Merge branch 'x86-mrst-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
38
39 static DEFINE_MUTEX(pcm_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
41
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
45
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
51
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
54
55 /*
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
59 */
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
63
64 /*
65 * This function forces any delayed work to be queued and run.
66 */
67 static int run_delayed_work(struct delayed_work *dwork)
68 {
69 int ret;
70
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
73
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
79 }
80 return ret;
81 }
82
83 /* codec register dump */
84 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
85 {
86 int i, step = 1, count = 0;
87
88 if (!codec->reg_cache_size)
89 return 0;
90
91 if (codec->reg_cache_step)
92 step = codec->reg_cache_step;
93
94 count += sprintf(buf, "%s registers\n", codec->name);
95 for (i = 0; i < codec->reg_cache_size; i += step) {
96 if (codec->readable_register && !codec->readable_register(i))
97 continue;
98
99 count += sprintf(buf + count, "%2x: ", i);
100 if (count >= PAGE_SIZE - 1)
101 break;
102
103 if (codec->display_register)
104 count += codec->display_register(codec, buf + count,
105 PAGE_SIZE - count, i);
106 else
107 count += snprintf(buf + count, PAGE_SIZE - count,
108 "%4x", codec->read(codec, i));
109
110 if (count >= PAGE_SIZE - 1)
111 break;
112
113 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
114 if (count >= PAGE_SIZE - 1)
115 break;
116 }
117
118 /* Truncate count; min() would cause a warning */
119 if (count >= PAGE_SIZE)
120 count = PAGE_SIZE - 1;
121
122 return count;
123 }
124 static ssize_t codec_reg_show(struct device *dev,
125 struct device_attribute *attr, char *buf)
126 {
127 struct snd_soc_device *devdata = dev_get_drvdata(dev);
128 return soc_codec_reg_show(devdata->card->codec, buf);
129 }
130
131 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
132
133 static ssize_t pmdown_time_show(struct device *dev,
134 struct device_attribute *attr, char *buf)
135 {
136 struct snd_soc_device *socdev = dev_get_drvdata(dev);
137 struct snd_soc_card *card = socdev->card;
138
139 return sprintf(buf, "%ld\n", card->pmdown_time);
140 }
141
142 static ssize_t pmdown_time_set(struct device *dev,
143 struct device_attribute *attr,
144 const char *buf, size_t count)
145 {
146 struct snd_soc_device *socdev = dev_get_drvdata(dev);
147 struct snd_soc_card *card = socdev->card;
148
149 strict_strtol(buf, 10, &card->pmdown_time);
150
151 return count;
152 }
153
154 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
155
156 #ifdef CONFIG_DEBUG_FS
157 static int codec_reg_open_file(struct inode *inode, struct file *file)
158 {
159 file->private_data = inode->i_private;
160 return 0;
161 }
162
163 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
164 size_t count, loff_t *ppos)
165 {
166 ssize_t ret;
167 struct snd_soc_codec *codec = file->private_data;
168 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
169 if (!buf)
170 return -ENOMEM;
171 ret = soc_codec_reg_show(codec, buf);
172 if (ret >= 0)
173 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
174 kfree(buf);
175 return ret;
176 }
177
178 static ssize_t codec_reg_write_file(struct file *file,
179 const char __user *user_buf, size_t count, loff_t *ppos)
180 {
181 char buf[32];
182 int buf_size;
183 char *start = buf;
184 unsigned long reg, value;
185 int step = 1;
186 struct snd_soc_codec *codec = file->private_data;
187
188 buf_size = min(count, (sizeof(buf)-1));
189 if (copy_from_user(buf, user_buf, buf_size))
190 return -EFAULT;
191 buf[buf_size] = 0;
192
193 if (codec->reg_cache_step)
194 step = codec->reg_cache_step;
195
196 while (*start == ' ')
197 start++;
198 reg = simple_strtoul(start, &start, 16);
199 if ((reg >= codec->reg_cache_size) || (reg % step))
200 return -EINVAL;
201 while (*start == ' ')
202 start++;
203 if (strict_strtoul(start, 16, &value))
204 return -EINVAL;
205 codec->write(codec, reg, value);
206 return buf_size;
207 }
208
209 static const struct file_operations codec_reg_fops = {
210 .open = codec_reg_open_file,
211 .read = codec_reg_read_file,
212 .write = codec_reg_write_file,
213 };
214
215 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
216 {
217 char codec_root[128];
218
219 if (codec->dev)
220 snprintf(codec_root, sizeof(codec_root),
221 "%s.%s", codec->name, dev_name(codec->dev));
222 else
223 snprintf(codec_root, sizeof(codec_root),
224 "%s", codec->name);
225
226 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
227 debugfs_root);
228 if (!codec->debugfs_codec_root) {
229 printk(KERN_WARNING
230 "ASoC: Failed to create codec debugfs directory\n");
231 return;
232 }
233
234 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
235 codec->debugfs_codec_root,
236 codec, &codec_reg_fops);
237 if (!codec->debugfs_reg)
238 printk(KERN_WARNING
239 "ASoC: Failed to create codec register debugfs file\n");
240
241 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
242 codec->debugfs_codec_root,
243 &codec->pop_time);
244 if (!codec->debugfs_pop_time)
245 printk(KERN_WARNING
246 "Failed to create pop time debugfs file\n");
247
248 codec->debugfs_dapm = debugfs_create_dir("dapm",
249 codec->debugfs_codec_root);
250 if (!codec->debugfs_dapm)
251 printk(KERN_WARNING
252 "Failed to create DAPM debugfs directory\n");
253
254 snd_soc_dapm_debugfs_init(codec);
255 }
256
257 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
258 {
259 debugfs_remove_recursive(codec->debugfs_codec_root);
260 }
261
262 #else
263
264 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
265 {
266 }
267
268 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
269 {
270 }
271 #endif
272
273 #ifdef CONFIG_SND_SOC_AC97_BUS
274 /* unregister ac97 codec */
275 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
276 {
277 if (codec->ac97->dev.bus)
278 device_unregister(&codec->ac97->dev);
279 return 0;
280 }
281
282 /* stop no dev release warning */
283 static void soc_ac97_device_release(struct device *dev){}
284
285 /* register ac97 codec to bus */
286 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
287 {
288 int err;
289
290 codec->ac97->dev.bus = &ac97_bus_type;
291 codec->ac97->dev.parent = codec->card->dev;
292 codec->ac97->dev.release = soc_ac97_device_release;
293
294 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
295 codec->card->number, 0, codec->name);
296 err = device_register(&codec->ac97->dev);
297 if (err < 0) {
298 snd_printk(KERN_ERR "Can't register ac97 bus\n");
299 codec->ac97->dev.bus = NULL;
300 return err;
301 }
302 return 0;
303 }
304 #endif
305
306 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
307 {
308 struct snd_soc_pcm_runtime *rtd = substream->private_data;
309 struct snd_soc_device *socdev = rtd->socdev;
310 struct snd_soc_card *card = socdev->card;
311 struct snd_soc_dai_link *machine = rtd->dai;
312 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
313 struct snd_soc_dai *codec_dai = machine->codec_dai;
314 int ret;
315
316 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
317 machine->symmetric_rates) {
318 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
319 machine->rate);
320
321 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
322 SNDRV_PCM_HW_PARAM_RATE,
323 machine->rate,
324 machine->rate);
325 if (ret < 0) {
326 dev_err(card->dev,
327 "Unable to apply rate symmetry constraint: %d\n", ret);
328 return ret;
329 }
330 }
331
332 return 0;
333 }
334
335 /*
336 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
337 * then initialized and any private data can be allocated. This also calls
338 * startup for the cpu DAI, platform, machine and codec DAI.
339 */
340 static int soc_pcm_open(struct snd_pcm_substream *substream)
341 {
342 struct snd_soc_pcm_runtime *rtd = substream->private_data;
343 struct snd_soc_device *socdev = rtd->socdev;
344 struct snd_soc_card *card = socdev->card;
345 struct snd_pcm_runtime *runtime = substream->runtime;
346 struct snd_soc_dai_link *machine = rtd->dai;
347 struct snd_soc_platform *platform = card->platform;
348 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
349 struct snd_soc_dai *codec_dai = machine->codec_dai;
350 int ret = 0;
351
352 mutex_lock(&pcm_mutex);
353
354 /* startup the audio subsystem */
355 if (cpu_dai->ops->startup) {
356 ret = cpu_dai->ops->startup(substream, cpu_dai);
357 if (ret < 0) {
358 printk(KERN_ERR "asoc: can't open interface %s\n",
359 cpu_dai->name);
360 goto out;
361 }
362 }
363
364 if (platform->pcm_ops->open) {
365 ret = platform->pcm_ops->open(substream);
366 if (ret < 0) {
367 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
368 goto platform_err;
369 }
370 }
371
372 if (codec_dai->ops->startup) {
373 ret = codec_dai->ops->startup(substream, codec_dai);
374 if (ret < 0) {
375 printk(KERN_ERR "asoc: can't open codec %s\n",
376 codec_dai->name);
377 goto codec_dai_err;
378 }
379 }
380
381 if (machine->ops && machine->ops->startup) {
382 ret = machine->ops->startup(substream);
383 if (ret < 0) {
384 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
385 goto machine_err;
386 }
387 }
388
389 /* Check that the codec and cpu DAI's are compatible */
390 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
391 runtime->hw.rate_min =
392 max(codec_dai->playback.rate_min,
393 cpu_dai->playback.rate_min);
394 runtime->hw.rate_max =
395 min(codec_dai->playback.rate_max,
396 cpu_dai->playback.rate_max);
397 runtime->hw.channels_min =
398 max(codec_dai->playback.channels_min,
399 cpu_dai->playback.channels_min);
400 runtime->hw.channels_max =
401 min(codec_dai->playback.channels_max,
402 cpu_dai->playback.channels_max);
403 runtime->hw.formats =
404 codec_dai->playback.formats & cpu_dai->playback.formats;
405 runtime->hw.rates =
406 codec_dai->playback.rates & cpu_dai->playback.rates;
407 } else {
408 runtime->hw.rate_min =
409 max(codec_dai->capture.rate_min,
410 cpu_dai->capture.rate_min);
411 runtime->hw.rate_max =
412 min(codec_dai->capture.rate_max,
413 cpu_dai->capture.rate_max);
414 runtime->hw.channels_min =
415 max(codec_dai->capture.channels_min,
416 cpu_dai->capture.channels_min);
417 runtime->hw.channels_max =
418 min(codec_dai->capture.channels_max,
419 cpu_dai->capture.channels_max);
420 runtime->hw.formats =
421 codec_dai->capture.formats & cpu_dai->capture.formats;
422 runtime->hw.rates =
423 codec_dai->capture.rates & cpu_dai->capture.rates;
424 }
425
426 snd_pcm_limit_hw_rates(runtime);
427 if (!runtime->hw.rates) {
428 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
429 codec_dai->name, cpu_dai->name);
430 goto machine_err;
431 }
432 if (!runtime->hw.formats) {
433 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
434 codec_dai->name, cpu_dai->name);
435 goto machine_err;
436 }
437 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
438 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
439 codec_dai->name, cpu_dai->name);
440 goto machine_err;
441 }
442
443 /* Symmetry only applies if we've already got an active stream. */
444 if (cpu_dai->active || codec_dai->active) {
445 ret = soc_pcm_apply_symmetry(substream);
446 if (ret != 0)
447 goto machine_err;
448 }
449
450 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
451 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
452 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
453 runtime->hw.channels_max);
454 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
455 runtime->hw.rate_max);
456
457 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
458 cpu_dai->playback.active = codec_dai->playback.active = 1;
459 else
460 cpu_dai->capture.active = codec_dai->capture.active = 1;
461 cpu_dai->active = codec_dai->active = 1;
462 cpu_dai->runtime = runtime;
463 card->codec->active++;
464 mutex_unlock(&pcm_mutex);
465 return 0;
466
467 machine_err:
468 if (machine->ops && machine->ops->shutdown)
469 machine->ops->shutdown(substream);
470
471 codec_dai_err:
472 if (platform->pcm_ops->close)
473 platform->pcm_ops->close(substream);
474
475 platform_err:
476 if (cpu_dai->ops->shutdown)
477 cpu_dai->ops->shutdown(substream, cpu_dai);
478 out:
479 mutex_unlock(&pcm_mutex);
480 return ret;
481 }
482
483 /*
484 * Power down the audio subsystem pmdown_time msecs after close is called.
485 * This is to ensure there are no pops or clicks in between any music tracks
486 * due to DAPM power cycling.
487 */
488 static void close_delayed_work(struct work_struct *work)
489 {
490 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
491 delayed_work.work);
492 struct snd_soc_codec *codec = card->codec;
493 struct snd_soc_dai *codec_dai;
494 int i;
495
496 mutex_lock(&pcm_mutex);
497 for (i = 0; i < codec->num_dai; i++) {
498 codec_dai = &codec->dai[i];
499
500 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
501 codec_dai->playback.stream_name,
502 codec_dai->playback.active ? "active" : "inactive",
503 codec_dai->pop_wait ? "yes" : "no");
504
505 /* are we waiting on this codec DAI stream */
506 if (codec_dai->pop_wait == 1) {
507 codec_dai->pop_wait = 0;
508 snd_soc_dapm_stream_event(codec,
509 codec_dai->playback.stream_name,
510 SND_SOC_DAPM_STREAM_STOP);
511 }
512 }
513 mutex_unlock(&pcm_mutex);
514 }
515
516 /*
517 * Called by ALSA when a PCM substream is closed. Private data can be
518 * freed here. The cpu DAI, codec DAI, machine and platform are also
519 * shutdown.
520 */
521 static int soc_codec_close(struct snd_pcm_substream *substream)
522 {
523 struct snd_soc_pcm_runtime *rtd = substream->private_data;
524 struct snd_soc_device *socdev = rtd->socdev;
525 struct snd_soc_card *card = socdev->card;
526 struct snd_soc_dai_link *machine = rtd->dai;
527 struct snd_soc_platform *platform = card->platform;
528 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
529 struct snd_soc_dai *codec_dai = machine->codec_dai;
530 struct snd_soc_codec *codec = card->codec;
531
532 mutex_lock(&pcm_mutex);
533
534 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
535 cpu_dai->playback.active = codec_dai->playback.active = 0;
536 else
537 cpu_dai->capture.active = codec_dai->capture.active = 0;
538
539 if (codec_dai->playback.active == 0 &&
540 codec_dai->capture.active == 0) {
541 cpu_dai->active = codec_dai->active = 0;
542 }
543 codec->active--;
544
545 /* Muting the DAC suppresses artifacts caused during digital
546 * shutdown, for example from stopping clocks.
547 */
548 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
549 snd_soc_dai_digital_mute(codec_dai, 1);
550
551 if (cpu_dai->ops->shutdown)
552 cpu_dai->ops->shutdown(substream, cpu_dai);
553
554 if (codec_dai->ops->shutdown)
555 codec_dai->ops->shutdown(substream, codec_dai);
556
557 if (machine->ops && machine->ops->shutdown)
558 machine->ops->shutdown(substream);
559
560 if (platform->pcm_ops->close)
561 platform->pcm_ops->close(substream);
562 cpu_dai->runtime = NULL;
563
564 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
565 /* start delayed pop wq here for playback streams */
566 codec_dai->pop_wait = 1;
567 schedule_delayed_work(&card->delayed_work,
568 msecs_to_jiffies(card->pmdown_time));
569 } else {
570 /* capture streams can be powered down now */
571 snd_soc_dapm_stream_event(codec,
572 codec_dai->capture.stream_name,
573 SND_SOC_DAPM_STREAM_STOP);
574 }
575
576 mutex_unlock(&pcm_mutex);
577 return 0;
578 }
579
580 /*
581 * Called by ALSA when the PCM substream is prepared, can set format, sample
582 * rate, etc. This function is non atomic and can be called multiple times,
583 * it can refer to the runtime info.
584 */
585 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
586 {
587 struct snd_soc_pcm_runtime *rtd = substream->private_data;
588 struct snd_soc_device *socdev = rtd->socdev;
589 struct snd_soc_card *card = socdev->card;
590 struct snd_soc_dai_link *machine = rtd->dai;
591 struct snd_soc_platform *platform = card->platform;
592 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
593 struct snd_soc_dai *codec_dai = machine->codec_dai;
594 struct snd_soc_codec *codec = card->codec;
595 int ret = 0;
596
597 mutex_lock(&pcm_mutex);
598
599 if (machine->ops && machine->ops->prepare) {
600 ret = machine->ops->prepare(substream);
601 if (ret < 0) {
602 printk(KERN_ERR "asoc: machine prepare error\n");
603 goto out;
604 }
605 }
606
607 if (platform->pcm_ops->prepare) {
608 ret = platform->pcm_ops->prepare(substream);
609 if (ret < 0) {
610 printk(KERN_ERR "asoc: platform prepare error\n");
611 goto out;
612 }
613 }
614
615 if (codec_dai->ops->prepare) {
616 ret = codec_dai->ops->prepare(substream, codec_dai);
617 if (ret < 0) {
618 printk(KERN_ERR "asoc: codec DAI prepare error\n");
619 goto out;
620 }
621 }
622
623 if (cpu_dai->ops->prepare) {
624 ret = cpu_dai->ops->prepare(substream, cpu_dai);
625 if (ret < 0) {
626 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
627 goto out;
628 }
629 }
630
631 /* cancel any delayed stream shutdown that is pending */
632 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
633 codec_dai->pop_wait) {
634 codec_dai->pop_wait = 0;
635 cancel_delayed_work(&card->delayed_work);
636 }
637
638 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
639 snd_soc_dapm_stream_event(codec,
640 codec_dai->playback.stream_name,
641 SND_SOC_DAPM_STREAM_START);
642 else
643 snd_soc_dapm_stream_event(codec,
644 codec_dai->capture.stream_name,
645 SND_SOC_DAPM_STREAM_START);
646
647 snd_soc_dai_digital_mute(codec_dai, 0);
648
649 out:
650 mutex_unlock(&pcm_mutex);
651 return ret;
652 }
653
654 /*
655 * Called by ALSA when the hardware params are set by application. This
656 * function can also be called multiple times and can allocate buffers
657 * (using snd_pcm_lib_* ). It's non-atomic.
658 */
659 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
660 struct snd_pcm_hw_params *params)
661 {
662 struct snd_soc_pcm_runtime *rtd = substream->private_data;
663 struct snd_soc_device *socdev = rtd->socdev;
664 struct snd_soc_dai_link *machine = rtd->dai;
665 struct snd_soc_card *card = socdev->card;
666 struct snd_soc_platform *platform = card->platform;
667 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
668 struct snd_soc_dai *codec_dai = machine->codec_dai;
669 int ret = 0;
670
671 mutex_lock(&pcm_mutex);
672
673 if (machine->ops && machine->ops->hw_params) {
674 ret = machine->ops->hw_params(substream, params);
675 if (ret < 0) {
676 printk(KERN_ERR "asoc: machine hw_params failed\n");
677 goto out;
678 }
679 }
680
681 if (codec_dai->ops->hw_params) {
682 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
683 if (ret < 0) {
684 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
685 codec_dai->name);
686 goto codec_err;
687 }
688 }
689
690 if (cpu_dai->ops->hw_params) {
691 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
692 if (ret < 0) {
693 printk(KERN_ERR "asoc: interface %s hw params failed\n",
694 cpu_dai->name);
695 goto interface_err;
696 }
697 }
698
699 if (platform->pcm_ops->hw_params) {
700 ret = platform->pcm_ops->hw_params(substream, params);
701 if (ret < 0) {
702 printk(KERN_ERR "asoc: platform %s hw params failed\n",
703 platform->name);
704 goto platform_err;
705 }
706 }
707
708 machine->rate = params_rate(params);
709
710 out:
711 mutex_unlock(&pcm_mutex);
712 return ret;
713
714 platform_err:
715 if (cpu_dai->ops->hw_free)
716 cpu_dai->ops->hw_free(substream, cpu_dai);
717
718 interface_err:
719 if (codec_dai->ops->hw_free)
720 codec_dai->ops->hw_free(substream, codec_dai);
721
722 codec_err:
723 if (machine->ops && machine->ops->hw_free)
724 machine->ops->hw_free(substream);
725
726 mutex_unlock(&pcm_mutex);
727 return ret;
728 }
729
730 /*
731 * Free's resources allocated by hw_params, can be called multiple times
732 */
733 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
734 {
735 struct snd_soc_pcm_runtime *rtd = substream->private_data;
736 struct snd_soc_device *socdev = rtd->socdev;
737 struct snd_soc_dai_link *machine = rtd->dai;
738 struct snd_soc_card *card = socdev->card;
739 struct snd_soc_platform *platform = card->platform;
740 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
741 struct snd_soc_dai *codec_dai = machine->codec_dai;
742 struct snd_soc_codec *codec = card->codec;
743
744 mutex_lock(&pcm_mutex);
745
746 /* apply codec digital mute */
747 if (!codec->active)
748 snd_soc_dai_digital_mute(codec_dai, 1);
749
750 /* free any machine hw params */
751 if (machine->ops && machine->ops->hw_free)
752 machine->ops->hw_free(substream);
753
754 /* free any DMA resources */
755 if (platform->pcm_ops->hw_free)
756 platform->pcm_ops->hw_free(substream);
757
758 /* now free hw params for the DAI's */
759 if (codec_dai->ops->hw_free)
760 codec_dai->ops->hw_free(substream, codec_dai);
761
762 if (cpu_dai->ops->hw_free)
763 cpu_dai->ops->hw_free(substream, cpu_dai);
764
765 mutex_unlock(&pcm_mutex);
766 return 0;
767 }
768
769 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
770 {
771 struct snd_soc_pcm_runtime *rtd = substream->private_data;
772 struct snd_soc_device *socdev = rtd->socdev;
773 struct snd_soc_card *card= socdev->card;
774 struct snd_soc_dai_link *machine = rtd->dai;
775 struct snd_soc_platform *platform = card->platform;
776 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
777 struct snd_soc_dai *codec_dai = machine->codec_dai;
778 int ret;
779
780 if (codec_dai->ops->trigger) {
781 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
782 if (ret < 0)
783 return ret;
784 }
785
786 if (platform->pcm_ops->trigger) {
787 ret = platform->pcm_ops->trigger(substream, cmd);
788 if (ret < 0)
789 return ret;
790 }
791
792 if (cpu_dai->ops->trigger) {
793 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
794 if (ret < 0)
795 return ret;
796 }
797 return 0;
798 }
799
800 /* ASoC PCM operations */
801 static struct snd_pcm_ops soc_pcm_ops = {
802 .open = soc_pcm_open,
803 .close = soc_codec_close,
804 .hw_params = soc_pcm_hw_params,
805 .hw_free = soc_pcm_hw_free,
806 .prepare = soc_pcm_prepare,
807 .trigger = soc_pcm_trigger,
808 };
809
810 #ifdef CONFIG_PM
811 /* powers down audio subsystem for suspend */
812 static int soc_suspend(struct device *dev)
813 {
814 struct platform_device *pdev = to_platform_device(dev);
815 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
816 struct snd_soc_card *card = socdev->card;
817 struct snd_soc_platform *platform = card->platform;
818 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
819 struct snd_soc_codec *codec = card->codec;
820 int i;
821
822 /* If the initialization of this soc device failed, there is no codec
823 * associated with it. Just bail out in this case.
824 */
825 if (!codec)
826 return 0;
827
828 /* Due to the resume being scheduled into a workqueue we could
829 * suspend before that's finished - wait for it to complete.
830 */
831 snd_power_lock(codec->card);
832 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
833 snd_power_unlock(codec->card);
834
835 /* we're going to block userspace touching us until resume completes */
836 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
837
838 /* mute any active DAC's */
839 for (i = 0; i < card->num_links; i++) {
840 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
841 if (dai->ops->digital_mute && dai->playback.active)
842 dai->ops->digital_mute(dai, 1);
843 }
844
845 /* suspend all pcms */
846 for (i = 0; i < card->num_links; i++)
847 snd_pcm_suspend_all(card->dai_link[i].pcm);
848
849 if (card->suspend_pre)
850 card->suspend_pre(pdev, PMSG_SUSPEND);
851
852 for (i = 0; i < card->num_links; i++) {
853 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
854 if (cpu_dai->suspend && !cpu_dai->ac97_control)
855 cpu_dai->suspend(cpu_dai);
856 if (platform->suspend)
857 platform->suspend(cpu_dai);
858 }
859
860 /* close any waiting streams and save state */
861 run_delayed_work(&card->delayed_work);
862 codec->suspend_bias_level = codec->bias_level;
863
864 for (i = 0; i < codec->num_dai; i++) {
865 char *stream = codec->dai[i].playback.stream_name;
866 if (stream != NULL)
867 snd_soc_dapm_stream_event(codec, stream,
868 SND_SOC_DAPM_STREAM_SUSPEND);
869 stream = codec->dai[i].capture.stream_name;
870 if (stream != NULL)
871 snd_soc_dapm_stream_event(codec, stream,
872 SND_SOC_DAPM_STREAM_SUSPEND);
873 }
874
875 if (codec_dev->suspend)
876 codec_dev->suspend(pdev, PMSG_SUSPEND);
877
878 for (i = 0; i < card->num_links; i++) {
879 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
880 if (cpu_dai->suspend && cpu_dai->ac97_control)
881 cpu_dai->suspend(cpu_dai);
882 }
883
884 if (card->suspend_post)
885 card->suspend_post(pdev, PMSG_SUSPEND);
886
887 return 0;
888 }
889
890 /* deferred resume work, so resume can complete before we finished
891 * setting our codec back up, which can be very slow on I2C
892 */
893 static void soc_resume_deferred(struct work_struct *work)
894 {
895 struct snd_soc_card *card = container_of(work,
896 struct snd_soc_card,
897 deferred_resume_work);
898 struct snd_soc_device *socdev = card->socdev;
899 struct snd_soc_platform *platform = card->platform;
900 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
901 struct snd_soc_codec *codec = card->codec;
902 struct platform_device *pdev = to_platform_device(socdev->dev);
903 int i;
904
905 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
906 * so userspace apps are blocked from touching us
907 */
908
909 dev_dbg(socdev->dev, "starting resume work\n");
910
911 if (card->resume_pre)
912 card->resume_pre(pdev);
913
914 for (i = 0; i < card->num_links; i++) {
915 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
916 if (cpu_dai->resume && cpu_dai->ac97_control)
917 cpu_dai->resume(cpu_dai);
918 }
919
920 if (codec_dev->resume)
921 codec_dev->resume(pdev);
922
923 for (i = 0; i < codec->num_dai; i++) {
924 char *stream = codec->dai[i].playback.stream_name;
925 if (stream != NULL)
926 snd_soc_dapm_stream_event(codec, stream,
927 SND_SOC_DAPM_STREAM_RESUME);
928 stream = codec->dai[i].capture.stream_name;
929 if (stream != NULL)
930 snd_soc_dapm_stream_event(codec, stream,
931 SND_SOC_DAPM_STREAM_RESUME);
932 }
933
934 /* unmute any active DACs */
935 for (i = 0; i < card->num_links; i++) {
936 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
937 if (dai->ops->digital_mute && dai->playback.active)
938 dai->ops->digital_mute(dai, 0);
939 }
940
941 for (i = 0; i < card->num_links; i++) {
942 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
943 if (cpu_dai->resume && !cpu_dai->ac97_control)
944 cpu_dai->resume(cpu_dai);
945 if (platform->resume)
946 platform->resume(cpu_dai);
947 }
948
949 if (card->resume_post)
950 card->resume_post(pdev);
951
952 dev_dbg(socdev->dev, "resume work completed\n");
953
954 /* userspace can access us now we are back as we were before */
955 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
956 }
957
958 /* powers up audio subsystem after a suspend */
959 static int soc_resume(struct device *dev)
960 {
961 struct platform_device *pdev = to_platform_device(dev);
962 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
963 struct snd_soc_card *card = socdev->card;
964 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
965
966 /* If the initialization of this soc device failed, there is no codec
967 * associated with it. Just bail out in this case.
968 */
969 if (!card->codec)
970 return 0;
971
972 /* AC97 devices might have other drivers hanging off them so
973 * need to resume immediately. Other drivers don't have that
974 * problem and may take a substantial amount of time to resume
975 * due to I/O costs and anti-pop so handle them out of line.
976 */
977 if (cpu_dai->ac97_control) {
978 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
979 soc_resume_deferred(&card->deferred_resume_work);
980 } else {
981 dev_dbg(socdev->dev, "Scheduling resume work\n");
982 if (!schedule_work(&card->deferred_resume_work))
983 dev_err(socdev->dev, "resume work item may be lost\n");
984 }
985
986 return 0;
987 }
988 #else
989 #define soc_suspend NULL
990 #define soc_resume NULL
991 #endif
992
993 static struct snd_soc_dai_ops null_dai_ops = {
994 };
995
996 static void snd_soc_instantiate_card(struct snd_soc_card *card)
997 {
998 struct platform_device *pdev = container_of(card->dev,
999 struct platform_device,
1000 dev);
1001 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
1002 struct snd_soc_codec *codec;
1003 struct snd_soc_platform *platform;
1004 struct snd_soc_dai *dai;
1005 int i, found, ret, ac97;
1006
1007 if (card->instantiated)
1008 return;
1009
1010 found = 0;
1011 list_for_each_entry(platform, &platform_list, list)
1012 if (card->platform == platform) {
1013 found = 1;
1014 break;
1015 }
1016 if (!found) {
1017 dev_dbg(card->dev, "Platform %s not registered\n",
1018 card->platform->name);
1019 return;
1020 }
1021
1022 ac97 = 0;
1023 for (i = 0; i < card->num_links; i++) {
1024 found = 0;
1025 list_for_each_entry(dai, &dai_list, list)
1026 if (card->dai_link[i].cpu_dai == dai) {
1027 found = 1;
1028 break;
1029 }
1030 if (!found) {
1031 dev_dbg(card->dev, "DAI %s not registered\n",
1032 card->dai_link[i].cpu_dai->name);
1033 return;
1034 }
1035
1036 if (card->dai_link[i].cpu_dai->ac97_control)
1037 ac97 = 1;
1038 }
1039
1040 for (i = 0; i < card->num_links; i++) {
1041 if (!card->dai_link[i].codec_dai->ops)
1042 card->dai_link[i].codec_dai->ops = &null_dai_ops;
1043 }
1044
1045 /* If we have AC97 in the system then don't wait for the
1046 * codec. This will need revisiting if we have to handle
1047 * systems with mixed AC97 and non-AC97 parts. Only check for
1048 * DAIs currently; we can't do this per link since some AC97
1049 * codecs have non-AC97 DAIs.
1050 */
1051 if (!ac97)
1052 for (i = 0; i < card->num_links; i++) {
1053 found = 0;
1054 list_for_each_entry(dai, &dai_list, list)
1055 if (card->dai_link[i].codec_dai == dai) {
1056 found = 1;
1057 break;
1058 }
1059 if (!found) {
1060 dev_dbg(card->dev, "DAI %s not registered\n",
1061 card->dai_link[i].codec_dai->name);
1062 return;
1063 }
1064 }
1065
1066 /* Note that we do not current check for codec components */
1067
1068 dev_dbg(card->dev, "All components present, instantiating\n");
1069
1070 /* Found everything, bring it up */
1071 card->pmdown_time = pmdown_time;
1072
1073 if (card->probe) {
1074 ret = card->probe(pdev);
1075 if (ret < 0)
1076 return;
1077 }
1078
1079 for (i = 0; i < card->num_links; i++) {
1080 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1081 if (cpu_dai->probe) {
1082 ret = cpu_dai->probe(pdev, cpu_dai);
1083 if (ret < 0)
1084 goto cpu_dai_err;
1085 }
1086 }
1087
1088 if (codec_dev->probe) {
1089 ret = codec_dev->probe(pdev);
1090 if (ret < 0)
1091 goto cpu_dai_err;
1092 }
1093 codec = card->codec;
1094
1095 if (platform->probe) {
1096 ret = platform->probe(pdev);
1097 if (ret < 0)
1098 goto platform_err;
1099 }
1100
1101 /* DAPM stream work */
1102 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
1103 #ifdef CONFIG_PM
1104 /* deferred resume work */
1105 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1106 #endif
1107
1108 for (i = 0; i < card->num_links; i++) {
1109 if (card->dai_link[i].init) {
1110 ret = card->dai_link[i].init(codec);
1111 if (ret < 0) {
1112 printk(KERN_ERR "asoc: failed to init %s\n",
1113 card->dai_link[i].stream_name);
1114 continue;
1115 }
1116 }
1117 if (card->dai_link[i].codec_dai->ac97_control)
1118 ac97 = 1;
1119 }
1120
1121 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1122 "%s", card->name);
1123 snprintf(codec->card->longname, sizeof(codec->card->longname),
1124 "%s (%s)", card->name, codec->name);
1125
1126 /* Make sure all DAPM widgets are instantiated */
1127 snd_soc_dapm_new_widgets(codec);
1128
1129 ret = snd_card_register(codec->card);
1130 if (ret < 0) {
1131 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1132 codec->name);
1133 goto card_err;
1134 }
1135
1136 mutex_lock(&codec->mutex);
1137 #ifdef CONFIG_SND_SOC_AC97_BUS
1138 /* Only instantiate AC97 if not already done by the adaptor
1139 * for the generic AC97 subsystem.
1140 */
1141 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1142 ret = soc_ac97_dev_register(codec);
1143 if (ret < 0) {
1144 printk(KERN_ERR "asoc: AC97 device register failed\n");
1145 snd_card_free(codec->card);
1146 mutex_unlock(&codec->mutex);
1147 goto card_err;
1148 }
1149 }
1150 #endif
1151
1152 ret = snd_soc_dapm_sys_add(card->socdev->dev);
1153 if (ret < 0)
1154 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1155
1156 ret = device_create_file(card->socdev->dev, &dev_attr_pmdown_time);
1157 if (ret < 0)
1158 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1159
1160 ret = device_create_file(card->socdev->dev, &dev_attr_codec_reg);
1161 if (ret < 0)
1162 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1163
1164 soc_init_codec_debugfs(codec);
1165 mutex_unlock(&codec->mutex);
1166
1167 card->instantiated = 1;
1168
1169 return;
1170
1171 card_err:
1172 if (platform->remove)
1173 platform->remove(pdev);
1174
1175 platform_err:
1176 if (codec_dev->remove)
1177 codec_dev->remove(pdev);
1178
1179 cpu_dai_err:
1180 for (i--; i >= 0; i--) {
1181 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1182 if (cpu_dai->remove)
1183 cpu_dai->remove(pdev, cpu_dai);
1184 }
1185
1186 if (card->remove)
1187 card->remove(pdev);
1188 }
1189
1190 /*
1191 * Attempt to initialise any uninitalised cards. Must be called with
1192 * client_mutex.
1193 */
1194 static void snd_soc_instantiate_cards(void)
1195 {
1196 struct snd_soc_card *card;
1197 list_for_each_entry(card, &card_list, list)
1198 snd_soc_instantiate_card(card);
1199 }
1200
1201 /* probes a new socdev */
1202 static int soc_probe(struct platform_device *pdev)
1203 {
1204 int ret = 0;
1205 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1206 struct snd_soc_card *card = socdev->card;
1207
1208 /* Bodge while we push things out of socdev */
1209 card->socdev = socdev;
1210
1211 /* Bodge while we unpick instantiation */
1212 card->dev = &pdev->dev;
1213 ret = snd_soc_register_card(card);
1214 if (ret != 0) {
1215 dev_err(&pdev->dev, "Failed to register card\n");
1216 return ret;
1217 }
1218
1219 return 0;
1220 }
1221
1222 /* removes a socdev */
1223 static int soc_remove(struct platform_device *pdev)
1224 {
1225 int i;
1226 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1227 struct snd_soc_card *card = socdev->card;
1228 struct snd_soc_platform *platform = card->platform;
1229 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1230
1231 if (!card->instantiated)
1232 return 0;
1233
1234 run_delayed_work(&card->delayed_work);
1235
1236 if (platform->remove)
1237 platform->remove(pdev);
1238
1239 if (codec_dev->remove)
1240 codec_dev->remove(pdev);
1241
1242 for (i = 0; i < card->num_links; i++) {
1243 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1244 if (cpu_dai->remove)
1245 cpu_dai->remove(pdev, cpu_dai);
1246 }
1247
1248 if (card->remove)
1249 card->remove(pdev);
1250
1251 snd_soc_unregister_card(card);
1252
1253 return 0;
1254 }
1255
1256 static int soc_poweroff(struct device *dev)
1257 {
1258 struct platform_device *pdev = to_platform_device(dev);
1259 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1260 struct snd_soc_card *card = socdev->card;
1261
1262 if (!card->instantiated)
1263 return 0;
1264
1265 /* Flush out pmdown_time work - we actually do want to run it
1266 * now, we're shutting down so no imminent restart. */
1267 run_delayed_work(&card->delayed_work);
1268
1269 snd_soc_dapm_shutdown(socdev);
1270
1271 return 0;
1272 }
1273
1274 static const struct dev_pm_ops soc_pm_ops = {
1275 .suspend = soc_suspend,
1276 .resume = soc_resume,
1277 .poweroff = soc_poweroff,
1278 };
1279
1280 /* ASoC platform driver */
1281 static struct platform_driver soc_driver = {
1282 .driver = {
1283 .name = "soc-audio",
1284 .owner = THIS_MODULE,
1285 .pm = &soc_pm_ops,
1286 },
1287 .probe = soc_probe,
1288 .remove = soc_remove,
1289 };
1290
1291 /* create a new pcm */
1292 static int soc_new_pcm(struct snd_soc_device *socdev,
1293 struct snd_soc_dai_link *dai_link, int num)
1294 {
1295 struct snd_soc_card *card = socdev->card;
1296 struct snd_soc_codec *codec = card->codec;
1297 struct snd_soc_platform *platform = card->platform;
1298 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1299 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1300 struct snd_soc_pcm_runtime *rtd;
1301 struct snd_pcm *pcm;
1302 char new_name[64];
1303 int ret = 0, playback = 0, capture = 0;
1304
1305 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1306 if (rtd == NULL)
1307 return -ENOMEM;
1308
1309 rtd->dai = dai_link;
1310 rtd->socdev = socdev;
1311 codec_dai->codec = card->codec;
1312
1313 /* check client and interface hw capabilities */
1314 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1315 dai_link->stream_name, codec_dai->name, num);
1316
1317 if (codec_dai->playback.channels_min)
1318 playback = 1;
1319 if (codec_dai->capture.channels_min)
1320 capture = 1;
1321
1322 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1323 capture, &pcm);
1324 if (ret < 0) {
1325 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1326 codec->name);
1327 kfree(rtd);
1328 return ret;
1329 }
1330
1331 dai_link->pcm = pcm;
1332 pcm->private_data = rtd;
1333 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1334 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1335 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1336 soc_pcm_ops.copy = platform->pcm_ops->copy;
1337 soc_pcm_ops.silence = platform->pcm_ops->silence;
1338 soc_pcm_ops.ack = platform->pcm_ops->ack;
1339 soc_pcm_ops.page = platform->pcm_ops->page;
1340
1341 if (playback)
1342 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1343
1344 if (capture)
1345 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1346
1347 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1348 if (ret < 0) {
1349 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1350 kfree(rtd);
1351 return ret;
1352 }
1353
1354 pcm->private_free = platform->pcm_free;
1355 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1356 cpu_dai->name);
1357 return ret;
1358 }
1359
1360 /**
1361 * snd_soc_codec_volatile_register: Report if a register is volatile.
1362 *
1363 * @codec: CODEC to query.
1364 * @reg: Register to query.
1365 *
1366 * Boolean function indiciating if a CODEC register is volatile.
1367 */
1368 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1369 {
1370 if (codec->volatile_register)
1371 return codec->volatile_register(reg);
1372 else
1373 return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1376
1377 /**
1378 * snd_soc_new_ac97_codec - initailise AC97 device
1379 * @codec: audio codec
1380 * @ops: AC97 bus operations
1381 * @num: AC97 codec number
1382 *
1383 * Initialises AC97 codec resources for use by ad-hoc devices only.
1384 */
1385 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1386 struct snd_ac97_bus_ops *ops, int num)
1387 {
1388 mutex_lock(&codec->mutex);
1389
1390 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1391 if (codec->ac97 == NULL) {
1392 mutex_unlock(&codec->mutex);
1393 return -ENOMEM;
1394 }
1395
1396 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1397 if (codec->ac97->bus == NULL) {
1398 kfree(codec->ac97);
1399 codec->ac97 = NULL;
1400 mutex_unlock(&codec->mutex);
1401 return -ENOMEM;
1402 }
1403
1404 codec->ac97->bus->ops = ops;
1405 codec->ac97->num = num;
1406 codec->dev = &codec->ac97->dev;
1407 mutex_unlock(&codec->mutex);
1408 return 0;
1409 }
1410 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1411
1412 /**
1413 * snd_soc_free_ac97_codec - free AC97 codec device
1414 * @codec: audio codec
1415 *
1416 * Frees AC97 codec device resources.
1417 */
1418 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1419 {
1420 mutex_lock(&codec->mutex);
1421 kfree(codec->ac97->bus);
1422 kfree(codec->ac97);
1423 codec->ac97 = NULL;
1424 mutex_unlock(&codec->mutex);
1425 }
1426 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1427
1428 /**
1429 * snd_soc_update_bits - update codec register bits
1430 * @codec: audio codec
1431 * @reg: codec register
1432 * @mask: register mask
1433 * @value: new value
1434 *
1435 * Writes new register value.
1436 *
1437 * Returns 1 for change else 0.
1438 */
1439 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1440 unsigned int mask, unsigned int value)
1441 {
1442 int change;
1443 unsigned int old, new;
1444
1445 old = snd_soc_read(codec, reg);
1446 new = (old & ~mask) | value;
1447 change = old != new;
1448 if (change)
1449 snd_soc_write(codec, reg, new);
1450
1451 return change;
1452 }
1453 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1454
1455 /**
1456 * snd_soc_update_bits_locked - update codec register bits
1457 * @codec: audio codec
1458 * @reg: codec register
1459 * @mask: register mask
1460 * @value: new value
1461 *
1462 * Writes new register value, and takes the codec mutex.
1463 *
1464 * Returns 1 for change else 0.
1465 */
1466 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1467 unsigned short reg, unsigned int mask,
1468 unsigned int value)
1469 {
1470 int change;
1471
1472 mutex_lock(&codec->mutex);
1473 change = snd_soc_update_bits(codec, reg, mask, value);
1474 mutex_unlock(&codec->mutex);
1475
1476 return change;
1477 }
1478 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1479
1480 /**
1481 * snd_soc_test_bits - test register for change
1482 * @codec: audio codec
1483 * @reg: codec register
1484 * @mask: register mask
1485 * @value: new value
1486 *
1487 * Tests a register with a new value and checks if the new value is
1488 * different from the old value.
1489 *
1490 * Returns 1 for change else 0.
1491 */
1492 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1493 unsigned int mask, unsigned int value)
1494 {
1495 int change;
1496 unsigned int old, new;
1497
1498 old = snd_soc_read(codec, reg);
1499 new = (old & ~mask) | value;
1500 change = old != new;
1501
1502 return change;
1503 }
1504 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1505
1506 /**
1507 * snd_soc_new_pcms - create new sound card and pcms
1508 * @socdev: the SoC audio device
1509 * @idx: ALSA card index
1510 * @xid: card identification
1511 *
1512 * Create a new sound card based upon the codec and interface pcms.
1513 *
1514 * Returns 0 for success, else error.
1515 */
1516 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1517 {
1518 struct snd_soc_card *card = socdev->card;
1519 struct snd_soc_codec *codec = card->codec;
1520 int ret, i;
1521
1522 mutex_lock(&codec->mutex);
1523
1524 /* register a sound card */
1525 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1526 if (ret < 0) {
1527 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1528 codec->name);
1529 mutex_unlock(&codec->mutex);
1530 return ret;
1531 }
1532
1533 codec->socdev = socdev;
1534 codec->card->dev = socdev->dev;
1535 codec->card->private_data = codec;
1536 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1537
1538 /* create the pcms */
1539 for (i = 0; i < card->num_links; i++) {
1540 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1541 if (ret < 0) {
1542 printk(KERN_ERR "asoc: can't create pcm %s\n",
1543 card->dai_link[i].stream_name);
1544 mutex_unlock(&codec->mutex);
1545 return ret;
1546 }
1547 if (card->dai_link[i].codec_dai->ac97_control) {
1548 snd_ac97_dev_add_pdata(codec->ac97,
1549 card->dai_link[i].cpu_dai->ac97_pdata);
1550 }
1551 }
1552
1553 mutex_unlock(&codec->mutex);
1554 return ret;
1555 }
1556 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1557
1558 /**
1559 * snd_soc_free_pcms - free sound card and pcms
1560 * @socdev: the SoC audio device
1561 *
1562 * Frees sound card and pcms associated with the socdev.
1563 * Also unregister the codec if it is an AC97 device.
1564 */
1565 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1566 {
1567 struct snd_soc_codec *codec = socdev->card->codec;
1568 #ifdef CONFIG_SND_SOC_AC97_BUS
1569 struct snd_soc_dai *codec_dai;
1570 int i;
1571 #endif
1572
1573 mutex_lock(&codec->mutex);
1574 soc_cleanup_codec_debugfs(codec);
1575 #ifdef CONFIG_SND_SOC_AC97_BUS
1576 for (i = 0; i < codec->num_dai; i++) {
1577 codec_dai = &codec->dai[i];
1578 if (codec_dai->ac97_control && codec->ac97 &&
1579 strcmp(codec->name, "AC97") != 0) {
1580 soc_ac97_dev_unregister(codec);
1581 goto free_card;
1582 }
1583 }
1584 free_card:
1585 #endif
1586
1587 if (codec->card)
1588 snd_card_free(codec->card);
1589 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1590 mutex_unlock(&codec->mutex);
1591 }
1592 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1593
1594 /**
1595 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1596 * @substream: the pcm substream
1597 * @hw: the hardware parameters
1598 *
1599 * Sets the substream runtime hardware parameters.
1600 */
1601 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1602 const struct snd_pcm_hardware *hw)
1603 {
1604 struct snd_pcm_runtime *runtime = substream->runtime;
1605 runtime->hw.info = hw->info;
1606 runtime->hw.formats = hw->formats;
1607 runtime->hw.period_bytes_min = hw->period_bytes_min;
1608 runtime->hw.period_bytes_max = hw->period_bytes_max;
1609 runtime->hw.periods_min = hw->periods_min;
1610 runtime->hw.periods_max = hw->periods_max;
1611 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1612 runtime->hw.fifo_size = hw->fifo_size;
1613 return 0;
1614 }
1615 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1616
1617 /**
1618 * snd_soc_cnew - create new control
1619 * @_template: control template
1620 * @data: control private data
1621 * @long_name: control long name
1622 *
1623 * Create a new mixer control from a template control.
1624 *
1625 * Returns 0 for success, else error.
1626 */
1627 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1628 void *data, char *long_name)
1629 {
1630 struct snd_kcontrol_new template;
1631
1632 memcpy(&template, _template, sizeof(template));
1633 if (long_name)
1634 template.name = long_name;
1635 template.index = 0;
1636
1637 return snd_ctl_new1(&template, data);
1638 }
1639 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1640
1641 /**
1642 * snd_soc_add_controls - add an array of controls to a codec.
1643 * Convienience function to add a list of controls. Many codecs were
1644 * duplicating this code.
1645 *
1646 * @codec: codec to add controls to
1647 * @controls: array of controls to add
1648 * @num_controls: number of elements in the array
1649 *
1650 * Return 0 for success, else error.
1651 */
1652 int snd_soc_add_controls(struct snd_soc_codec *codec,
1653 const struct snd_kcontrol_new *controls, int num_controls)
1654 {
1655 struct snd_card *card = codec->card;
1656 int err, i;
1657
1658 for (i = 0; i < num_controls; i++) {
1659 const struct snd_kcontrol_new *control = &controls[i];
1660 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1661 if (err < 0) {
1662 dev_err(codec->dev, "%s: Failed to add %s\n",
1663 codec->name, control->name);
1664 return err;
1665 }
1666 }
1667
1668 return 0;
1669 }
1670 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1671
1672 /**
1673 * snd_soc_info_enum_double - enumerated double mixer info callback
1674 * @kcontrol: mixer control
1675 * @uinfo: control element information
1676 *
1677 * Callback to provide information about a double enumerated
1678 * mixer control.
1679 *
1680 * Returns 0 for success.
1681 */
1682 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1683 struct snd_ctl_elem_info *uinfo)
1684 {
1685 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1686
1687 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1688 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1689 uinfo->value.enumerated.items = e->max;
1690
1691 if (uinfo->value.enumerated.item > e->max - 1)
1692 uinfo->value.enumerated.item = e->max - 1;
1693 strcpy(uinfo->value.enumerated.name,
1694 e->texts[uinfo->value.enumerated.item]);
1695 return 0;
1696 }
1697 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1698
1699 /**
1700 * snd_soc_get_enum_double - enumerated double mixer get callback
1701 * @kcontrol: mixer control
1702 * @ucontrol: control element information
1703 *
1704 * Callback to get the value of a double enumerated mixer.
1705 *
1706 * Returns 0 for success.
1707 */
1708 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1709 struct snd_ctl_elem_value *ucontrol)
1710 {
1711 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1712 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1713 unsigned int val, bitmask;
1714
1715 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1716 ;
1717 val = snd_soc_read(codec, e->reg);
1718 ucontrol->value.enumerated.item[0]
1719 = (val >> e->shift_l) & (bitmask - 1);
1720 if (e->shift_l != e->shift_r)
1721 ucontrol->value.enumerated.item[1] =
1722 (val >> e->shift_r) & (bitmask - 1);
1723
1724 return 0;
1725 }
1726 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1727
1728 /**
1729 * snd_soc_put_enum_double - enumerated double mixer put callback
1730 * @kcontrol: mixer control
1731 * @ucontrol: control element information
1732 *
1733 * Callback to set the value of a double enumerated mixer.
1734 *
1735 * Returns 0 for success.
1736 */
1737 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1738 struct snd_ctl_elem_value *ucontrol)
1739 {
1740 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1741 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1742 unsigned int val;
1743 unsigned int mask, bitmask;
1744
1745 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1746 ;
1747 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1748 return -EINVAL;
1749 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1750 mask = (bitmask - 1) << e->shift_l;
1751 if (e->shift_l != e->shift_r) {
1752 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1753 return -EINVAL;
1754 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1755 mask |= (bitmask - 1) << e->shift_r;
1756 }
1757
1758 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1759 }
1760 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1761
1762 /**
1763 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1764 * @kcontrol: mixer control
1765 * @ucontrol: control element information
1766 *
1767 * Callback to get the value of a double semi enumerated mixer.
1768 *
1769 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1770 * used for handling bitfield coded enumeration for example.
1771 *
1772 * Returns 0 for success.
1773 */
1774 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1775 struct snd_ctl_elem_value *ucontrol)
1776 {
1777 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1778 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1779 unsigned int reg_val, val, mux;
1780
1781 reg_val = snd_soc_read(codec, e->reg);
1782 val = (reg_val >> e->shift_l) & e->mask;
1783 for (mux = 0; mux < e->max; mux++) {
1784 if (val == e->values[mux])
1785 break;
1786 }
1787 ucontrol->value.enumerated.item[0] = mux;
1788 if (e->shift_l != e->shift_r) {
1789 val = (reg_val >> e->shift_r) & e->mask;
1790 for (mux = 0; mux < e->max; mux++) {
1791 if (val == e->values[mux])
1792 break;
1793 }
1794 ucontrol->value.enumerated.item[1] = mux;
1795 }
1796
1797 return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1800
1801 /**
1802 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1803 * @kcontrol: mixer control
1804 * @ucontrol: control element information
1805 *
1806 * Callback to set the value of a double semi enumerated mixer.
1807 *
1808 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1809 * used for handling bitfield coded enumeration for example.
1810 *
1811 * Returns 0 for success.
1812 */
1813 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1814 struct snd_ctl_elem_value *ucontrol)
1815 {
1816 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1817 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1818 unsigned int val;
1819 unsigned int mask;
1820
1821 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1822 return -EINVAL;
1823 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1824 mask = e->mask << e->shift_l;
1825 if (e->shift_l != e->shift_r) {
1826 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1827 return -EINVAL;
1828 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1829 mask |= e->mask << e->shift_r;
1830 }
1831
1832 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1833 }
1834 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1835
1836 /**
1837 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1838 * @kcontrol: mixer control
1839 * @uinfo: control element information
1840 *
1841 * Callback to provide information about an external enumerated
1842 * single mixer.
1843 *
1844 * Returns 0 for success.
1845 */
1846 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1847 struct snd_ctl_elem_info *uinfo)
1848 {
1849 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1850
1851 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1852 uinfo->count = 1;
1853 uinfo->value.enumerated.items = e->max;
1854
1855 if (uinfo->value.enumerated.item > e->max - 1)
1856 uinfo->value.enumerated.item = e->max - 1;
1857 strcpy(uinfo->value.enumerated.name,
1858 e->texts[uinfo->value.enumerated.item]);
1859 return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1862
1863 /**
1864 * snd_soc_info_volsw_ext - external single mixer info callback
1865 * @kcontrol: mixer control
1866 * @uinfo: control element information
1867 *
1868 * Callback to provide information about a single external mixer control.
1869 *
1870 * Returns 0 for success.
1871 */
1872 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1873 struct snd_ctl_elem_info *uinfo)
1874 {
1875 int max = kcontrol->private_value;
1876
1877 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1878 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1879 else
1880 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1881
1882 uinfo->count = 1;
1883 uinfo->value.integer.min = 0;
1884 uinfo->value.integer.max = max;
1885 return 0;
1886 }
1887 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1888
1889 /**
1890 * snd_soc_info_volsw - single mixer info callback
1891 * @kcontrol: mixer control
1892 * @uinfo: control element information
1893 *
1894 * Callback to provide information about a single mixer control.
1895 *
1896 * Returns 0 for success.
1897 */
1898 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1899 struct snd_ctl_elem_info *uinfo)
1900 {
1901 struct soc_mixer_control *mc =
1902 (struct soc_mixer_control *)kcontrol->private_value;
1903 int max = mc->max;
1904 unsigned int shift = mc->shift;
1905 unsigned int rshift = mc->rshift;
1906
1907 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1908 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1909 else
1910 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1911
1912 uinfo->count = shift == rshift ? 1 : 2;
1913 uinfo->value.integer.min = 0;
1914 uinfo->value.integer.max = max;
1915 return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1918
1919 /**
1920 * snd_soc_get_volsw - single mixer get callback
1921 * @kcontrol: mixer control
1922 * @ucontrol: control element information
1923 *
1924 * Callback to get the value of a single mixer control.
1925 *
1926 * Returns 0 for success.
1927 */
1928 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1929 struct snd_ctl_elem_value *ucontrol)
1930 {
1931 struct soc_mixer_control *mc =
1932 (struct soc_mixer_control *)kcontrol->private_value;
1933 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1934 unsigned int reg = mc->reg;
1935 unsigned int shift = mc->shift;
1936 unsigned int rshift = mc->rshift;
1937 int max = mc->max;
1938 unsigned int mask = (1 << fls(max)) - 1;
1939 unsigned int invert = mc->invert;
1940
1941 ucontrol->value.integer.value[0] =
1942 (snd_soc_read(codec, reg) >> shift) & mask;
1943 if (shift != rshift)
1944 ucontrol->value.integer.value[1] =
1945 (snd_soc_read(codec, reg) >> rshift) & mask;
1946 if (invert) {
1947 ucontrol->value.integer.value[0] =
1948 max - ucontrol->value.integer.value[0];
1949 if (shift != rshift)
1950 ucontrol->value.integer.value[1] =
1951 max - ucontrol->value.integer.value[1];
1952 }
1953
1954 return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1957
1958 /**
1959 * snd_soc_put_volsw - single mixer put callback
1960 * @kcontrol: mixer control
1961 * @ucontrol: control element information
1962 *
1963 * Callback to set the value of a single mixer control.
1964 *
1965 * Returns 0 for success.
1966 */
1967 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1968 struct snd_ctl_elem_value *ucontrol)
1969 {
1970 struct soc_mixer_control *mc =
1971 (struct soc_mixer_control *)kcontrol->private_value;
1972 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1973 unsigned int reg = mc->reg;
1974 unsigned int shift = mc->shift;
1975 unsigned int rshift = mc->rshift;
1976 int max = mc->max;
1977 unsigned int mask = (1 << fls(max)) - 1;
1978 unsigned int invert = mc->invert;
1979 unsigned int val, val2, val_mask;
1980
1981 val = (ucontrol->value.integer.value[0] & mask);
1982 if (invert)
1983 val = max - val;
1984 val_mask = mask << shift;
1985 val = val << shift;
1986 if (shift != rshift) {
1987 val2 = (ucontrol->value.integer.value[1] & mask);
1988 if (invert)
1989 val2 = max - val2;
1990 val_mask |= mask << rshift;
1991 val |= val2 << rshift;
1992 }
1993 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
1994 }
1995 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1996
1997 /**
1998 * snd_soc_info_volsw_2r - double mixer info callback
1999 * @kcontrol: mixer control
2000 * @uinfo: control element information
2001 *
2002 * Callback to provide information about a double mixer control that
2003 * spans 2 codec registers.
2004 *
2005 * Returns 0 for success.
2006 */
2007 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2008 struct snd_ctl_elem_info *uinfo)
2009 {
2010 struct soc_mixer_control *mc =
2011 (struct soc_mixer_control *)kcontrol->private_value;
2012 int max = mc->max;
2013
2014 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2015 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2016 else
2017 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2018
2019 uinfo->count = 2;
2020 uinfo->value.integer.min = 0;
2021 uinfo->value.integer.max = max;
2022 return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2025
2026 /**
2027 * snd_soc_get_volsw_2r - double mixer get callback
2028 * @kcontrol: mixer control
2029 * @ucontrol: control element information
2030 *
2031 * Callback to get the value of a double mixer control that spans 2 registers.
2032 *
2033 * Returns 0 for success.
2034 */
2035 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2036 struct snd_ctl_elem_value *ucontrol)
2037 {
2038 struct soc_mixer_control *mc =
2039 (struct soc_mixer_control *)kcontrol->private_value;
2040 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2041 unsigned int reg = mc->reg;
2042 unsigned int reg2 = mc->rreg;
2043 unsigned int shift = mc->shift;
2044 int max = mc->max;
2045 unsigned int mask = (1 << fls(max)) - 1;
2046 unsigned int invert = mc->invert;
2047
2048 ucontrol->value.integer.value[0] =
2049 (snd_soc_read(codec, reg) >> shift) & mask;
2050 ucontrol->value.integer.value[1] =
2051 (snd_soc_read(codec, reg2) >> shift) & mask;
2052 if (invert) {
2053 ucontrol->value.integer.value[0] =
2054 max - ucontrol->value.integer.value[0];
2055 ucontrol->value.integer.value[1] =
2056 max - ucontrol->value.integer.value[1];
2057 }
2058
2059 return 0;
2060 }
2061 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2062
2063 /**
2064 * snd_soc_put_volsw_2r - double mixer set callback
2065 * @kcontrol: mixer control
2066 * @ucontrol: control element information
2067 *
2068 * Callback to set the value of a double mixer control that spans 2 registers.
2069 *
2070 * Returns 0 for success.
2071 */
2072 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2073 struct snd_ctl_elem_value *ucontrol)
2074 {
2075 struct soc_mixer_control *mc =
2076 (struct soc_mixer_control *)kcontrol->private_value;
2077 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2078 unsigned int reg = mc->reg;
2079 unsigned int reg2 = mc->rreg;
2080 unsigned int shift = mc->shift;
2081 int max = mc->max;
2082 unsigned int mask = (1 << fls(max)) - 1;
2083 unsigned int invert = mc->invert;
2084 int err;
2085 unsigned int val, val2, val_mask;
2086
2087 val_mask = mask << shift;
2088 val = (ucontrol->value.integer.value[0] & mask);
2089 val2 = (ucontrol->value.integer.value[1] & mask);
2090
2091 if (invert) {
2092 val = max - val;
2093 val2 = max - val2;
2094 }
2095
2096 val = val << shift;
2097 val2 = val2 << shift;
2098
2099 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2100 if (err < 0)
2101 return err;
2102
2103 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2104 return err;
2105 }
2106 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2107
2108 /**
2109 * snd_soc_info_volsw_s8 - signed mixer info callback
2110 * @kcontrol: mixer control
2111 * @uinfo: control element information
2112 *
2113 * Callback to provide information about a signed mixer control.
2114 *
2115 * Returns 0 for success.
2116 */
2117 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2118 struct snd_ctl_elem_info *uinfo)
2119 {
2120 struct soc_mixer_control *mc =
2121 (struct soc_mixer_control *)kcontrol->private_value;
2122 int max = mc->max;
2123 int min = mc->min;
2124
2125 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2126 uinfo->count = 2;
2127 uinfo->value.integer.min = 0;
2128 uinfo->value.integer.max = max-min;
2129 return 0;
2130 }
2131 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2132
2133 /**
2134 * snd_soc_get_volsw_s8 - signed mixer get callback
2135 * @kcontrol: mixer control
2136 * @ucontrol: control element information
2137 *
2138 * Callback to get the value of a signed mixer control.
2139 *
2140 * Returns 0 for success.
2141 */
2142 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2143 struct snd_ctl_elem_value *ucontrol)
2144 {
2145 struct soc_mixer_control *mc =
2146 (struct soc_mixer_control *)kcontrol->private_value;
2147 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2148 unsigned int reg = mc->reg;
2149 int min = mc->min;
2150 int val = snd_soc_read(codec, reg);
2151
2152 ucontrol->value.integer.value[0] =
2153 ((signed char)(val & 0xff))-min;
2154 ucontrol->value.integer.value[1] =
2155 ((signed char)((val >> 8) & 0xff))-min;
2156 return 0;
2157 }
2158 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2159
2160 /**
2161 * snd_soc_put_volsw_sgn - signed mixer put callback
2162 * @kcontrol: mixer control
2163 * @ucontrol: control element information
2164 *
2165 * Callback to set the value of a signed mixer control.
2166 *
2167 * Returns 0 for success.
2168 */
2169 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2170 struct snd_ctl_elem_value *ucontrol)
2171 {
2172 struct soc_mixer_control *mc =
2173 (struct soc_mixer_control *)kcontrol->private_value;
2174 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2175 unsigned int reg = mc->reg;
2176 int min = mc->min;
2177 unsigned int val;
2178
2179 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2180 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2181
2182 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2183 }
2184 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2185
2186 /**
2187 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2188 * @dai: DAI
2189 * @clk_id: DAI specific clock ID
2190 * @freq: new clock frequency in Hz
2191 * @dir: new clock direction - input/output.
2192 *
2193 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2194 */
2195 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2196 unsigned int freq, int dir)
2197 {
2198 if (dai->ops && dai->ops->set_sysclk)
2199 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2200 else
2201 return -EINVAL;
2202 }
2203 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2204
2205 /**
2206 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2207 * @dai: DAI
2208 * @div_id: DAI specific clock divider ID
2209 * @div: new clock divisor.
2210 *
2211 * Configures the clock dividers. This is used to derive the best DAI bit and
2212 * frame clocks from the system or master clock. It's best to set the DAI bit
2213 * and frame clocks as low as possible to save system power.
2214 */
2215 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2216 int div_id, int div)
2217 {
2218 if (dai->ops && dai->ops->set_clkdiv)
2219 return dai->ops->set_clkdiv(dai, div_id, div);
2220 else
2221 return -EINVAL;
2222 }
2223 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2224
2225 /**
2226 * snd_soc_dai_set_pll - configure DAI PLL.
2227 * @dai: DAI
2228 * @pll_id: DAI specific PLL ID
2229 * @source: DAI specific source for the PLL
2230 * @freq_in: PLL input clock frequency in Hz
2231 * @freq_out: requested PLL output clock frequency in Hz
2232 *
2233 * Configures and enables PLL to generate output clock based on input clock.
2234 */
2235 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2236 unsigned int freq_in, unsigned int freq_out)
2237 {
2238 if (dai->ops && dai->ops->set_pll)
2239 return dai->ops->set_pll(dai, pll_id, source,
2240 freq_in, freq_out);
2241 else
2242 return -EINVAL;
2243 }
2244 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2245
2246 /**
2247 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2248 * @dai: DAI
2249 * @fmt: SND_SOC_DAIFMT_ format value.
2250 *
2251 * Configures the DAI hardware format and clocking.
2252 */
2253 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2254 {
2255 if (dai->ops && dai->ops->set_fmt)
2256 return dai->ops->set_fmt(dai, fmt);
2257 else
2258 return -EINVAL;
2259 }
2260 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2261
2262 /**
2263 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2264 * @dai: DAI
2265 * @tx_mask: bitmask representing active TX slots.
2266 * @rx_mask: bitmask representing active RX slots.
2267 * @slots: Number of slots in use.
2268 * @slot_width: Width in bits for each slot.
2269 *
2270 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2271 * specific.
2272 */
2273 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2274 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2275 {
2276 if (dai->ops && dai->ops->set_tdm_slot)
2277 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2278 slots, slot_width);
2279 else
2280 return -EINVAL;
2281 }
2282 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2283
2284 /**
2285 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2286 * @dai: DAI
2287 * @tx_num: how many TX channels
2288 * @tx_slot: pointer to an array which imply the TX slot number channel
2289 * 0~num-1 uses
2290 * @rx_num: how many RX channels
2291 * @rx_slot: pointer to an array which imply the RX slot number channel
2292 * 0~num-1 uses
2293 *
2294 * configure the relationship between channel number and TDM slot number.
2295 */
2296 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2297 unsigned int tx_num, unsigned int *tx_slot,
2298 unsigned int rx_num, unsigned int *rx_slot)
2299 {
2300 if (dai->ops && dai->ops->set_channel_map)
2301 return dai->ops->set_channel_map(dai, tx_num, tx_slot,
2302 rx_num, rx_slot);
2303 else
2304 return -EINVAL;
2305 }
2306 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2307
2308 /**
2309 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2310 * @dai: DAI
2311 * @tristate: tristate enable
2312 *
2313 * Tristates the DAI so that others can use it.
2314 */
2315 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2316 {
2317 if (dai->ops && dai->ops->set_tristate)
2318 return dai->ops->set_tristate(dai, tristate);
2319 else
2320 return -EINVAL;
2321 }
2322 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2323
2324 /**
2325 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2326 * @dai: DAI
2327 * @mute: mute enable
2328 *
2329 * Mutes the DAI DAC.
2330 */
2331 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2332 {
2333 if (dai->ops && dai->ops->digital_mute)
2334 return dai->ops->digital_mute(dai, mute);
2335 else
2336 return -EINVAL;
2337 }
2338 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2339
2340 /**
2341 * snd_soc_register_card - Register a card with the ASoC core
2342 *
2343 * @card: Card to register
2344 *
2345 * Note that currently this is an internal only function: it will be
2346 * exposed to machine drivers after further backporting of ASoC v2
2347 * registration APIs.
2348 */
2349 static int snd_soc_register_card(struct snd_soc_card *card)
2350 {
2351 if (!card->name || !card->dev)
2352 return -EINVAL;
2353
2354 INIT_LIST_HEAD(&card->list);
2355 card->instantiated = 0;
2356
2357 mutex_lock(&client_mutex);
2358 list_add(&card->list, &card_list);
2359 snd_soc_instantiate_cards();
2360 mutex_unlock(&client_mutex);
2361
2362 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2363
2364 return 0;
2365 }
2366
2367 /**
2368 * snd_soc_unregister_card - Unregister a card with the ASoC core
2369 *
2370 * @card: Card to unregister
2371 *
2372 * Note that currently this is an internal only function: it will be
2373 * exposed to machine drivers after further backporting of ASoC v2
2374 * registration APIs.
2375 */
2376 static int snd_soc_unregister_card(struct snd_soc_card *card)
2377 {
2378 mutex_lock(&client_mutex);
2379 list_del(&card->list);
2380 mutex_unlock(&client_mutex);
2381
2382 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2383
2384 return 0;
2385 }
2386
2387 /**
2388 * snd_soc_register_dai - Register a DAI with the ASoC core
2389 *
2390 * @dai: DAI to register
2391 */
2392 int snd_soc_register_dai(struct snd_soc_dai *dai)
2393 {
2394 if (!dai->name)
2395 return -EINVAL;
2396
2397 /* The device should become mandatory over time */
2398 if (!dai->dev)
2399 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2400
2401 if (!dai->ops)
2402 dai->ops = &null_dai_ops;
2403
2404 INIT_LIST_HEAD(&dai->list);
2405
2406 mutex_lock(&client_mutex);
2407 list_add(&dai->list, &dai_list);
2408 snd_soc_instantiate_cards();
2409 mutex_unlock(&client_mutex);
2410
2411 pr_debug("Registered DAI '%s'\n", dai->name);
2412
2413 return 0;
2414 }
2415 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2416
2417 /**
2418 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2419 *
2420 * @dai: DAI to unregister
2421 */
2422 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2423 {
2424 mutex_lock(&client_mutex);
2425 list_del(&dai->list);
2426 mutex_unlock(&client_mutex);
2427
2428 pr_debug("Unregistered DAI '%s'\n", dai->name);
2429 }
2430 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2431
2432 /**
2433 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2434 *
2435 * @dai: Array of DAIs to register
2436 * @count: Number of DAIs
2437 */
2438 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2439 {
2440 int i, ret;
2441
2442 for (i = 0; i < count; i++) {
2443 ret = snd_soc_register_dai(&dai[i]);
2444 if (ret != 0)
2445 goto err;
2446 }
2447
2448 return 0;
2449
2450 err:
2451 for (i--; i >= 0; i--)
2452 snd_soc_unregister_dai(&dai[i]);
2453
2454 return ret;
2455 }
2456 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2457
2458 /**
2459 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2460 *
2461 * @dai: Array of DAIs to unregister
2462 * @count: Number of DAIs
2463 */
2464 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2465 {
2466 int i;
2467
2468 for (i = 0; i < count; i++)
2469 snd_soc_unregister_dai(&dai[i]);
2470 }
2471 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2472
2473 /**
2474 * snd_soc_register_platform - Register a platform with the ASoC core
2475 *
2476 * @platform: platform to register
2477 */
2478 int snd_soc_register_platform(struct snd_soc_platform *platform)
2479 {
2480 if (!platform->name)
2481 return -EINVAL;
2482
2483 INIT_LIST_HEAD(&platform->list);
2484
2485 mutex_lock(&client_mutex);
2486 list_add(&platform->list, &platform_list);
2487 snd_soc_instantiate_cards();
2488 mutex_unlock(&client_mutex);
2489
2490 pr_debug("Registered platform '%s'\n", platform->name);
2491
2492 return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2495
2496 /**
2497 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2498 *
2499 * @platform: platform to unregister
2500 */
2501 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2502 {
2503 mutex_lock(&client_mutex);
2504 list_del(&platform->list);
2505 mutex_unlock(&client_mutex);
2506
2507 pr_debug("Unregistered platform '%s'\n", platform->name);
2508 }
2509 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2510
2511 static u64 codec_format_map[] = {
2512 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2513 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2514 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2515 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2516 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2517 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2518 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2519 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2520 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2521 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2522 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2523 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2524 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2525 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2526 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2527 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2528 };
2529
2530 /* Fix up the DAI formats for endianness: codecs don't actually see
2531 * the endianness of the data but we're using the CPU format
2532 * definitions which do need to include endianness so we ensure that
2533 * codec DAIs always have both big and little endian variants set.
2534 */
2535 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2536 {
2537 int i;
2538
2539 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2540 if (stream->formats & codec_format_map[i])
2541 stream->formats |= codec_format_map[i];
2542 }
2543
2544 /**
2545 * snd_soc_register_codec - Register a codec with the ASoC core
2546 *
2547 * @codec: codec to register
2548 */
2549 int snd_soc_register_codec(struct snd_soc_codec *codec)
2550 {
2551 int i;
2552
2553 if (!codec->name)
2554 return -EINVAL;
2555
2556 /* The device should become mandatory over time */
2557 if (!codec->dev)
2558 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2559
2560 INIT_LIST_HEAD(&codec->list);
2561
2562 for (i = 0; i < codec->num_dai; i++) {
2563 fixup_codec_formats(&codec->dai[i].playback);
2564 fixup_codec_formats(&codec->dai[i].capture);
2565 }
2566
2567 mutex_lock(&client_mutex);
2568 list_add(&codec->list, &codec_list);
2569 snd_soc_instantiate_cards();
2570 mutex_unlock(&client_mutex);
2571
2572 pr_debug("Registered codec '%s'\n", codec->name);
2573
2574 return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2577
2578 /**
2579 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2580 *
2581 * @codec: codec to unregister
2582 */
2583 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2584 {
2585 mutex_lock(&client_mutex);
2586 list_del(&codec->list);
2587 mutex_unlock(&client_mutex);
2588
2589 pr_debug("Unregistered codec '%s'\n", codec->name);
2590 }
2591 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2592
2593 static int __init snd_soc_init(void)
2594 {
2595 #ifdef CONFIG_DEBUG_FS
2596 debugfs_root = debugfs_create_dir("asoc", NULL);
2597 if (IS_ERR(debugfs_root) || !debugfs_root) {
2598 printk(KERN_WARNING
2599 "ASoC: Failed to create debugfs directory\n");
2600 debugfs_root = NULL;
2601 }
2602 #endif
2603
2604 return platform_driver_register(&soc_driver);
2605 }
2606
2607 static void __exit snd_soc_exit(void)
2608 {
2609 #ifdef CONFIG_DEBUG_FS
2610 debugfs_remove_recursive(debugfs_root);
2611 #endif
2612 platform_driver_unregister(&soc_driver);
2613 }
2614
2615 module_init(snd_soc_init);
2616 module_exit(snd_soc_exit);
2617
2618 /* Module information */
2619 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2620 MODULE_DESCRIPTION("ALSA SoC Core");
2621 MODULE_LICENSE("GPL");
2622 MODULE_ALIAS("platform:soc-audio");