KVM: Ioctls for init MSI-X entry
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
53
54 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
55 #include <linux/pci.h>
56 #include <linux/interrupt.h>
57 #include "irq.h"
58 #endif
59
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
62
63 static int msi2intx = 1;
64 module_param(msi2intx, bool, 0);
65
66 DEFINE_SPINLOCK(kvm_lock);
67 LIST_HEAD(vm_list);
68
69 static cpumask_var_t cpus_hardware_enabled;
70
71 struct kmem_cache *kvm_vcpu_cache;
72 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
73
74 static __read_mostly struct preempt_ops kvm_preempt_ops;
75
76 struct dentry *kvm_debugfs_dir;
77
78 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
79 unsigned long arg);
80
81 static bool kvm_rebooting;
82
83 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
84 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
85 int assigned_dev_id)
86 {
87 struct list_head *ptr;
88 struct kvm_assigned_dev_kernel *match;
89
90 list_for_each(ptr, head) {
91 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
92 if (match->assigned_dev_id == assigned_dev_id)
93 return match;
94 }
95 return NULL;
96 }
97
98 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
99 {
100 struct kvm_assigned_dev_kernel *assigned_dev;
101
102 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
103 interrupt_work);
104
105 /* This is taken to safely inject irq inside the guest. When
106 * the interrupt injection (or the ioapic code) uses a
107 * finer-grained lock, update this
108 */
109 mutex_lock(&assigned_dev->kvm->lock);
110 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
111 assigned_dev->guest_irq, 1);
112
113 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_MSI) {
114 enable_irq(assigned_dev->host_irq);
115 assigned_dev->host_irq_disabled = false;
116 }
117 mutex_unlock(&assigned_dev->kvm->lock);
118 }
119
120 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
121 {
122 struct kvm_assigned_dev_kernel *assigned_dev =
123 (struct kvm_assigned_dev_kernel *) dev_id;
124
125 schedule_work(&assigned_dev->interrupt_work);
126
127 disable_irq_nosync(irq);
128 assigned_dev->host_irq_disabled = true;
129
130 return IRQ_HANDLED;
131 }
132
133 /* Ack the irq line for an assigned device */
134 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
135 {
136 struct kvm_assigned_dev_kernel *dev;
137
138 if (kian->gsi == -1)
139 return;
140
141 dev = container_of(kian, struct kvm_assigned_dev_kernel,
142 ack_notifier);
143
144 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
145
146 /* The guest irq may be shared so this ack may be
147 * from another device.
148 */
149 if (dev->host_irq_disabled) {
150 enable_irq(dev->host_irq);
151 dev->host_irq_disabled = false;
152 }
153 }
154
155 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
156 static void kvm_free_assigned_irq(struct kvm *kvm,
157 struct kvm_assigned_dev_kernel *assigned_dev)
158 {
159 if (!irqchip_in_kernel(kvm))
160 return;
161
162 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
163
164 if (assigned_dev->irq_source_id != -1)
165 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
166 assigned_dev->irq_source_id = -1;
167
168 if (!assigned_dev->irq_requested_type)
169 return;
170
171 /*
172 * In kvm_free_device_irq, cancel_work_sync return true if:
173 * 1. work is scheduled, and then cancelled.
174 * 2. work callback is executed.
175 *
176 * The first one ensured that the irq is disabled and no more events
177 * would happen. But for the second one, the irq may be enabled (e.g.
178 * for MSI). So we disable irq here to prevent further events.
179 *
180 * Notice this maybe result in nested disable if the interrupt type is
181 * INTx, but it's OK for we are going to free it.
182 *
183 * If this function is a part of VM destroy, please ensure that till
184 * now, the kvm state is still legal for probably we also have to wait
185 * interrupt_work done.
186 */
187 disable_irq_nosync(assigned_dev->host_irq);
188 cancel_work_sync(&assigned_dev->interrupt_work);
189
190 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
191
192 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
193 pci_disable_msi(assigned_dev->dev);
194
195 assigned_dev->irq_requested_type = 0;
196 }
197
198
199 static void kvm_free_assigned_device(struct kvm *kvm,
200 struct kvm_assigned_dev_kernel
201 *assigned_dev)
202 {
203 kvm_free_assigned_irq(kvm, assigned_dev);
204
205 pci_reset_function(assigned_dev->dev);
206
207 pci_release_regions(assigned_dev->dev);
208 pci_disable_device(assigned_dev->dev);
209 pci_dev_put(assigned_dev->dev);
210
211 list_del(&assigned_dev->list);
212 kfree(assigned_dev);
213 }
214
215 void kvm_free_all_assigned_devices(struct kvm *kvm)
216 {
217 struct list_head *ptr, *ptr2;
218 struct kvm_assigned_dev_kernel *assigned_dev;
219
220 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
221 assigned_dev = list_entry(ptr,
222 struct kvm_assigned_dev_kernel,
223 list);
224
225 kvm_free_assigned_device(kvm, assigned_dev);
226 }
227 }
228
229 static int assigned_device_update_intx(struct kvm *kvm,
230 struct kvm_assigned_dev_kernel *adev,
231 struct kvm_assigned_irq *airq)
232 {
233 adev->guest_irq = airq->guest_irq;
234 adev->ack_notifier.gsi = airq->guest_irq;
235
236 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
237 return 0;
238
239 if (irqchip_in_kernel(kvm)) {
240 if (!msi2intx &&
241 (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)) {
242 free_irq(adev->host_irq, (void *)adev);
243 pci_disable_msi(adev->dev);
244 }
245
246 if (!capable(CAP_SYS_RAWIO))
247 return -EPERM;
248
249 if (airq->host_irq)
250 adev->host_irq = airq->host_irq;
251 else
252 adev->host_irq = adev->dev->irq;
253
254 /* Even though this is PCI, we don't want to use shared
255 * interrupts. Sharing host devices with guest-assigned devices
256 * on the same interrupt line is not a happy situation: there
257 * are going to be long delays in accepting, acking, etc.
258 */
259 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
260 0, "kvm_assigned_intx_device", (void *)adev))
261 return -EIO;
262 }
263
264 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
265 KVM_ASSIGNED_DEV_HOST_INTX;
266 return 0;
267 }
268
269 #ifdef CONFIG_X86
270 static int assigned_device_update_msi(struct kvm *kvm,
271 struct kvm_assigned_dev_kernel *adev,
272 struct kvm_assigned_irq *airq)
273 {
274 int r;
275
276 adev->guest_irq = airq->guest_irq;
277 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
278 /* x86 don't care upper address of guest msi message addr */
279 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
280 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
281 adev->ack_notifier.gsi = -1;
282 } else if (msi2intx) {
283 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
284 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
285 adev->ack_notifier.gsi = airq->guest_irq;
286 } else {
287 /*
288 * Guest require to disable device MSI, we disable MSI and
289 * re-enable INTx by default again. Notice it's only for
290 * non-msi2intx.
291 */
292 assigned_device_update_intx(kvm, adev, airq);
293 return 0;
294 }
295
296 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
297 return 0;
298
299 if (irqchip_in_kernel(kvm)) {
300 if (!msi2intx) {
301 if (adev->irq_requested_type &
302 KVM_ASSIGNED_DEV_HOST_INTX)
303 free_irq(adev->host_irq, (void *)adev);
304
305 r = pci_enable_msi(adev->dev);
306 if (r)
307 return r;
308 }
309
310 adev->host_irq = adev->dev->irq;
311 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
312 "kvm_assigned_msi_device", (void *)adev))
313 return -EIO;
314 }
315
316 if (!msi2intx)
317 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
318
319 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
320 return 0;
321 }
322 #endif
323
324 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
325 struct kvm_assigned_irq
326 *assigned_irq)
327 {
328 int r = 0;
329 struct kvm_assigned_dev_kernel *match;
330 u32 current_flags = 0, changed_flags;
331
332 mutex_lock(&kvm->lock);
333
334 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
335 assigned_irq->assigned_dev_id);
336 if (!match) {
337 mutex_unlock(&kvm->lock);
338 return -EINVAL;
339 }
340
341 if (!match->irq_requested_type) {
342 INIT_WORK(&match->interrupt_work,
343 kvm_assigned_dev_interrupt_work_handler);
344 if (irqchip_in_kernel(kvm)) {
345 /* Register ack nofitier */
346 match->ack_notifier.gsi = -1;
347 match->ack_notifier.irq_acked =
348 kvm_assigned_dev_ack_irq;
349 kvm_register_irq_ack_notifier(kvm,
350 &match->ack_notifier);
351
352 /* Request IRQ source ID */
353 r = kvm_request_irq_source_id(kvm);
354 if (r < 0)
355 goto out_release;
356 else
357 match->irq_source_id = r;
358
359 #ifdef CONFIG_X86
360 /* Determine host device irq type, we can know the
361 * result from dev->msi_enabled */
362 if (msi2intx)
363 pci_enable_msi(match->dev);
364 #endif
365 }
366 }
367
368 if ((match->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) &&
369 (match->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_MSI))
370 current_flags |= KVM_DEV_IRQ_ASSIGN_ENABLE_MSI;
371
372 changed_flags = assigned_irq->flags ^ current_flags;
373
374 if ((changed_flags & KVM_DEV_IRQ_ASSIGN_MSI_ACTION) ||
375 (msi2intx && match->dev->msi_enabled)) {
376 #ifdef CONFIG_X86
377 r = assigned_device_update_msi(kvm, match, assigned_irq);
378 if (r) {
379 printk(KERN_WARNING "kvm: failed to enable "
380 "MSI device!\n");
381 goto out_release;
382 }
383 #else
384 r = -ENOTTY;
385 #endif
386 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
387 /* Host device IRQ 0 means don't support INTx */
388 if (!msi2intx) {
389 printk(KERN_WARNING
390 "kvm: wait device to enable MSI!\n");
391 r = 0;
392 } else {
393 printk(KERN_WARNING
394 "kvm: failed to enable MSI device!\n");
395 r = -ENOTTY;
396 goto out_release;
397 }
398 } else {
399 /* Non-sharing INTx mode */
400 r = assigned_device_update_intx(kvm, match, assigned_irq);
401 if (r) {
402 printk(KERN_WARNING "kvm: failed to enable "
403 "INTx device!\n");
404 goto out_release;
405 }
406 }
407
408 mutex_unlock(&kvm->lock);
409 return r;
410 out_release:
411 mutex_unlock(&kvm->lock);
412 kvm_free_assigned_device(kvm, match);
413 return r;
414 }
415
416 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
417 struct kvm_assigned_pci_dev *assigned_dev)
418 {
419 int r = 0;
420 struct kvm_assigned_dev_kernel *match;
421 struct pci_dev *dev;
422
423 down_read(&kvm->slots_lock);
424 mutex_lock(&kvm->lock);
425
426 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
427 assigned_dev->assigned_dev_id);
428 if (match) {
429 /* device already assigned */
430 r = -EINVAL;
431 goto out;
432 }
433
434 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
435 if (match == NULL) {
436 printk(KERN_INFO "%s: Couldn't allocate memory\n",
437 __func__);
438 r = -ENOMEM;
439 goto out;
440 }
441 dev = pci_get_bus_and_slot(assigned_dev->busnr,
442 assigned_dev->devfn);
443 if (!dev) {
444 printk(KERN_INFO "%s: host device not found\n", __func__);
445 r = -EINVAL;
446 goto out_free;
447 }
448 if (pci_enable_device(dev)) {
449 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
450 r = -EBUSY;
451 goto out_put;
452 }
453 r = pci_request_regions(dev, "kvm_assigned_device");
454 if (r) {
455 printk(KERN_INFO "%s: Could not get access to device regions\n",
456 __func__);
457 goto out_disable;
458 }
459
460 pci_reset_function(dev);
461
462 match->assigned_dev_id = assigned_dev->assigned_dev_id;
463 match->host_busnr = assigned_dev->busnr;
464 match->host_devfn = assigned_dev->devfn;
465 match->flags = assigned_dev->flags;
466 match->dev = dev;
467 match->irq_source_id = -1;
468 match->kvm = kvm;
469
470 list_add(&match->list, &kvm->arch.assigned_dev_head);
471
472 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
473 if (!kvm->arch.iommu_domain) {
474 r = kvm_iommu_map_guest(kvm);
475 if (r)
476 goto out_list_del;
477 }
478 r = kvm_assign_device(kvm, match);
479 if (r)
480 goto out_list_del;
481 }
482
483 out:
484 mutex_unlock(&kvm->lock);
485 up_read(&kvm->slots_lock);
486 return r;
487 out_list_del:
488 list_del(&match->list);
489 pci_release_regions(dev);
490 out_disable:
491 pci_disable_device(dev);
492 out_put:
493 pci_dev_put(dev);
494 out_free:
495 kfree(match);
496 mutex_unlock(&kvm->lock);
497 up_read(&kvm->slots_lock);
498 return r;
499 }
500 #endif
501
502 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
503 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
504 struct kvm_assigned_pci_dev *assigned_dev)
505 {
506 int r = 0;
507 struct kvm_assigned_dev_kernel *match;
508
509 mutex_lock(&kvm->lock);
510
511 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
512 assigned_dev->assigned_dev_id);
513 if (!match) {
514 printk(KERN_INFO "%s: device hasn't been assigned before, "
515 "so cannot be deassigned\n", __func__);
516 r = -EINVAL;
517 goto out;
518 }
519
520 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
521 kvm_deassign_device(kvm, match);
522
523 kvm_free_assigned_device(kvm, match);
524
525 out:
526 mutex_unlock(&kvm->lock);
527 return r;
528 }
529 #endif
530
531 static inline int valid_vcpu(int n)
532 {
533 return likely(n >= 0 && n < KVM_MAX_VCPUS);
534 }
535
536 inline int kvm_is_mmio_pfn(pfn_t pfn)
537 {
538 if (pfn_valid(pfn)) {
539 struct page *page = compound_head(pfn_to_page(pfn));
540 return PageReserved(page);
541 }
542
543 return true;
544 }
545
546 /*
547 * Switches to specified vcpu, until a matching vcpu_put()
548 */
549 void vcpu_load(struct kvm_vcpu *vcpu)
550 {
551 int cpu;
552
553 mutex_lock(&vcpu->mutex);
554 cpu = get_cpu();
555 preempt_notifier_register(&vcpu->preempt_notifier);
556 kvm_arch_vcpu_load(vcpu, cpu);
557 put_cpu();
558 }
559
560 void vcpu_put(struct kvm_vcpu *vcpu)
561 {
562 preempt_disable();
563 kvm_arch_vcpu_put(vcpu);
564 preempt_notifier_unregister(&vcpu->preempt_notifier);
565 preempt_enable();
566 mutex_unlock(&vcpu->mutex);
567 }
568
569 static void ack_flush(void *_completed)
570 {
571 }
572
573 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
574 {
575 int i, cpu, me;
576 cpumask_var_t cpus;
577 bool called = true;
578 struct kvm_vcpu *vcpu;
579
580 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
581 cpumask_clear(cpus);
582
583 me = get_cpu();
584 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
585 vcpu = kvm->vcpus[i];
586 if (!vcpu)
587 continue;
588 if (test_and_set_bit(req, &vcpu->requests))
589 continue;
590 cpu = vcpu->cpu;
591 if (cpus != NULL && cpu != -1 && cpu != me)
592 cpumask_set_cpu(cpu, cpus);
593 }
594 if (unlikely(cpus == NULL))
595 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
596 else if (!cpumask_empty(cpus))
597 smp_call_function_many(cpus, ack_flush, NULL, 1);
598 else
599 called = false;
600 put_cpu();
601 free_cpumask_var(cpus);
602 return called;
603 }
604
605 void kvm_flush_remote_tlbs(struct kvm *kvm)
606 {
607 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
608 ++kvm->stat.remote_tlb_flush;
609 }
610
611 void kvm_reload_remote_mmus(struct kvm *kvm)
612 {
613 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
614 }
615
616 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
617 {
618 struct page *page;
619 int r;
620
621 mutex_init(&vcpu->mutex);
622 vcpu->cpu = -1;
623 vcpu->kvm = kvm;
624 vcpu->vcpu_id = id;
625 init_waitqueue_head(&vcpu->wq);
626
627 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
628 if (!page) {
629 r = -ENOMEM;
630 goto fail;
631 }
632 vcpu->run = page_address(page);
633
634 r = kvm_arch_vcpu_init(vcpu);
635 if (r < 0)
636 goto fail_free_run;
637 return 0;
638
639 fail_free_run:
640 free_page((unsigned long)vcpu->run);
641 fail:
642 return r;
643 }
644 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
645
646 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
647 {
648 kvm_arch_vcpu_uninit(vcpu);
649 free_page((unsigned long)vcpu->run);
650 }
651 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
652
653 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
654 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
655 {
656 return container_of(mn, struct kvm, mmu_notifier);
657 }
658
659 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
660 struct mm_struct *mm,
661 unsigned long address)
662 {
663 struct kvm *kvm = mmu_notifier_to_kvm(mn);
664 int need_tlb_flush;
665
666 /*
667 * When ->invalidate_page runs, the linux pte has been zapped
668 * already but the page is still allocated until
669 * ->invalidate_page returns. So if we increase the sequence
670 * here the kvm page fault will notice if the spte can't be
671 * established because the page is going to be freed. If
672 * instead the kvm page fault establishes the spte before
673 * ->invalidate_page runs, kvm_unmap_hva will release it
674 * before returning.
675 *
676 * The sequence increase only need to be seen at spin_unlock
677 * time, and not at spin_lock time.
678 *
679 * Increasing the sequence after the spin_unlock would be
680 * unsafe because the kvm page fault could then establish the
681 * pte after kvm_unmap_hva returned, without noticing the page
682 * is going to be freed.
683 */
684 spin_lock(&kvm->mmu_lock);
685 kvm->mmu_notifier_seq++;
686 need_tlb_flush = kvm_unmap_hva(kvm, address);
687 spin_unlock(&kvm->mmu_lock);
688
689 /* we've to flush the tlb before the pages can be freed */
690 if (need_tlb_flush)
691 kvm_flush_remote_tlbs(kvm);
692
693 }
694
695 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
696 struct mm_struct *mm,
697 unsigned long start,
698 unsigned long end)
699 {
700 struct kvm *kvm = mmu_notifier_to_kvm(mn);
701 int need_tlb_flush = 0;
702
703 spin_lock(&kvm->mmu_lock);
704 /*
705 * The count increase must become visible at unlock time as no
706 * spte can be established without taking the mmu_lock and
707 * count is also read inside the mmu_lock critical section.
708 */
709 kvm->mmu_notifier_count++;
710 for (; start < end; start += PAGE_SIZE)
711 need_tlb_flush |= kvm_unmap_hva(kvm, start);
712 spin_unlock(&kvm->mmu_lock);
713
714 /* we've to flush the tlb before the pages can be freed */
715 if (need_tlb_flush)
716 kvm_flush_remote_tlbs(kvm);
717 }
718
719 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
720 struct mm_struct *mm,
721 unsigned long start,
722 unsigned long end)
723 {
724 struct kvm *kvm = mmu_notifier_to_kvm(mn);
725
726 spin_lock(&kvm->mmu_lock);
727 /*
728 * This sequence increase will notify the kvm page fault that
729 * the page that is going to be mapped in the spte could have
730 * been freed.
731 */
732 kvm->mmu_notifier_seq++;
733 /*
734 * The above sequence increase must be visible before the
735 * below count decrease but both values are read by the kvm
736 * page fault under mmu_lock spinlock so we don't need to add
737 * a smb_wmb() here in between the two.
738 */
739 kvm->mmu_notifier_count--;
740 spin_unlock(&kvm->mmu_lock);
741
742 BUG_ON(kvm->mmu_notifier_count < 0);
743 }
744
745 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
746 struct mm_struct *mm,
747 unsigned long address)
748 {
749 struct kvm *kvm = mmu_notifier_to_kvm(mn);
750 int young;
751
752 spin_lock(&kvm->mmu_lock);
753 young = kvm_age_hva(kvm, address);
754 spin_unlock(&kvm->mmu_lock);
755
756 if (young)
757 kvm_flush_remote_tlbs(kvm);
758
759 return young;
760 }
761
762 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
763 struct mm_struct *mm)
764 {
765 struct kvm *kvm = mmu_notifier_to_kvm(mn);
766 kvm_arch_flush_shadow(kvm);
767 }
768
769 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
770 .invalidate_page = kvm_mmu_notifier_invalidate_page,
771 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
772 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
773 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
774 .release = kvm_mmu_notifier_release,
775 };
776 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
777
778 static struct kvm *kvm_create_vm(void)
779 {
780 struct kvm *kvm = kvm_arch_create_vm();
781 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
782 struct page *page;
783 #endif
784
785 if (IS_ERR(kvm))
786 goto out;
787 #ifdef CONFIG_HAVE_KVM_IRQCHIP
788 INIT_LIST_HEAD(&kvm->irq_routing);
789 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
790 #endif
791
792 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
793 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
794 if (!page) {
795 kfree(kvm);
796 return ERR_PTR(-ENOMEM);
797 }
798 kvm->coalesced_mmio_ring =
799 (struct kvm_coalesced_mmio_ring *)page_address(page);
800 #endif
801
802 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
803 {
804 int err;
805 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
806 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
807 if (err) {
808 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
809 put_page(page);
810 #endif
811 kfree(kvm);
812 return ERR_PTR(err);
813 }
814 }
815 #endif
816
817 kvm->mm = current->mm;
818 atomic_inc(&kvm->mm->mm_count);
819 spin_lock_init(&kvm->mmu_lock);
820 kvm_io_bus_init(&kvm->pio_bus);
821 mutex_init(&kvm->lock);
822 kvm_io_bus_init(&kvm->mmio_bus);
823 init_rwsem(&kvm->slots_lock);
824 atomic_set(&kvm->users_count, 1);
825 spin_lock(&kvm_lock);
826 list_add(&kvm->vm_list, &vm_list);
827 spin_unlock(&kvm_lock);
828 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
829 kvm_coalesced_mmio_init(kvm);
830 #endif
831 out:
832 return kvm;
833 }
834
835 /*
836 * Free any memory in @free but not in @dont.
837 */
838 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
839 struct kvm_memory_slot *dont)
840 {
841 if (!dont || free->rmap != dont->rmap)
842 vfree(free->rmap);
843
844 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
845 vfree(free->dirty_bitmap);
846
847 if (!dont || free->lpage_info != dont->lpage_info)
848 vfree(free->lpage_info);
849
850 free->npages = 0;
851 free->dirty_bitmap = NULL;
852 free->rmap = NULL;
853 free->lpage_info = NULL;
854 }
855
856 void kvm_free_physmem(struct kvm *kvm)
857 {
858 int i;
859
860 for (i = 0; i < kvm->nmemslots; ++i)
861 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
862 }
863
864 static void kvm_destroy_vm(struct kvm *kvm)
865 {
866 struct mm_struct *mm = kvm->mm;
867
868 kvm_arch_sync_events(kvm);
869 spin_lock(&kvm_lock);
870 list_del(&kvm->vm_list);
871 spin_unlock(&kvm_lock);
872 kvm_free_irq_routing(kvm);
873 kvm_io_bus_destroy(&kvm->pio_bus);
874 kvm_io_bus_destroy(&kvm->mmio_bus);
875 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
876 if (kvm->coalesced_mmio_ring != NULL)
877 free_page((unsigned long)kvm->coalesced_mmio_ring);
878 #endif
879 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
880 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
881 #endif
882 kvm_arch_destroy_vm(kvm);
883 mmdrop(mm);
884 }
885
886 void kvm_get_kvm(struct kvm *kvm)
887 {
888 atomic_inc(&kvm->users_count);
889 }
890 EXPORT_SYMBOL_GPL(kvm_get_kvm);
891
892 void kvm_put_kvm(struct kvm *kvm)
893 {
894 if (atomic_dec_and_test(&kvm->users_count))
895 kvm_destroy_vm(kvm);
896 }
897 EXPORT_SYMBOL_GPL(kvm_put_kvm);
898
899
900 static int kvm_vm_release(struct inode *inode, struct file *filp)
901 {
902 struct kvm *kvm = filp->private_data;
903
904 kvm_put_kvm(kvm);
905 return 0;
906 }
907
908 /*
909 * Allocate some memory and give it an address in the guest physical address
910 * space.
911 *
912 * Discontiguous memory is allowed, mostly for framebuffers.
913 *
914 * Must be called holding mmap_sem for write.
915 */
916 int __kvm_set_memory_region(struct kvm *kvm,
917 struct kvm_userspace_memory_region *mem,
918 int user_alloc)
919 {
920 int r;
921 gfn_t base_gfn;
922 unsigned long npages;
923 int largepages;
924 unsigned long i;
925 struct kvm_memory_slot *memslot;
926 struct kvm_memory_slot old, new;
927
928 r = -EINVAL;
929 /* General sanity checks */
930 if (mem->memory_size & (PAGE_SIZE - 1))
931 goto out;
932 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
933 goto out;
934 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
935 goto out;
936 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
937 goto out;
938 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
939 goto out;
940
941 memslot = &kvm->memslots[mem->slot];
942 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
943 npages = mem->memory_size >> PAGE_SHIFT;
944
945 if (!npages)
946 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
947
948 new = old = *memslot;
949
950 new.base_gfn = base_gfn;
951 new.npages = npages;
952 new.flags = mem->flags;
953
954 /* Disallow changing a memory slot's size. */
955 r = -EINVAL;
956 if (npages && old.npages && npages != old.npages)
957 goto out_free;
958
959 /* Check for overlaps */
960 r = -EEXIST;
961 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
962 struct kvm_memory_slot *s = &kvm->memslots[i];
963
964 if (s == memslot || !s->npages)
965 continue;
966 if (!((base_gfn + npages <= s->base_gfn) ||
967 (base_gfn >= s->base_gfn + s->npages)))
968 goto out_free;
969 }
970
971 /* Free page dirty bitmap if unneeded */
972 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
973 new.dirty_bitmap = NULL;
974
975 r = -ENOMEM;
976
977 /* Allocate if a slot is being created */
978 #ifndef CONFIG_S390
979 if (npages && !new.rmap) {
980 new.rmap = vmalloc(npages * sizeof(struct page *));
981
982 if (!new.rmap)
983 goto out_free;
984
985 memset(new.rmap, 0, npages * sizeof(*new.rmap));
986
987 new.user_alloc = user_alloc;
988 /*
989 * hva_to_rmmap() serialzies with the mmu_lock and to be
990 * safe it has to ignore memslots with !user_alloc &&
991 * !userspace_addr.
992 */
993 if (user_alloc)
994 new.userspace_addr = mem->userspace_addr;
995 else
996 new.userspace_addr = 0;
997 }
998 if (npages && !new.lpage_info) {
999 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1000 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1001
1002 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1003
1004 if (!new.lpage_info)
1005 goto out_free;
1006
1007 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1008
1009 if (base_gfn % KVM_PAGES_PER_HPAGE)
1010 new.lpage_info[0].write_count = 1;
1011 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1012 new.lpage_info[largepages-1].write_count = 1;
1013 }
1014
1015 /* Allocate page dirty bitmap if needed */
1016 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1017 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1018
1019 new.dirty_bitmap = vmalloc(dirty_bytes);
1020 if (!new.dirty_bitmap)
1021 goto out_free;
1022 memset(new.dirty_bitmap, 0, dirty_bytes);
1023 }
1024 #endif /* not defined CONFIG_S390 */
1025
1026 if (!npages)
1027 kvm_arch_flush_shadow(kvm);
1028
1029 spin_lock(&kvm->mmu_lock);
1030 if (mem->slot >= kvm->nmemslots)
1031 kvm->nmemslots = mem->slot + 1;
1032
1033 *memslot = new;
1034 spin_unlock(&kvm->mmu_lock);
1035
1036 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1037 if (r) {
1038 spin_lock(&kvm->mmu_lock);
1039 *memslot = old;
1040 spin_unlock(&kvm->mmu_lock);
1041 goto out_free;
1042 }
1043
1044 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1045 /* Slot deletion case: we have to update the current slot */
1046 if (!npages)
1047 *memslot = old;
1048 #ifdef CONFIG_DMAR
1049 /* map the pages in iommu page table */
1050 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1051 if (r)
1052 goto out;
1053 #endif
1054 return 0;
1055
1056 out_free:
1057 kvm_free_physmem_slot(&new, &old);
1058 out:
1059 return r;
1060
1061 }
1062 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1063
1064 int kvm_set_memory_region(struct kvm *kvm,
1065 struct kvm_userspace_memory_region *mem,
1066 int user_alloc)
1067 {
1068 int r;
1069
1070 down_write(&kvm->slots_lock);
1071 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1072 up_write(&kvm->slots_lock);
1073 return r;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1076
1077 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1078 struct
1079 kvm_userspace_memory_region *mem,
1080 int user_alloc)
1081 {
1082 if (mem->slot >= KVM_MEMORY_SLOTS)
1083 return -EINVAL;
1084 return kvm_set_memory_region(kvm, mem, user_alloc);
1085 }
1086
1087 int kvm_get_dirty_log(struct kvm *kvm,
1088 struct kvm_dirty_log *log, int *is_dirty)
1089 {
1090 struct kvm_memory_slot *memslot;
1091 int r, i;
1092 int n;
1093 unsigned long any = 0;
1094
1095 r = -EINVAL;
1096 if (log->slot >= KVM_MEMORY_SLOTS)
1097 goto out;
1098
1099 memslot = &kvm->memslots[log->slot];
1100 r = -ENOENT;
1101 if (!memslot->dirty_bitmap)
1102 goto out;
1103
1104 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1105
1106 for (i = 0; !any && i < n/sizeof(long); ++i)
1107 any = memslot->dirty_bitmap[i];
1108
1109 r = -EFAULT;
1110 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1111 goto out;
1112
1113 if (any)
1114 *is_dirty = 1;
1115
1116 r = 0;
1117 out:
1118 return r;
1119 }
1120
1121 int is_error_page(struct page *page)
1122 {
1123 return page == bad_page;
1124 }
1125 EXPORT_SYMBOL_GPL(is_error_page);
1126
1127 int is_error_pfn(pfn_t pfn)
1128 {
1129 return pfn == bad_pfn;
1130 }
1131 EXPORT_SYMBOL_GPL(is_error_pfn);
1132
1133 static inline unsigned long bad_hva(void)
1134 {
1135 return PAGE_OFFSET;
1136 }
1137
1138 int kvm_is_error_hva(unsigned long addr)
1139 {
1140 return addr == bad_hva();
1141 }
1142 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1143
1144 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1145 {
1146 int i;
1147
1148 for (i = 0; i < kvm->nmemslots; ++i) {
1149 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1150
1151 if (gfn >= memslot->base_gfn
1152 && gfn < memslot->base_gfn + memslot->npages)
1153 return memslot;
1154 }
1155 return NULL;
1156 }
1157 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1158
1159 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1160 {
1161 gfn = unalias_gfn(kvm, gfn);
1162 return gfn_to_memslot_unaliased(kvm, gfn);
1163 }
1164
1165 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1166 {
1167 int i;
1168
1169 gfn = unalias_gfn(kvm, gfn);
1170 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1171 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1172
1173 if (gfn >= memslot->base_gfn
1174 && gfn < memslot->base_gfn + memslot->npages)
1175 return 1;
1176 }
1177 return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1180
1181 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1182 {
1183 struct kvm_memory_slot *slot;
1184
1185 gfn = unalias_gfn(kvm, gfn);
1186 slot = gfn_to_memslot_unaliased(kvm, gfn);
1187 if (!slot)
1188 return bad_hva();
1189 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1190 }
1191 EXPORT_SYMBOL_GPL(gfn_to_hva);
1192
1193 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1194 {
1195 struct page *page[1];
1196 unsigned long addr;
1197 int npages;
1198 pfn_t pfn;
1199
1200 might_sleep();
1201
1202 addr = gfn_to_hva(kvm, gfn);
1203 if (kvm_is_error_hva(addr)) {
1204 get_page(bad_page);
1205 return page_to_pfn(bad_page);
1206 }
1207
1208 npages = get_user_pages_fast(addr, 1, 1, page);
1209
1210 if (unlikely(npages != 1)) {
1211 struct vm_area_struct *vma;
1212
1213 down_read(&current->mm->mmap_sem);
1214 vma = find_vma(current->mm, addr);
1215
1216 if (vma == NULL || addr < vma->vm_start ||
1217 !(vma->vm_flags & VM_PFNMAP)) {
1218 up_read(&current->mm->mmap_sem);
1219 get_page(bad_page);
1220 return page_to_pfn(bad_page);
1221 }
1222
1223 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1224 up_read(&current->mm->mmap_sem);
1225 BUG_ON(!kvm_is_mmio_pfn(pfn));
1226 } else
1227 pfn = page_to_pfn(page[0]);
1228
1229 return pfn;
1230 }
1231
1232 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1233
1234 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1235 {
1236 pfn_t pfn;
1237
1238 pfn = gfn_to_pfn(kvm, gfn);
1239 if (!kvm_is_mmio_pfn(pfn))
1240 return pfn_to_page(pfn);
1241
1242 WARN_ON(kvm_is_mmio_pfn(pfn));
1243
1244 get_page(bad_page);
1245 return bad_page;
1246 }
1247
1248 EXPORT_SYMBOL_GPL(gfn_to_page);
1249
1250 void kvm_release_page_clean(struct page *page)
1251 {
1252 kvm_release_pfn_clean(page_to_pfn(page));
1253 }
1254 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1255
1256 void kvm_release_pfn_clean(pfn_t pfn)
1257 {
1258 if (!kvm_is_mmio_pfn(pfn))
1259 put_page(pfn_to_page(pfn));
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1262
1263 void kvm_release_page_dirty(struct page *page)
1264 {
1265 kvm_release_pfn_dirty(page_to_pfn(page));
1266 }
1267 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1268
1269 void kvm_release_pfn_dirty(pfn_t pfn)
1270 {
1271 kvm_set_pfn_dirty(pfn);
1272 kvm_release_pfn_clean(pfn);
1273 }
1274 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1275
1276 void kvm_set_page_dirty(struct page *page)
1277 {
1278 kvm_set_pfn_dirty(page_to_pfn(page));
1279 }
1280 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1281
1282 void kvm_set_pfn_dirty(pfn_t pfn)
1283 {
1284 if (!kvm_is_mmio_pfn(pfn)) {
1285 struct page *page = pfn_to_page(pfn);
1286 if (!PageReserved(page))
1287 SetPageDirty(page);
1288 }
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1291
1292 void kvm_set_pfn_accessed(pfn_t pfn)
1293 {
1294 if (!kvm_is_mmio_pfn(pfn))
1295 mark_page_accessed(pfn_to_page(pfn));
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1298
1299 void kvm_get_pfn(pfn_t pfn)
1300 {
1301 if (!kvm_is_mmio_pfn(pfn))
1302 get_page(pfn_to_page(pfn));
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1305
1306 static int next_segment(unsigned long len, int offset)
1307 {
1308 if (len > PAGE_SIZE - offset)
1309 return PAGE_SIZE - offset;
1310 else
1311 return len;
1312 }
1313
1314 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1315 int len)
1316 {
1317 int r;
1318 unsigned long addr;
1319
1320 addr = gfn_to_hva(kvm, gfn);
1321 if (kvm_is_error_hva(addr))
1322 return -EFAULT;
1323 r = copy_from_user(data, (void __user *)addr + offset, len);
1324 if (r)
1325 return -EFAULT;
1326 return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1329
1330 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1331 {
1332 gfn_t gfn = gpa >> PAGE_SHIFT;
1333 int seg;
1334 int offset = offset_in_page(gpa);
1335 int ret;
1336
1337 while ((seg = next_segment(len, offset)) != 0) {
1338 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1339 if (ret < 0)
1340 return ret;
1341 offset = 0;
1342 len -= seg;
1343 data += seg;
1344 ++gfn;
1345 }
1346 return 0;
1347 }
1348 EXPORT_SYMBOL_GPL(kvm_read_guest);
1349
1350 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1351 unsigned long len)
1352 {
1353 int r;
1354 unsigned long addr;
1355 gfn_t gfn = gpa >> PAGE_SHIFT;
1356 int offset = offset_in_page(gpa);
1357
1358 addr = gfn_to_hva(kvm, gfn);
1359 if (kvm_is_error_hva(addr))
1360 return -EFAULT;
1361 pagefault_disable();
1362 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1363 pagefault_enable();
1364 if (r)
1365 return -EFAULT;
1366 return 0;
1367 }
1368 EXPORT_SYMBOL(kvm_read_guest_atomic);
1369
1370 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1371 int offset, int len)
1372 {
1373 int r;
1374 unsigned long addr;
1375
1376 addr = gfn_to_hva(kvm, gfn);
1377 if (kvm_is_error_hva(addr))
1378 return -EFAULT;
1379 r = copy_to_user((void __user *)addr + offset, data, len);
1380 if (r)
1381 return -EFAULT;
1382 mark_page_dirty(kvm, gfn);
1383 return 0;
1384 }
1385 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1386
1387 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1388 unsigned long len)
1389 {
1390 gfn_t gfn = gpa >> PAGE_SHIFT;
1391 int seg;
1392 int offset = offset_in_page(gpa);
1393 int ret;
1394
1395 while ((seg = next_segment(len, offset)) != 0) {
1396 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1397 if (ret < 0)
1398 return ret;
1399 offset = 0;
1400 len -= seg;
1401 data += seg;
1402 ++gfn;
1403 }
1404 return 0;
1405 }
1406
1407 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1408 {
1409 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1412
1413 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1414 {
1415 gfn_t gfn = gpa >> PAGE_SHIFT;
1416 int seg;
1417 int offset = offset_in_page(gpa);
1418 int ret;
1419
1420 while ((seg = next_segment(len, offset)) != 0) {
1421 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1422 if (ret < 0)
1423 return ret;
1424 offset = 0;
1425 len -= seg;
1426 ++gfn;
1427 }
1428 return 0;
1429 }
1430 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1431
1432 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1433 {
1434 struct kvm_memory_slot *memslot;
1435
1436 gfn = unalias_gfn(kvm, gfn);
1437 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1438 if (memslot && memslot->dirty_bitmap) {
1439 unsigned long rel_gfn = gfn - memslot->base_gfn;
1440
1441 /* avoid RMW */
1442 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1443 set_bit(rel_gfn, memslot->dirty_bitmap);
1444 }
1445 }
1446
1447 /*
1448 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1449 */
1450 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1451 {
1452 DEFINE_WAIT(wait);
1453
1454 for (;;) {
1455 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1456
1457 if (kvm_cpu_has_interrupt(vcpu) ||
1458 kvm_cpu_has_pending_timer(vcpu) ||
1459 kvm_arch_vcpu_runnable(vcpu)) {
1460 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1461 break;
1462 }
1463 if (signal_pending(current))
1464 break;
1465
1466 vcpu_put(vcpu);
1467 schedule();
1468 vcpu_load(vcpu);
1469 }
1470
1471 finish_wait(&vcpu->wq, &wait);
1472 }
1473
1474 void kvm_resched(struct kvm_vcpu *vcpu)
1475 {
1476 if (!need_resched())
1477 return;
1478 cond_resched();
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_resched);
1481
1482 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1483 {
1484 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1485 struct page *page;
1486
1487 if (vmf->pgoff == 0)
1488 page = virt_to_page(vcpu->run);
1489 #ifdef CONFIG_X86
1490 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1491 page = virt_to_page(vcpu->arch.pio_data);
1492 #endif
1493 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1494 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1495 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1496 #endif
1497 else
1498 return VM_FAULT_SIGBUS;
1499 get_page(page);
1500 vmf->page = page;
1501 return 0;
1502 }
1503
1504 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1505 .fault = kvm_vcpu_fault,
1506 };
1507
1508 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1509 {
1510 vma->vm_ops = &kvm_vcpu_vm_ops;
1511 return 0;
1512 }
1513
1514 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1515 {
1516 struct kvm_vcpu *vcpu = filp->private_data;
1517
1518 kvm_put_kvm(vcpu->kvm);
1519 return 0;
1520 }
1521
1522 static struct file_operations kvm_vcpu_fops = {
1523 .release = kvm_vcpu_release,
1524 .unlocked_ioctl = kvm_vcpu_ioctl,
1525 .compat_ioctl = kvm_vcpu_ioctl,
1526 .mmap = kvm_vcpu_mmap,
1527 };
1528
1529 /*
1530 * Allocates an inode for the vcpu.
1531 */
1532 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1533 {
1534 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1535 if (fd < 0)
1536 kvm_put_kvm(vcpu->kvm);
1537 return fd;
1538 }
1539
1540 /*
1541 * Creates some virtual cpus. Good luck creating more than one.
1542 */
1543 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1544 {
1545 int r;
1546 struct kvm_vcpu *vcpu;
1547
1548 if (!valid_vcpu(n))
1549 return -EINVAL;
1550
1551 vcpu = kvm_arch_vcpu_create(kvm, n);
1552 if (IS_ERR(vcpu))
1553 return PTR_ERR(vcpu);
1554
1555 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1556
1557 r = kvm_arch_vcpu_setup(vcpu);
1558 if (r)
1559 return r;
1560
1561 mutex_lock(&kvm->lock);
1562 if (kvm->vcpus[n]) {
1563 r = -EEXIST;
1564 goto vcpu_destroy;
1565 }
1566 kvm->vcpus[n] = vcpu;
1567 mutex_unlock(&kvm->lock);
1568
1569 /* Now it's all set up, let userspace reach it */
1570 kvm_get_kvm(kvm);
1571 r = create_vcpu_fd(vcpu);
1572 if (r < 0)
1573 goto unlink;
1574 return r;
1575
1576 unlink:
1577 mutex_lock(&kvm->lock);
1578 kvm->vcpus[n] = NULL;
1579 vcpu_destroy:
1580 mutex_unlock(&kvm->lock);
1581 kvm_arch_vcpu_destroy(vcpu);
1582 return r;
1583 }
1584
1585 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1586 {
1587 if (sigset) {
1588 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1589 vcpu->sigset_active = 1;
1590 vcpu->sigset = *sigset;
1591 } else
1592 vcpu->sigset_active = 0;
1593 return 0;
1594 }
1595
1596 #ifdef __KVM_HAVE_MSIX
1597 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1598 struct kvm_assigned_msix_nr *entry_nr)
1599 {
1600 int r = 0;
1601 struct kvm_assigned_dev_kernel *adev;
1602
1603 mutex_lock(&kvm->lock);
1604
1605 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1606 entry_nr->assigned_dev_id);
1607 if (!adev) {
1608 r = -EINVAL;
1609 goto msix_nr_out;
1610 }
1611
1612 if (adev->entries_nr == 0) {
1613 adev->entries_nr = entry_nr->entry_nr;
1614 if (adev->entries_nr == 0 ||
1615 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1616 r = -EINVAL;
1617 goto msix_nr_out;
1618 }
1619
1620 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1621 entry_nr->entry_nr,
1622 GFP_KERNEL);
1623 if (!adev->host_msix_entries) {
1624 r = -ENOMEM;
1625 goto msix_nr_out;
1626 }
1627 adev->guest_msix_entries = kzalloc(
1628 sizeof(struct kvm_guest_msix_entry) *
1629 entry_nr->entry_nr, GFP_KERNEL);
1630 if (!adev->guest_msix_entries) {
1631 kfree(adev->host_msix_entries);
1632 r = -ENOMEM;
1633 goto msix_nr_out;
1634 }
1635 } else /* Not allowed set MSI-X number twice */
1636 r = -EINVAL;
1637 msix_nr_out:
1638 mutex_unlock(&kvm->lock);
1639 return r;
1640 }
1641
1642 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1643 struct kvm_assigned_msix_entry *entry)
1644 {
1645 int r = 0, i;
1646 struct kvm_assigned_dev_kernel *adev;
1647
1648 mutex_lock(&kvm->lock);
1649
1650 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1651 entry->assigned_dev_id);
1652
1653 if (!adev) {
1654 r = -EINVAL;
1655 goto msix_entry_out;
1656 }
1657
1658 for (i = 0; i < adev->entries_nr; i++)
1659 if (adev->guest_msix_entries[i].vector == 0 ||
1660 adev->guest_msix_entries[i].entry == entry->entry) {
1661 adev->guest_msix_entries[i].entry = entry->entry;
1662 adev->guest_msix_entries[i].vector = entry->gsi;
1663 adev->host_msix_entries[i].entry = entry->entry;
1664 break;
1665 }
1666 if (i == adev->entries_nr) {
1667 r = -ENOSPC;
1668 goto msix_entry_out;
1669 }
1670
1671 msix_entry_out:
1672 mutex_unlock(&kvm->lock);
1673
1674 return r;
1675 }
1676 #endif
1677
1678 static long kvm_vcpu_ioctl(struct file *filp,
1679 unsigned int ioctl, unsigned long arg)
1680 {
1681 struct kvm_vcpu *vcpu = filp->private_data;
1682 void __user *argp = (void __user *)arg;
1683 int r;
1684 struct kvm_fpu *fpu = NULL;
1685 struct kvm_sregs *kvm_sregs = NULL;
1686
1687 if (vcpu->kvm->mm != current->mm)
1688 return -EIO;
1689 switch (ioctl) {
1690 case KVM_RUN:
1691 r = -EINVAL;
1692 if (arg)
1693 goto out;
1694 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1695 break;
1696 case KVM_GET_REGS: {
1697 struct kvm_regs *kvm_regs;
1698
1699 r = -ENOMEM;
1700 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1701 if (!kvm_regs)
1702 goto out;
1703 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1704 if (r)
1705 goto out_free1;
1706 r = -EFAULT;
1707 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1708 goto out_free1;
1709 r = 0;
1710 out_free1:
1711 kfree(kvm_regs);
1712 break;
1713 }
1714 case KVM_SET_REGS: {
1715 struct kvm_regs *kvm_regs;
1716
1717 r = -ENOMEM;
1718 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1719 if (!kvm_regs)
1720 goto out;
1721 r = -EFAULT;
1722 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1723 goto out_free2;
1724 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1725 if (r)
1726 goto out_free2;
1727 r = 0;
1728 out_free2:
1729 kfree(kvm_regs);
1730 break;
1731 }
1732 case KVM_GET_SREGS: {
1733 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1734 r = -ENOMEM;
1735 if (!kvm_sregs)
1736 goto out;
1737 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1738 if (r)
1739 goto out;
1740 r = -EFAULT;
1741 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1742 goto out;
1743 r = 0;
1744 break;
1745 }
1746 case KVM_SET_SREGS: {
1747 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1748 r = -ENOMEM;
1749 if (!kvm_sregs)
1750 goto out;
1751 r = -EFAULT;
1752 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1753 goto out;
1754 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1755 if (r)
1756 goto out;
1757 r = 0;
1758 break;
1759 }
1760 case KVM_GET_MP_STATE: {
1761 struct kvm_mp_state mp_state;
1762
1763 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1764 if (r)
1765 goto out;
1766 r = -EFAULT;
1767 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1768 goto out;
1769 r = 0;
1770 break;
1771 }
1772 case KVM_SET_MP_STATE: {
1773 struct kvm_mp_state mp_state;
1774
1775 r = -EFAULT;
1776 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1777 goto out;
1778 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1779 if (r)
1780 goto out;
1781 r = 0;
1782 break;
1783 }
1784 case KVM_TRANSLATE: {
1785 struct kvm_translation tr;
1786
1787 r = -EFAULT;
1788 if (copy_from_user(&tr, argp, sizeof tr))
1789 goto out;
1790 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1791 if (r)
1792 goto out;
1793 r = -EFAULT;
1794 if (copy_to_user(argp, &tr, sizeof tr))
1795 goto out;
1796 r = 0;
1797 break;
1798 }
1799 case KVM_SET_GUEST_DEBUG: {
1800 struct kvm_guest_debug dbg;
1801
1802 r = -EFAULT;
1803 if (copy_from_user(&dbg, argp, sizeof dbg))
1804 goto out;
1805 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1806 if (r)
1807 goto out;
1808 r = 0;
1809 break;
1810 }
1811 case KVM_SET_SIGNAL_MASK: {
1812 struct kvm_signal_mask __user *sigmask_arg = argp;
1813 struct kvm_signal_mask kvm_sigmask;
1814 sigset_t sigset, *p;
1815
1816 p = NULL;
1817 if (argp) {
1818 r = -EFAULT;
1819 if (copy_from_user(&kvm_sigmask, argp,
1820 sizeof kvm_sigmask))
1821 goto out;
1822 r = -EINVAL;
1823 if (kvm_sigmask.len != sizeof sigset)
1824 goto out;
1825 r = -EFAULT;
1826 if (copy_from_user(&sigset, sigmask_arg->sigset,
1827 sizeof sigset))
1828 goto out;
1829 p = &sigset;
1830 }
1831 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1832 break;
1833 }
1834 case KVM_GET_FPU: {
1835 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1836 r = -ENOMEM;
1837 if (!fpu)
1838 goto out;
1839 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1840 if (r)
1841 goto out;
1842 r = -EFAULT;
1843 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1844 goto out;
1845 r = 0;
1846 break;
1847 }
1848 case KVM_SET_FPU: {
1849 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1850 r = -ENOMEM;
1851 if (!fpu)
1852 goto out;
1853 r = -EFAULT;
1854 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1855 goto out;
1856 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1857 if (r)
1858 goto out;
1859 r = 0;
1860 break;
1861 }
1862 default:
1863 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1864 }
1865 out:
1866 kfree(fpu);
1867 kfree(kvm_sregs);
1868 return r;
1869 }
1870
1871 static long kvm_vm_ioctl(struct file *filp,
1872 unsigned int ioctl, unsigned long arg)
1873 {
1874 struct kvm *kvm = filp->private_data;
1875 void __user *argp = (void __user *)arg;
1876 int r;
1877
1878 if (kvm->mm != current->mm)
1879 return -EIO;
1880 switch (ioctl) {
1881 case KVM_CREATE_VCPU:
1882 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1883 if (r < 0)
1884 goto out;
1885 break;
1886 case KVM_SET_USER_MEMORY_REGION: {
1887 struct kvm_userspace_memory_region kvm_userspace_mem;
1888
1889 r = -EFAULT;
1890 if (copy_from_user(&kvm_userspace_mem, argp,
1891 sizeof kvm_userspace_mem))
1892 goto out;
1893
1894 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1895 if (r)
1896 goto out;
1897 break;
1898 }
1899 case KVM_GET_DIRTY_LOG: {
1900 struct kvm_dirty_log log;
1901
1902 r = -EFAULT;
1903 if (copy_from_user(&log, argp, sizeof log))
1904 goto out;
1905 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1906 if (r)
1907 goto out;
1908 break;
1909 }
1910 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1911 case KVM_REGISTER_COALESCED_MMIO: {
1912 struct kvm_coalesced_mmio_zone zone;
1913 r = -EFAULT;
1914 if (copy_from_user(&zone, argp, sizeof zone))
1915 goto out;
1916 r = -ENXIO;
1917 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1918 if (r)
1919 goto out;
1920 r = 0;
1921 break;
1922 }
1923 case KVM_UNREGISTER_COALESCED_MMIO: {
1924 struct kvm_coalesced_mmio_zone zone;
1925 r = -EFAULT;
1926 if (copy_from_user(&zone, argp, sizeof zone))
1927 goto out;
1928 r = -ENXIO;
1929 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1930 if (r)
1931 goto out;
1932 r = 0;
1933 break;
1934 }
1935 #endif
1936 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1937 case KVM_ASSIGN_PCI_DEVICE: {
1938 struct kvm_assigned_pci_dev assigned_dev;
1939
1940 r = -EFAULT;
1941 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1942 goto out;
1943 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1944 if (r)
1945 goto out;
1946 break;
1947 }
1948 case KVM_ASSIGN_IRQ: {
1949 struct kvm_assigned_irq assigned_irq;
1950
1951 r = -EFAULT;
1952 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1953 goto out;
1954 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1955 if (r)
1956 goto out;
1957 break;
1958 }
1959 #endif
1960 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
1961 case KVM_DEASSIGN_PCI_DEVICE: {
1962 struct kvm_assigned_pci_dev assigned_dev;
1963
1964 r = -EFAULT;
1965 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1966 goto out;
1967 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
1968 if (r)
1969 goto out;
1970 break;
1971 }
1972 #endif
1973 #ifdef KVM_CAP_IRQ_ROUTING
1974 case KVM_SET_GSI_ROUTING: {
1975 struct kvm_irq_routing routing;
1976 struct kvm_irq_routing __user *urouting;
1977 struct kvm_irq_routing_entry *entries;
1978
1979 r = -EFAULT;
1980 if (copy_from_user(&routing, argp, sizeof(routing)))
1981 goto out;
1982 r = -EINVAL;
1983 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
1984 goto out;
1985 if (routing.flags)
1986 goto out;
1987 r = -ENOMEM;
1988 entries = vmalloc(routing.nr * sizeof(*entries));
1989 if (!entries)
1990 goto out;
1991 r = -EFAULT;
1992 urouting = argp;
1993 if (copy_from_user(entries, urouting->entries,
1994 routing.nr * sizeof(*entries)))
1995 goto out_free_irq_routing;
1996 r = kvm_set_irq_routing(kvm, entries, routing.nr,
1997 routing.flags);
1998 out_free_irq_routing:
1999 vfree(entries);
2000 break;
2001 }
2002 #ifdef __KVM_HAVE_MSIX
2003 case KVM_ASSIGN_SET_MSIX_NR: {
2004 struct kvm_assigned_msix_nr entry_nr;
2005 r = -EFAULT;
2006 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2007 goto out;
2008 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2009 if (r)
2010 goto out;
2011 break;
2012 }
2013 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2014 struct kvm_assigned_msix_entry entry;
2015 r = -EFAULT;
2016 if (copy_from_user(&entry, argp, sizeof entry))
2017 goto out;
2018 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2019 if (r)
2020 goto out;
2021 break;
2022 }
2023 #endif
2024 #endif /* KVM_CAP_IRQ_ROUTING */
2025 default:
2026 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2027 }
2028 out:
2029 return r;
2030 }
2031
2032 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2033 {
2034 struct page *page[1];
2035 unsigned long addr;
2036 int npages;
2037 gfn_t gfn = vmf->pgoff;
2038 struct kvm *kvm = vma->vm_file->private_data;
2039
2040 addr = gfn_to_hva(kvm, gfn);
2041 if (kvm_is_error_hva(addr))
2042 return VM_FAULT_SIGBUS;
2043
2044 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2045 NULL);
2046 if (unlikely(npages != 1))
2047 return VM_FAULT_SIGBUS;
2048
2049 vmf->page = page[0];
2050 return 0;
2051 }
2052
2053 static struct vm_operations_struct kvm_vm_vm_ops = {
2054 .fault = kvm_vm_fault,
2055 };
2056
2057 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2058 {
2059 vma->vm_ops = &kvm_vm_vm_ops;
2060 return 0;
2061 }
2062
2063 static struct file_operations kvm_vm_fops = {
2064 .release = kvm_vm_release,
2065 .unlocked_ioctl = kvm_vm_ioctl,
2066 .compat_ioctl = kvm_vm_ioctl,
2067 .mmap = kvm_vm_mmap,
2068 };
2069
2070 static int kvm_dev_ioctl_create_vm(void)
2071 {
2072 int fd;
2073 struct kvm *kvm;
2074
2075 kvm = kvm_create_vm();
2076 if (IS_ERR(kvm))
2077 return PTR_ERR(kvm);
2078 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2079 if (fd < 0)
2080 kvm_put_kvm(kvm);
2081
2082 return fd;
2083 }
2084
2085 static long kvm_dev_ioctl_check_extension_generic(long arg)
2086 {
2087 switch (arg) {
2088 case KVM_CAP_USER_MEMORY:
2089 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2090 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2091 return 1;
2092 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2093 case KVM_CAP_IRQ_ROUTING:
2094 return KVM_MAX_IRQ_ROUTES;
2095 #endif
2096 default:
2097 break;
2098 }
2099 return kvm_dev_ioctl_check_extension(arg);
2100 }
2101
2102 static long kvm_dev_ioctl(struct file *filp,
2103 unsigned int ioctl, unsigned long arg)
2104 {
2105 long r = -EINVAL;
2106
2107 switch (ioctl) {
2108 case KVM_GET_API_VERSION:
2109 r = -EINVAL;
2110 if (arg)
2111 goto out;
2112 r = KVM_API_VERSION;
2113 break;
2114 case KVM_CREATE_VM:
2115 r = -EINVAL;
2116 if (arg)
2117 goto out;
2118 r = kvm_dev_ioctl_create_vm();
2119 break;
2120 case KVM_CHECK_EXTENSION:
2121 r = kvm_dev_ioctl_check_extension_generic(arg);
2122 break;
2123 case KVM_GET_VCPU_MMAP_SIZE:
2124 r = -EINVAL;
2125 if (arg)
2126 goto out;
2127 r = PAGE_SIZE; /* struct kvm_run */
2128 #ifdef CONFIG_X86
2129 r += PAGE_SIZE; /* pio data page */
2130 #endif
2131 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2132 r += PAGE_SIZE; /* coalesced mmio ring page */
2133 #endif
2134 break;
2135 case KVM_TRACE_ENABLE:
2136 case KVM_TRACE_PAUSE:
2137 case KVM_TRACE_DISABLE:
2138 r = kvm_trace_ioctl(ioctl, arg);
2139 break;
2140 default:
2141 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2142 }
2143 out:
2144 return r;
2145 }
2146
2147 static struct file_operations kvm_chardev_ops = {
2148 .unlocked_ioctl = kvm_dev_ioctl,
2149 .compat_ioctl = kvm_dev_ioctl,
2150 };
2151
2152 static struct miscdevice kvm_dev = {
2153 KVM_MINOR,
2154 "kvm",
2155 &kvm_chardev_ops,
2156 };
2157
2158 static void hardware_enable(void *junk)
2159 {
2160 int cpu = raw_smp_processor_id();
2161
2162 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2163 return;
2164 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2165 kvm_arch_hardware_enable(NULL);
2166 }
2167
2168 static void hardware_disable(void *junk)
2169 {
2170 int cpu = raw_smp_processor_id();
2171
2172 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2173 return;
2174 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2175 kvm_arch_hardware_disable(NULL);
2176 }
2177
2178 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2179 void *v)
2180 {
2181 int cpu = (long)v;
2182
2183 val &= ~CPU_TASKS_FROZEN;
2184 switch (val) {
2185 case CPU_DYING:
2186 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2187 cpu);
2188 hardware_disable(NULL);
2189 break;
2190 case CPU_UP_CANCELED:
2191 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2192 cpu);
2193 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2194 break;
2195 case CPU_ONLINE:
2196 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2197 cpu);
2198 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2199 break;
2200 }
2201 return NOTIFY_OK;
2202 }
2203
2204
2205 asmlinkage void kvm_handle_fault_on_reboot(void)
2206 {
2207 if (kvm_rebooting)
2208 /* spin while reset goes on */
2209 while (true)
2210 ;
2211 /* Fault while not rebooting. We want the trace. */
2212 BUG();
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2215
2216 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2217 void *v)
2218 {
2219 if (val == SYS_RESTART) {
2220 /*
2221 * Some (well, at least mine) BIOSes hang on reboot if
2222 * in vmx root mode.
2223 */
2224 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2225 kvm_rebooting = true;
2226 on_each_cpu(hardware_disable, NULL, 1);
2227 }
2228 return NOTIFY_OK;
2229 }
2230
2231 static struct notifier_block kvm_reboot_notifier = {
2232 .notifier_call = kvm_reboot,
2233 .priority = 0,
2234 };
2235
2236 void kvm_io_bus_init(struct kvm_io_bus *bus)
2237 {
2238 memset(bus, 0, sizeof(*bus));
2239 }
2240
2241 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2242 {
2243 int i;
2244
2245 for (i = 0; i < bus->dev_count; i++) {
2246 struct kvm_io_device *pos = bus->devs[i];
2247
2248 kvm_iodevice_destructor(pos);
2249 }
2250 }
2251
2252 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2253 gpa_t addr, int len, int is_write)
2254 {
2255 int i;
2256
2257 for (i = 0; i < bus->dev_count; i++) {
2258 struct kvm_io_device *pos = bus->devs[i];
2259
2260 if (pos->in_range(pos, addr, len, is_write))
2261 return pos;
2262 }
2263
2264 return NULL;
2265 }
2266
2267 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2268 {
2269 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2270
2271 bus->devs[bus->dev_count++] = dev;
2272 }
2273
2274 static struct notifier_block kvm_cpu_notifier = {
2275 .notifier_call = kvm_cpu_hotplug,
2276 .priority = 20, /* must be > scheduler priority */
2277 };
2278
2279 static int vm_stat_get(void *_offset, u64 *val)
2280 {
2281 unsigned offset = (long)_offset;
2282 struct kvm *kvm;
2283
2284 *val = 0;
2285 spin_lock(&kvm_lock);
2286 list_for_each_entry(kvm, &vm_list, vm_list)
2287 *val += *(u32 *)((void *)kvm + offset);
2288 spin_unlock(&kvm_lock);
2289 return 0;
2290 }
2291
2292 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2293
2294 static int vcpu_stat_get(void *_offset, u64 *val)
2295 {
2296 unsigned offset = (long)_offset;
2297 struct kvm *kvm;
2298 struct kvm_vcpu *vcpu;
2299 int i;
2300
2301 *val = 0;
2302 spin_lock(&kvm_lock);
2303 list_for_each_entry(kvm, &vm_list, vm_list)
2304 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2305 vcpu = kvm->vcpus[i];
2306 if (vcpu)
2307 *val += *(u32 *)((void *)vcpu + offset);
2308 }
2309 spin_unlock(&kvm_lock);
2310 return 0;
2311 }
2312
2313 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2314
2315 static struct file_operations *stat_fops[] = {
2316 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2317 [KVM_STAT_VM] = &vm_stat_fops,
2318 };
2319
2320 static void kvm_init_debug(void)
2321 {
2322 struct kvm_stats_debugfs_item *p;
2323
2324 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2325 for (p = debugfs_entries; p->name; ++p)
2326 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2327 (void *)(long)p->offset,
2328 stat_fops[p->kind]);
2329 }
2330
2331 static void kvm_exit_debug(void)
2332 {
2333 struct kvm_stats_debugfs_item *p;
2334
2335 for (p = debugfs_entries; p->name; ++p)
2336 debugfs_remove(p->dentry);
2337 debugfs_remove(kvm_debugfs_dir);
2338 }
2339
2340 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2341 {
2342 hardware_disable(NULL);
2343 return 0;
2344 }
2345
2346 static int kvm_resume(struct sys_device *dev)
2347 {
2348 hardware_enable(NULL);
2349 return 0;
2350 }
2351
2352 static struct sysdev_class kvm_sysdev_class = {
2353 .name = "kvm",
2354 .suspend = kvm_suspend,
2355 .resume = kvm_resume,
2356 };
2357
2358 static struct sys_device kvm_sysdev = {
2359 .id = 0,
2360 .cls = &kvm_sysdev_class,
2361 };
2362
2363 struct page *bad_page;
2364 pfn_t bad_pfn;
2365
2366 static inline
2367 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2368 {
2369 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2370 }
2371
2372 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2373 {
2374 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2375
2376 kvm_arch_vcpu_load(vcpu, cpu);
2377 }
2378
2379 static void kvm_sched_out(struct preempt_notifier *pn,
2380 struct task_struct *next)
2381 {
2382 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2383
2384 kvm_arch_vcpu_put(vcpu);
2385 }
2386
2387 int kvm_init(void *opaque, unsigned int vcpu_size,
2388 struct module *module)
2389 {
2390 int r;
2391 int cpu;
2392
2393 kvm_init_debug();
2394
2395 r = kvm_arch_init(opaque);
2396 if (r)
2397 goto out_fail;
2398
2399 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2400
2401 if (bad_page == NULL) {
2402 r = -ENOMEM;
2403 goto out;
2404 }
2405
2406 bad_pfn = page_to_pfn(bad_page);
2407
2408 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2409 r = -ENOMEM;
2410 goto out_free_0;
2411 }
2412 cpumask_clear(cpus_hardware_enabled);
2413
2414 r = kvm_arch_hardware_setup();
2415 if (r < 0)
2416 goto out_free_0a;
2417
2418 for_each_online_cpu(cpu) {
2419 smp_call_function_single(cpu,
2420 kvm_arch_check_processor_compat,
2421 &r, 1);
2422 if (r < 0)
2423 goto out_free_1;
2424 }
2425
2426 on_each_cpu(hardware_enable, NULL, 1);
2427 r = register_cpu_notifier(&kvm_cpu_notifier);
2428 if (r)
2429 goto out_free_2;
2430 register_reboot_notifier(&kvm_reboot_notifier);
2431
2432 r = sysdev_class_register(&kvm_sysdev_class);
2433 if (r)
2434 goto out_free_3;
2435
2436 r = sysdev_register(&kvm_sysdev);
2437 if (r)
2438 goto out_free_4;
2439
2440 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2441 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2442 __alignof__(struct kvm_vcpu),
2443 0, NULL);
2444 if (!kvm_vcpu_cache) {
2445 r = -ENOMEM;
2446 goto out_free_5;
2447 }
2448
2449 kvm_chardev_ops.owner = module;
2450 kvm_vm_fops.owner = module;
2451 kvm_vcpu_fops.owner = module;
2452
2453 r = misc_register(&kvm_dev);
2454 if (r) {
2455 printk(KERN_ERR "kvm: misc device register failed\n");
2456 goto out_free;
2457 }
2458
2459 kvm_preempt_ops.sched_in = kvm_sched_in;
2460 kvm_preempt_ops.sched_out = kvm_sched_out;
2461 #ifndef CONFIG_X86
2462 msi2intx = 0;
2463 #endif
2464
2465 return 0;
2466
2467 out_free:
2468 kmem_cache_destroy(kvm_vcpu_cache);
2469 out_free_5:
2470 sysdev_unregister(&kvm_sysdev);
2471 out_free_4:
2472 sysdev_class_unregister(&kvm_sysdev_class);
2473 out_free_3:
2474 unregister_reboot_notifier(&kvm_reboot_notifier);
2475 unregister_cpu_notifier(&kvm_cpu_notifier);
2476 out_free_2:
2477 on_each_cpu(hardware_disable, NULL, 1);
2478 out_free_1:
2479 kvm_arch_hardware_unsetup();
2480 out_free_0a:
2481 free_cpumask_var(cpus_hardware_enabled);
2482 out_free_0:
2483 __free_page(bad_page);
2484 out:
2485 kvm_arch_exit();
2486 kvm_exit_debug();
2487 out_fail:
2488 return r;
2489 }
2490 EXPORT_SYMBOL_GPL(kvm_init);
2491
2492 void kvm_exit(void)
2493 {
2494 kvm_trace_cleanup();
2495 misc_deregister(&kvm_dev);
2496 kmem_cache_destroy(kvm_vcpu_cache);
2497 sysdev_unregister(&kvm_sysdev);
2498 sysdev_class_unregister(&kvm_sysdev_class);
2499 unregister_reboot_notifier(&kvm_reboot_notifier);
2500 unregister_cpu_notifier(&kvm_cpu_notifier);
2501 on_each_cpu(hardware_disable, NULL, 1);
2502 kvm_arch_hardware_unsetup();
2503 kvm_arch_exit();
2504 kvm_exit_debug();
2505 free_cpumask_var(cpus_hardware_enabled);
2506 __free_page(bad_page);
2507 }
2508 EXPORT_SYMBOL_GPL(kvm_exit);