ALSA: usbaudio: implement USB autosuspend
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / usb / midi.c
1 /*
2 * usbmidi.c - ALSA USB MIDI driver
3 *
4 * Copyright (c) 2002-2009 Clemens Ladisch
5 * All rights reserved.
6 *
7 * Based on the OSS usb-midi driver by NAGANO Daisuke,
8 * NetBSD's umidi driver by Takuya SHIOZAKI,
9 * the "USB Device Class Definition for MIDI Devices" by Roland
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed and/or modified under the
21 * terms of the GNU General Public License as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any later
23 * version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50
51 #include <sound/core.h>
52 #include <sound/control.h>
53 #include <sound/rawmidi.h>
54 #include <sound/asequencer.h>
55 #include "usbaudio.h"
56 #include "midi.h"
57 #include "power.h"
58 #include "helper.h"
59
60 /*
61 * define this to log all USB packets
62 */
63 /* #define DUMP_PACKETS */
64
65 /*
66 * how long to wait after some USB errors, so that khubd can disconnect() us
67 * without too many spurious errors
68 */
69 #define ERROR_DELAY_JIFFIES (HZ / 10)
70
71 #define OUTPUT_URBS 7
72 #define INPUT_URBS 7
73
74
75 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
76 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
77 MODULE_LICENSE("Dual BSD/GPL");
78
79
80 struct usb_ms_header_descriptor {
81 __u8 bLength;
82 __u8 bDescriptorType;
83 __u8 bDescriptorSubtype;
84 __u8 bcdMSC[2];
85 __le16 wTotalLength;
86 } __attribute__ ((packed));
87
88 struct usb_ms_endpoint_descriptor {
89 __u8 bLength;
90 __u8 bDescriptorType;
91 __u8 bDescriptorSubtype;
92 __u8 bNumEmbMIDIJack;
93 __u8 baAssocJackID[0];
94 } __attribute__ ((packed));
95
96 struct snd_usb_midi_in_endpoint;
97 struct snd_usb_midi_out_endpoint;
98 struct snd_usb_midi_endpoint;
99
100 struct usb_protocol_ops {
101 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
102 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
103 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
104 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
105 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
106 };
107
108 struct snd_usb_midi {
109 struct usb_device *dev;
110 struct snd_card *card;
111 struct usb_interface *iface;
112 const struct snd_usb_audio_quirk *quirk;
113 struct snd_rawmidi *rmidi;
114 struct usb_protocol_ops* usb_protocol_ops;
115 struct list_head list;
116 struct timer_list error_timer;
117 spinlock_t disc_lock;
118 struct mutex mutex;
119 u32 usb_id;
120 int next_midi_device;
121
122 struct snd_usb_midi_endpoint {
123 struct snd_usb_midi_out_endpoint *out;
124 struct snd_usb_midi_in_endpoint *in;
125 } endpoints[MIDI_MAX_ENDPOINTS];
126 unsigned long input_triggered;
127 unsigned int opened;
128 unsigned char disconnected;
129
130 struct snd_kcontrol *roland_load_ctl;
131 };
132
133 struct snd_usb_midi_out_endpoint {
134 struct snd_usb_midi* umidi;
135 struct out_urb_context {
136 struct urb *urb;
137 struct snd_usb_midi_out_endpoint *ep;
138 } urbs[OUTPUT_URBS];
139 unsigned int active_urbs;
140 unsigned int drain_urbs;
141 int max_transfer; /* size of urb buffer */
142 struct tasklet_struct tasklet;
143 unsigned int next_urb;
144 spinlock_t buffer_lock;
145
146 struct usbmidi_out_port {
147 struct snd_usb_midi_out_endpoint* ep;
148 struct snd_rawmidi_substream *substream;
149 int active;
150 uint8_t cable; /* cable number << 4 */
151 uint8_t state;
152 #define STATE_UNKNOWN 0
153 #define STATE_1PARAM 1
154 #define STATE_2PARAM_1 2
155 #define STATE_2PARAM_2 3
156 #define STATE_SYSEX_0 4
157 #define STATE_SYSEX_1 5
158 #define STATE_SYSEX_2 6
159 uint8_t data[2];
160 } ports[0x10];
161 int current_port;
162
163 wait_queue_head_t drain_wait;
164 };
165
166 struct snd_usb_midi_in_endpoint {
167 struct snd_usb_midi* umidi;
168 struct urb* urbs[INPUT_URBS];
169 struct usbmidi_in_port {
170 struct snd_rawmidi_substream *substream;
171 u8 running_status_length;
172 } ports[0x10];
173 u8 seen_f5;
174 u8 error_resubmit;
175 int current_port;
176 };
177
178 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
179
180 static const uint8_t snd_usbmidi_cin_length[] = {
181 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
182 };
183
184 /*
185 * Submits the URB, with error handling.
186 */
187 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
188 {
189 int err = usb_submit_urb(urb, flags);
190 if (err < 0 && err != -ENODEV)
191 snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
192 return err;
193 }
194
195 /*
196 * Error handling for URB completion functions.
197 */
198 static int snd_usbmidi_urb_error(int status)
199 {
200 switch (status) {
201 /* manually unlinked, or device gone */
202 case -ENOENT:
203 case -ECONNRESET:
204 case -ESHUTDOWN:
205 case -ENODEV:
206 return -ENODEV;
207 /* errors that might occur during unplugging */
208 case -EPROTO:
209 case -ETIME:
210 case -EILSEQ:
211 return -EIO;
212 default:
213 snd_printk(KERN_ERR "urb status %d\n", status);
214 return 0; /* continue */
215 }
216 }
217
218 /*
219 * Receives a chunk of MIDI data.
220 */
221 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
222 uint8_t* data, int length)
223 {
224 struct usbmidi_in_port* port = &ep->ports[portidx];
225
226 if (!port->substream) {
227 snd_printd("unexpected port %d!\n", portidx);
228 return;
229 }
230 if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
231 return;
232 snd_rawmidi_receive(port->substream, data, length);
233 }
234
235 #ifdef DUMP_PACKETS
236 static void dump_urb(const char *type, const u8 *data, int length)
237 {
238 snd_printk(KERN_DEBUG "%s packet: [", type);
239 for (; length > 0; ++data, --length)
240 printk(" %02x", *data);
241 printk(" ]\n");
242 }
243 #else
244 #define dump_urb(type, data, length) /* nothing */
245 #endif
246
247 /*
248 * Processes the data read from the device.
249 */
250 static void snd_usbmidi_in_urb_complete(struct urb* urb)
251 {
252 struct snd_usb_midi_in_endpoint* ep = urb->context;
253
254 if (urb->status == 0) {
255 dump_urb("received", urb->transfer_buffer, urb->actual_length);
256 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
257 urb->actual_length);
258 } else {
259 int err = snd_usbmidi_urb_error(urb->status);
260 if (err < 0) {
261 if (err != -ENODEV) {
262 ep->error_resubmit = 1;
263 mod_timer(&ep->umidi->error_timer,
264 jiffies + ERROR_DELAY_JIFFIES);
265 }
266 return;
267 }
268 }
269
270 urb->dev = ep->umidi->dev;
271 snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
272 }
273
274 static void snd_usbmidi_out_urb_complete(struct urb* urb)
275 {
276 struct out_urb_context *context = urb->context;
277 struct snd_usb_midi_out_endpoint* ep = context->ep;
278 unsigned int urb_index;
279
280 spin_lock(&ep->buffer_lock);
281 urb_index = context - ep->urbs;
282 ep->active_urbs &= ~(1 << urb_index);
283 if (unlikely(ep->drain_urbs)) {
284 ep->drain_urbs &= ~(1 << urb_index);
285 wake_up(&ep->drain_wait);
286 }
287 spin_unlock(&ep->buffer_lock);
288 if (urb->status < 0) {
289 int err = snd_usbmidi_urb_error(urb->status);
290 if (err < 0) {
291 if (err != -ENODEV)
292 mod_timer(&ep->umidi->error_timer,
293 jiffies + ERROR_DELAY_JIFFIES);
294 return;
295 }
296 }
297 snd_usbmidi_do_output(ep);
298 }
299
300 /*
301 * This is called when some data should be transferred to the device
302 * (from one or more substreams).
303 */
304 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
305 {
306 unsigned int urb_index;
307 struct urb* urb;
308 unsigned long flags;
309
310 spin_lock_irqsave(&ep->buffer_lock, flags);
311 if (ep->umidi->disconnected) {
312 spin_unlock_irqrestore(&ep->buffer_lock, flags);
313 return;
314 }
315
316 urb_index = ep->next_urb;
317 for (;;) {
318 if (!(ep->active_urbs & (1 << urb_index))) {
319 urb = ep->urbs[urb_index].urb;
320 urb->transfer_buffer_length = 0;
321 ep->umidi->usb_protocol_ops->output(ep, urb);
322 if (urb->transfer_buffer_length == 0)
323 break;
324
325 dump_urb("sending", urb->transfer_buffer,
326 urb->transfer_buffer_length);
327 urb->dev = ep->umidi->dev;
328 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
329 break;
330 ep->active_urbs |= 1 << urb_index;
331 }
332 if (++urb_index >= OUTPUT_URBS)
333 urb_index = 0;
334 if (urb_index == ep->next_urb)
335 break;
336 }
337 ep->next_urb = urb_index;
338 spin_unlock_irqrestore(&ep->buffer_lock, flags);
339 }
340
341 static void snd_usbmidi_out_tasklet(unsigned long data)
342 {
343 struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
344
345 snd_usbmidi_do_output(ep);
346 }
347
348 /* called after transfers had been interrupted due to some USB error */
349 static void snd_usbmidi_error_timer(unsigned long data)
350 {
351 struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
352 unsigned int i, j;
353
354 spin_lock(&umidi->disc_lock);
355 if (umidi->disconnected) {
356 spin_unlock(&umidi->disc_lock);
357 return;
358 }
359 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
360 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
361 if (in && in->error_resubmit) {
362 in->error_resubmit = 0;
363 for (j = 0; j < INPUT_URBS; ++j) {
364 in->urbs[j]->dev = umidi->dev;
365 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
366 }
367 }
368 if (umidi->endpoints[i].out)
369 snd_usbmidi_do_output(umidi->endpoints[i].out);
370 }
371 spin_unlock(&umidi->disc_lock);
372 }
373
374 /* helper function to send static data that may not DMA-able */
375 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
376 const void *data, int len)
377 {
378 int err = 0;
379 void *buf = kmemdup(data, len, GFP_KERNEL);
380 if (!buf)
381 return -ENOMEM;
382 dump_urb("sending", buf, len);
383 if (ep->urbs[0].urb)
384 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
385 buf, len, NULL, 250);
386 kfree(buf);
387 return err;
388 }
389
390 /*
391 * Standard USB MIDI protocol: see the spec.
392 * Midiman protocol: like the standard protocol, but the control byte is the
393 * fourth byte in each packet, and uses length instead of CIN.
394 */
395
396 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
397 uint8_t* buffer, int buffer_length)
398 {
399 int i;
400
401 for (i = 0; i + 3 < buffer_length; i += 4)
402 if (buffer[i] != 0) {
403 int cable = buffer[i] >> 4;
404 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
405 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
406 }
407 }
408
409 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
410 uint8_t* buffer, int buffer_length)
411 {
412 int i;
413
414 for (i = 0; i + 3 < buffer_length; i += 4)
415 if (buffer[i + 3] != 0) {
416 int port = buffer[i + 3] >> 4;
417 int length = buffer[i + 3] & 3;
418 snd_usbmidi_input_data(ep, port, &buffer[i], length);
419 }
420 }
421
422 /*
423 * Buggy M-Audio device: running status on input results in a packet that has
424 * the data bytes but not the status byte and that is marked with CIN 4.
425 */
426 static void snd_usbmidi_maudio_broken_running_status_input(
427 struct snd_usb_midi_in_endpoint* ep,
428 uint8_t* buffer, int buffer_length)
429 {
430 int i;
431
432 for (i = 0; i + 3 < buffer_length; i += 4)
433 if (buffer[i] != 0) {
434 int cable = buffer[i] >> 4;
435 u8 cin = buffer[i] & 0x0f;
436 struct usbmidi_in_port *port = &ep->ports[cable];
437 int length;
438
439 length = snd_usbmidi_cin_length[cin];
440 if (cin == 0xf && buffer[i + 1] >= 0xf8)
441 ; /* realtime msg: no running status change */
442 else if (cin >= 0x8 && cin <= 0xe)
443 /* channel msg */
444 port->running_status_length = length - 1;
445 else if (cin == 0x4 &&
446 port->running_status_length != 0 &&
447 buffer[i + 1] < 0x80)
448 /* CIN 4 that is not a SysEx */
449 length = port->running_status_length;
450 else
451 /*
452 * All other msgs cannot begin running status.
453 * (A channel msg sent as two or three CIN 0xF
454 * packets could in theory, but this device
455 * doesn't use this format.)
456 */
457 port->running_status_length = 0;
458 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
459 }
460 }
461
462 /*
463 * CME protocol: like the standard protocol, but SysEx commands are sent as a
464 * single USB packet preceded by a 0x0F byte.
465 */
466 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
467 uint8_t *buffer, int buffer_length)
468 {
469 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
470 snd_usbmidi_standard_input(ep, buffer, buffer_length);
471 else
472 snd_usbmidi_input_data(ep, buffer[0] >> 4,
473 &buffer[1], buffer_length - 1);
474 }
475
476 /*
477 * Adds one USB MIDI packet to the output buffer.
478 */
479 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
480 uint8_t p1, uint8_t p2, uint8_t p3)
481 {
482
483 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
484 buf[0] = p0;
485 buf[1] = p1;
486 buf[2] = p2;
487 buf[3] = p3;
488 urb->transfer_buffer_length += 4;
489 }
490
491 /*
492 * Adds one Midiman packet to the output buffer.
493 */
494 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
495 uint8_t p1, uint8_t p2, uint8_t p3)
496 {
497
498 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
499 buf[0] = p1;
500 buf[1] = p2;
501 buf[2] = p3;
502 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
503 urb->transfer_buffer_length += 4;
504 }
505
506 /*
507 * Converts MIDI commands to USB MIDI packets.
508 */
509 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
510 uint8_t b, struct urb* urb)
511 {
512 uint8_t p0 = port->cable;
513 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
514 port->ep->umidi->usb_protocol_ops->output_packet;
515
516 if (b >= 0xf8) {
517 output_packet(urb, p0 | 0x0f, b, 0, 0);
518 } else if (b >= 0xf0) {
519 switch (b) {
520 case 0xf0:
521 port->data[0] = b;
522 port->state = STATE_SYSEX_1;
523 break;
524 case 0xf1:
525 case 0xf3:
526 port->data[0] = b;
527 port->state = STATE_1PARAM;
528 break;
529 case 0xf2:
530 port->data[0] = b;
531 port->state = STATE_2PARAM_1;
532 break;
533 case 0xf4:
534 case 0xf5:
535 port->state = STATE_UNKNOWN;
536 break;
537 case 0xf6:
538 output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
539 port->state = STATE_UNKNOWN;
540 break;
541 case 0xf7:
542 switch (port->state) {
543 case STATE_SYSEX_0:
544 output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
545 break;
546 case STATE_SYSEX_1:
547 output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
548 break;
549 case STATE_SYSEX_2:
550 output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
551 break;
552 }
553 port->state = STATE_UNKNOWN;
554 break;
555 }
556 } else if (b >= 0x80) {
557 port->data[0] = b;
558 if (b >= 0xc0 && b <= 0xdf)
559 port->state = STATE_1PARAM;
560 else
561 port->state = STATE_2PARAM_1;
562 } else { /* b < 0x80 */
563 switch (port->state) {
564 case STATE_1PARAM:
565 if (port->data[0] < 0xf0) {
566 p0 |= port->data[0] >> 4;
567 } else {
568 p0 |= 0x02;
569 port->state = STATE_UNKNOWN;
570 }
571 output_packet(urb, p0, port->data[0], b, 0);
572 break;
573 case STATE_2PARAM_1:
574 port->data[1] = b;
575 port->state = STATE_2PARAM_2;
576 break;
577 case STATE_2PARAM_2:
578 if (port->data[0] < 0xf0) {
579 p0 |= port->data[0] >> 4;
580 port->state = STATE_2PARAM_1;
581 } else {
582 p0 |= 0x03;
583 port->state = STATE_UNKNOWN;
584 }
585 output_packet(urb, p0, port->data[0], port->data[1], b);
586 break;
587 case STATE_SYSEX_0:
588 port->data[0] = b;
589 port->state = STATE_SYSEX_1;
590 break;
591 case STATE_SYSEX_1:
592 port->data[1] = b;
593 port->state = STATE_SYSEX_2;
594 break;
595 case STATE_SYSEX_2:
596 output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
597 port->state = STATE_SYSEX_0;
598 break;
599 }
600 }
601 }
602
603 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
604 struct urb *urb)
605 {
606 int p;
607
608 /* FIXME: lower-numbered ports can starve higher-numbered ports */
609 for (p = 0; p < 0x10; ++p) {
610 struct usbmidi_out_port* port = &ep->ports[p];
611 if (!port->active)
612 continue;
613 while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
614 uint8_t b;
615 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
616 port->active = 0;
617 break;
618 }
619 snd_usbmidi_transmit_byte(port, b, urb);
620 }
621 }
622 }
623
624 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
625 .input = snd_usbmidi_standard_input,
626 .output = snd_usbmidi_standard_output,
627 .output_packet = snd_usbmidi_output_standard_packet,
628 };
629
630 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
631 .input = snd_usbmidi_midiman_input,
632 .output = snd_usbmidi_standard_output,
633 .output_packet = snd_usbmidi_output_midiman_packet,
634 };
635
636 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
637 .input = snd_usbmidi_maudio_broken_running_status_input,
638 .output = snd_usbmidi_standard_output,
639 .output_packet = snd_usbmidi_output_standard_packet,
640 };
641
642 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
643 .input = snd_usbmidi_cme_input,
644 .output = snd_usbmidi_standard_output,
645 .output_packet = snd_usbmidi_output_standard_packet,
646 };
647
648 /*
649 * AKAI MPD16 protocol:
650 *
651 * For control port (endpoint 1):
652 * ==============================
653 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
654 * SysEx message (msg_len=9 bytes long).
655 *
656 * For data port (endpoint 2):
657 * ===========================
658 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
659 * MIDI message (msg_len bytes long)
660 *
661 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
662 */
663 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
664 uint8_t *buffer, int buffer_length)
665 {
666 unsigned int pos = 0;
667 unsigned int len = (unsigned int)buffer_length;
668 while (pos < len) {
669 unsigned int port = (buffer[pos] >> 4) - 1;
670 unsigned int msg_len = buffer[pos] & 0x0f;
671 pos++;
672 if (pos + msg_len <= len && port < 2)
673 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
674 pos += msg_len;
675 }
676 }
677
678 #define MAX_AKAI_SYSEX_LEN 9
679
680 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
681 struct urb *urb)
682 {
683 uint8_t *msg;
684 int pos, end, count, buf_end;
685 uint8_t tmp[MAX_AKAI_SYSEX_LEN];
686 struct snd_rawmidi_substream *substream = ep->ports[0].substream;
687
688 if (!ep->ports[0].active)
689 return;
690
691 msg = urb->transfer_buffer + urb->transfer_buffer_length;
692 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
693
694 /* only try adding more data when there's space for at least 1 SysEx */
695 while (urb->transfer_buffer_length < buf_end) {
696 count = snd_rawmidi_transmit_peek(substream,
697 tmp, MAX_AKAI_SYSEX_LEN);
698 if (!count) {
699 ep->ports[0].active = 0;
700 return;
701 }
702 /* try to skip non-SysEx data */
703 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
704 ;
705
706 if (pos > 0) {
707 snd_rawmidi_transmit_ack(substream, pos);
708 continue;
709 }
710
711 /* look for the start or end marker */
712 for (end = 1; end < count && tmp[end] < 0xF0; end++)
713 ;
714
715 /* next SysEx started before the end of current one */
716 if (end < count && tmp[end] == 0xF0) {
717 /* it's incomplete - drop it */
718 snd_rawmidi_transmit_ack(substream, end);
719 continue;
720 }
721 /* SysEx complete */
722 if (end < count && tmp[end] == 0xF7) {
723 /* queue it, ack it, and get the next one */
724 count = end + 1;
725 msg[0] = 0x10 | count;
726 memcpy(&msg[1], tmp, count);
727 snd_rawmidi_transmit_ack(substream, count);
728 urb->transfer_buffer_length += count + 1;
729 msg += count + 1;
730 continue;
731 }
732 /* less than 9 bytes and no end byte - wait for more */
733 if (count < MAX_AKAI_SYSEX_LEN) {
734 ep->ports[0].active = 0;
735 return;
736 }
737 /* 9 bytes and no end marker in sight - malformed, skip it */
738 snd_rawmidi_transmit_ack(substream, count);
739 }
740 }
741
742 static struct usb_protocol_ops snd_usbmidi_akai_ops = {
743 .input = snd_usbmidi_akai_input,
744 .output = snd_usbmidi_akai_output,
745 };
746
747 /*
748 * Novation USB MIDI protocol: number of data bytes is in the first byte
749 * (when receiving) (+1!) or in the second byte (when sending); data begins
750 * at the third byte.
751 */
752
753 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
754 uint8_t* buffer, int buffer_length)
755 {
756 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
757 return;
758 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
759 }
760
761 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
762 struct urb *urb)
763 {
764 uint8_t* transfer_buffer;
765 int count;
766
767 if (!ep->ports[0].active)
768 return;
769 transfer_buffer = urb->transfer_buffer;
770 count = snd_rawmidi_transmit(ep->ports[0].substream,
771 &transfer_buffer[2],
772 ep->max_transfer - 2);
773 if (count < 1) {
774 ep->ports[0].active = 0;
775 return;
776 }
777 transfer_buffer[0] = 0;
778 transfer_buffer[1] = count;
779 urb->transfer_buffer_length = 2 + count;
780 }
781
782 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
783 .input = snd_usbmidi_novation_input,
784 .output = snd_usbmidi_novation_output,
785 };
786
787 /*
788 * "raw" protocol: just move raw MIDI bytes from/to the endpoint
789 */
790
791 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
792 uint8_t* buffer, int buffer_length)
793 {
794 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
795 }
796
797 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
798 struct urb *urb)
799 {
800 int count;
801
802 if (!ep->ports[0].active)
803 return;
804 count = snd_rawmidi_transmit(ep->ports[0].substream,
805 urb->transfer_buffer,
806 ep->max_transfer);
807 if (count < 1) {
808 ep->ports[0].active = 0;
809 return;
810 }
811 urb->transfer_buffer_length = count;
812 }
813
814 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
815 .input = snd_usbmidi_raw_input,
816 .output = snd_usbmidi_raw_output,
817 };
818
819 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
820 uint8_t *buffer, int buffer_length)
821 {
822 if (buffer_length != 9)
823 return;
824 buffer_length = 8;
825 while (buffer_length && buffer[buffer_length - 1] == 0xFD)
826 buffer_length--;
827 if (buffer_length)
828 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
829 }
830
831 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
832 struct urb *urb)
833 {
834 int count;
835
836 if (!ep->ports[0].active)
837 return;
838 switch (snd_usb_get_speed(ep->umidi->dev)) {
839 case USB_SPEED_HIGH:
840 case USB_SPEED_SUPER:
841 count = 1;
842 break;
843 default:
844 count = 2;
845 }
846 count = snd_rawmidi_transmit(ep->ports[0].substream,
847 urb->transfer_buffer,
848 count);
849 if (count < 1) {
850 ep->ports[0].active = 0;
851 return;
852 }
853
854 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
855 urb->transfer_buffer_length = ep->max_transfer;
856 }
857
858 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
859 .input = snd_usbmidi_us122l_input,
860 .output = snd_usbmidi_us122l_output,
861 };
862
863 /*
864 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
865 */
866
867 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
868 {
869 static const u8 init_data[] = {
870 /* initialization magic: "get version" */
871 0xf0,
872 0x00, 0x20, 0x31, /* Emagic */
873 0x64, /* Unitor8 */
874 0x0b, /* version number request */
875 0x00, /* command version */
876 0x00, /* EEPROM, box 0 */
877 0xf7
878 };
879 send_bulk_static_data(ep, init_data, sizeof(init_data));
880 /* while we're at it, pour on more magic */
881 send_bulk_static_data(ep, init_data, sizeof(init_data));
882 }
883
884 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
885 {
886 static const u8 finish_data[] = {
887 /* switch to patch mode with last preset */
888 0xf0,
889 0x00, 0x20, 0x31, /* Emagic */
890 0x64, /* Unitor8 */
891 0x10, /* patch switch command */
892 0x00, /* command version */
893 0x7f, /* to all boxes */
894 0x40, /* last preset in EEPROM */
895 0xf7
896 };
897 send_bulk_static_data(ep, finish_data, sizeof(finish_data));
898 }
899
900 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
901 uint8_t* buffer, int buffer_length)
902 {
903 int i;
904
905 /* FF indicates end of valid data */
906 for (i = 0; i < buffer_length; ++i)
907 if (buffer[i] == 0xff) {
908 buffer_length = i;
909 break;
910 }
911
912 /* handle F5 at end of last buffer */
913 if (ep->seen_f5)
914 goto switch_port;
915
916 while (buffer_length > 0) {
917 /* determine size of data until next F5 */
918 for (i = 0; i < buffer_length; ++i)
919 if (buffer[i] == 0xf5)
920 break;
921 snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
922 buffer += i;
923 buffer_length -= i;
924
925 if (buffer_length <= 0)
926 break;
927 /* assert(buffer[0] == 0xf5); */
928 ep->seen_f5 = 1;
929 ++buffer;
930 --buffer_length;
931
932 switch_port:
933 if (buffer_length <= 0)
934 break;
935 if (buffer[0] < 0x80) {
936 ep->current_port = (buffer[0] - 1) & 15;
937 ++buffer;
938 --buffer_length;
939 }
940 ep->seen_f5 = 0;
941 }
942 }
943
944 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
945 struct urb *urb)
946 {
947 int port0 = ep->current_port;
948 uint8_t* buf = urb->transfer_buffer;
949 int buf_free = ep->max_transfer;
950 int length, i;
951
952 for (i = 0; i < 0x10; ++i) {
953 /* round-robin, starting at the last current port */
954 int portnum = (port0 + i) & 15;
955 struct usbmidi_out_port* port = &ep->ports[portnum];
956
957 if (!port->active)
958 continue;
959 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
960 port->active = 0;
961 continue;
962 }
963
964 if (portnum != ep->current_port) {
965 if (buf_free < 2)
966 break;
967 ep->current_port = portnum;
968 buf[0] = 0xf5;
969 buf[1] = (portnum + 1) & 15;
970 buf += 2;
971 buf_free -= 2;
972 }
973
974 if (buf_free < 1)
975 break;
976 length = snd_rawmidi_transmit(port->substream, buf, buf_free);
977 if (length > 0) {
978 buf += length;
979 buf_free -= length;
980 if (buf_free < 1)
981 break;
982 }
983 }
984 if (buf_free < ep->max_transfer && buf_free > 0) {
985 *buf = 0xff;
986 --buf_free;
987 }
988 urb->transfer_buffer_length = ep->max_transfer - buf_free;
989 }
990
991 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
992 .input = snd_usbmidi_emagic_input,
993 .output = snd_usbmidi_emagic_output,
994 .init_out_endpoint = snd_usbmidi_emagic_init_out,
995 .finish_out_endpoint = snd_usbmidi_emagic_finish_out,
996 };
997
998
999 static void update_roland_altsetting(struct snd_usb_midi* umidi)
1000 {
1001 struct usb_interface *intf;
1002 struct usb_host_interface *hostif;
1003 struct usb_interface_descriptor *intfd;
1004 int is_light_load;
1005
1006 intf = umidi->iface;
1007 is_light_load = intf->cur_altsetting != intf->altsetting;
1008 if (umidi->roland_load_ctl->private_value == is_light_load)
1009 return;
1010 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1011 intfd = get_iface_desc(hostif);
1012 snd_usbmidi_input_stop(&umidi->list);
1013 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1014 intfd->bAlternateSetting);
1015 snd_usbmidi_input_start(&umidi->list);
1016 }
1017
1018 static void substream_open(struct snd_rawmidi_substream *substream, int open)
1019 {
1020 struct snd_usb_midi* umidi = substream->rmidi->private_data;
1021 struct snd_kcontrol *ctl;
1022
1023 mutex_lock(&umidi->mutex);
1024 if (open) {
1025 if (umidi->opened++ == 0 && umidi->roland_load_ctl) {
1026 ctl = umidi->roland_load_ctl;
1027 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1028 snd_ctl_notify(umidi->card,
1029 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1030 update_roland_altsetting(umidi);
1031 }
1032 } else {
1033 if (--umidi->opened == 0 && umidi->roland_load_ctl) {
1034 ctl = umidi->roland_load_ctl;
1035 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1036 snd_ctl_notify(umidi->card,
1037 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1038 }
1039 }
1040 mutex_unlock(&umidi->mutex);
1041 }
1042
1043 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1044 {
1045 struct snd_usb_midi* umidi = substream->rmidi->private_data;
1046 struct usbmidi_out_port* port = NULL;
1047 int i, j;
1048 int err;
1049
1050 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1051 if (umidi->endpoints[i].out)
1052 for (j = 0; j < 0x10; ++j)
1053 if (umidi->endpoints[i].out->ports[j].substream == substream) {
1054 port = &umidi->endpoints[i].out->ports[j];
1055 break;
1056 }
1057 if (!port) {
1058 snd_BUG();
1059 return -ENXIO;
1060 }
1061 err = usb_autopm_get_interface(umidi->iface);
1062 if (err < 0)
1063 return -EIO;
1064 substream->runtime->private_data = port;
1065 port->state = STATE_UNKNOWN;
1066 substream_open(substream, 1);
1067 return 0;
1068 }
1069
1070 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1071 {
1072 struct snd_usb_midi* umidi = substream->rmidi->private_data;
1073
1074 substream_open(substream, 0);
1075 usb_autopm_put_interface(umidi->iface);
1076 return 0;
1077 }
1078
1079 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1080 {
1081 struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
1082
1083 port->active = up;
1084 if (up) {
1085 if (port->ep->umidi->disconnected) {
1086 /* gobble up remaining bytes to prevent wait in
1087 * snd_rawmidi_drain_output */
1088 while (!snd_rawmidi_transmit_empty(substream))
1089 snd_rawmidi_transmit_ack(substream, 1);
1090 return;
1091 }
1092 tasklet_schedule(&port->ep->tasklet);
1093 }
1094 }
1095
1096 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1097 {
1098 struct usbmidi_out_port* port = substream->runtime->private_data;
1099 struct snd_usb_midi_out_endpoint *ep = port->ep;
1100 unsigned int drain_urbs;
1101 DEFINE_WAIT(wait);
1102 long timeout = msecs_to_jiffies(50);
1103
1104 if (ep->umidi->disconnected)
1105 return;
1106 /*
1107 * The substream buffer is empty, but some data might still be in the
1108 * currently active URBs, so we have to wait for those to complete.
1109 */
1110 spin_lock_irq(&ep->buffer_lock);
1111 drain_urbs = ep->active_urbs;
1112 if (drain_urbs) {
1113 ep->drain_urbs |= drain_urbs;
1114 do {
1115 prepare_to_wait(&ep->drain_wait, &wait,
1116 TASK_UNINTERRUPTIBLE);
1117 spin_unlock_irq(&ep->buffer_lock);
1118 timeout = schedule_timeout(timeout);
1119 spin_lock_irq(&ep->buffer_lock);
1120 drain_urbs &= ep->drain_urbs;
1121 } while (drain_urbs && timeout);
1122 finish_wait(&ep->drain_wait, &wait);
1123 }
1124 spin_unlock_irq(&ep->buffer_lock);
1125 }
1126
1127 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1128 {
1129 substream_open(substream, 1);
1130 return 0;
1131 }
1132
1133 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1134 {
1135 substream_open(substream, 0);
1136 return 0;
1137 }
1138
1139 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1140 {
1141 struct snd_usb_midi* umidi = substream->rmidi->private_data;
1142
1143 if (up)
1144 set_bit(substream->number, &umidi->input_triggered);
1145 else
1146 clear_bit(substream->number, &umidi->input_triggered);
1147 }
1148
1149 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1150 .open = snd_usbmidi_output_open,
1151 .close = snd_usbmidi_output_close,
1152 .trigger = snd_usbmidi_output_trigger,
1153 .drain = snd_usbmidi_output_drain,
1154 };
1155
1156 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1157 .open = snd_usbmidi_input_open,
1158 .close = snd_usbmidi_input_close,
1159 .trigger = snd_usbmidi_input_trigger
1160 };
1161
1162 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1163 unsigned int buffer_length)
1164 {
1165 usb_free_coherent(umidi->dev, buffer_length,
1166 urb->transfer_buffer, urb->transfer_dma);
1167 usb_free_urb(urb);
1168 }
1169
1170 /*
1171 * Frees an input endpoint.
1172 * May be called when ep hasn't been initialized completely.
1173 */
1174 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1175 {
1176 unsigned int i;
1177
1178 for (i = 0; i < INPUT_URBS; ++i)
1179 if (ep->urbs[i])
1180 free_urb_and_buffer(ep->umidi, ep->urbs[i],
1181 ep->urbs[i]->transfer_buffer_length);
1182 kfree(ep);
1183 }
1184
1185 /*
1186 * Creates an input endpoint.
1187 */
1188 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1189 struct snd_usb_midi_endpoint_info* ep_info,
1190 struct snd_usb_midi_endpoint* rep)
1191 {
1192 struct snd_usb_midi_in_endpoint* ep;
1193 void* buffer;
1194 unsigned int pipe;
1195 int length;
1196 unsigned int i;
1197
1198 rep->in = NULL;
1199 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1200 if (!ep)
1201 return -ENOMEM;
1202 ep->umidi = umidi;
1203
1204 for (i = 0; i < INPUT_URBS; ++i) {
1205 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1206 if (!ep->urbs[i]) {
1207 snd_usbmidi_in_endpoint_delete(ep);
1208 return -ENOMEM;
1209 }
1210 }
1211 if (ep_info->in_interval)
1212 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1213 else
1214 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1215 length = usb_maxpacket(umidi->dev, pipe, 0);
1216 for (i = 0; i < INPUT_URBS; ++i) {
1217 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1218 &ep->urbs[i]->transfer_dma);
1219 if (!buffer) {
1220 snd_usbmidi_in_endpoint_delete(ep);
1221 return -ENOMEM;
1222 }
1223 if (ep_info->in_interval)
1224 usb_fill_int_urb(ep->urbs[i], umidi->dev,
1225 pipe, buffer, length,
1226 snd_usbmidi_in_urb_complete,
1227 ep, ep_info->in_interval);
1228 else
1229 usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1230 pipe, buffer, length,
1231 snd_usbmidi_in_urb_complete, ep);
1232 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1233 }
1234
1235 rep->in = ep;
1236 return 0;
1237 }
1238
1239 /*
1240 * Frees an output endpoint.
1241 * May be called when ep hasn't been initialized completely.
1242 */
1243 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1244 {
1245 unsigned int i;
1246
1247 for (i = 0; i < OUTPUT_URBS; ++i)
1248 if (ep->urbs[i].urb) {
1249 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1250 ep->max_transfer);
1251 ep->urbs[i].urb = NULL;
1252 }
1253 }
1254
1255 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1256 {
1257 snd_usbmidi_out_endpoint_clear(ep);
1258 kfree(ep);
1259 }
1260
1261 /*
1262 * Creates an output endpoint, and initializes output ports.
1263 */
1264 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1265 struct snd_usb_midi_endpoint_info* ep_info,
1266 struct snd_usb_midi_endpoint* rep)
1267 {
1268 struct snd_usb_midi_out_endpoint* ep;
1269 unsigned int i;
1270 unsigned int pipe;
1271 void* buffer;
1272
1273 rep->out = NULL;
1274 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1275 if (!ep)
1276 return -ENOMEM;
1277 ep->umidi = umidi;
1278
1279 for (i = 0; i < OUTPUT_URBS; ++i) {
1280 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1281 if (!ep->urbs[i].urb) {
1282 snd_usbmidi_out_endpoint_delete(ep);
1283 return -ENOMEM;
1284 }
1285 ep->urbs[i].ep = ep;
1286 }
1287 if (ep_info->out_interval)
1288 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1289 else
1290 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1291 switch (umidi->usb_id) {
1292 default:
1293 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1294 break;
1295 /*
1296 * Various chips declare a packet size larger than 4 bytes, but
1297 * do not actually work with larger packets:
1298 */
1299 case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1300 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1301 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1302 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1303 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1304 ep->max_transfer = 4;
1305 break;
1306 /*
1307 * Some devices only work with 9 bytes packet size:
1308 */
1309 case USB_ID(0x0644, 0x800E): /* Tascam US-122L */
1310 case USB_ID(0x0644, 0x800F): /* Tascam US-144 */
1311 ep->max_transfer = 9;
1312 break;
1313 }
1314 for (i = 0; i < OUTPUT_URBS; ++i) {
1315 buffer = usb_alloc_coherent(umidi->dev,
1316 ep->max_transfer, GFP_KERNEL,
1317 &ep->urbs[i].urb->transfer_dma);
1318 if (!buffer) {
1319 snd_usbmidi_out_endpoint_delete(ep);
1320 return -ENOMEM;
1321 }
1322 if (ep_info->out_interval)
1323 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1324 pipe, buffer, ep->max_transfer,
1325 snd_usbmidi_out_urb_complete,
1326 &ep->urbs[i], ep_info->out_interval);
1327 else
1328 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1329 pipe, buffer, ep->max_transfer,
1330 snd_usbmidi_out_urb_complete,
1331 &ep->urbs[i]);
1332 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1333 }
1334
1335 spin_lock_init(&ep->buffer_lock);
1336 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1337 init_waitqueue_head(&ep->drain_wait);
1338
1339 for (i = 0; i < 0x10; ++i)
1340 if (ep_info->out_cables & (1 << i)) {
1341 ep->ports[i].ep = ep;
1342 ep->ports[i].cable = i << 4;
1343 }
1344
1345 if (umidi->usb_protocol_ops->init_out_endpoint)
1346 umidi->usb_protocol_ops->init_out_endpoint(ep);
1347
1348 rep->out = ep;
1349 return 0;
1350 }
1351
1352 /*
1353 * Frees everything.
1354 */
1355 static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1356 {
1357 int i;
1358
1359 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1360 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1361 if (ep->out)
1362 snd_usbmidi_out_endpoint_delete(ep->out);
1363 if (ep->in)
1364 snd_usbmidi_in_endpoint_delete(ep->in);
1365 }
1366 mutex_destroy(&umidi->mutex);
1367 kfree(umidi);
1368 }
1369
1370 /*
1371 * Unlinks all URBs (must be done before the usb_device is deleted).
1372 */
1373 void snd_usbmidi_disconnect(struct list_head* p)
1374 {
1375 struct snd_usb_midi* umidi;
1376 unsigned int i, j;
1377
1378 umidi = list_entry(p, struct snd_usb_midi, list);
1379 /*
1380 * an URB's completion handler may start the timer and
1381 * a timer may submit an URB. To reliably break the cycle
1382 * a flag under lock must be used
1383 */
1384 spin_lock_irq(&umidi->disc_lock);
1385 umidi->disconnected = 1;
1386 spin_unlock_irq(&umidi->disc_lock);
1387 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1388 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1389 if (ep->out)
1390 tasklet_kill(&ep->out->tasklet);
1391 if (ep->out) {
1392 for (j = 0; j < OUTPUT_URBS; ++j)
1393 usb_kill_urb(ep->out->urbs[j].urb);
1394 if (umidi->usb_protocol_ops->finish_out_endpoint)
1395 umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1396 ep->out->active_urbs = 0;
1397 if (ep->out->drain_urbs) {
1398 ep->out->drain_urbs = 0;
1399 wake_up(&ep->out->drain_wait);
1400 }
1401 }
1402 if (ep->in)
1403 for (j = 0; j < INPUT_URBS; ++j)
1404 usb_kill_urb(ep->in->urbs[j]);
1405 /* free endpoints here; later call can result in Oops */
1406 if (ep->out)
1407 snd_usbmidi_out_endpoint_clear(ep->out);
1408 if (ep->in) {
1409 snd_usbmidi_in_endpoint_delete(ep->in);
1410 ep->in = NULL;
1411 }
1412 }
1413 del_timer_sync(&umidi->error_timer);
1414 }
1415
1416 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1417 {
1418 struct snd_usb_midi* umidi = rmidi->private_data;
1419 snd_usbmidi_free(umidi);
1420 }
1421
1422 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1423 int stream, int number)
1424 {
1425 struct list_head* list;
1426
1427 list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1428 struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1429 if (substream->number == number)
1430 return substream;
1431 }
1432 return NULL;
1433 }
1434
1435 /*
1436 * This list specifies names for ports that do not fit into the standard
1437 * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1438 * such as internal control or synthesizer ports.
1439 */
1440 static struct port_info {
1441 u32 id;
1442 short int port;
1443 short int voices;
1444 const char *name;
1445 unsigned int seq_flags;
1446 } snd_usbmidi_port_info[] = {
1447 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1448 { .id = USB_ID(vendor, product), \
1449 .port = num, .voices = voices_, \
1450 .name = name_, .seq_flags = flags }
1451 #define EXTERNAL_PORT(vendor, product, num, name) \
1452 PORT_INFO(vendor, product, num, name, 0, \
1453 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1454 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1455 SNDRV_SEQ_PORT_TYPE_PORT)
1456 #define CONTROL_PORT(vendor, product, num, name) \
1457 PORT_INFO(vendor, product, num, name, 0, \
1458 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1459 SNDRV_SEQ_PORT_TYPE_HARDWARE)
1460 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1461 PORT_INFO(vendor, product, num, name, voices, \
1462 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1463 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1464 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1465 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1466 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1467 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1468 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1469 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1470 PORT_INFO(vendor, product, num, name, voices, \
1471 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1472 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1473 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1474 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1475 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1476 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1477 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1478 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1479 /* Roland UA-100 */
1480 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1481 /* Roland SC-8850 */
1482 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1483 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1484 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1485 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1486 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1487 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1488 /* Roland U-8 */
1489 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1490 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1491 /* Roland SC-8820 */
1492 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1493 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1494 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1495 /* Roland SK-500 */
1496 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1497 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1498 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1499 /* Roland SC-D70 */
1500 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1501 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1502 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1503 /* Edirol UM-880 */
1504 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1505 /* Edirol SD-90 */
1506 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1507 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1508 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1509 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1510 /* Edirol UM-550 */
1511 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1512 /* Edirol SD-20 */
1513 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1514 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1515 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1516 /* Edirol SD-80 */
1517 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1518 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1519 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1520 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1521 /* Edirol UA-700 */
1522 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1523 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1524 /* Roland VariOS */
1525 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1526 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1527 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1528 /* Edirol PCR */
1529 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1530 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1531 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1532 /* BOSS GS-10 */
1533 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1534 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1535 /* Edirol UA-1000 */
1536 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1537 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1538 /* Edirol UR-80 */
1539 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1540 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1541 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1542 /* Edirol PCR-A */
1543 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1544 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1545 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1546 /* Edirol UM-3EX */
1547 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1548 /* M-Audio MidiSport 8x8 */
1549 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1550 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1551 /* MOTU Fastlane */
1552 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1553 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1554 /* Emagic Unitor8/AMT8/MT4 */
1555 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1556 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1557 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1558 /* Akai MPD16 */
1559 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1560 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1561 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1562 SNDRV_SEQ_PORT_TYPE_HARDWARE),
1563 /* Access Music Virus TI */
1564 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1565 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1566 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1567 SNDRV_SEQ_PORT_TYPE_HARDWARE |
1568 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1569 };
1570
1571 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1572 {
1573 int i;
1574
1575 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1576 if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1577 snd_usbmidi_port_info[i].port == number)
1578 return &snd_usbmidi_port_info[i];
1579 }
1580 return NULL;
1581 }
1582
1583 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1584 struct snd_seq_port_info *seq_port_info)
1585 {
1586 struct snd_usb_midi *umidi = rmidi->private_data;
1587 struct port_info *port_info;
1588
1589 /* TODO: read port flags from descriptors */
1590 port_info = find_port_info(umidi, number);
1591 if (port_info) {
1592 seq_port_info->type = port_info->seq_flags;
1593 seq_port_info->midi_voices = port_info->voices;
1594 }
1595 }
1596
1597 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1598 int stream, int number,
1599 struct snd_rawmidi_substream ** rsubstream)
1600 {
1601 struct port_info *port_info;
1602 const char *name_format;
1603
1604 struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1605 if (!substream) {
1606 snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1607 return;
1608 }
1609
1610 /* TODO: read port name from jack descriptor */
1611 port_info = find_port_info(umidi, number);
1612 name_format = port_info ? port_info->name : "%s MIDI %d";
1613 snprintf(substream->name, sizeof(substream->name),
1614 name_format, umidi->card->shortname, number + 1);
1615
1616 *rsubstream = substream;
1617 }
1618
1619 /*
1620 * Creates the endpoints and their ports.
1621 */
1622 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1623 struct snd_usb_midi_endpoint_info* endpoints)
1624 {
1625 int i, j, err;
1626 int out_ports = 0, in_ports = 0;
1627
1628 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1629 if (endpoints[i].out_cables) {
1630 err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1631 &umidi->endpoints[i]);
1632 if (err < 0)
1633 return err;
1634 }
1635 if (endpoints[i].in_cables) {
1636 err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1637 &umidi->endpoints[i]);
1638 if (err < 0)
1639 return err;
1640 }
1641
1642 for (j = 0; j < 0x10; ++j) {
1643 if (endpoints[i].out_cables & (1 << j)) {
1644 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1645 &umidi->endpoints[i].out->ports[j].substream);
1646 ++out_ports;
1647 }
1648 if (endpoints[i].in_cables & (1 << j)) {
1649 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1650 &umidi->endpoints[i].in->ports[j].substream);
1651 ++in_ports;
1652 }
1653 }
1654 }
1655 snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1656 out_ports, in_ports);
1657 return 0;
1658 }
1659
1660 /*
1661 * Returns MIDIStreaming device capabilities.
1662 */
1663 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1664 struct snd_usb_midi_endpoint_info* endpoints)
1665 {
1666 struct usb_interface* intf;
1667 struct usb_host_interface *hostif;
1668 struct usb_interface_descriptor* intfd;
1669 struct usb_ms_header_descriptor* ms_header;
1670 struct usb_host_endpoint *hostep;
1671 struct usb_endpoint_descriptor* ep;
1672 struct usb_ms_endpoint_descriptor* ms_ep;
1673 int i, epidx;
1674
1675 intf = umidi->iface;
1676 if (!intf)
1677 return -ENXIO;
1678 hostif = &intf->altsetting[0];
1679 intfd = get_iface_desc(hostif);
1680 ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1681 if (hostif->extralen >= 7 &&
1682 ms_header->bLength >= 7 &&
1683 ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1684 ms_header->bDescriptorSubtype == UAC_HEADER)
1685 snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1686 ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1687 else
1688 snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1689
1690 epidx = 0;
1691 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1692 hostep = &hostif->endpoint[i];
1693 ep = get_ep_desc(hostep);
1694 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1695 continue;
1696 ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1697 if (hostep->extralen < 4 ||
1698 ms_ep->bLength < 4 ||
1699 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1700 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1701 continue;
1702 if (usb_endpoint_dir_out(ep)) {
1703 if (endpoints[epidx].out_ep) {
1704 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1705 snd_printk(KERN_WARNING "too many endpoints\n");
1706 break;
1707 }
1708 }
1709 endpoints[epidx].out_ep = usb_endpoint_num(ep);
1710 if (usb_endpoint_xfer_int(ep))
1711 endpoints[epidx].out_interval = ep->bInterval;
1712 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1713 /*
1714 * Low speed bulk transfers don't exist, so
1715 * force interrupt transfers for devices like
1716 * ESI MIDI Mate that try to use them anyway.
1717 */
1718 endpoints[epidx].out_interval = 1;
1719 endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1720 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1721 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1722 } else {
1723 if (endpoints[epidx].in_ep) {
1724 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1725 snd_printk(KERN_WARNING "too many endpoints\n");
1726 break;
1727 }
1728 }
1729 endpoints[epidx].in_ep = usb_endpoint_num(ep);
1730 if (usb_endpoint_xfer_int(ep))
1731 endpoints[epidx].in_interval = ep->bInterval;
1732 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1733 endpoints[epidx].in_interval = 1;
1734 endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1735 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1736 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1737 }
1738 }
1739 return 0;
1740 }
1741
1742 static int roland_load_info(struct snd_kcontrol *kcontrol,
1743 struct snd_ctl_elem_info *info)
1744 {
1745 static const char *const names[] = { "High Load", "Light Load" };
1746
1747 return snd_ctl_enum_info(info, 1, 2, names);
1748 }
1749
1750 static int roland_load_get(struct snd_kcontrol *kcontrol,
1751 struct snd_ctl_elem_value *value)
1752 {
1753 value->value.enumerated.item[0] = kcontrol->private_value;
1754 return 0;
1755 }
1756
1757 static int roland_load_put(struct snd_kcontrol *kcontrol,
1758 struct snd_ctl_elem_value *value)
1759 {
1760 struct snd_usb_midi* umidi = kcontrol->private_data;
1761 int changed;
1762
1763 if (value->value.enumerated.item[0] > 1)
1764 return -EINVAL;
1765 mutex_lock(&umidi->mutex);
1766 changed = value->value.enumerated.item[0] != kcontrol->private_value;
1767 if (changed)
1768 kcontrol->private_value = value->value.enumerated.item[0];
1769 mutex_unlock(&umidi->mutex);
1770 return changed;
1771 }
1772
1773 static struct snd_kcontrol_new roland_load_ctl = {
1774 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1775 .name = "MIDI Input Mode",
1776 .info = roland_load_info,
1777 .get = roland_load_get,
1778 .put = roland_load_put,
1779 .private_value = 1,
1780 };
1781
1782 /*
1783 * On Roland devices, use the second alternate setting to be able to use
1784 * the interrupt input endpoint.
1785 */
1786 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1787 {
1788 struct usb_interface* intf;
1789 struct usb_host_interface *hostif;
1790 struct usb_interface_descriptor* intfd;
1791
1792 intf = umidi->iface;
1793 if (!intf || intf->num_altsetting != 2)
1794 return;
1795
1796 hostif = &intf->altsetting[1];
1797 intfd = get_iface_desc(hostif);
1798 if (intfd->bNumEndpoints != 2 ||
1799 (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1800 (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1801 return;
1802
1803 snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1804 intfd->bAlternateSetting);
1805 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1806 intfd->bAlternateSetting);
1807
1808 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1809 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1810 umidi->roland_load_ctl = NULL;
1811 }
1812
1813 /*
1814 * Try to find any usable endpoints in the interface.
1815 */
1816 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1817 struct snd_usb_midi_endpoint_info* endpoint,
1818 int max_endpoints)
1819 {
1820 struct usb_interface* intf;
1821 struct usb_host_interface *hostif;
1822 struct usb_interface_descriptor* intfd;
1823 struct usb_endpoint_descriptor* epd;
1824 int i, out_eps = 0, in_eps = 0;
1825
1826 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1827 snd_usbmidi_switch_roland_altsetting(umidi);
1828
1829 if (endpoint[0].out_ep || endpoint[0].in_ep)
1830 return 0;
1831
1832 intf = umidi->iface;
1833 if (!intf || intf->num_altsetting < 1)
1834 return -ENOENT;
1835 hostif = intf->cur_altsetting;
1836 intfd = get_iface_desc(hostif);
1837
1838 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1839 epd = get_endpoint(hostif, i);
1840 if (!usb_endpoint_xfer_bulk(epd) &&
1841 !usb_endpoint_xfer_int(epd))
1842 continue;
1843 if (out_eps < max_endpoints &&
1844 usb_endpoint_dir_out(epd)) {
1845 endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1846 if (usb_endpoint_xfer_int(epd))
1847 endpoint[out_eps].out_interval = epd->bInterval;
1848 ++out_eps;
1849 }
1850 if (in_eps < max_endpoints &&
1851 usb_endpoint_dir_in(epd)) {
1852 endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1853 if (usb_endpoint_xfer_int(epd))
1854 endpoint[in_eps].in_interval = epd->bInterval;
1855 ++in_eps;
1856 }
1857 }
1858 return (out_eps || in_eps) ? 0 : -ENOENT;
1859 }
1860
1861 /*
1862 * Detects the endpoints for one-port-per-endpoint protocols.
1863 */
1864 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1865 struct snd_usb_midi_endpoint_info* endpoints)
1866 {
1867 int err, i;
1868
1869 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1870 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1871 if (endpoints[i].out_ep)
1872 endpoints[i].out_cables = 0x0001;
1873 if (endpoints[i].in_ep)
1874 endpoints[i].in_cables = 0x0001;
1875 }
1876 return err;
1877 }
1878
1879 /*
1880 * Detects the endpoints and ports of Yamaha devices.
1881 */
1882 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1883 struct snd_usb_midi_endpoint_info* endpoint)
1884 {
1885 struct usb_interface* intf;
1886 struct usb_host_interface *hostif;
1887 struct usb_interface_descriptor* intfd;
1888 uint8_t* cs_desc;
1889
1890 intf = umidi->iface;
1891 if (!intf)
1892 return -ENOENT;
1893 hostif = intf->altsetting;
1894 intfd = get_iface_desc(hostif);
1895 if (intfd->bNumEndpoints < 1)
1896 return -ENOENT;
1897
1898 /*
1899 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1900 * necessarily with any useful contents. So simply count 'em.
1901 */
1902 for (cs_desc = hostif->extra;
1903 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1904 cs_desc += cs_desc[0]) {
1905 if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1906 if (cs_desc[2] == UAC_MIDI_IN_JACK)
1907 endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1908 else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1909 endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1910 }
1911 }
1912 if (!endpoint->in_cables && !endpoint->out_cables)
1913 return -ENOENT;
1914
1915 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1916 }
1917
1918 /*
1919 * Creates the endpoints and their ports for Midiman devices.
1920 */
1921 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1922 struct snd_usb_midi_endpoint_info* endpoint)
1923 {
1924 struct snd_usb_midi_endpoint_info ep_info;
1925 struct usb_interface* intf;
1926 struct usb_host_interface *hostif;
1927 struct usb_interface_descriptor* intfd;
1928 struct usb_endpoint_descriptor* epd;
1929 int cable, err;
1930
1931 intf = umidi->iface;
1932 if (!intf)
1933 return -ENOENT;
1934 hostif = intf->altsetting;
1935 intfd = get_iface_desc(hostif);
1936 /*
1937 * The various MidiSport devices have more or less random endpoint
1938 * numbers, so we have to identify the endpoints by their index in
1939 * the descriptor array, like the driver for that other OS does.
1940 *
1941 * There is one interrupt input endpoint for all input ports, one
1942 * bulk output endpoint for even-numbered ports, and one for odd-
1943 * numbered ports. Both bulk output endpoints have corresponding
1944 * input bulk endpoints (at indices 1 and 3) which aren't used.
1945 */
1946 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1947 snd_printdd(KERN_ERR "not enough endpoints\n");
1948 return -ENOENT;
1949 }
1950
1951 epd = get_endpoint(hostif, 0);
1952 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1953 snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1954 return -ENXIO;
1955 }
1956 epd = get_endpoint(hostif, 2);
1957 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
1958 snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
1959 return -ENXIO;
1960 }
1961 if (endpoint->out_cables > 0x0001) {
1962 epd = get_endpoint(hostif, 4);
1963 if (!usb_endpoint_dir_out(epd) ||
1964 !usb_endpoint_xfer_bulk(epd)) {
1965 snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
1966 return -ENXIO;
1967 }
1968 }
1969
1970 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1971 ep_info.out_interval = 0;
1972 ep_info.out_cables = endpoint->out_cables & 0x5555;
1973 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1974 if (err < 0)
1975 return err;
1976
1977 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1978 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
1979 ep_info.in_cables = endpoint->in_cables;
1980 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1981 if (err < 0)
1982 return err;
1983
1984 if (endpoint->out_cables > 0x0001) {
1985 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1986 ep_info.out_cables = endpoint->out_cables & 0xaaaa;
1987 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
1988 if (err < 0)
1989 return err;
1990 }
1991
1992 for (cable = 0; cable < 0x10; ++cable) {
1993 if (endpoint->out_cables & (1 << cable))
1994 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
1995 &umidi->endpoints[cable & 1].out->ports[cable].substream);
1996 if (endpoint->in_cables & (1 << cable))
1997 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
1998 &umidi->endpoints[0].in->ports[cable].substream);
1999 }
2000 return 0;
2001 }
2002
2003 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
2004 .get_port_info = snd_usbmidi_get_port_info,
2005 };
2006
2007 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
2008 int out_ports, int in_ports)
2009 {
2010 struct snd_rawmidi *rmidi;
2011 int err;
2012
2013 err = snd_rawmidi_new(umidi->card, "USB MIDI",
2014 umidi->next_midi_device++,
2015 out_ports, in_ports, &rmidi);
2016 if (err < 0)
2017 return err;
2018 strcpy(rmidi->name, umidi->card->shortname);
2019 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2020 SNDRV_RAWMIDI_INFO_INPUT |
2021 SNDRV_RAWMIDI_INFO_DUPLEX;
2022 rmidi->ops = &snd_usbmidi_ops;
2023 rmidi->private_data = umidi;
2024 rmidi->private_free = snd_usbmidi_rawmidi_free;
2025 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
2026 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
2027
2028 umidi->rmidi = rmidi;
2029 return 0;
2030 }
2031
2032 /*
2033 * Temporarily stop input.
2034 */
2035 void snd_usbmidi_input_stop(struct list_head* p)
2036 {
2037 struct snd_usb_midi* umidi;
2038 unsigned int i, j;
2039
2040 umidi = list_entry(p, struct snd_usb_midi, list);
2041 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2042 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
2043 if (ep->in)
2044 for (j = 0; j < INPUT_URBS; ++j)
2045 usb_kill_urb(ep->in->urbs[j]);
2046 }
2047 }
2048
2049 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
2050 {
2051 unsigned int i;
2052
2053 if (!ep)
2054 return;
2055 for (i = 0; i < INPUT_URBS; ++i) {
2056 struct urb* urb = ep->urbs[i];
2057 urb->dev = ep->umidi->dev;
2058 snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2059 }
2060 }
2061
2062 /*
2063 * Resume input after a call to snd_usbmidi_input_stop().
2064 */
2065 void snd_usbmidi_input_start(struct list_head* p)
2066 {
2067 struct snd_usb_midi* umidi;
2068 int i;
2069
2070 umidi = list_entry(p, struct snd_usb_midi, list);
2071 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2072 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2073 }
2074
2075 /*
2076 * Creates and registers everything needed for a MIDI streaming interface.
2077 */
2078 int snd_usbmidi_create(struct snd_card *card,
2079 struct usb_interface* iface,
2080 struct list_head *midi_list,
2081 const struct snd_usb_audio_quirk* quirk)
2082 {
2083 struct snd_usb_midi* umidi;
2084 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2085 int out_ports, in_ports;
2086 int i, err;
2087
2088 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2089 if (!umidi)
2090 return -ENOMEM;
2091 umidi->dev = interface_to_usbdev(iface);
2092 umidi->card = card;
2093 umidi->iface = iface;
2094 umidi->quirk = quirk;
2095 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2096 init_timer(&umidi->error_timer);
2097 spin_lock_init(&umidi->disc_lock);
2098 mutex_init(&umidi->mutex);
2099 umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2100 le16_to_cpu(umidi->dev->descriptor.idProduct));
2101 umidi->error_timer.function = snd_usbmidi_error_timer;
2102 umidi->error_timer.data = (unsigned long)umidi;
2103
2104 /* detect the endpoint(s) to use */
2105 memset(endpoints, 0, sizeof(endpoints));
2106 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2107 case QUIRK_MIDI_STANDARD_INTERFACE:
2108 err = snd_usbmidi_get_ms_info(umidi, endpoints);
2109 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2110 umidi->usb_protocol_ops =
2111 &snd_usbmidi_maudio_broken_running_status_ops;
2112 break;
2113 case QUIRK_MIDI_US122L:
2114 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2115 /* fall through */
2116 case QUIRK_MIDI_FIXED_ENDPOINT:
2117 memcpy(&endpoints[0], quirk->data,
2118 sizeof(struct snd_usb_midi_endpoint_info));
2119 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2120 break;
2121 case QUIRK_MIDI_YAMAHA:
2122 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2123 break;
2124 case QUIRK_MIDI_MIDIMAN:
2125 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2126 memcpy(&endpoints[0], quirk->data,
2127 sizeof(struct snd_usb_midi_endpoint_info));
2128 err = 0;
2129 break;
2130 case QUIRK_MIDI_NOVATION:
2131 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2132 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2133 break;
2134 case QUIRK_MIDI_RAW_BYTES:
2135 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2136 /*
2137 * Interface 1 contains isochronous endpoints, but with the same
2138 * numbers as in interface 0. Since it is interface 1 that the
2139 * USB core has most recently seen, these descriptors are now
2140 * associated with the endpoint numbers. This will foul up our
2141 * attempts to submit bulk/interrupt URBs to the endpoints in
2142 * interface 0, so we have to make sure that the USB core looks
2143 * again at interface 0 by calling usb_set_interface() on it.
2144 */
2145 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2146 usb_set_interface(umidi->dev, 0, 0);
2147 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2148 break;
2149 case QUIRK_MIDI_EMAGIC:
2150 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2151 memcpy(&endpoints[0], quirk->data,
2152 sizeof(struct snd_usb_midi_endpoint_info));
2153 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2154 break;
2155 case QUIRK_MIDI_CME:
2156 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2157 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2158 break;
2159 case QUIRK_MIDI_AKAI:
2160 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2161 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2162 /* endpoint 1 is input-only */
2163 endpoints[1].out_cables = 0;
2164 break;
2165 default:
2166 snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2167 err = -ENXIO;
2168 break;
2169 }
2170 if (err < 0) {
2171 kfree(umidi);
2172 return err;
2173 }
2174
2175 /* create rawmidi device */
2176 out_ports = 0;
2177 in_ports = 0;
2178 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2179 out_ports += hweight16(endpoints[i].out_cables);
2180 in_ports += hweight16(endpoints[i].in_cables);
2181 }
2182 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2183 if (err < 0) {
2184 kfree(umidi);
2185 return err;
2186 }
2187
2188 /* create endpoint/port structures */
2189 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2190 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2191 else
2192 err = snd_usbmidi_create_endpoints(umidi, endpoints);
2193 if (err < 0) {
2194 snd_usbmidi_free(umidi);
2195 return err;
2196 }
2197
2198 list_add_tail(&umidi->list, midi_list);
2199
2200 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2201 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2202 return 0;
2203 }
2204
2205 EXPORT_SYMBOL(snd_usbmidi_create);
2206 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2207 EXPORT_SYMBOL(snd_usbmidi_input_start);
2208 EXPORT_SYMBOL(snd_usbmidi_disconnect);