347 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1348 {
1349 gfn_t gfn = gpa >> PAGE_SHIFT;
1350 int seg;
1351 int offset = offset_in_page(gpa);
1352 int ret;
1353
1354 while ((seg = next_segment(len, offset)) != 0) {
1355 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1356 if (ret < 0)
1357 return ret;
1358 offset = 0;
1359 len -= seg;
1360 data += seg;
1361 ++gfn;
1362 }
1363 return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(kvm_read_guest);
1366
1367 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1368 unsigned long len)
1369 {
1370 int r;
1371 unsigned long addr;
1372 gfn_t gfn = gpa >> PAGE_SHIFT;
1373 int offset = offset_in_page(gpa);
1374
1375 addr = gfn_to_hva(kvm, gfn);
1376 if (kvm_is_error_hva(addr))
1377 return -EFAULT;
1378 pagefault_disable();
1379 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1380 pagefault_enable();
1381 if (r)
1382 return -EFAULT;
1383 return 0;
1384 }
1385 EXPORT_SYMBOL(kvm_read_guest_atomic);
1386
1387 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1388 int offset, int len)
1389 {
1390 int r;
1391 unsigned long addr;
1392
1393 addr = gfn_to_hva(kvm, gfn);
1394 if (kvm_is_error_hva(addr))
1395 return -EFAULT;
1396 r = copy_to_user((void __user *)addr + offset, data, len);
1397 if (r)
1398 return -EFAULT;
1399 mark_page_dirty(kvm, gfn);
1400 return 0;
1401 }
1402 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1403
1404 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1405 unsigned long len)
1406 {
1407 gfn_t gfn = gpa >> PAGE_SHIFT;
1408 int seg;
1409 int offset = offset_in_page(gpa);
1410 int ret;
1411
1412 while ((seg = next_segment(len, offset)) != 0) {
1413 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1414 if (ret < 0)
1415 return ret;
1416 offset = 0;
1417 len -= seg;
1418 data += seg;
1419 ++gfn;
1420 }
1421 return 0;
1422 }
1423
1424 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1425 {
1426 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1429
1430 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1431 {
1432 gfn_t gfn = gpa >> PAGE_SHIFT;
1433 int seg;
1434 int offset = offset_in_page(gpa);
1435 int ret;
1436
1437 while ((seg = next_segment(len, offset)) != 0) {
1438 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1439 if (ret < 0)
1440 return ret;
1441 offset = 0;
1442 len -= seg;
1443 ++gfn;
1444 }
1445 return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1448
1449 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1450 {
1451 struct kvm_memory_slot *memslot;
1452
1453 gfn = unalias_gfn(kvm, gfn);
1454 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1455 if (memslot && memslot->dirty_bitmap) {
1456 unsigned long rel_gfn = gfn - memslot->base_gfn;
1457
1458 /* avoid RMW */
1459 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1460 set_bit(rel_gfn, memslot->dirty_bitmap);
1461 }
1462 }
1463
1464 /*
1465 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1466 */
1467 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1468 {
1469 DEFINE_WAIT(wait);
1470
1471 for (;;) {
1472 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1473
1474 if (kvm_cpu_has_interrupt(vcpu) ||
1475 kvm_cpu_has_pending_timer(vcpu) ||
1476 kvm_arch_vcpu_runnable(vcpu)) {
1477 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1478 break;
1479 }
1480 if (signal_pending(current))
1481 break;
1482
1483 vcpu_put(vcpu);
1484 schedule();
1485 vcpu_load(vcpu);
1486 }
1487
1488 finish_wait(&vcpu->wq, &wait);
1489 }
1490
1491 void kvm_resched(struct kvm_vcpu *vcpu)
1492 {
1493 if (!need_resched())
1494 return;
1495 cond_resched();
1496 }
1497 EXPORT_SYMBOL_GPL(kvm_resched);
1498
1499 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1500 {
1501 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1502 struct page *page;
1503
1504 if (vmf->pgoff == 0)
1505 page = virt_to_page(vcpu->run);
1506 #ifdef CONFIG_X86
1507 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1508 page = virt_to_page(vcpu->arch.pio_data);
1509 #endif
1510 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1511 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1512 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1513 #endif
1514 else
1515 return VM_FAULT_SIGBUS;
1516 get_page(page);
1517 vmf->page = page;
1518 return 0;
1519 }
1520
1521 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1522 .fault = kvm_vcpu_fault,
1523 };
1524
1525 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1526 {
1527 vma->vm_ops = &kvm_vcpu_vm_ops;
1528 return 0;
1529 }
1530
1531 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1532 {
1533 struct kvm_vcpu *vcpu = filp->private_data;
1534
1535 kvm_put_kvm(vcpu->kvm);
1536 return 0;
1537 }
1538
1539 static struct file_operations kvm_vcpu_fops = {
1540 .release = kvm_vcpu_release,
1541 .unlocked_ioctl = kvm_vcpu_ioctl,
1542 .compat_ioctl = kvm_vcpu_ioctl,
1543 .mmap = kvm_vcpu_mmap,
1544 };
1545
1546 /*
1547 * Allocates an inode for the vcpu.
1548 */
1549 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1550 {
1551 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1552 if (fd < 0)
1553 kvm_put_kvm(vcpu->kvm);
1554 return fd;
1555 }
1556
1557 /*
1558 * Creates some virtual cpus. Good luck creating more than one.
1559 */
1560 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1561 {
1562 int r;
1563 struct kvm_vcpu *vcpu;
1564
1565 if (!valid_vcpu(n))
1566 return -EINVAL;
1567
1568 vcpu = kvm_arch_vcpu_create(kvm, n);
1569 if (IS_ERR(vcpu))
1570 return PTR_ERR(vcpu);
1571
1572 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1573
1574 r = kvm_arch_vcpu_setup(vcpu);
1575 if (r)
1576 return r;
1577
1578 mutex_lock(&kvm->lock);
1579 if (kvm->vcpus[n]) {
1580 r = -EEXIST;
1581 goto vcpu_destroy;
1582 }
1583 kvm->vcpus[n] = vcpu;
1584 mutex_unlock(&kvm->lock);
1585
1586 /* Now it's all set up, let userspace reach it */
1587 kvm_get_kvm(kvm);
1588 r = create_vcpu_fd(vcpu);
1589 if (r < 0)
1590 goto unlink;
1591 return r;
1592
1593 unlink:
1594 mutex_lock(&kvm->lock);
1595 kvm->vcpus[n] = NULL;
1596 vcpu_destroy:
1597 mutex_unlock(&kvm->lock);
1598 kvm_arch_vcpu_destroy(vcpu);
1599 return r;
1600 }
1601
1602 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1603 {
1604 if (sigset) {
1605 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1606 vcpu->sigset_active = 1;
1607 vcpu->sigset = *sigset;
1608 } else
1609 vcpu->sigset_active = 0;
1610 return 0;
1611 }
1612
1613 static long kvm_vcpu_ioctl(struct file *filp,
1614 unsigned int ioctl, unsigned long arg)
1615 {
1616 struct kvm_vcpu *vcpu = filp->private_data;
1617 void __user *argp = (void __user *)arg;
1618 int r;
1619 struct kvm_fpu *fpu = NULL;
1620 struct kvm_sregs *kvm_sregs = NULL;
1621
1622 if (vcpu->kvm->mm != current->mm)
1623 return -EIO;
1624 switch (ioctl) {
1625 case KVM_RUN:
1626 r = -EINVAL;
1627 if (arg)
1628 goto out;
1629 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1630 break;
1631 case KVM_GET_REGS: {
1632 struct kvm_regs *kvm_regs;
1633
1634 r = -ENOMEM;
1635 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1636 if (!kvm_regs)
1637 goto out;
1638 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1639 if (r)
1640 goto out_free1;
1641 r = -EFAULT;
1642 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1643 goto out_free1;
1644 r = 0;
1645 out_free1:
1646 kfree(kvm_regs);
1647 break;
1648 }
1649 case KVM_SET_REGS: {
1650 struct kvm_regs *kvm_regs;
1651
1652 r = -ENOMEM;
1653 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1654 if (!kvm_regs)
1655 goto out;
1656 r = -EFAULT;
1657 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1658 goto out_free2;
1659 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1660 if (r)
1661 goto out_free2;
1662 r = 0;
1663 out_free2:
1664 kfree(kvm_regs);
1665 break;
1666 }
1667 case KVM_GET_SREGS: {
1668 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1669 r = -ENOMEM;
1670 if (!kvm_sregs)
1671 goto out;
1672 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1673 if (r)
1674 goto out;
1675 r = -EFAULT;
1676 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1677 goto out;
1678 r = 0;
1679 break;
1680 }
1681 case KVM_SET_SREGS: {
1682 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1683 r = -ENOMEM;
1684 if (!kvm_sregs)
1685 goto out;
1686 r = -EFAULT;
1687 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1688 goto out;
1689 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1690 if (r)
1691 goto out;
1692 r = 0;
1693 break;
1694 }
1695 case KVM_GET_MP_STATE: {
1696 struct kvm_mp_state mp_state;
1697
1698 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1699 if (r)
1700 goto out;
1701 r = -EFAULT;
1702 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1703 goto out;
1704 r = 0;
1705 break;
1706 }
1707 case KVM_SET_MP_STATE: {
1708 struct kvm_mp_state mp_state;
1709
1710 r = -EFAULT;
1711 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1712 goto out;
1713 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1714 if (r)
1715 goto out;
1716 r = 0;
1717 break;
1718 }
1719 case KVM_TRANSLATE: {
1720 struct kvm_translation tr;
1721
1722 r = -EFAULT;
1723 if (copy_from_user(&tr, argp, sizeof tr))
1724 goto out;
1725 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1726 if (r)
1727 goto out;
1728 r = -EFAULT;
1729 if (copy_to_user(argp, &tr, sizeof tr))
1730 goto out;
1731 r = 0;
1732 break;
1733 }
1734 case KVM_DEBUG_GUEST: {
1735 struct kvm_debug_guest dbg;
1736
1737 r = -EFAULT;
1738 if (copy_from_user(&dbg, argp, sizeof dbg))
1739 goto out;
1740 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1741 if (r)
1742 goto out;
1743 r = 0;
1744 break;
1745 }
1746 case KVM_SET_SIGNAL_MASK: {
1747 struct kvm_signal_mask __user *sigmask_arg = argp;
1748 struct kvm_signal_mask kvm_sigmask;
1749 sigset_t sigset, *p;
1750
1751 p = NULL;
1752 if (argp) {
1753 r = -EFAULT;
1754 if (copy_from_user(&kvm_sigmask, argp,
1755 sizeof kvm_sigmask))
1756 goto out;
1757 r = -EINVAL;
1758 if (kvm_sigmask.len != sizeof sigset)
1759 goto out;
1760 r = -EFAULT;
1761 if (copy_from_user(&sigset, sigmask_arg->sigset,
1762 sizeof sigset))
1763 goto out;
1764 p = &sigset;
1765 }
1766 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1767 break;
1768 }
1769 case KVM_GET_FPU: {
1770 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1771 r = -ENOMEM;
1772 if (!fpu)
1773 goto out;
1774 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1775 if (r)
1776 goto out;
1777 r = -EFAULT;
1778 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1779 goto out;
1780 r = 0;
1781 break;
1782 }
1783 case KVM_SET_FPU: {
1784 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1785 r = -ENOMEM;
1786 if (!fpu)
1787 goto out;
1788 r = -EFAULT;
1789 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1790 goto out;
1791 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1792 if (r)
1793 goto out;
1794 r = 0;
1795 break;
1796 }
1797 default:
1798 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1799 }
1800 out:
1801 kfree(fpu);
1802 kfree(kvm_sregs);
1803 return r;
1804 }
1805
1806 static long kvm_vm_ioctl(struct file *filp,
1807 unsigned int ioctl, unsigned long arg)
1808 {
1809 struct kvm *kvm = filp->private_data;
1810 void __user *argp = (void __user *)arg;
1811 int r;
1812
1813 if (kvm->mm != current->mm)
1814 return -EIO;
1815 switch (ioctl) {
1816 case KVM_CREATE_VCPU:
1817 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1818 if (r < 0)
1819 goto out;
1820 break;
1821 case KVM_SET_USER_MEMORY_REGION: {
1822 struct kvm_userspace_memory_region kvm_userspace_mem;
1823
1824 r = -EFAULT;
1825 if (copy_from_user(&kvm_userspace_mem, argp,
1826 sizeof kvm_userspace_mem))
1827 goto out;
1828
1829 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1830 if (r)
1831 goto out;
1832 break;
1833 }
1834 case KVM_GET_DIRTY_LOG: {
1835 struct kvm_dirty_log log;
1836
1837 r = -EFAULT;
1838 if (copy_from_user(&log, argp, sizeof log))
1839 goto out;
1840 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1841 if (r)
1842 goto out;
1843 break;
1844 }
1845 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1846 case KVM_REGISTER_COALESCED_MMIO: {
1847 struct kvm_coalesced_mmio_zone zone;
1848 r = -EFAULT;
1849 if (copy_from_user(&zone, argp, sizeof zone))
1850 goto out;
1851 r = -ENXIO;
1852 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1853 if (r)
1854 goto out;
1855 r = 0;
1856 break;
1857 }
1858 case KVM_UNREGISTER_COALESCED_MMIO: {
1859 struct kvm_coalesced_mmio_zone zone;
1860 r = -EFAULT;
1861 if (copy_from_user(&zone, argp, sizeof zone))
1862 goto out;
1863 r = -ENXIO;
1864 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1865 if (r)
1866 goto out;
1867 r = 0;
1868 break;
1869 }
1870 #endif
1871 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1872 case KVM_ASSIGN_PCI_DEVICE: {
1873 struct kvm_assigned_pci_dev assigned_dev;
1874
1875 r = -EFAULT;
1876 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1877 goto out;
1878 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1879 if (r)
1880 goto out;
1881 break;
1882 }
1883 case KVM_ASSIGN_IRQ: {
1884 struct kvm_assigned_irq assigned_irq;
1885
1886 r = -EFAULT;
1887 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1888 goto out;
1889 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1890 if (r)
1891 goto out;
1892 break;
1893 }
1894 #endif
1895 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
1896 case KVM_DEASSIGN_PCI_DEVICE: {
1897 struct kvm_assigned_pci_dev assigned_dev;
1898
1899 r = -EFAULT;
1900 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1901 goto out;
1902 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
1903 if (r)
1904 goto out;
1905 break;
1906 }
1907 #endif
1908 default:
1909 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1910 }
1911 out:
1912 return r;
1913 }
1914
1915 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1916 {
1917 struct page *page[1];
1918 unsigned long addr;
1919 int npages;
1920 gfn_t gfn = vmf->pgoff;
1921 struct kvm *kvm = vma->vm_file->private_data;
1922
1923 addr = gfn_to_hva(kvm, gfn);
1924 if (kvm_is_error_hva(addr))
1925 return VM_FAULT_SIGBUS;
1926
1927 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1928 NULL);
1929 if (unlikely(npages != 1))
1930 return VM_FAULT_SIGBUS;
1931
1932 vmf->page = page[0];
1933 return 0;
1934 }
1935
1936 static struct vm_operations_struct kvm_vm_vm_ops = {
1937 .fault = kvm_vm_fault,
1938 };
1939
1940 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1941 {
1942 vma->vm_ops = &kvm_vm_vm_ops;
1943 return 0;
1944 }
1945
1946 static struct file_operations kvm_vm_fops = {
1947 .release = kvm_vm_release,
1948 .unlocked_ioctl = kvm_vm_ioctl,
1949 .compat_ioctl = kvm_vm_ioctl,
1950 .mmap = kvm_vm_mmap,
1951 };
1952
1953 static int kvm_dev_ioctl_create_vm(void)
1954 {
1955 int fd;
1956 struct kvm *kvm;
1957
1958 kvm = kvm_create_vm();
1959 if (IS_ERR(kvm))
1960 return PTR_ERR(kvm);
1961 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1962 if (fd < 0)
1963 kvm_put_kvm(kvm);
1964
1965 return fd;
1966 }
1967
1968 static long kvm_dev_ioctl_check_extension_generic(long arg)
1969 {
1970 switch (arg) {
1971 case KVM_CAP_USER_MEMORY:
1972 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1973 return 1;
1974 default:
1975 break;
1976 }
1977 return kvm_dev_ioctl_check_extension(arg);
1978 }
1979
1980 static long kvm_dev_ioctl(struct file *filp,
1981 unsigned int ioctl, unsigned long arg)
1982 {
1983 long r = -EINVAL;
1984
1985 switch (ioctl) {
1986 case KVM_GET_API_VERSION:
1987 r = -EINVAL;
1988 if (arg)
1989 goto out;
1990 r = KVM_API_VERSION;
1991 break;
1992 case KVM_CREATE_VM:
1993 r = -EINVAL;
1994 if (arg)
1995 goto out;
1996 r = kvm_dev_ioctl_create_vm();
1997 break;
1998 case KVM_CHECK_EXTENSION:
1999 r = kvm_dev_ioctl_check_extension_generic(arg);
2000 break;
2001 case KVM_GET_VCPU_MMAP_SIZE:
2002 r = -EINVAL;
2003 if (arg)
2004 goto out;
2005 r = PAGE_SIZE; /* struct kvm_run */
2006 #ifdef CONFIG_X86
2007 r += PAGE_SIZE; /* pio data page */
2008 #endif
2009 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2010 r += PAGE_SIZE; /* coalesced mmio ring page */
2011 #endif
2012 break;
2013 case KVM_TRACE_ENABLE:
2014 case KVM_TRACE_PAUSE:
2015 case KVM_TRACE_DISABLE:
2016 r = kvm_trace_ioctl(ioctl, arg);
2017 break;
2018 default:
2019 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2020 }
2021 out:
2022 return r;
2023 }
2024
2025 static struct file_operations kvm_chardev_ops = {
2026 .unlocked_ioctl = kvm_dev_ioctl,
2027 .compat_ioctl = kvm_dev_ioctl,
2028 };
2029
2030 static struct miscdevice kvm_dev = {
2031 KVM_MINOR,
2032 "kvm",
2033 &kvm_chardev_ops,
2034 };
2035
2036 static void hardware_enable(void *junk)
2037 {
2038 int cpu = raw_smp_processor_id();
2039
2040 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2041 return;
2042 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2043 kvm_arch_hardware_enable(NULL);
2044 }
2045
2046 static void hardware_disable(void *junk)
2047 {
2048 int cpu = raw_smp_processor_id();
2049
2050 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2051 return;
2052 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2053 kvm_arch_hardware_disable(NULL);
2054 }
2055
2056 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2057 void *v)
2058 {
2059 int cpu = (long)v;
2060
2061 val &= ~CPU_TASKS_FROZEN;
2062 switch (val) {
2063 case CPU_DYING:
2064 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2065 cpu);
2066 hardware_disable(NULL);
2067 break;
2068 case CPU_UP_CANCELED:
2069 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2070 cpu);
2071 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2072 break;
2073 case CPU_ONLINE:
2074 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2075 cpu);
2076 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2077 break;
2078 }
2079 return NOTIFY_OK;
2080 }
2081
2082
2083 asmlinkage void kvm_handle_fault_on_reboot(void)
2084 {
2085 if (kvm_rebooting)
2086 /* spin while reset goes on */
2087 while (true)
2088 ;
2089 /* Fault while not rebooting. We want the trace. */
2090 BUG();
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2093
2094 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2095 void *v)
2096 {
2097 if (val == SYS_RESTART) {
2098 /*
2099 * Some (well, at least mine) BIOSes hang on reboot if
2100 * in vmx root mode.
2101 */
2102 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2103 kvm_rebooting = true;
2104 on_each_cpu(hardware_disable, NULL, 1);
2105 }
2106 return NOTIFY_OK;
2107 }
2108
2109 static struct notifier_block kvm_reboot_notifier = {
2110 .notifier_call = kvm_reboot,
2111 .priority = 0,
2112 };
2113
2114 void kvm_io_bus_init(struct kvm_io_bus *bus)
2115 {
2116 memset(bus, 0, sizeof(*bus));
2117 }
2118
2119 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2120 {
2121 int i;
2122
2123 for (i = 0; i < bus->dev_count; i++) {
2124 struct kvm_io_device *pos = bus->devs[i];
2125
2126 kvm_iodevice_destructor(pos);
2127 }
2128 }
2129
2130 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2131 gpa_t addr, int len, int is_write)
2132 {
2133 int i;
2134
2135 for (i = 0; i < bus->dev_count; i++) {
2136 struct kvm_io_device *pos = bus->devs[i];
2137
2138 if (pos->in_range(pos, addr, len, is_write))
2139 return pos;
2140 }
2141
2142 return NULL;
2143 }
2144
2145 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2146 {
2147 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2148
2149 bus->devs[bus->dev_count++] = dev;
2150 }
2151
2152 static struct notifier_block kvm_cpu_notifier = {
2153 .notifier_call = kvm_cpu_hotplug,
2154 .priority = 20, /* must be > scheduler priority */
2155 };
2156
2157 static int vm_stat_get(void *_offset, u64 *val)
2158 {
2159 unsigned offset = (long)_offset;
2160 struct kvm *kvm;
2161
2162 *val = 0;
2163 spin_lock(&kvm_lock);
2164 list_for_each_entry(kvm, &vm_list, vm_list)
2165 *val += *(u32 *)((void *)kvm + offset);
2166 spin_unlock(&kvm_lock);
2167 return 0;
2168 }
2169
2170 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2171
2172 static int vcpu_stat_get(void *_offset, u64 *val)
2173 {
2174 unsigned offset = (long)_offset;
2175 struct kvm *kvm;
2176 struct kvm_vcpu *vcpu;
2177 int i;
2178
2179 *val = 0;
2180 spin_lock(&kvm_lock);
2181 list_for_each_entry(kvm, &vm_list, vm_list)
2182 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2183 vcpu = kvm->vcpus[i];
2184 if (vcpu)
2185 *val += *(u32 *)((void *)vcpu + offset);
2186 }
2187 spin_unlock(&kvm_lock);
2188 return 0;
2189 }
2190
2191 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2192
2193 static struct file_operations *stat_fops[] = {
2194 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2195 [KVM_STAT_VM] = &vm_stat_fops,
2196 };
2197
2198 static void kvm_init_debug(void)
2199 {
2200 struct kvm_stats_debugfs_item *p;
2201
2202 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2203 for (p = debugfs_entries; p->name; ++p)
2204 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2205 (void *)(long)p->offset,
2206 stat_fops[p->kind]);
2207 }
2208
2209 static void kvm_exit_debug(void)
2210 {
2211 struct kvm_stats_debugfs_item *p;
2212
2213 for (p = debugfs_entries; p->name; ++p)
2214 debugfs_remove(p->dentry);
2215 debugfs_remove(kvm_debugfs_dir);
2216 }
2217
2218 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2219 {
2220 hardware_disable(NULL);
2221 return 0;
2222 }
2223
2224 static int kvm_resume(struct sys_device *dev)
2225 {
2226 hardware_enable(NULL);
2227 return 0;
2228 }
2229
2230 static struct sysdev_class kvm_sysdev_class = {
2231 .name = "kvm",
2232 .suspend = kvm_suspend,
2233 .resume = kvm_resume,
2234 };
2235
2236 static struct sys_device kvm_sysdev = {
2237 .id = 0,
2238 .cls = &kvm_sysdev_class,
2239 };
2240
2241 struct page *bad_page;
2242 pfn_t bad_pfn;
2243
2244 static inline
2245 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2246 {
2247 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2248 }
2249
2250 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2251 {
2252 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2253
2254 kvm_arch_vcpu_load(vcpu, cpu);
2255 }
2256
2257 static void kvm_sched_out(struct preempt_notifier *pn,
2258 struct task_struct *next)
2259 {
2260 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2261
2262 kvm_arch_vcpu_put(vcpu);
2263 }
2264
2265 int kvm_init(void *opaque, unsigned int vcpu_size,
2266 struct module *module)
2267 {
2268 int r;
2269 int cpu;
2270
2271 kvm_init_debug();
2272
2273 r = kvm_arch_init(opaque);
2274 if (r)
2275 goto out_fail;
2276
2277 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2278
2279 if (bad_page == NULL) {
2280 r = -ENOMEM;
2281 goto out;
2282 }
2283
2284 bad_pfn = page_to_pfn(bad_page);
2285
2286 if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2287 r = -ENOMEM;
2288 goto out_free_0;
2289 }
2290
2291 r = kvm_arch_hardware_setup();
2292 if (r < 0)
2293 goto out_free_0a;
2294
2295 for_each_online_cpu(cpu) {
2296 smp_call_function_single(cpu,
2297 kvm_arch_check_processor_compat,
2298 &r, 1);
2299 if (r < 0)
2300 goto out_free_1;
2301 }
2302
2303 on_each_cpu(hardware_enable, NULL, 1);
2304 r = register_cpu_notifier(&kvm_cpu_notifier);
2305 if (r)
2306 goto out_free_2;
2307 register_reboot_notifier(&kvm_reboot_notifier);
2308
2309 r = sysdev_class_register(&kvm_sysdev_class);
2310 if (r)
2311 goto out_free_3;
2312
2313 r = sysdev_register(&kvm_sysdev);
2314 if (r)
2315 goto out_free_4;
2316
2317 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2318 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2319 __alignof__(struct kvm_vcpu),
2320 0, NULL);
2321 if (!kvm_vcpu_cache) {
2322 r = -ENOMEM;
2323 goto out_free_5;
2324 }
2325
2326 kvm_chardev_ops.owner = module;
2327 kvm_vm_fops.owner = module;
2328 kvm_vcpu_fops.owner = module;
2329
2330 r = misc_register(&kvm_dev);
2331 if (r) {
2332 printk(KERN_ERR "kvm: misc device register failed\n");
2333 goto out_free;
2334 }
2335
2336 kvm_preempt_ops.sched_in = kvm_sched_in;
2337 kvm_preempt_ops.sched_out = kvm_sched_out;
2338 #ifndef CONFIG_X86
2339 msi2intx = 0;
2340 #endif
2341
2342 return 0;
2343
2344 out_free:
2345 kmem_cache_destroy(kvm_vcpu_cache);
2346 out_free_5:
2347 sysdev_unregister(&kvm_sysdev);
2348 out_free_4:
2349 sysdev_class_unregister(&kvm_sysdev_class);
2350 out_free_3:
2351 unregister_reboot_notifier(&kvm_reboot_notifier);
2352 unregister_cpu_notifier(&kvm_cpu_notifier);
2353 out_free_2:
2354 on_each_cpu(hardware_disable, NULL, 1);
2355 out_free_1:
2356 kvm_arch_hardware_unsetup();
2357 out_free_0a:
2358 free_cpumask_var(cpus_hardware_enabled);
2359 out_free_0:
2360 __free_page(bad_page);
2361 out:
2362 kvm_arch_exit();
2363 kvm_exit_debug();
2364 out_fail:
2365 return r;
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_init);
2368
2369 void kvm_exit(void)
2370 {
2371 kvm_trace_cleanup();
2372 misc_deregister(&kvm_dev);
2373 kmem_cache_destroy(kvm_vcpu_cache);
2374 sysdev_unregister(&kvm_sysdev);
2375 sysdev_class_unregister(&kvm_sysdev_class);
2376 unregister_reboot_notifier(&kvm_reboot_notifier);
2377 unregister_cpu_notifier(&kvm_cpu_notifier);
2378 on_each_cpu(hardware_disable, NULL, 1);
2379 kvm_arch_hardware_unsetup();
2380 kvm_arch_exit();
2381 kvm_exit_debug();
2382 free_cpumask_var(cpus_hardware_enabled);
2383 __free_page(bad_page);
2384 }
2385 EXPORT_SYMBOL_GPL(kvm_exit);