Merge branch 'topic/asoc' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE 32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 static struct dentry *debugfs_root;
52 #endif
53
54 static DEFINE_MUTEX(client_mutex);
55 static LIST_HEAD(card_list);
56 static LIST_HEAD(dai_list);
57 static LIST_HEAD(platform_list);
58 static LIST_HEAD(codec_list);
59
60 static int snd_soc_register_card(struct snd_soc_card *card);
61 static int snd_soc_unregister_card(struct snd_soc_card *card);
62 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
63
64 /*
65 * This is a timeout to do a DAPM powerdown after a stream is closed().
66 * It can be used to eliminate pops between different playback streams, e.g.
67 * between two audio tracks.
68 */
69 static int pmdown_time = 5000;
70 module_param(pmdown_time, int, 0);
71 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
72
73 /* codec register dump */
74 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
75 {
76 int ret, i, step = 1, count = 0;
77
78 if (!codec->driver->reg_cache_size)
79 return 0;
80
81 if (codec->driver->reg_cache_step)
82 step = codec->driver->reg_cache_step;
83
84 count += sprintf(buf, "%s registers\n", codec->name);
85 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
86 if (codec->driver->readable_register && !codec->driver->readable_register(i))
87 continue;
88
89 count += sprintf(buf + count, "%2x: ", i);
90 if (count >= PAGE_SIZE - 1)
91 break;
92
93 if (codec->driver->display_register) {
94 count += codec->driver->display_register(codec, buf + count,
95 PAGE_SIZE - count, i);
96 } else {
97 /* If the read fails it's almost certainly due to
98 * the register being volatile and the device being
99 * powered off.
100 */
101 ret = snd_soc_read(codec, i);
102 if (ret >= 0)
103 count += snprintf(buf + count,
104 PAGE_SIZE - count,
105 "%4x", ret);
106 else
107 count += snprintf(buf + count,
108 PAGE_SIZE - count,
109 "<no data: %d>", ret);
110 }
111
112 if (count >= PAGE_SIZE - 1)
113 break;
114
115 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
116 if (count >= PAGE_SIZE - 1)
117 break;
118 }
119
120 /* Truncate count; min() would cause a warning */
121 if (count >= PAGE_SIZE)
122 count = PAGE_SIZE - 1;
123
124 return count;
125 }
126 static ssize_t codec_reg_show(struct device *dev,
127 struct device_attribute *attr, char *buf)
128 {
129 struct snd_soc_pcm_runtime *rtd =
130 container_of(dev, struct snd_soc_pcm_runtime, dev);
131
132 return soc_codec_reg_show(rtd->codec, buf);
133 }
134
135 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
136
137 static ssize_t pmdown_time_show(struct device *dev,
138 struct device_attribute *attr, char *buf)
139 {
140 struct snd_soc_pcm_runtime *rtd =
141 container_of(dev, struct snd_soc_pcm_runtime, dev);
142
143 return sprintf(buf, "%ld\n", rtd->pmdown_time);
144 }
145
146 static ssize_t pmdown_time_set(struct device *dev,
147 struct device_attribute *attr,
148 const char *buf, size_t count)
149 {
150 struct snd_soc_pcm_runtime *rtd =
151 container_of(dev, struct snd_soc_pcm_runtime, dev);
152 int ret;
153
154 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
155 if (ret)
156 return ret;
157
158 return count;
159 }
160
161 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
162
163 #ifdef CONFIG_DEBUG_FS
164 static int codec_reg_open_file(struct inode *inode, struct file *file)
165 {
166 file->private_data = inode->i_private;
167 return 0;
168 }
169
170 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
171 size_t count, loff_t *ppos)
172 {
173 ssize_t ret;
174 struct snd_soc_codec *codec = file->private_data;
175 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
176 if (!buf)
177 return -ENOMEM;
178 ret = soc_codec_reg_show(codec, buf);
179 if (ret >= 0)
180 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
181 kfree(buf);
182 return ret;
183 }
184
185 static ssize_t codec_reg_write_file(struct file *file,
186 const char __user *user_buf, size_t count, loff_t *ppos)
187 {
188 char buf[32];
189 int buf_size;
190 char *start = buf;
191 unsigned long reg, value;
192 int step = 1;
193 struct snd_soc_codec *codec = file->private_data;
194
195 buf_size = min(count, (sizeof(buf)-1));
196 if (copy_from_user(buf, user_buf, buf_size))
197 return -EFAULT;
198 buf[buf_size] = 0;
199
200 if (codec->driver->reg_cache_step)
201 step = codec->driver->reg_cache_step;
202
203 while (*start == ' ')
204 start++;
205 reg = simple_strtoul(start, &start, 16);
206 if ((reg >= codec->driver->reg_cache_size) || (reg % step))
207 return -EINVAL;
208 while (*start == ' ')
209 start++;
210 if (strict_strtoul(start, 16, &value))
211 return -EINVAL;
212 snd_soc_write(codec, reg, value);
213 return buf_size;
214 }
215
216 static const struct file_operations codec_reg_fops = {
217 .open = codec_reg_open_file,
218 .read = codec_reg_read_file,
219 .write = codec_reg_write_file,
220 .llseek = default_llseek,
221 };
222
223 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
224 {
225 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
226
227 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
228 debugfs_card_root);
229 if (!codec->debugfs_codec_root) {
230 printk(KERN_WARNING
231 "ASoC: Failed to create codec debugfs directory\n");
232 return;
233 }
234
235 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
236 codec->debugfs_codec_root,
237 codec, &codec_reg_fops);
238 if (!codec->debugfs_reg)
239 printk(KERN_WARNING
240 "ASoC: Failed to create codec register debugfs file\n");
241
242 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
243 codec->debugfs_codec_root);
244 if (!codec->dapm.debugfs_dapm)
245 printk(KERN_WARNING
246 "Failed to create DAPM debugfs directory\n");
247
248 snd_soc_dapm_debugfs_init(&codec->dapm);
249 }
250
251 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
252 {
253 debugfs_remove_recursive(codec->debugfs_codec_root);
254 }
255
256 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
257 size_t count, loff_t *ppos)
258 {
259 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
260 ssize_t len, ret = 0;
261 struct snd_soc_codec *codec;
262
263 if (!buf)
264 return -ENOMEM;
265
266 list_for_each_entry(codec, &codec_list, list) {
267 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
268 codec->name);
269 if (len >= 0)
270 ret += len;
271 if (ret > PAGE_SIZE) {
272 ret = PAGE_SIZE;
273 break;
274 }
275 }
276
277 if (ret >= 0)
278 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
279
280 kfree(buf);
281
282 return ret;
283 }
284
285 static const struct file_operations codec_list_fops = {
286 .read = codec_list_read_file,
287 .llseek = default_llseek,/* read accesses f_pos */
288 };
289
290 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
291 size_t count, loff_t *ppos)
292 {
293 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
294 ssize_t len, ret = 0;
295 struct snd_soc_dai *dai;
296
297 if (!buf)
298 return -ENOMEM;
299
300 list_for_each_entry(dai, &dai_list, list) {
301 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
302 if (len >= 0)
303 ret += len;
304 if (ret > PAGE_SIZE) {
305 ret = PAGE_SIZE;
306 break;
307 }
308 }
309
310 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
311
312 kfree(buf);
313
314 return ret;
315 }
316
317 static const struct file_operations dai_list_fops = {
318 .read = dai_list_read_file,
319 .llseek = default_llseek,/* read accesses f_pos */
320 };
321
322 static ssize_t platform_list_read_file(struct file *file,
323 char __user *user_buf,
324 size_t count, loff_t *ppos)
325 {
326 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
327 ssize_t len, ret = 0;
328 struct snd_soc_platform *platform;
329
330 if (!buf)
331 return -ENOMEM;
332
333 list_for_each_entry(platform, &platform_list, list) {
334 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
335 platform->name);
336 if (len >= 0)
337 ret += len;
338 if (ret > PAGE_SIZE) {
339 ret = PAGE_SIZE;
340 break;
341 }
342 }
343
344 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
345
346 kfree(buf);
347
348 return ret;
349 }
350
351 static const struct file_operations platform_list_fops = {
352 .read = platform_list_read_file,
353 .llseek = default_llseek,/* read accesses f_pos */
354 };
355
356 static void soc_init_card_debugfs(struct snd_soc_card *card)
357 {
358 card->debugfs_card_root = debugfs_create_dir(card->name,
359 debugfs_root);
360 if (!card->debugfs_card_root) {
361 dev_warn(card->dev,
362 "ASoC: Failed to create codec debugfs directory\n");
363 return;
364 }
365
366 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
367 card->debugfs_card_root,
368 &card->pop_time);
369 if (!card->debugfs_pop_time)
370 dev_warn(card->dev,
371 "Failed to create pop time debugfs file\n");
372 }
373
374 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
375 {
376 debugfs_remove_recursive(card->debugfs_card_root);
377 }
378
379 #else
380
381 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
382 {
383 }
384
385 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
386 {
387 }
388
389 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
390 {
391 }
392
393 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
394 {
395 }
396 #endif
397
398 #ifdef CONFIG_SND_SOC_AC97_BUS
399 /* unregister ac97 codec */
400 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
401 {
402 if (codec->ac97->dev.bus)
403 device_unregister(&codec->ac97->dev);
404 return 0;
405 }
406
407 /* stop no dev release warning */
408 static void soc_ac97_device_release(struct device *dev){}
409
410 /* register ac97 codec to bus */
411 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
412 {
413 int err;
414
415 codec->ac97->dev.bus = &ac97_bus_type;
416 codec->ac97->dev.parent = codec->card->dev;
417 codec->ac97->dev.release = soc_ac97_device_release;
418
419 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
420 codec->card->snd_card->number, 0, codec->name);
421 err = device_register(&codec->ac97->dev);
422 if (err < 0) {
423 snd_printk(KERN_ERR "Can't register ac97 bus\n");
424 codec->ac97->dev.bus = NULL;
425 return err;
426 }
427 return 0;
428 }
429 #endif
430
431 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
432 {
433 struct snd_soc_pcm_runtime *rtd = substream->private_data;
434 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
435 struct snd_soc_dai *codec_dai = rtd->codec_dai;
436 int ret;
437
438 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
439 rtd->dai_link->symmetric_rates) {
440 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
441 rtd->rate);
442
443 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
444 SNDRV_PCM_HW_PARAM_RATE,
445 rtd->rate,
446 rtd->rate);
447 if (ret < 0) {
448 dev_err(&rtd->dev,
449 "Unable to apply rate symmetry constraint: %d\n", ret);
450 return ret;
451 }
452 }
453
454 return 0;
455 }
456
457 /*
458 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
459 * then initialized and any private data can be allocated. This also calls
460 * startup for the cpu DAI, platform, machine and codec DAI.
461 */
462 static int soc_pcm_open(struct snd_pcm_substream *substream)
463 {
464 struct snd_soc_pcm_runtime *rtd = substream->private_data;
465 struct snd_pcm_runtime *runtime = substream->runtime;
466 struct snd_soc_platform *platform = rtd->platform;
467 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
468 struct snd_soc_dai *codec_dai = rtd->codec_dai;
469 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
470 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
471 int ret = 0;
472
473 mutex_lock(&pcm_mutex);
474
475 /* startup the audio subsystem */
476 if (cpu_dai->driver->ops->startup) {
477 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
478 if (ret < 0) {
479 printk(KERN_ERR "asoc: can't open interface %s\n",
480 cpu_dai->name);
481 goto out;
482 }
483 }
484
485 if (platform->driver->ops->open) {
486 ret = platform->driver->ops->open(substream);
487 if (ret < 0) {
488 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
489 goto platform_err;
490 }
491 }
492
493 if (codec_dai->driver->ops->startup) {
494 ret = codec_dai->driver->ops->startup(substream, codec_dai);
495 if (ret < 0) {
496 printk(KERN_ERR "asoc: can't open codec %s\n",
497 codec_dai->name);
498 goto codec_dai_err;
499 }
500 }
501
502 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
503 ret = rtd->dai_link->ops->startup(substream);
504 if (ret < 0) {
505 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
506 goto machine_err;
507 }
508 }
509
510 /* Check that the codec and cpu DAIs are compatible */
511 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
512 runtime->hw.rate_min =
513 max(codec_dai_drv->playback.rate_min,
514 cpu_dai_drv->playback.rate_min);
515 runtime->hw.rate_max =
516 min(codec_dai_drv->playback.rate_max,
517 cpu_dai_drv->playback.rate_max);
518 runtime->hw.channels_min =
519 max(codec_dai_drv->playback.channels_min,
520 cpu_dai_drv->playback.channels_min);
521 runtime->hw.channels_max =
522 min(codec_dai_drv->playback.channels_max,
523 cpu_dai_drv->playback.channels_max);
524 runtime->hw.formats =
525 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
526 runtime->hw.rates =
527 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
528 if (codec_dai_drv->playback.rates
529 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
530 runtime->hw.rates |= cpu_dai_drv->playback.rates;
531 if (cpu_dai_drv->playback.rates
532 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
533 runtime->hw.rates |= codec_dai_drv->playback.rates;
534 } else {
535 runtime->hw.rate_min =
536 max(codec_dai_drv->capture.rate_min,
537 cpu_dai_drv->capture.rate_min);
538 runtime->hw.rate_max =
539 min(codec_dai_drv->capture.rate_max,
540 cpu_dai_drv->capture.rate_max);
541 runtime->hw.channels_min =
542 max(codec_dai_drv->capture.channels_min,
543 cpu_dai_drv->capture.channels_min);
544 runtime->hw.channels_max =
545 min(codec_dai_drv->capture.channels_max,
546 cpu_dai_drv->capture.channels_max);
547 runtime->hw.formats =
548 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
549 runtime->hw.rates =
550 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
551 if (codec_dai_drv->capture.rates
552 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
553 runtime->hw.rates |= cpu_dai_drv->capture.rates;
554 if (cpu_dai_drv->capture.rates
555 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
556 runtime->hw.rates |= codec_dai_drv->capture.rates;
557 }
558
559 snd_pcm_limit_hw_rates(runtime);
560 if (!runtime->hw.rates) {
561 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
562 codec_dai->name, cpu_dai->name);
563 goto config_err;
564 }
565 if (!runtime->hw.formats) {
566 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
567 codec_dai->name, cpu_dai->name);
568 goto config_err;
569 }
570 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
571 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
572 codec_dai->name, cpu_dai->name);
573 goto config_err;
574 }
575
576 /* Symmetry only applies if we've already got an active stream. */
577 if (cpu_dai->active || codec_dai->active) {
578 ret = soc_pcm_apply_symmetry(substream);
579 if (ret != 0)
580 goto config_err;
581 }
582
583 pr_debug("asoc: %s <-> %s info:\n",
584 codec_dai->name, cpu_dai->name);
585 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
586 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
587 runtime->hw.channels_max);
588 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
589 runtime->hw.rate_max);
590
591 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
592 cpu_dai->playback_active++;
593 codec_dai->playback_active++;
594 } else {
595 cpu_dai->capture_active++;
596 codec_dai->capture_active++;
597 }
598 cpu_dai->active++;
599 codec_dai->active++;
600 rtd->codec->active++;
601 mutex_unlock(&pcm_mutex);
602 return 0;
603
604 config_err:
605 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
606 rtd->dai_link->ops->shutdown(substream);
607
608 machine_err:
609 if (codec_dai->driver->ops->shutdown)
610 codec_dai->driver->ops->shutdown(substream, codec_dai);
611
612 codec_dai_err:
613 if (platform->driver->ops->close)
614 platform->driver->ops->close(substream);
615
616 platform_err:
617 if (cpu_dai->driver->ops->shutdown)
618 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
619 out:
620 mutex_unlock(&pcm_mutex);
621 return ret;
622 }
623
624 /*
625 * Power down the audio subsystem pmdown_time msecs after close is called.
626 * This is to ensure there are no pops or clicks in between any music tracks
627 * due to DAPM power cycling.
628 */
629 static void close_delayed_work(struct work_struct *work)
630 {
631 struct snd_soc_pcm_runtime *rtd =
632 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
633 struct snd_soc_dai *codec_dai = rtd->codec_dai;
634
635 mutex_lock(&pcm_mutex);
636
637 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
638 codec_dai->driver->playback.stream_name,
639 codec_dai->playback_active ? "active" : "inactive",
640 codec_dai->pop_wait ? "yes" : "no");
641
642 /* are we waiting on this codec DAI stream */
643 if (codec_dai->pop_wait == 1) {
644 codec_dai->pop_wait = 0;
645 snd_soc_dapm_stream_event(rtd,
646 codec_dai->driver->playback.stream_name,
647 SND_SOC_DAPM_STREAM_STOP);
648 }
649
650 mutex_unlock(&pcm_mutex);
651 }
652
653 /*
654 * Called by ALSA when a PCM substream is closed. Private data can be
655 * freed here. The cpu DAI, codec DAI, machine and platform are also
656 * shutdown.
657 */
658 static int soc_codec_close(struct snd_pcm_substream *substream)
659 {
660 struct snd_soc_pcm_runtime *rtd = substream->private_data;
661 struct snd_soc_platform *platform = rtd->platform;
662 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
663 struct snd_soc_dai *codec_dai = rtd->codec_dai;
664 struct snd_soc_codec *codec = rtd->codec;
665
666 mutex_lock(&pcm_mutex);
667
668 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
669 cpu_dai->playback_active--;
670 codec_dai->playback_active--;
671 } else {
672 cpu_dai->capture_active--;
673 codec_dai->capture_active--;
674 }
675
676 cpu_dai->active--;
677 codec_dai->active--;
678 codec->active--;
679
680 /* Muting the DAC suppresses artifacts caused during digital
681 * shutdown, for example from stopping clocks.
682 */
683 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
684 snd_soc_dai_digital_mute(codec_dai, 1);
685
686 if (cpu_dai->driver->ops->shutdown)
687 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
688
689 if (codec_dai->driver->ops->shutdown)
690 codec_dai->driver->ops->shutdown(substream, codec_dai);
691
692 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
693 rtd->dai_link->ops->shutdown(substream);
694
695 if (platform->driver->ops->close)
696 platform->driver->ops->close(substream);
697 cpu_dai->runtime = NULL;
698
699 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
700 /* start delayed pop wq here for playback streams */
701 codec_dai->pop_wait = 1;
702 schedule_delayed_work(&rtd->delayed_work,
703 msecs_to_jiffies(rtd->pmdown_time));
704 } else {
705 /* capture streams can be powered down now */
706 snd_soc_dapm_stream_event(rtd,
707 codec_dai->driver->capture.stream_name,
708 SND_SOC_DAPM_STREAM_STOP);
709 }
710
711 mutex_unlock(&pcm_mutex);
712 return 0;
713 }
714
715 /*
716 * Called by ALSA when the PCM substream is prepared, can set format, sample
717 * rate, etc. This function is non atomic and can be called multiple times,
718 * it can refer to the runtime info.
719 */
720 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
721 {
722 struct snd_soc_pcm_runtime *rtd = substream->private_data;
723 struct snd_soc_platform *platform = rtd->platform;
724 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
725 struct snd_soc_dai *codec_dai = rtd->codec_dai;
726 int ret = 0;
727
728 mutex_lock(&pcm_mutex);
729
730 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
731 ret = rtd->dai_link->ops->prepare(substream);
732 if (ret < 0) {
733 printk(KERN_ERR "asoc: machine prepare error\n");
734 goto out;
735 }
736 }
737
738 if (platform->driver->ops->prepare) {
739 ret = platform->driver->ops->prepare(substream);
740 if (ret < 0) {
741 printk(KERN_ERR "asoc: platform prepare error\n");
742 goto out;
743 }
744 }
745
746 if (codec_dai->driver->ops->prepare) {
747 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
748 if (ret < 0) {
749 printk(KERN_ERR "asoc: codec DAI prepare error\n");
750 goto out;
751 }
752 }
753
754 if (cpu_dai->driver->ops->prepare) {
755 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
756 if (ret < 0) {
757 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
758 goto out;
759 }
760 }
761
762 /* cancel any delayed stream shutdown that is pending */
763 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
764 codec_dai->pop_wait) {
765 codec_dai->pop_wait = 0;
766 cancel_delayed_work(&rtd->delayed_work);
767 }
768
769 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
770 snd_soc_dapm_stream_event(rtd,
771 codec_dai->driver->playback.stream_name,
772 SND_SOC_DAPM_STREAM_START);
773 else
774 snd_soc_dapm_stream_event(rtd,
775 codec_dai->driver->capture.stream_name,
776 SND_SOC_DAPM_STREAM_START);
777
778 snd_soc_dai_digital_mute(codec_dai, 0);
779
780 out:
781 mutex_unlock(&pcm_mutex);
782 return ret;
783 }
784
785 /*
786 * Called by ALSA when the hardware params are set by application. This
787 * function can also be called multiple times and can allocate buffers
788 * (using snd_pcm_lib_* ). It's non-atomic.
789 */
790 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
791 struct snd_pcm_hw_params *params)
792 {
793 struct snd_soc_pcm_runtime *rtd = substream->private_data;
794 struct snd_soc_platform *platform = rtd->platform;
795 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
796 struct snd_soc_dai *codec_dai = rtd->codec_dai;
797 int ret = 0;
798
799 mutex_lock(&pcm_mutex);
800
801 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
802 ret = rtd->dai_link->ops->hw_params(substream, params);
803 if (ret < 0) {
804 printk(KERN_ERR "asoc: machine hw_params failed\n");
805 goto out;
806 }
807 }
808
809 if (codec_dai->driver->ops->hw_params) {
810 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
811 if (ret < 0) {
812 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
813 codec_dai->name);
814 goto codec_err;
815 }
816 }
817
818 if (cpu_dai->driver->ops->hw_params) {
819 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
820 if (ret < 0) {
821 printk(KERN_ERR "asoc: interface %s hw params failed\n",
822 cpu_dai->name);
823 goto interface_err;
824 }
825 }
826
827 if (platform->driver->ops->hw_params) {
828 ret = platform->driver->ops->hw_params(substream, params);
829 if (ret < 0) {
830 printk(KERN_ERR "asoc: platform %s hw params failed\n",
831 platform->name);
832 goto platform_err;
833 }
834 }
835
836 rtd->rate = params_rate(params);
837
838 out:
839 mutex_unlock(&pcm_mutex);
840 return ret;
841
842 platform_err:
843 if (cpu_dai->driver->ops->hw_free)
844 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
845
846 interface_err:
847 if (codec_dai->driver->ops->hw_free)
848 codec_dai->driver->ops->hw_free(substream, codec_dai);
849
850 codec_err:
851 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
852 rtd->dai_link->ops->hw_free(substream);
853
854 mutex_unlock(&pcm_mutex);
855 return ret;
856 }
857
858 /*
859 * Frees resources allocated by hw_params, can be called multiple times
860 */
861 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
862 {
863 struct snd_soc_pcm_runtime *rtd = substream->private_data;
864 struct snd_soc_platform *platform = rtd->platform;
865 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
866 struct snd_soc_dai *codec_dai = rtd->codec_dai;
867 struct snd_soc_codec *codec = rtd->codec;
868
869 mutex_lock(&pcm_mutex);
870
871 /* apply codec digital mute */
872 if (!codec->active)
873 snd_soc_dai_digital_mute(codec_dai, 1);
874
875 /* free any machine hw params */
876 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
877 rtd->dai_link->ops->hw_free(substream);
878
879 /* free any DMA resources */
880 if (platform->driver->ops->hw_free)
881 platform->driver->ops->hw_free(substream);
882
883 /* now free hw params for the DAIs */
884 if (codec_dai->driver->ops->hw_free)
885 codec_dai->driver->ops->hw_free(substream, codec_dai);
886
887 if (cpu_dai->driver->ops->hw_free)
888 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
889
890 mutex_unlock(&pcm_mutex);
891 return 0;
892 }
893
894 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
895 {
896 struct snd_soc_pcm_runtime *rtd = substream->private_data;
897 struct snd_soc_platform *platform = rtd->platform;
898 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
899 struct snd_soc_dai *codec_dai = rtd->codec_dai;
900 int ret;
901
902 if (codec_dai->driver->ops->trigger) {
903 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
904 if (ret < 0)
905 return ret;
906 }
907
908 if (platform->driver->ops->trigger) {
909 ret = platform->driver->ops->trigger(substream, cmd);
910 if (ret < 0)
911 return ret;
912 }
913
914 if (cpu_dai->driver->ops->trigger) {
915 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
916 if (ret < 0)
917 return ret;
918 }
919 return 0;
920 }
921
922 /*
923 * soc level wrapper for pointer callback
924 * If cpu_dai, codec_dai, platform driver has the delay callback, than
925 * the runtime->delay will be updated accordingly.
926 */
927 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
928 {
929 struct snd_soc_pcm_runtime *rtd = substream->private_data;
930 struct snd_soc_platform *platform = rtd->platform;
931 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
932 struct snd_soc_dai *codec_dai = rtd->codec_dai;
933 struct snd_pcm_runtime *runtime = substream->runtime;
934 snd_pcm_uframes_t offset = 0;
935 snd_pcm_sframes_t delay = 0;
936
937 if (platform->driver->ops->pointer)
938 offset = platform->driver->ops->pointer(substream);
939
940 if (cpu_dai->driver->ops->delay)
941 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
942
943 if (codec_dai->driver->ops->delay)
944 delay += codec_dai->driver->ops->delay(substream, codec_dai);
945
946 if (platform->driver->delay)
947 delay += platform->driver->delay(substream, codec_dai);
948
949 runtime->delay = delay;
950
951 return offset;
952 }
953
954 /* ASoC PCM operations */
955 static struct snd_pcm_ops soc_pcm_ops = {
956 .open = soc_pcm_open,
957 .close = soc_codec_close,
958 .hw_params = soc_pcm_hw_params,
959 .hw_free = soc_pcm_hw_free,
960 .prepare = soc_pcm_prepare,
961 .trigger = soc_pcm_trigger,
962 .pointer = soc_pcm_pointer,
963 };
964
965 #ifdef CONFIG_PM
966 /* powers down audio subsystem for suspend */
967 static int soc_suspend(struct device *dev)
968 {
969 struct platform_device *pdev = to_platform_device(dev);
970 struct snd_soc_card *card = platform_get_drvdata(pdev);
971 struct snd_soc_codec *codec;
972 int i;
973
974 /* If the initialization of this soc device failed, there is no codec
975 * associated with it. Just bail out in this case.
976 */
977 if (list_empty(&card->codec_dev_list))
978 return 0;
979
980 /* Due to the resume being scheduled into a workqueue we could
981 * suspend before that's finished - wait for it to complete.
982 */
983 snd_power_lock(card->snd_card);
984 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
985 snd_power_unlock(card->snd_card);
986
987 /* we're going to block userspace touching us until resume completes */
988 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
989
990 /* mute any active DACs */
991 for (i = 0; i < card->num_rtd; i++) {
992 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
993 struct snd_soc_dai_driver *drv = dai->driver;
994
995 if (card->rtd[i].dai_link->ignore_suspend)
996 continue;
997
998 if (drv->ops->digital_mute && dai->playback_active)
999 drv->ops->digital_mute(dai, 1);
1000 }
1001
1002 /* suspend all pcms */
1003 for (i = 0; i < card->num_rtd; i++) {
1004 if (card->rtd[i].dai_link->ignore_suspend)
1005 continue;
1006
1007 snd_pcm_suspend_all(card->rtd[i].pcm);
1008 }
1009
1010 if (card->suspend_pre)
1011 card->suspend_pre(pdev, PMSG_SUSPEND);
1012
1013 for (i = 0; i < card->num_rtd; i++) {
1014 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1015 struct snd_soc_platform *platform = card->rtd[i].platform;
1016
1017 if (card->rtd[i].dai_link->ignore_suspend)
1018 continue;
1019
1020 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1021 cpu_dai->driver->suspend(cpu_dai);
1022 if (platform->driver->suspend && !platform->suspended) {
1023 platform->driver->suspend(cpu_dai);
1024 platform->suspended = 1;
1025 }
1026 }
1027
1028 /* close any waiting streams and save state */
1029 for (i = 0; i < card->num_rtd; i++) {
1030 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1031 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1032 }
1033
1034 for (i = 0; i < card->num_rtd; i++) {
1035 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1036
1037 if (card->rtd[i].dai_link->ignore_suspend)
1038 continue;
1039
1040 if (driver->playback.stream_name != NULL)
1041 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1042 SND_SOC_DAPM_STREAM_SUSPEND);
1043
1044 if (driver->capture.stream_name != NULL)
1045 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1046 SND_SOC_DAPM_STREAM_SUSPEND);
1047 }
1048
1049 /* suspend all CODECs */
1050 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1051 /* If there are paths active then the CODEC will be held with
1052 * bias _ON and should not be suspended. */
1053 if (!codec->suspended && codec->driver->suspend) {
1054 switch (codec->dapm.bias_level) {
1055 case SND_SOC_BIAS_STANDBY:
1056 case SND_SOC_BIAS_OFF:
1057 codec->driver->suspend(codec, PMSG_SUSPEND);
1058 codec->suspended = 1;
1059 break;
1060 default:
1061 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1062 break;
1063 }
1064 }
1065 }
1066
1067 for (i = 0; i < card->num_rtd; i++) {
1068 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1069
1070 if (card->rtd[i].dai_link->ignore_suspend)
1071 continue;
1072
1073 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1074 cpu_dai->driver->suspend(cpu_dai);
1075 }
1076
1077 if (card->suspend_post)
1078 card->suspend_post(pdev, PMSG_SUSPEND);
1079
1080 return 0;
1081 }
1082
1083 /* deferred resume work, so resume can complete before we finished
1084 * setting our codec back up, which can be very slow on I2C
1085 */
1086 static void soc_resume_deferred(struct work_struct *work)
1087 {
1088 struct snd_soc_card *card =
1089 container_of(work, struct snd_soc_card, deferred_resume_work);
1090 struct platform_device *pdev = to_platform_device(card->dev);
1091 struct snd_soc_codec *codec;
1092 int i;
1093
1094 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1095 * so userspace apps are blocked from touching us
1096 */
1097
1098 dev_dbg(card->dev, "starting resume work\n");
1099
1100 /* Bring us up into D2 so that DAPM starts enabling things */
1101 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1102
1103 if (card->resume_pre)
1104 card->resume_pre(pdev);
1105
1106 /* resume AC97 DAIs */
1107 for (i = 0; i < card->num_rtd; i++) {
1108 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1109
1110 if (card->rtd[i].dai_link->ignore_suspend)
1111 continue;
1112
1113 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1114 cpu_dai->driver->resume(cpu_dai);
1115 }
1116
1117 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1118 /* If the CODEC was idle over suspend then it will have been
1119 * left with bias OFF or STANDBY and suspended so we must now
1120 * resume. Otherwise the suspend was suppressed.
1121 */
1122 if (codec->driver->resume && codec->suspended) {
1123 switch (codec->dapm.bias_level) {
1124 case SND_SOC_BIAS_STANDBY:
1125 case SND_SOC_BIAS_OFF:
1126 codec->driver->resume(codec);
1127 codec->suspended = 0;
1128 break;
1129 default:
1130 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1131 break;
1132 }
1133 }
1134 }
1135
1136 for (i = 0; i < card->num_rtd; i++) {
1137 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1138
1139 if (card->rtd[i].dai_link->ignore_suspend)
1140 continue;
1141
1142 if (driver->playback.stream_name != NULL)
1143 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1144 SND_SOC_DAPM_STREAM_RESUME);
1145
1146 if (driver->capture.stream_name != NULL)
1147 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1148 SND_SOC_DAPM_STREAM_RESUME);
1149 }
1150
1151 /* unmute any active DACs */
1152 for (i = 0; i < card->num_rtd; i++) {
1153 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1154 struct snd_soc_dai_driver *drv = dai->driver;
1155
1156 if (card->rtd[i].dai_link->ignore_suspend)
1157 continue;
1158
1159 if (drv->ops->digital_mute && dai->playback_active)
1160 drv->ops->digital_mute(dai, 0);
1161 }
1162
1163 for (i = 0; i < card->num_rtd; i++) {
1164 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1165 struct snd_soc_platform *platform = card->rtd[i].platform;
1166
1167 if (card->rtd[i].dai_link->ignore_suspend)
1168 continue;
1169
1170 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1171 cpu_dai->driver->resume(cpu_dai);
1172 if (platform->driver->resume && platform->suspended) {
1173 platform->driver->resume(cpu_dai);
1174 platform->suspended = 0;
1175 }
1176 }
1177
1178 if (card->resume_post)
1179 card->resume_post(pdev);
1180
1181 dev_dbg(card->dev, "resume work completed\n");
1182
1183 /* userspace can access us now we are back as we were before */
1184 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1185 }
1186
1187 /* powers up audio subsystem after a suspend */
1188 static int soc_resume(struct device *dev)
1189 {
1190 struct platform_device *pdev = to_platform_device(dev);
1191 struct snd_soc_card *card = platform_get_drvdata(pdev);
1192 int i;
1193
1194 /* AC97 devices might have other drivers hanging off them so
1195 * need to resume immediately. Other drivers don't have that
1196 * problem and may take a substantial amount of time to resume
1197 * due to I/O costs and anti-pop so handle them out of line.
1198 */
1199 for (i = 0; i < card->num_rtd; i++) {
1200 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1201 if (cpu_dai->driver->ac97_control) {
1202 dev_dbg(dev, "Resuming AC97 immediately\n");
1203 soc_resume_deferred(&card->deferred_resume_work);
1204 } else {
1205 dev_dbg(dev, "Scheduling resume work\n");
1206 if (!schedule_work(&card->deferred_resume_work))
1207 dev_err(dev, "resume work item may be lost\n");
1208 }
1209 }
1210
1211 return 0;
1212 }
1213 #else
1214 #define soc_suspend NULL
1215 #define soc_resume NULL
1216 #endif
1217
1218 static struct snd_soc_dai_ops null_dai_ops = {
1219 };
1220
1221 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1222 {
1223 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1224 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1225 struct snd_soc_codec *codec;
1226 struct snd_soc_platform *platform;
1227 struct snd_soc_dai *codec_dai, *cpu_dai;
1228
1229 if (rtd->complete)
1230 return 1;
1231 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1232
1233 /* do we already have the CPU DAI for this link ? */
1234 if (rtd->cpu_dai) {
1235 goto find_codec;
1236 }
1237 /* no, then find CPU DAI from registered DAIs*/
1238 list_for_each_entry(cpu_dai, &dai_list, list) {
1239 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1240
1241 if (!try_module_get(cpu_dai->dev->driver->owner))
1242 return -ENODEV;
1243
1244 rtd->cpu_dai = cpu_dai;
1245 goto find_codec;
1246 }
1247 }
1248 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1249 dai_link->cpu_dai_name);
1250
1251 find_codec:
1252 /* do we already have the CODEC for this link ? */
1253 if (rtd->codec) {
1254 goto find_platform;
1255 }
1256
1257 /* no, then find CODEC from registered CODECs*/
1258 list_for_each_entry(codec, &codec_list, list) {
1259 if (!strcmp(codec->name, dai_link->codec_name)) {
1260 rtd->codec = codec;
1261
1262 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1263 list_for_each_entry(codec_dai, &dai_list, list) {
1264 if (codec->dev == codec_dai->dev &&
1265 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1266 rtd->codec_dai = codec_dai;
1267 goto find_platform;
1268 }
1269 }
1270 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1271 dai_link->codec_dai_name);
1272
1273 goto find_platform;
1274 }
1275 }
1276 dev_dbg(card->dev, "CODEC %s not registered\n",
1277 dai_link->codec_name);
1278
1279 find_platform:
1280 /* do we already have the CODEC DAI for this link ? */
1281 if (rtd->platform) {
1282 goto out;
1283 }
1284 /* no, then find CPU DAI from registered DAIs*/
1285 list_for_each_entry(platform, &platform_list, list) {
1286 if (!strcmp(platform->name, dai_link->platform_name)) {
1287 rtd->platform = platform;
1288 goto out;
1289 }
1290 }
1291
1292 dev_dbg(card->dev, "platform %s not registered\n",
1293 dai_link->platform_name);
1294 return 0;
1295
1296 out:
1297 /* mark rtd as complete if we found all 4 of our client devices */
1298 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1299 rtd->complete = 1;
1300 card->num_rtd++;
1301 }
1302 return 1;
1303 }
1304
1305 static void soc_remove_codec(struct snd_soc_codec *codec)
1306 {
1307 int err;
1308
1309 if (codec->driver->remove) {
1310 err = codec->driver->remove(codec);
1311 if (err < 0)
1312 dev_err(codec->dev,
1313 "asoc: failed to remove %s: %d\n",
1314 codec->name, err);
1315 }
1316
1317 /* Make sure all DAPM widgets are freed */
1318 snd_soc_dapm_free(&codec->dapm);
1319
1320 soc_cleanup_codec_debugfs(codec);
1321 codec->probed = 0;
1322 list_del(&codec->card_list);
1323 module_put(codec->dev->driver->owner);
1324 }
1325
1326 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1327 {
1328 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1329 struct snd_soc_codec *codec = rtd->codec;
1330 struct snd_soc_platform *platform = rtd->platform;
1331 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1332 int err;
1333
1334 /* unregister the rtd device */
1335 if (rtd->dev_registered) {
1336 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1337 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1338 device_unregister(&rtd->dev);
1339 rtd->dev_registered = 0;
1340 }
1341
1342 /* remove the CODEC DAI */
1343 if (codec_dai && codec_dai->probed) {
1344 if (codec_dai->driver->remove) {
1345 err = codec_dai->driver->remove(codec_dai);
1346 if (err < 0)
1347 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1348 }
1349 codec_dai->probed = 0;
1350 list_del(&codec_dai->card_list);
1351 }
1352
1353 /* remove the platform */
1354 if (platform && platform->probed) {
1355 if (platform->driver->remove) {
1356 err = platform->driver->remove(platform);
1357 if (err < 0)
1358 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1359 }
1360 platform->probed = 0;
1361 list_del(&platform->card_list);
1362 module_put(platform->dev->driver->owner);
1363 }
1364
1365 /* remove the CODEC */
1366 if (codec && codec->probed)
1367 soc_remove_codec(codec);
1368
1369 /* remove the cpu_dai */
1370 if (cpu_dai && cpu_dai->probed) {
1371 if (cpu_dai->driver->remove) {
1372 err = cpu_dai->driver->remove(cpu_dai);
1373 if (err < 0)
1374 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1375 }
1376 cpu_dai->probed = 0;
1377 list_del(&cpu_dai->card_list);
1378 module_put(cpu_dai->dev->driver->owner);
1379 }
1380 }
1381
1382 static void soc_set_name_prefix(struct snd_soc_card *card,
1383 struct snd_soc_codec *codec)
1384 {
1385 int i;
1386
1387 if (card->codec_conf == NULL)
1388 return;
1389
1390 for (i = 0; i < card->num_configs; i++) {
1391 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1392 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1393 codec->name_prefix = map->name_prefix;
1394 break;
1395 }
1396 }
1397 }
1398
1399 static int soc_probe_codec(struct snd_soc_card *card,
1400 struct snd_soc_codec *codec)
1401 {
1402 int ret = 0;
1403
1404 codec->card = card;
1405 codec->dapm.card = card;
1406 soc_set_name_prefix(card, codec);
1407
1408 if (codec->driver->probe) {
1409 ret = codec->driver->probe(codec);
1410 if (ret < 0) {
1411 dev_err(codec->dev,
1412 "asoc: failed to probe CODEC %s: %d\n",
1413 codec->name, ret);
1414 return ret;
1415 }
1416 }
1417
1418 soc_init_codec_debugfs(codec);
1419
1420 /* mark codec as probed and add to card codec list */
1421 if (!try_module_get(codec->dev->driver->owner))
1422 return -ENODEV;
1423
1424 codec->probed = 1;
1425 list_add(&codec->card_list, &card->codec_dev_list);
1426 list_add(&codec->dapm.list, &card->dapm_list);
1427
1428 return ret;
1429 }
1430
1431 static void rtd_release(struct device *dev) {}
1432
1433 static int soc_post_component_init(struct snd_soc_card *card,
1434 struct snd_soc_codec *codec,
1435 int num, int dailess)
1436 {
1437 struct snd_soc_dai_link *dai_link = NULL;
1438 struct snd_soc_aux_dev *aux_dev = NULL;
1439 struct snd_soc_pcm_runtime *rtd;
1440 const char *temp, *name;
1441 int ret = 0;
1442
1443 if (!dailess) {
1444 dai_link = &card->dai_link[num];
1445 rtd = &card->rtd[num];
1446 name = dai_link->name;
1447 } else {
1448 aux_dev = &card->aux_dev[num];
1449 rtd = &card->rtd_aux[num];
1450 name = aux_dev->name;
1451 }
1452
1453 /* machine controls, routes and widgets are not prefixed */
1454 temp = codec->name_prefix;
1455 codec->name_prefix = NULL;
1456
1457 /* do machine specific initialization */
1458 if (!dailess && dai_link->init)
1459 ret = dai_link->init(rtd);
1460 else if (dailess && aux_dev->init)
1461 ret = aux_dev->init(&codec->dapm);
1462 if (ret < 0) {
1463 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1464 return ret;
1465 }
1466 codec->name_prefix = temp;
1467
1468 /* Make sure all DAPM widgets are instantiated */
1469 snd_soc_dapm_new_widgets(&codec->dapm);
1470 snd_soc_dapm_sync(&codec->dapm);
1471
1472 /* register the rtd device */
1473 rtd->codec = codec;
1474 rtd->card = card;
1475 rtd->dev.parent = card->dev;
1476 rtd->dev.release = rtd_release;
1477 rtd->dev.init_name = name;
1478 ret = device_register(&rtd->dev);
1479 if (ret < 0) {
1480 dev_err(card->dev,
1481 "asoc: failed to register runtime device: %d\n", ret);
1482 return ret;
1483 }
1484 rtd->dev_registered = 1;
1485
1486 /* add DAPM sysfs entries for this codec */
1487 ret = snd_soc_dapm_sys_add(&rtd->dev);
1488 if (ret < 0)
1489 dev_err(codec->dev,
1490 "asoc: failed to add codec dapm sysfs entries: %d\n",
1491 ret);
1492
1493 /* add codec sysfs entries */
1494 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1495 if (ret < 0)
1496 dev_err(codec->dev,
1497 "asoc: failed to add codec sysfs files: %d\n", ret);
1498
1499 return 0;
1500 }
1501
1502 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1503 {
1504 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1505 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1506 struct snd_soc_codec *codec = rtd->codec;
1507 struct snd_soc_platform *platform = rtd->platform;
1508 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1509 int ret;
1510
1511 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1512
1513 /* config components */
1514 codec_dai->codec = codec;
1515 cpu_dai->platform = platform;
1516 codec_dai->card = card;
1517 cpu_dai->card = card;
1518
1519 /* set default power off timeout */
1520 rtd->pmdown_time = pmdown_time;
1521
1522 /* probe the cpu_dai */
1523 if (!cpu_dai->probed) {
1524 if (cpu_dai->driver->probe) {
1525 ret = cpu_dai->driver->probe(cpu_dai);
1526 if (ret < 0) {
1527 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1528 cpu_dai->name);
1529 return ret;
1530 }
1531 }
1532 cpu_dai->probed = 1;
1533 /* mark cpu_dai as probed and add to card cpu_dai list */
1534 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1535 }
1536
1537 /* probe the CODEC */
1538 if (!codec->probed) {
1539 ret = soc_probe_codec(card, codec);
1540 if (ret < 0)
1541 return ret;
1542 }
1543
1544 /* probe the platform */
1545 if (!platform->probed) {
1546 if (platform->driver->probe) {
1547 ret = platform->driver->probe(platform);
1548 if (ret < 0) {
1549 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1550 platform->name);
1551 return ret;
1552 }
1553 }
1554 /* mark platform as probed and add to card platform list */
1555
1556 if (!try_module_get(platform->dev->driver->owner))
1557 return -ENODEV;
1558
1559 platform->probed = 1;
1560 list_add(&platform->card_list, &card->platform_dev_list);
1561 }
1562
1563 /* probe the CODEC DAI */
1564 if (!codec_dai->probed) {
1565 if (codec_dai->driver->probe) {
1566 ret = codec_dai->driver->probe(codec_dai);
1567 if (ret < 0) {
1568 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1569 codec_dai->name);
1570 return ret;
1571 }
1572 }
1573
1574 /* mark cpu_dai as probed and add to card cpu_dai list */
1575 codec_dai->probed = 1;
1576 list_add(&codec_dai->card_list, &card->dai_dev_list);
1577 }
1578
1579 /* DAPM dai link stream work */
1580 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1581
1582 ret = soc_post_component_init(card, codec, num, 0);
1583 if (ret)
1584 return ret;
1585
1586 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1587 if (ret < 0)
1588 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1589
1590 /* create the pcm */
1591 ret = soc_new_pcm(rtd, num);
1592 if (ret < 0) {
1593 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1594 return ret;
1595 }
1596
1597 /* add platform data for AC97 devices */
1598 if (rtd->codec_dai->driver->ac97_control)
1599 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1600
1601 return 0;
1602 }
1603
1604 #ifdef CONFIG_SND_SOC_AC97_BUS
1605 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1606 {
1607 int ret;
1608
1609 /* Only instantiate AC97 if not already done by the adaptor
1610 * for the generic AC97 subsystem.
1611 */
1612 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1613 /*
1614 * It is possible that the AC97 device is already registered to
1615 * the device subsystem. This happens when the device is created
1616 * via snd_ac97_mixer(). Currently only SoC codec that does so
1617 * is the generic AC97 glue but others migh emerge.
1618 *
1619 * In those cases we don't try to register the device again.
1620 */
1621 if (!rtd->codec->ac97_created)
1622 return 0;
1623
1624 ret = soc_ac97_dev_register(rtd->codec);
1625 if (ret < 0) {
1626 printk(KERN_ERR "asoc: AC97 device register failed\n");
1627 return ret;
1628 }
1629
1630 rtd->codec->ac97_registered = 1;
1631 }
1632 return 0;
1633 }
1634
1635 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1636 {
1637 if (codec->ac97_registered) {
1638 soc_ac97_dev_unregister(codec);
1639 codec->ac97_registered = 0;
1640 }
1641 }
1642 #endif
1643
1644 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1645 {
1646 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1647 struct snd_soc_codec *codec;
1648 int ret = -ENODEV;
1649
1650 /* find CODEC from registered CODECs*/
1651 list_for_each_entry(codec, &codec_list, list) {
1652 if (!strcmp(codec->name, aux_dev->codec_name)) {
1653 if (codec->probed) {
1654 dev_err(codec->dev,
1655 "asoc: codec already probed");
1656 ret = -EBUSY;
1657 goto out;
1658 }
1659 goto found;
1660 }
1661 }
1662 /* codec not found */
1663 dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1664 goto out;
1665
1666 found:
1667 if (!try_module_get(codec->dev->driver->owner))
1668 return -ENODEV;
1669
1670 ret = soc_probe_codec(card, codec);
1671 if (ret < 0)
1672 return ret;
1673
1674 ret = soc_post_component_init(card, codec, num, 1);
1675
1676 out:
1677 return ret;
1678 }
1679
1680 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1681 {
1682 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1683 struct snd_soc_codec *codec = rtd->codec;
1684
1685 /* unregister the rtd device */
1686 if (rtd->dev_registered) {
1687 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1688 device_unregister(&rtd->dev);
1689 rtd->dev_registered = 0;
1690 }
1691
1692 if (codec && codec->probed)
1693 soc_remove_codec(codec);
1694 }
1695
1696 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1697 enum snd_soc_compress_type compress_type)
1698 {
1699 int ret;
1700
1701 if (codec->cache_init)
1702 return 0;
1703
1704 /* override the compress_type if necessary */
1705 if (compress_type && codec->compress_type != compress_type)
1706 codec->compress_type = compress_type;
1707 ret = snd_soc_cache_init(codec);
1708 if (ret < 0) {
1709 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1710 ret);
1711 return ret;
1712 }
1713 codec->cache_init = 1;
1714 return 0;
1715 }
1716
1717 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1718 {
1719 struct platform_device *pdev = to_platform_device(card->dev);
1720 struct snd_soc_codec *codec;
1721 struct snd_soc_codec_conf *codec_conf;
1722 enum snd_soc_compress_type compress_type;
1723 int ret, i;
1724
1725 mutex_lock(&card->mutex);
1726
1727 if (card->instantiated) {
1728 mutex_unlock(&card->mutex);
1729 return;
1730 }
1731
1732 /* bind DAIs */
1733 for (i = 0; i < card->num_links; i++)
1734 soc_bind_dai_link(card, i);
1735
1736 /* bind completed ? */
1737 if (card->num_rtd != card->num_links) {
1738 mutex_unlock(&card->mutex);
1739 return;
1740 }
1741
1742 /* initialize the register cache for each available codec */
1743 list_for_each_entry(codec, &codec_list, list) {
1744 if (codec->cache_init)
1745 continue;
1746 /* check to see if we need to override the compress_type */
1747 for (i = 0; i < card->num_configs; ++i) {
1748 codec_conf = &card->codec_conf[i];
1749 if (!strcmp(codec->name, codec_conf->dev_name)) {
1750 compress_type = codec_conf->compress_type;
1751 if (compress_type && compress_type
1752 != codec->compress_type)
1753 break;
1754 }
1755 }
1756 if (i == card->num_configs) {
1757 /* no need to override the compress_type so
1758 * go ahead and do the standard thing */
1759 ret = snd_soc_init_codec_cache(codec, 0);
1760 if (ret < 0) {
1761 mutex_unlock(&card->mutex);
1762 return;
1763 }
1764 continue;
1765 }
1766 /* override the compress_type with the one supplied in
1767 * the machine driver */
1768 ret = snd_soc_init_codec_cache(codec, compress_type);
1769 if (ret < 0) {
1770 mutex_unlock(&card->mutex);
1771 return;
1772 }
1773 }
1774
1775 /* card bind complete so register a sound card */
1776 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1777 card->owner, 0, &card->snd_card);
1778 if (ret < 0) {
1779 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1780 card->name);
1781 mutex_unlock(&card->mutex);
1782 return;
1783 }
1784 card->snd_card->dev = card->dev;
1785
1786 #ifdef CONFIG_PM
1787 /* deferred resume work */
1788 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1789 #endif
1790
1791 /* initialise the sound card only once */
1792 if (card->probe) {
1793 ret = card->probe(pdev);
1794 if (ret < 0)
1795 goto card_probe_error;
1796 }
1797
1798 for (i = 0; i < card->num_links; i++) {
1799 ret = soc_probe_dai_link(card, i);
1800 if (ret < 0) {
1801 pr_err("asoc: failed to instantiate card %s: %d\n",
1802 card->name, ret);
1803 goto probe_dai_err;
1804 }
1805 }
1806
1807 for (i = 0; i < card->num_aux_devs; i++) {
1808 ret = soc_probe_aux_dev(card, i);
1809 if (ret < 0) {
1810 pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1811 card->name, ret);
1812 goto probe_aux_dev_err;
1813 }
1814 }
1815
1816 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1817 "%s", card->name);
1818 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1819 "%s", card->name);
1820
1821 ret = snd_card_register(card->snd_card);
1822 if (ret < 0) {
1823 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1824 goto probe_aux_dev_err;
1825 }
1826
1827 #ifdef CONFIG_SND_SOC_AC97_BUS
1828 /* register any AC97 codecs */
1829 for (i = 0; i < card->num_rtd; i++) {
1830 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1831 if (ret < 0) {
1832 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1833 while (--i >= 0)
1834 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1835 goto probe_aux_dev_err;
1836 }
1837 }
1838 #endif
1839
1840 card->instantiated = 1;
1841 mutex_unlock(&card->mutex);
1842 return;
1843
1844 probe_aux_dev_err:
1845 for (i = 0; i < card->num_aux_devs; i++)
1846 soc_remove_aux_dev(card, i);
1847
1848 probe_dai_err:
1849 for (i = 0; i < card->num_links; i++)
1850 soc_remove_dai_link(card, i);
1851
1852 card_probe_error:
1853 if (card->remove)
1854 card->remove(pdev);
1855
1856 snd_card_free(card->snd_card);
1857
1858 mutex_unlock(&card->mutex);
1859 }
1860
1861 /*
1862 * Attempt to initialise any uninitialised cards. Must be called with
1863 * client_mutex.
1864 */
1865 static void snd_soc_instantiate_cards(void)
1866 {
1867 struct snd_soc_card *card;
1868 list_for_each_entry(card, &card_list, list)
1869 snd_soc_instantiate_card(card);
1870 }
1871
1872 /* probes a new socdev */
1873 static int soc_probe(struct platform_device *pdev)
1874 {
1875 struct snd_soc_card *card = platform_get_drvdata(pdev);
1876 int ret = 0;
1877
1878 /* Bodge while we unpick instantiation */
1879 card->dev = &pdev->dev;
1880 INIT_LIST_HEAD(&card->dai_dev_list);
1881 INIT_LIST_HEAD(&card->codec_dev_list);
1882 INIT_LIST_HEAD(&card->platform_dev_list);
1883 INIT_LIST_HEAD(&card->widgets);
1884 INIT_LIST_HEAD(&card->paths);
1885 INIT_LIST_HEAD(&card->dapm_list);
1886
1887 soc_init_card_debugfs(card);
1888
1889 ret = snd_soc_register_card(card);
1890 if (ret != 0) {
1891 dev_err(&pdev->dev, "Failed to register card\n");
1892 return ret;
1893 }
1894
1895 return 0;
1896 }
1897
1898 /* removes a socdev */
1899 static int soc_remove(struct platform_device *pdev)
1900 {
1901 struct snd_soc_card *card = platform_get_drvdata(pdev);
1902 int i;
1903
1904 if (card->instantiated) {
1905
1906 /* make sure any delayed work runs */
1907 for (i = 0; i < card->num_rtd; i++) {
1908 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1909 flush_delayed_work_sync(&rtd->delayed_work);
1910 }
1911
1912 /* remove auxiliary devices */
1913 for (i = 0; i < card->num_aux_devs; i++)
1914 soc_remove_aux_dev(card, i);
1915
1916 /* remove and free each DAI */
1917 for (i = 0; i < card->num_rtd; i++)
1918 soc_remove_dai_link(card, i);
1919
1920 soc_cleanup_card_debugfs(card);
1921
1922 /* remove the card */
1923 if (card->remove)
1924 card->remove(pdev);
1925
1926 kfree(card->rtd);
1927 snd_card_free(card->snd_card);
1928 }
1929 snd_soc_unregister_card(card);
1930 return 0;
1931 }
1932
1933 static int soc_poweroff(struct device *dev)
1934 {
1935 struct platform_device *pdev = to_platform_device(dev);
1936 struct snd_soc_card *card = platform_get_drvdata(pdev);
1937 int i;
1938
1939 if (!card->instantiated)
1940 return 0;
1941
1942 /* Flush out pmdown_time work - we actually do want to run it
1943 * now, we're shutting down so no imminent restart. */
1944 for (i = 0; i < card->num_rtd; i++) {
1945 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1946 flush_delayed_work_sync(&rtd->delayed_work);
1947 }
1948
1949 snd_soc_dapm_shutdown(card);
1950
1951 return 0;
1952 }
1953
1954 static const struct dev_pm_ops soc_pm_ops = {
1955 .suspend = soc_suspend,
1956 .resume = soc_resume,
1957 .poweroff = soc_poweroff,
1958 };
1959
1960 /* ASoC platform driver */
1961 static struct platform_driver soc_driver = {
1962 .driver = {
1963 .name = "soc-audio",
1964 .owner = THIS_MODULE,
1965 .pm = &soc_pm_ops,
1966 },
1967 .probe = soc_probe,
1968 .remove = soc_remove,
1969 };
1970
1971 /* create a new pcm */
1972 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1973 {
1974 struct snd_soc_codec *codec = rtd->codec;
1975 struct snd_soc_platform *platform = rtd->platform;
1976 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1977 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1978 struct snd_pcm *pcm;
1979 char new_name[64];
1980 int ret = 0, playback = 0, capture = 0;
1981
1982 /* check client and interface hw capabilities */
1983 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1984 rtd->dai_link->stream_name, codec_dai->name, num);
1985
1986 if (codec_dai->driver->playback.channels_min)
1987 playback = 1;
1988 if (codec_dai->driver->capture.channels_min)
1989 capture = 1;
1990
1991 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1992 ret = snd_pcm_new(rtd->card->snd_card, new_name,
1993 num, playback, capture, &pcm);
1994 if (ret < 0) {
1995 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1996 return ret;
1997 }
1998
1999 rtd->pcm = pcm;
2000 pcm->private_data = rtd;
2001 soc_pcm_ops.mmap = platform->driver->ops->mmap;
2002 soc_pcm_ops.pointer = platform->driver->ops->pointer;
2003 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2004 soc_pcm_ops.copy = platform->driver->ops->copy;
2005 soc_pcm_ops.silence = platform->driver->ops->silence;
2006 soc_pcm_ops.ack = platform->driver->ops->ack;
2007 soc_pcm_ops.page = platform->driver->ops->page;
2008
2009 if (playback)
2010 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2011
2012 if (capture)
2013 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2014
2015 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2016 if (ret < 0) {
2017 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2018 return ret;
2019 }
2020
2021 pcm->private_free = platform->driver->pcm_free;
2022 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2023 cpu_dai->name);
2024 return ret;
2025 }
2026
2027 /**
2028 * snd_soc_codec_volatile_register: Report if a register is volatile.
2029 *
2030 * @codec: CODEC to query.
2031 * @reg: Register to query.
2032 *
2033 * Boolean function indiciating if a CODEC register is volatile.
2034 */
2035 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2036 {
2037 if (codec->driver->volatile_register)
2038 return codec->driver->volatile_register(reg);
2039 else
2040 return 0;
2041 }
2042 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2043
2044 /**
2045 * snd_soc_new_ac97_codec - initailise AC97 device
2046 * @codec: audio codec
2047 * @ops: AC97 bus operations
2048 * @num: AC97 codec number
2049 *
2050 * Initialises AC97 codec resources for use by ad-hoc devices only.
2051 */
2052 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2053 struct snd_ac97_bus_ops *ops, int num)
2054 {
2055 mutex_lock(&codec->mutex);
2056
2057 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2058 if (codec->ac97 == NULL) {
2059 mutex_unlock(&codec->mutex);
2060 return -ENOMEM;
2061 }
2062
2063 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2064 if (codec->ac97->bus == NULL) {
2065 kfree(codec->ac97);
2066 codec->ac97 = NULL;
2067 mutex_unlock(&codec->mutex);
2068 return -ENOMEM;
2069 }
2070
2071 codec->ac97->bus->ops = ops;
2072 codec->ac97->num = num;
2073
2074 /*
2075 * Mark the AC97 device to be created by us. This way we ensure that the
2076 * device will be registered with the device subsystem later on.
2077 */
2078 codec->ac97_created = 1;
2079
2080 mutex_unlock(&codec->mutex);
2081 return 0;
2082 }
2083 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2084
2085 /**
2086 * snd_soc_free_ac97_codec - free AC97 codec device
2087 * @codec: audio codec
2088 *
2089 * Frees AC97 codec device resources.
2090 */
2091 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2092 {
2093 mutex_lock(&codec->mutex);
2094 #ifdef CONFIG_SND_SOC_AC97_BUS
2095 soc_unregister_ac97_dai_link(codec);
2096 #endif
2097 kfree(codec->ac97->bus);
2098 kfree(codec->ac97);
2099 codec->ac97 = NULL;
2100 codec->ac97_created = 0;
2101 mutex_unlock(&codec->mutex);
2102 }
2103 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2104
2105 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2106 {
2107 unsigned int ret;
2108
2109 ret = codec->read(codec, reg);
2110 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2111 trace_snd_soc_reg_read(codec, reg, ret);
2112
2113 return ret;
2114 }
2115 EXPORT_SYMBOL_GPL(snd_soc_read);
2116
2117 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2118 unsigned int reg, unsigned int val)
2119 {
2120 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2121 trace_snd_soc_reg_write(codec, reg, val);
2122 return codec->write(codec, reg, val);
2123 }
2124 EXPORT_SYMBOL_GPL(snd_soc_write);
2125
2126 /**
2127 * snd_soc_update_bits - update codec register bits
2128 * @codec: audio codec
2129 * @reg: codec register
2130 * @mask: register mask
2131 * @value: new value
2132 *
2133 * Writes new register value.
2134 *
2135 * Returns 1 for change else 0.
2136 */
2137 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2138 unsigned int mask, unsigned int value)
2139 {
2140 int change;
2141 unsigned int old, new;
2142
2143 old = snd_soc_read(codec, reg);
2144 new = (old & ~mask) | value;
2145 change = old != new;
2146 if (change)
2147 snd_soc_write(codec, reg, new);
2148
2149 return change;
2150 }
2151 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2152
2153 /**
2154 * snd_soc_update_bits_locked - update codec register bits
2155 * @codec: audio codec
2156 * @reg: codec register
2157 * @mask: register mask
2158 * @value: new value
2159 *
2160 * Writes new register value, and takes the codec mutex.
2161 *
2162 * Returns 1 for change else 0.
2163 */
2164 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2165 unsigned short reg, unsigned int mask,
2166 unsigned int value)
2167 {
2168 int change;
2169
2170 mutex_lock(&codec->mutex);
2171 change = snd_soc_update_bits(codec, reg, mask, value);
2172 mutex_unlock(&codec->mutex);
2173
2174 return change;
2175 }
2176 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2177
2178 /**
2179 * snd_soc_test_bits - test register for change
2180 * @codec: audio codec
2181 * @reg: codec register
2182 * @mask: register mask
2183 * @value: new value
2184 *
2185 * Tests a register with a new value and checks if the new value is
2186 * different from the old value.
2187 *
2188 * Returns 1 for change else 0.
2189 */
2190 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2191 unsigned int mask, unsigned int value)
2192 {
2193 int change;
2194 unsigned int old, new;
2195
2196 old = snd_soc_read(codec, reg);
2197 new = (old & ~mask) | value;
2198 change = old != new;
2199
2200 return change;
2201 }
2202 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2203
2204 /**
2205 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2206 * @substream: the pcm substream
2207 * @hw: the hardware parameters
2208 *
2209 * Sets the substream runtime hardware parameters.
2210 */
2211 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2212 const struct snd_pcm_hardware *hw)
2213 {
2214 struct snd_pcm_runtime *runtime = substream->runtime;
2215 runtime->hw.info = hw->info;
2216 runtime->hw.formats = hw->formats;
2217 runtime->hw.period_bytes_min = hw->period_bytes_min;
2218 runtime->hw.period_bytes_max = hw->period_bytes_max;
2219 runtime->hw.periods_min = hw->periods_min;
2220 runtime->hw.periods_max = hw->periods_max;
2221 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2222 runtime->hw.fifo_size = hw->fifo_size;
2223 return 0;
2224 }
2225 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2226
2227 /**
2228 * snd_soc_cnew - create new control
2229 * @_template: control template
2230 * @data: control private data
2231 * @long_name: control long name
2232 *
2233 * Create a new mixer control from a template control.
2234 *
2235 * Returns 0 for success, else error.
2236 */
2237 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2238 void *data, char *long_name)
2239 {
2240 struct snd_kcontrol_new template;
2241
2242 memcpy(&template, _template, sizeof(template));
2243 if (long_name)
2244 template.name = long_name;
2245 template.index = 0;
2246
2247 return snd_ctl_new1(&template, data);
2248 }
2249 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2250
2251 /**
2252 * snd_soc_add_controls - add an array of controls to a codec.
2253 * Convienience function to add a list of controls. Many codecs were
2254 * duplicating this code.
2255 *
2256 * @codec: codec to add controls to
2257 * @controls: array of controls to add
2258 * @num_controls: number of elements in the array
2259 *
2260 * Return 0 for success, else error.
2261 */
2262 int snd_soc_add_controls(struct snd_soc_codec *codec,
2263 const struct snd_kcontrol_new *controls, int num_controls)
2264 {
2265 struct snd_card *card = codec->card->snd_card;
2266 char prefixed_name[44], *name;
2267 int err, i;
2268
2269 for (i = 0; i < num_controls; i++) {
2270 const struct snd_kcontrol_new *control = &controls[i];
2271 if (codec->name_prefix) {
2272 snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2273 codec->name_prefix, control->name);
2274 name = prefixed_name;
2275 } else {
2276 name = control->name;
2277 }
2278 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2279 if (err < 0) {
2280 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2281 codec->name, name, err);
2282 return err;
2283 }
2284 }
2285
2286 return 0;
2287 }
2288 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2289
2290 /**
2291 * snd_soc_info_enum_double - enumerated double mixer info callback
2292 * @kcontrol: mixer control
2293 * @uinfo: control element information
2294 *
2295 * Callback to provide information about a double enumerated
2296 * mixer control.
2297 *
2298 * Returns 0 for success.
2299 */
2300 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2301 struct snd_ctl_elem_info *uinfo)
2302 {
2303 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2304
2305 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2306 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2307 uinfo->value.enumerated.items = e->max;
2308
2309 if (uinfo->value.enumerated.item > e->max - 1)
2310 uinfo->value.enumerated.item = e->max - 1;
2311 strcpy(uinfo->value.enumerated.name,
2312 e->texts[uinfo->value.enumerated.item]);
2313 return 0;
2314 }
2315 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2316
2317 /**
2318 * snd_soc_get_enum_double - enumerated double mixer get callback
2319 * @kcontrol: mixer control
2320 * @ucontrol: control element information
2321 *
2322 * Callback to get the value of a double enumerated mixer.
2323 *
2324 * Returns 0 for success.
2325 */
2326 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2327 struct snd_ctl_elem_value *ucontrol)
2328 {
2329 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2330 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2331 unsigned int val, bitmask;
2332
2333 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2334 ;
2335 val = snd_soc_read(codec, e->reg);
2336 ucontrol->value.enumerated.item[0]
2337 = (val >> e->shift_l) & (bitmask - 1);
2338 if (e->shift_l != e->shift_r)
2339 ucontrol->value.enumerated.item[1] =
2340 (val >> e->shift_r) & (bitmask - 1);
2341
2342 return 0;
2343 }
2344 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2345
2346 /**
2347 * snd_soc_put_enum_double - enumerated double mixer put callback
2348 * @kcontrol: mixer control
2349 * @ucontrol: control element information
2350 *
2351 * Callback to set the value of a double enumerated mixer.
2352 *
2353 * Returns 0 for success.
2354 */
2355 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2356 struct snd_ctl_elem_value *ucontrol)
2357 {
2358 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2359 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2360 unsigned int val;
2361 unsigned int mask, bitmask;
2362
2363 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2364 ;
2365 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2366 return -EINVAL;
2367 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2368 mask = (bitmask - 1) << e->shift_l;
2369 if (e->shift_l != e->shift_r) {
2370 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2371 return -EINVAL;
2372 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2373 mask |= (bitmask - 1) << e->shift_r;
2374 }
2375
2376 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2377 }
2378 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2379
2380 /**
2381 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2382 * @kcontrol: mixer control
2383 * @ucontrol: control element information
2384 *
2385 * Callback to get the value of a double semi enumerated mixer.
2386 *
2387 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2388 * used for handling bitfield coded enumeration for example.
2389 *
2390 * Returns 0 for success.
2391 */
2392 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2393 struct snd_ctl_elem_value *ucontrol)
2394 {
2395 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2396 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2397 unsigned int reg_val, val, mux;
2398
2399 reg_val = snd_soc_read(codec, e->reg);
2400 val = (reg_val >> e->shift_l) & e->mask;
2401 for (mux = 0; mux < e->max; mux++) {
2402 if (val == e->values[mux])
2403 break;
2404 }
2405 ucontrol->value.enumerated.item[0] = mux;
2406 if (e->shift_l != e->shift_r) {
2407 val = (reg_val >> e->shift_r) & e->mask;
2408 for (mux = 0; mux < e->max; mux++) {
2409 if (val == e->values[mux])
2410 break;
2411 }
2412 ucontrol->value.enumerated.item[1] = mux;
2413 }
2414
2415 return 0;
2416 }
2417 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2418
2419 /**
2420 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2421 * @kcontrol: mixer control
2422 * @ucontrol: control element information
2423 *
2424 * Callback to set the value of a double semi enumerated mixer.
2425 *
2426 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2427 * used for handling bitfield coded enumeration for example.
2428 *
2429 * Returns 0 for success.
2430 */
2431 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2432 struct snd_ctl_elem_value *ucontrol)
2433 {
2434 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2435 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2436 unsigned int val;
2437 unsigned int mask;
2438
2439 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2440 return -EINVAL;
2441 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2442 mask = e->mask << e->shift_l;
2443 if (e->shift_l != e->shift_r) {
2444 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2445 return -EINVAL;
2446 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2447 mask |= e->mask << e->shift_r;
2448 }
2449
2450 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2451 }
2452 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2453
2454 /**
2455 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2456 * @kcontrol: mixer control
2457 * @uinfo: control element information
2458 *
2459 * Callback to provide information about an external enumerated
2460 * single mixer.
2461 *
2462 * Returns 0 for success.
2463 */
2464 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2465 struct snd_ctl_elem_info *uinfo)
2466 {
2467 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2468
2469 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2470 uinfo->count = 1;
2471 uinfo->value.enumerated.items = e->max;
2472
2473 if (uinfo->value.enumerated.item > e->max - 1)
2474 uinfo->value.enumerated.item = e->max - 1;
2475 strcpy(uinfo->value.enumerated.name,
2476 e->texts[uinfo->value.enumerated.item]);
2477 return 0;
2478 }
2479 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2480
2481 /**
2482 * snd_soc_info_volsw_ext - external single mixer info callback
2483 * @kcontrol: mixer control
2484 * @uinfo: control element information
2485 *
2486 * Callback to provide information about a single external mixer control.
2487 *
2488 * Returns 0 for success.
2489 */
2490 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2491 struct snd_ctl_elem_info *uinfo)
2492 {
2493 int max = kcontrol->private_value;
2494
2495 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2496 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2497 else
2498 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2499
2500 uinfo->count = 1;
2501 uinfo->value.integer.min = 0;
2502 uinfo->value.integer.max = max;
2503 return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2506
2507 /**
2508 * snd_soc_info_volsw - single mixer info callback
2509 * @kcontrol: mixer control
2510 * @uinfo: control element information
2511 *
2512 * Callback to provide information about a single mixer control.
2513 *
2514 * Returns 0 for success.
2515 */
2516 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2517 struct snd_ctl_elem_info *uinfo)
2518 {
2519 struct soc_mixer_control *mc =
2520 (struct soc_mixer_control *)kcontrol->private_value;
2521 int platform_max;
2522 unsigned int shift = mc->shift;
2523 unsigned int rshift = mc->rshift;
2524
2525 if (!mc->platform_max)
2526 mc->platform_max = mc->max;
2527 platform_max = mc->platform_max;
2528
2529 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2530 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2531 else
2532 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2533
2534 uinfo->count = shift == rshift ? 1 : 2;
2535 uinfo->value.integer.min = 0;
2536 uinfo->value.integer.max = platform_max;
2537 return 0;
2538 }
2539 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2540
2541 /**
2542 * snd_soc_get_volsw - single mixer get callback
2543 * @kcontrol: mixer control
2544 * @ucontrol: control element information
2545 *
2546 * Callback to get the value of a single mixer control.
2547 *
2548 * Returns 0 for success.
2549 */
2550 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2551 struct snd_ctl_elem_value *ucontrol)
2552 {
2553 struct soc_mixer_control *mc =
2554 (struct soc_mixer_control *)kcontrol->private_value;
2555 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2556 unsigned int reg = mc->reg;
2557 unsigned int shift = mc->shift;
2558 unsigned int rshift = mc->rshift;
2559 int max = mc->max;
2560 unsigned int mask = (1 << fls(max)) - 1;
2561 unsigned int invert = mc->invert;
2562
2563 ucontrol->value.integer.value[0] =
2564 (snd_soc_read(codec, reg) >> shift) & mask;
2565 if (shift != rshift)
2566 ucontrol->value.integer.value[1] =
2567 (snd_soc_read(codec, reg) >> rshift) & mask;
2568 if (invert) {
2569 ucontrol->value.integer.value[0] =
2570 max - ucontrol->value.integer.value[0];
2571 if (shift != rshift)
2572 ucontrol->value.integer.value[1] =
2573 max - ucontrol->value.integer.value[1];
2574 }
2575
2576 return 0;
2577 }
2578 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2579
2580 /**
2581 * snd_soc_put_volsw - single mixer put callback
2582 * @kcontrol: mixer control
2583 * @ucontrol: control element information
2584 *
2585 * Callback to set the value of a single mixer control.
2586 *
2587 * Returns 0 for success.
2588 */
2589 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2590 struct snd_ctl_elem_value *ucontrol)
2591 {
2592 struct soc_mixer_control *mc =
2593 (struct soc_mixer_control *)kcontrol->private_value;
2594 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2595 unsigned int reg = mc->reg;
2596 unsigned int shift = mc->shift;
2597 unsigned int rshift = mc->rshift;
2598 int max = mc->max;
2599 unsigned int mask = (1 << fls(max)) - 1;
2600 unsigned int invert = mc->invert;
2601 unsigned int val, val2, val_mask;
2602
2603 val = (ucontrol->value.integer.value[0] & mask);
2604 if (invert)
2605 val = max - val;
2606 val_mask = mask << shift;
2607 val = val << shift;
2608 if (shift != rshift) {
2609 val2 = (ucontrol->value.integer.value[1] & mask);
2610 if (invert)
2611 val2 = max - val2;
2612 val_mask |= mask << rshift;
2613 val |= val2 << rshift;
2614 }
2615 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2616 }
2617 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2618
2619 /**
2620 * snd_soc_info_volsw_2r - double mixer info callback
2621 * @kcontrol: mixer control
2622 * @uinfo: control element information
2623 *
2624 * Callback to provide information about a double mixer control that
2625 * spans 2 codec registers.
2626 *
2627 * Returns 0 for success.
2628 */
2629 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2630 struct snd_ctl_elem_info *uinfo)
2631 {
2632 struct soc_mixer_control *mc =
2633 (struct soc_mixer_control *)kcontrol->private_value;
2634 int platform_max;
2635
2636 if (!mc->platform_max)
2637 mc->platform_max = mc->max;
2638 platform_max = mc->platform_max;
2639
2640 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2641 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2642 else
2643 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2644
2645 uinfo->count = 2;
2646 uinfo->value.integer.min = 0;
2647 uinfo->value.integer.max = platform_max;
2648 return 0;
2649 }
2650 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2651
2652 /**
2653 * snd_soc_get_volsw_2r - double mixer get callback
2654 * @kcontrol: mixer control
2655 * @ucontrol: control element information
2656 *
2657 * Callback to get the value of a double mixer control that spans 2 registers.
2658 *
2659 * Returns 0 for success.
2660 */
2661 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2662 struct snd_ctl_elem_value *ucontrol)
2663 {
2664 struct soc_mixer_control *mc =
2665 (struct soc_mixer_control *)kcontrol->private_value;
2666 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2667 unsigned int reg = mc->reg;
2668 unsigned int reg2 = mc->rreg;
2669 unsigned int shift = mc->shift;
2670 int max = mc->max;
2671 unsigned int mask = (1 << fls(max)) - 1;
2672 unsigned int invert = mc->invert;
2673
2674 ucontrol->value.integer.value[0] =
2675 (snd_soc_read(codec, reg) >> shift) & mask;
2676 ucontrol->value.integer.value[1] =
2677 (snd_soc_read(codec, reg2) >> shift) & mask;
2678 if (invert) {
2679 ucontrol->value.integer.value[0] =
2680 max - ucontrol->value.integer.value[0];
2681 ucontrol->value.integer.value[1] =
2682 max - ucontrol->value.integer.value[1];
2683 }
2684
2685 return 0;
2686 }
2687 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2688
2689 /**
2690 * snd_soc_put_volsw_2r - double mixer set callback
2691 * @kcontrol: mixer control
2692 * @ucontrol: control element information
2693 *
2694 * Callback to set the value of a double mixer control that spans 2 registers.
2695 *
2696 * Returns 0 for success.
2697 */
2698 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2699 struct snd_ctl_elem_value *ucontrol)
2700 {
2701 struct soc_mixer_control *mc =
2702 (struct soc_mixer_control *)kcontrol->private_value;
2703 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2704 unsigned int reg = mc->reg;
2705 unsigned int reg2 = mc->rreg;
2706 unsigned int shift = mc->shift;
2707 int max = mc->max;
2708 unsigned int mask = (1 << fls(max)) - 1;
2709 unsigned int invert = mc->invert;
2710 int err;
2711 unsigned int val, val2, val_mask;
2712
2713 val_mask = mask << shift;
2714 val = (ucontrol->value.integer.value[0] & mask);
2715 val2 = (ucontrol->value.integer.value[1] & mask);
2716
2717 if (invert) {
2718 val = max - val;
2719 val2 = max - val2;
2720 }
2721
2722 val = val << shift;
2723 val2 = val2 << shift;
2724
2725 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2726 if (err < 0)
2727 return err;
2728
2729 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2730 return err;
2731 }
2732 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2733
2734 /**
2735 * snd_soc_info_volsw_s8 - signed mixer info callback
2736 * @kcontrol: mixer control
2737 * @uinfo: control element information
2738 *
2739 * Callback to provide information about a signed mixer control.
2740 *
2741 * Returns 0 for success.
2742 */
2743 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2744 struct snd_ctl_elem_info *uinfo)
2745 {
2746 struct soc_mixer_control *mc =
2747 (struct soc_mixer_control *)kcontrol->private_value;
2748 int platform_max;
2749 int min = mc->min;
2750
2751 if (!mc->platform_max)
2752 mc->platform_max = mc->max;
2753 platform_max = mc->platform_max;
2754
2755 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2756 uinfo->count = 2;
2757 uinfo->value.integer.min = 0;
2758 uinfo->value.integer.max = platform_max - min;
2759 return 0;
2760 }
2761 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2762
2763 /**
2764 * snd_soc_get_volsw_s8 - signed mixer get callback
2765 * @kcontrol: mixer control
2766 * @ucontrol: control element information
2767 *
2768 * Callback to get the value of a signed mixer control.
2769 *
2770 * Returns 0 for success.
2771 */
2772 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2773 struct snd_ctl_elem_value *ucontrol)
2774 {
2775 struct soc_mixer_control *mc =
2776 (struct soc_mixer_control *)kcontrol->private_value;
2777 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2778 unsigned int reg = mc->reg;
2779 int min = mc->min;
2780 int val = snd_soc_read(codec, reg);
2781
2782 ucontrol->value.integer.value[0] =
2783 ((signed char)(val & 0xff))-min;
2784 ucontrol->value.integer.value[1] =
2785 ((signed char)((val >> 8) & 0xff))-min;
2786 return 0;
2787 }
2788 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2789
2790 /**
2791 * snd_soc_put_volsw_sgn - signed mixer put callback
2792 * @kcontrol: mixer control
2793 * @ucontrol: control element information
2794 *
2795 * Callback to set the value of a signed mixer control.
2796 *
2797 * Returns 0 for success.
2798 */
2799 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2800 struct snd_ctl_elem_value *ucontrol)
2801 {
2802 struct soc_mixer_control *mc =
2803 (struct soc_mixer_control *)kcontrol->private_value;
2804 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2805 unsigned int reg = mc->reg;
2806 int min = mc->min;
2807 unsigned int val;
2808
2809 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2810 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2811
2812 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2813 }
2814 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2815
2816 /**
2817 * snd_soc_limit_volume - Set new limit to an existing volume control.
2818 *
2819 * @codec: where to look for the control
2820 * @name: Name of the control
2821 * @max: new maximum limit
2822 *
2823 * Return 0 for success, else error.
2824 */
2825 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2826 const char *name, int max)
2827 {
2828 struct snd_card *card = codec->card->snd_card;
2829 struct snd_kcontrol *kctl;
2830 struct soc_mixer_control *mc;
2831 int found = 0;
2832 int ret = -EINVAL;
2833
2834 /* Sanity check for name and max */
2835 if (unlikely(!name || max <= 0))
2836 return -EINVAL;
2837
2838 list_for_each_entry(kctl, &card->controls, list) {
2839 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2840 found = 1;
2841 break;
2842 }
2843 }
2844 if (found) {
2845 mc = (struct soc_mixer_control *)kctl->private_value;
2846 if (max <= mc->max) {
2847 mc->platform_max = max;
2848 ret = 0;
2849 }
2850 }
2851 return ret;
2852 }
2853 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2854
2855 /**
2856 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2857 * mixer info callback
2858 * @kcontrol: mixer control
2859 * @uinfo: control element information
2860 *
2861 * Returns 0 for success.
2862 */
2863 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2864 struct snd_ctl_elem_info *uinfo)
2865 {
2866 struct soc_mixer_control *mc =
2867 (struct soc_mixer_control *)kcontrol->private_value;
2868 int max = mc->max;
2869 int min = mc->min;
2870
2871 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2872 uinfo->count = 2;
2873 uinfo->value.integer.min = 0;
2874 uinfo->value.integer.max = max-min;
2875
2876 return 0;
2877 }
2878 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2879
2880 /**
2881 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2882 * mixer get callback
2883 * @kcontrol: mixer control
2884 * @uinfo: control element information
2885 *
2886 * Returns 0 for success.
2887 */
2888 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2889 struct snd_ctl_elem_value *ucontrol)
2890 {
2891 struct soc_mixer_control *mc =
2892 (struct soc_mixer_control *)kcontrol->private_value;
2893 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2894 unsigned int mask = (1<<mc->shift)-1;
2895 int min = mc->min;
2896 int val = snd_soc_read(codec, mc->reg) & mask;
2897 int valr = snd_soc_read(codec, mc->rreg) & mask;
2898
2899 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2900 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2901 return 0;
2902 }
2903 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2904
2905 /**
2906 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2907 * mixer put callback
2908 * @kcontrol: mixer control
2909 * @uinfo: control element information
2910 *
2911 * Returns 0 for success.
2912 */
2913 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2914 struct snd_ctl_elem_value *ucontrol)
2915 {
2916 struct soc_mixer_control *mc =
2917 (struct soc_mixer_control *)kcontrol->private_value;
2918 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2919 unsigned int mask = (1<<mc->shift)-1;
2920 int min = mc->min;
2921 int ret;
2922 unsigned int val, valr, oval, ovalr;
2923
2924 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2925 val &= mask;
2926 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2927 valr &= mask;
2928
2929 oval = snd_soc_read(codec, mc->reg) & mask;
2930 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2931
2932 ret = 0;
2933 if (oval != val) {
2934 ret = snd_soc_write(codec, mc->reg, val);
2935 if (ret < 0)
2936 return ret;
2937 }
2938 if (ovalr != valr) {
2939 ret = snd_soc_write(codec, mc->rreg, valr);
2940 if (ret < 0)
2941 return ret;
2942 }
2943
2944 return 0;
2945 }
2946 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2947
2948 /**
2949 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2950 * @dai: DAI
2951 * @clk_id: DAI specific clock ID
2952 * @freq: new clock frequency in Hz
2953 * @dir: new clock direction - input/output.
2954 *
2955 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2956 */
2957 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2958 unsigned int freq, int dir)
2959 {
2960 if (dai->driver && dai->driver->ops->set_sysclk)
2961 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2962 else
2963 return -EINVAL;
2964 }
2965 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2966
2967 /**
2968 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2969 * @dai: DAI
2970 * @div_id: DAI specific clock divider ID
2971 * @div: new clock divisor.
2972 *
2973 * Configures the clock dividers. This is used to derive the best DAI bit and
2974 * frame clocks from the system or master clock. It's best to set the DAI bit
2975 * and frame clocks as low as possible to save system power.
2976 */
2977 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2978 int div_id, int div)
2979 {
2980 if (dai->driver && dai->driver->ops->set_clkdiv)
2981 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2982 else
2983 return -EINVAL;
2984 }
2985 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2986
2987 /**
2988 * snd_soc_dai_set_pll - configure DAI PLL.
2989 * @dai: DAI
2990 * @pll_id: DAI specific PLL ID
2991 * @source: DAI specific source for the PLL
2992 * @freq_in: PLL input clock frequency in Hz
2993 * @freq_out: requested PLL output clock frequency in Hz
2994 *
2995 * Configures and enables PLL to generate output clock based on input clock.
2996 */
2997 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2998 unsigned int freq_in, unsigned int freq_out)
2999 {
3000 if (dai->driver && dai->driver->ops->set_pll)
3001 return dai->driver->ops->set_pll(dai, pll_id, source,
3002 freq_in, freq_out);
3003 else
3004 return -EINVAL;
3005 }
3006 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3007
3008 /**
3009 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3010 * @dai: DAI
3011 * @fmt: SND_SOC_DAIFMT_ format value.
3012 *
3013 * Configures the DAI hardware format and clocking.
3014 */
3015 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3016 {
3017 if (dai->driver && dai->driver->ops->set_fmt)
3018 return dai->driver->ops->set_fmt(dai, fmt);
3019 else
3020 return -EINVAL;
3021 }
3022 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3023
3024 /**
3025 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3026 * @dai: DAI
3027 * @tx_mask: bitmask representing active TX slots.
3028 * @rx_mask: bitmask representing active RX slots.
3029 * @slots: Number of slots in use.
3030 * @slot_width: Width in bits for each slot.
3031 *
3032 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3033 * specific.
3034 */
3035 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3036 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3037 {
3038 if (dai->driver && dai->driver->ops->set_tdm_slot)
3039 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3040 slots, slot_width);
3041 else
3042 return -EINVAL;
3043 }
3044 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3045
3046 /**
3047 * snd_soc_dai_set_channel_map - configure DAI audio channel map
3048 * @dai: DAI
3049 * @tx_num: how many TX channels
3050 * @tx_slot: pointer to an array which imply the TX slot number channel
3051 * 0~num-1 uses
3052 * @rx_num: how many RX channels
3053 * @rx_slot: pointer to an array which imply the RX slot number channel
3054 * 0~num-1 uses
3055 *
3056 * configure the relationship between channel number and TDM slot number.
3057 */
3058 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3059 unsigned int tx_num, unsigned int *tx_slot,
3060 unsigned int rx_num, unsigned int *rx_slot)
3061 {
3062 if (dai->driver && dai->driver->ops->set_channel_map)
3063 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3064 rx_num, rx_slot);
3065 else
3066 return -EINVAL;
3067 }
3068 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3069
3070 /**
3071 * snd_soc_dai_set_tristate - configure DAI system or master clock.
3072 * @dai: DAI
3073 * @tristate: tristate enable
3074 *
3075 * Tristates the DAI so that others can use it.
3076 */
3077 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3078 {
3079 if (dai->driver && dai->driver->ops->set_tristate)
3080 return dai->driver->ops->set_tristate(dai, tristate);
3081 else
3082 return -EINVAL;
3083 }
3084 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3085
3086 /**
3087 * snd_soc_dai_digital_mute - configure DAI system or master clock.
3088 * @dai: DAI
3089 * @mute: mute enable
3090 *
3091 * Mutes the DAI DAC.
3092 */
3093 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3094 {
3095 if (dai->driver && dai->driver->ops->digital_mute)
3096 return dai->driver->ops->digital_mute(dai, mute);
3097 else
3098 return -EINVAL;
3099 }
3100 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3101
3102 /**
3103 * snd_soc_register_card - Register a card with the ASoC core
3104 *
3105 * @card: Card to register
3106 *
3107 * Note that currently this is an internal only function: it will be
3108 * exposed to machine drivers after further backporting of ASoC v2
3109 * registration APIs.
3110 */
3111 static int snd_soc_register_card(struct snd_soc_card *card)
3112 {
3113 int i;
3114
3115 if (!card->name || !card->dev)
3116 return -EINVAL;
3117
3118 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3119 (card->num_links + card->num_aux_devs),
3120 GFP_KERNEL);
3121 if (card->rtd == NULL)
3122 return -ENOMEM;
3123 card->rtd_aux = &card->rtd[card->num_links];
3124
3125 for (i = 0; i < card->num_links; i++)
3126 card->rtd[i].dai_link = &card->dai_link[i];
3127
3128 INIT_LIST_HEAD(&card->list);
3129 card->instantiated = 0;
3130 mutex_init(&card->mutex);
3131
3132 mutex_lock(&client_mutex);
3133 list_add(&card->list, &card_list);
3134 snd_soc_instantiate_cards();
3135 mutex_unlock(&client_mutex);
3136
3137 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3138
3139 return 0;
3140 }
3141
3142 /**
3143 * snd_soc_unregister_card - Unregister a card with the ASoC core
3144 *
3145 * @card: Card to unregister
3146 *
3147 * Note that currently this is an internal only function: it will be
3148 * exposed to machine drivers after further backporting of ASoC v2
3149 * registration APIs.
3150 */
3151 static int snd_soc_unregister_card(struct snd_soc_card *card)
3152 {
3153 mutex_lock(&client_mutex);
3154 list_del(&card->list);
3155 mutex_unlock(&client_mutex);
3156 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3157
3158 return 0;
3159 }
3160
3161 /*
3162 * Simplify DAI link configuration by removing ".-1" from device names
3163 * and sanitizing names.
3164 */
3165 static char *fmt_single_name(struct device *dev, int *id)
3166 {
3167 char *found, name[NAME_SIZE];
3168 int id1, id2;
3169
3170 if (dev_name(dev) == NULL)
3171 return NULL;
3172
3173 strlcpy(name, dev_name(dev), NAME_SIZE);
3174
3175 /* are we a "%s.%d" name (platform and SPI components) */
3176 found = strstr(name, dev->driver->name);
3177 if (found) {
3178 /* get ID */
3179 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3180
3181 /* discard ID from name if ID == -1 */
3182 if (*id == -1)
3183 found[strlen(dev->driver->name)] = '\0';
3184 }
3185
3186 } else {
3187 /* I2C component devices are named "bus-addr" */
3188 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3189 char tmp[NAME_SIZE];
3190
3191 /* create unique ID number from I2C addr and bus */
3192 *id = ((id1 & 0xffff) << 16) + id2;
3193
3194 /* sanitize component name for DAI link creation */
3195 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3196 strlcpy(name, tmp, NAME_SIZE);
3197 } else
3198 *id = 0;
3199 }
3200
3201 return kstrdup(name, GFP_KERNEL);
3202 }
3203
3204 /*
3205 * Simplify DAI link naming for single devices with multiple DAIs by removing
3206 * any ".-1" and using the DAI name (instead of device name).
3207 */
3208 static inline char *fmt_multiple_name(struct device *dev,
3209 struct snd_soc_dai_driver *dai_drv)
3210 {
3211 if (dai_drv->name == NULL) {
3212 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3213 dev_name(dev));
3214 return NULL;
3215 }
3216
3217 return kstrdup(dai_drv->name, GFP_KERNEL);
3218 }
3219
3220 /**
3221 * snd_soc_register_dai - Register a DAI with the ASoC core
3222 *
3223 * @dai: DAI to register
3224 */
3225 int snd_soc_register_dai(struct device *dev,
3226 struct snd_soc_dai_driver *dai_drv)
3227 {
3228 struct snd_soc_dai *dai;
3229
3230 dev_dbg(dev, "dai register %s\n", dev_name(dev));
3231
3232 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3233 if (dai == NULL)
3234 return -ENOMEM;
3235
3236 /* create DAI component name */
3237 dai->name = fmt_single_name(dev, &dai->id);
3238 if (dai->name == NULL) {
3239 kfree(dai);
3240 return -ENOMEM;
3241 }
3242
3243 dai->dev = dev;
3244 dai->driver = dai_drv;
3245 if (!dai->driver->ops)
3246 dai->driver->ops = &null_dai_ops;
3247
3248 mutex_lock(&client_mutex);
3249 list_add(&dai->list, &dai_list);
3250 snd_soc_instantiate_cards();
3251 mutex_unlock(&client_mutex);
3252
3253 pr_debug("Registered DAI '%s'\n", dai->name);
3254
3255 return 0;
3256 }
3257 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3258
3259 /**
3260 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3261 *
3262 * @dai: DAI to unregister
3263 */
3264 void snd_soc_unregister_dai(struct device *dev)
3265 {
3266 struct snd_soc_dai *dai;
3267
3268 list_for_each_entry(dai, &dai_list, list) {
3269 if (dev == dai->dev)
3270 goto found;
3271 }
3272 return;
3273
3274 found:
3275 mutex_lock(&client_mutex);
3276 list_del(&dai->list);
3277 mutex_unlock(&client_mutex);
3278
3279 pr_debug("Unregistered DAI '%s'\n", dai->name);
3280 kfree(dai->name);
3281 kfree(dai);
3282 }
3283 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3284
3285 /**
3286 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3287 *
3288 * @dai: Array of DAIs to register
3289 * @count: Number of DAIs
3290 */
3291 int snd_soc_register_dais(struct device *dev,
3292 struct snd_soc_dai_driver *dai_drv, size_t count)
3293 {
3294 struct snd_soc_dai *dai;
3295 int i, ret = 0;
3296
3297 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3298
3299 for (i = 0; i < count; i++) {
3300
3301 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3302 if (dai == NULL) {
3303 ret = -ENOMEM;
3304 goto err;
3305 }
3306
3307 /* create DAI component name */
3308 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3309 if (dai->name == NULL) {
3310 kfree(dai);
3311 ret = -EINVAL;
3312 goto err;
3313 }
3314
3315 dai->dev = dev;
3316 dai->driver = &dai_drv[i];
3317 if (dai->driver->id)
3318 dai->id = dai->driver->id;
3319 else
3320 dai->id = i;
3321 if (!dai->driver->ops)
3322 dai->driver->ops = &null_dai_ops;
3323
3324 mutex_lock(&client_mutex);
3325 list_add(&dai->list, &dai_list);
3326 mutex_unlock(&client_mutex);
3327
3328 pr_debug("Registered DAI '%s'\n", dai->name);
3329 }
3330
3331 mutex_lock(&client_mutex);
3332 snd_soc_instantiate_cards();
3333 mutex_unlock(&client_mutex);
3334 return 0;
3335
3336 err:
3337 for (i--; i >= 0; i--)
3338 snd_soc_unregister_dai(dev);
3339
3340 return ret;
3341 }
3342 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3343
3344 /**
3345 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3346 *
3347 * @dai: Array of DAIs to unregister
3348 * @count: Number of DAIs
3349 */
3350 void snd_soc_unregister_dais(struct device *dev, size_t count)
3351 {
3352 int i;
3353
3354 for (i = 0; i < count; i++)
3355 snd_soc_unregister_dai(dev);
3356 }
3357 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3358
3359 /**
3360 * snd_soc_register_platform - Register a platform with the ASoC core
3361 *
3362 * @platform: platform to register
3363 */
3364 int snd_soc_register_platform(struct device *dev,
3365 struct snd_soc_platform_driver *platform_drv)
3366 {
3367 struct snd_soc_platform *platform;
3368
3369 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3370
3371 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3372 if (platform == NULL)
3373 return -ENOMEM;
3374
3375 /* create platform component name */
3376 platform->name = fmt_single_name(dev, &platform->id);
3377 if (platform->name == NULL) {
3378 kfree(platform);
3379 return -ENOMEM;
3380 }
3381
3382 platform->dev = dev;
3383 platform->driver = platform_drv;
3384
3385 mutex_lock(&client_mutex);
3386 list_add(&platform->list, &platform_list);
3387 snd_soc_instantiate_cards();
3388 mutex_unlock(&client_mutex);
3389
3390 pr_debug("Registered platform '%s'\n", platform->name);
3391
3392 return 0;
3393 }
3394 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3395
3396 /**
3397 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3398 *
3399 * @platform: platform to unregister
3400 */
3401 void snd_soc_unregister_platform(struct device *dev)
3402 {
3403 struct snd_soc_platform *platform;
3404
3405 list_for_each_entry(platform, &platform_list, list) {
3406 if (dev == platform->dev)
3407 goto found;
3408 }
3409 return;
3410
3411 found:
3412 mutex_lock(&client_mutex);
3413 list_del(&platform->list);
3414 mutex_unlock(&client_mutex);
3415
3416 pr_debug("Unregistered platform '%s'\n", platform->name);
3417 kfree(platform->name);
3418 kfree(platform);
3419 }
3420 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3421
3422 static u64 codec_format_map[] = {
3423 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3424 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3425 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3426 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3427 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3428 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3429 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3430 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3431 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3432 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3433 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3434 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3435 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3436 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3437 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3438 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3439 };
3440
3441 /* Fix up the DAI formats for endianness: codecs don't actually see
3442 * the endianness of the data but we're using the CPU format
3443 * definitions which do need to include endianness so we ensure that
3444 * codec DAIs always have both big and little endian variants set.
3445 */
3446 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3447 {
3448 int i;
3449
3450 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3451 if (stream->formats & codec_format_map[i])
3452 stream->formats |= codec_format_map[i];
3453 }
3454
3455 /**
3456 * snd_soc_register_codec - Register a codec with the ASoC core
3457 *
3458 * @codec: codec to register
3459 */
3460 int snd_soc_register_codec(struct device *dev,
3461 const struct snd_soc_codec_driver *codec_drv,
3462 struct snd_soc_dai_driver *dai_drv,
3463 int num_dai)
3464 {
3465 size_t reg_size;
3466 struct snd_soc_codec *codec;
3467 int ret, i;
3468
3469 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3470
3471 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3472 if (codec == NULL)
3473 return -ENOMEM;
3474
3475 /* create CODEC component name */
3476 codec->name = fmt_single_name(dev, &codec->id);
3477 if (codec->name == NULL) {
3478 kfree(codec);
3479 return -ENOMEM;
3480 }
3481
3482 if (codec_drv->compress_type)
3483 codec->compress_type = codec_drv->compress_type;
3484 else
3485 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3486
3487 codec->write = codec_drv->write;
3488 codec->read = codec_drv->read;
3489 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3490 codec->dapm.dev = dev;
3491 codec->dapm.codec = codec;
3492 codec->dev = dev;
3493 codec->driver = codec_drv;
3494 codec->num_dai = num_dai;
3495 mutex_init(&codec->mutex);
3496
3497 /* allocate CODEC register cache */
3498 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3499 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3500 /* it is necessary to make a copy of the default register cache
3501 * because in the case of using a compression type that requires
3502 * the default register cache to be marked as __devinitconst the
3503 * kernel might have freed the array by the time we initialize
3504 * the cache.
3505 */
3506 codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3507 reg_size, GFP_KERNEL);
3508 if (!codec->reg_def_copy) {
3509 ret = -ENOMEM;
3510 goto fail;
3511 }
3512 }
3513
3514 for (i = 0; i < num_dai; i++) {
3515 fixup_codec_formats(&dai_drv[i].playback);
3516 fixup_codec_formats(&dai_drv[i].capture);
3517 }
3518
3519 /* register any DAIs */
3520 if (num_dai) {
3521 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3522 if (ret < 0)
3523 goto fail;
3524 }
3525
3526 mutex_lock(&client_mutex);
3527 list_add(&codec->list, &codec_list);
3528 snd_soc_instantiate_cards();
3529 mutex_unlock(&client_mutex);
3530
3531 pr_debug("Registered codec '%s'\n", codec->name);
3532 return 0;
3533
3534 fail:
3535 kfree(codec->reg_def_copy);
3536 codec->reg_def_copy = NULL;
3537 kfree(codec->name);
3538 kfree(codec);
3539 return ret;
3540 }
3541 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3542
3543 /**
3544 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3545 *
3546 * @codec: codec to unregister
3547 */
3548 void snd_soc_unregister_codec(struct device *dev)
3549 {
3550 struct snd_soc_codec *codec;
3551 int i;
3552
3553 list_for_each_entry(codec, &codec_list, list) {
3554 if (dev == codec->dev)
3555 goto found;
3556 }
3557 return;
3558
3559 found:
3560 if (codec->num_dai)
3561 for (i = 0; i < codec->num_dai; i++)
3562 snd_soc_unregister_dai(dev);
3563
3564 mutex_lock(&client_mutex);
3565 list_del(&codec->list);
3566 mutex_unlock(&client_mutex);
3567
3568 pr_debug("Unregistered codec '%s'\n", codec->name);
3569
3570 snd_soc_cache_exit(codec);
3571 kfree(codec->reg_def_copy);
3572 kfree(codec->name);
3573 kfree(codec);
3574 }
3575 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3576
3577 static int __init snd_soc_init(void)
3578 {
3579 #ifdef CONFIG_DEBUG_FS
3580 debugfs_root = debugfs_create_dir("asoc", NULL);
3581 if (IS_ERR(debugfs_root) || !debugfs_root) {
3582 printk(KERN_WARNING
3583 "ASoC: Failed to create debugfs directory\n");
3584 debugfs_root = NULL;
3585 }
3586
3587 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3588 &codec_list_fops))
3589 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3590
3591 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3592 &dai_list_fops))
3593 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3594
3595 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3596 &platform_list_fops))
3597 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3598 #endif
3599
3600 return platform_driver_register(&soc_driver);
3601 }
3602 module_init(snd_soc_init);
3603
3604 static void __exit snd_soc_exit(void)
3605 {
3606 #ifdef CONFIG_DEBUG_FS
3607 debugfs_remove_recursive(debugfs_root);
3608 #endif
3609 platform_driver_unregister(&soc_driver);
3610 }
3611 module_exit(snd_soc_exit);
3612
3613 /* Module information */
3614 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3615 MODULE_DESCRIPTION("ALSA SoC Core");
3616 MODULE_LICENSE("GPL");
3617 MODULE_ALIAS("platform:soc-audio");