Merge branch 'master' into next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE 32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64 * This is a timeout to do a DAPM powerdown after a stream is closed().
65 * It can be used to eliminate pops between different playback streams, e.g.
66 * between two audio tracks.
67 */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /* returns the minimum number of bytes needed to represent
73 * a particular given value */
74 static int min_bytes_needed(unsigned long val)
75 {
76 int c = 0;
77 int i;
78
79 for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
80 if (val & (1UL << i))
81 break;
82 c = (sizeof val * 8) - c;
83 if (!c || (c % 8))
84 c = (c + 8) / 8;
85 else
86 c /= 8;
87 return c;
88 }
89
90 /* fill buf which is 'len' bytes with a formatted
91 * string of the form 'reg: value\n' */
92 static int format_register_str(struct snd_soc_codec *codec,
93 unsigned int reg, char *buf, size_t len)
94 {
95 int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
96 int regsize = codec->driver->reg_word_size * 2;
97 int ret;
98 char tmpbuf[len + 1];
99 char regbuf[regsize + 1];
100
101 /* since tmpbuf is allocated on the stack, warn the callers if they
102 * try to abuse this function */
103 WARN_ON(len > 63);
104
105 /* +2 for ': ' and + 1 for '\n' */
106 if (wordsize + regsize + 2 + 1 != len)
107 return -EINVAL;
108
109 ret = snd_soc_read(codec , reg);
110 if (ret < 0) {
111 memset(regbuf, 'X', regsize);
112 regbuf[regsize] = '\0';
113 } else {
114 snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
115 }
116
117 /* prepare the buffer */
118 snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
119 /* copy it back to the caller without the '\0' */
120 memcpy(buf, tmpbuf, len);
121
122 return 0;
123 }
124
125 /* codec register dump */
126 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
127 size_t count, loff_t pos)
128 {
129 int i, step = 1;
130 int wordsize, regsize;
131 int len;
132 size_t total = 0;
133 loff_t p = 0;
134
135 wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
136 regsize = codec->driver->reg_word_size * 2;
137
138 len = wordsize + regsize + 2 + 1;
139
140 if (!codec->driver->reg_cache_size)
141 return 0;
142
143 if (codec->driver->reg_cache_step)
144 step = codec->driver->reg_cache_step;
145
146 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
147 if (codec->readable_register && !codec->readable_register(codec, i))
148 continue;
149 if (codec->driver->display_register) {
150 count += codec->driver->display_register(codec, buf + count,
151 PAGE_SIZE - count, i);
152 } else {
153 /* only support larger than PAGE_SIZE bytes debugfs
154 * entries for the default case */
155 if (p >= pos) {
156 if (total + len >= count - 1)
157 break;
158 format_register_str(codec, i, buf + total, len);
159 total += len;
160 }
161 p += len;
162 }
163 }
164
165 total = min(total, count - 1);
166
167 return total;
168 }
169
170 static ssize_t codec_reg_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172 {
173 struct snd_soc_pcm_runtime *rtd =
174 container_of(dev, struct snd_soc_pcm_runtime, dev);
175
176 return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
177 }
178
179 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
180
181 static ssize_t pmdown_time_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct snd_soc_pcm_runtime *rtd =
185 container_of(dev, struct snd_soc_pcm_runtime, dev);
186
187 return sprintf(buf, "%ld\n", rtd->pmdown_time);
188 }
189
190 static ssize_t pmdown_time_set(struct device *dev,
191 struct device_attribute *attr,
192 const char *buf, size_t count)
193 {
194 struct snd_soc_pcm_runtime *rtd =
195 container_of(dev, struct snd_soc_pcm_runtime, dev);
196 int ret;
197
198 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
199 if (ret)
200 return ret;
201
202 return count;
203 }
204
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206
207 #ifdef CONFIG_DEBUG_FS
208 static int codec_reg_open_file(struct inode *inode, struct file *file)
209 {
210 file->private_data = inode->i_private;
211 return 0;
212 }
213
214 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
215 size_t count, loff_t *ppos)
216 {
217 ssize_t ret;
218 struct snd_soc_codec *codec = file->private_data;
219 char *buf;
220
221 if (*ppos < 0 || !count)
222 return -EINVAL;
223
224 buf = kmalloc(count, GFP_KERNEL);
225 if (!buf)
226 return -ENOMEM;
227
228 ret = soc_codec_reg_show(codec, buf, count, *ppos);
229 if (ret >= 0) {
230 if (copy_to_user(user_buf, buf, ret)) {
231 kfree(buf);
232 return -EFAULT;
233 }
234 *ppos += ret;
235 }
236
237 kfree(buf);
238 return ret;
239 }
240
241 static ssize_t codec_reg_write_file(struct file *file,
242 const char __user *user_buf, size_t count, loff_t *ppos)
243 {
244 char buf[32];
245 int buf_size;
246 char *start = buf;
247 unsigned long reg, value;
248 int step = 1;
249 struct snd_soc_codec *codec = file->private_data;
250
251 buf_size = min(count, (sizeof(buf)-1));
252 if (copy_from_user(buf, user_buf, buf_size))
253 return -EFAULT;
254 buf[buf_size] = 0;
255
256 if (codec->driver->reg_cache_step)
257 step = codec->driver->reg_cache_step;
258
259 while (*start == ' ')
260 start++;
261 reg = simple_strtoul(start, &start, 16);
262 while (*start == ' ')
263 start++;
264 if (strict_strtoul(start, 16, &value))
265 return -EINVAL;
266
267 /* Userspace has been fiddling around behind the kernel's back */
268 add_taint(TAINT_USER);
269
270 snd_soc_write(codec, reg, value);
271 return buf_size;
272 }
273
274 static const struct file_operations codec_reg_fops = {
275 .open = codec_reg_open_file,
276 .read = codec_reg_read_file,
277 .write = codec_reg_write_file,
278 .llseek = default_llseek,
279 };
280
281 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
282 {
283 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
284
285 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
286 debugfs_card_root);
287 if (!codec->debugfs_codec_root) {
288 printk(KERN_WARNING
289 "ASoC: Failed to create codec debugfs directory\n");
290 return;
291 }
292
293 debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
294 &codec->cache_sync);
295 debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
296 &codec->cache_only);
297
298 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
299 codec->debugfs_codec_root,
300 codec, &codec_reg_fops);
301 if (!codec->debugfs_reg)
302 printk(KERN_WARNING
303 "ASoC: Failed to create codec register debugfs file\n");
304
305 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
306 codec->debugfs_codec_root);
307 if (!codec->dapm.debugfs_dapm)
308 printk(KERN_WARNING
309 "Failed to create DAPM debugfs directory\n");
310
311 snd_soc_dapm_debugfs_init(&codec->dapm);
312 }
313
314 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
315 {
316 debugfs_remove_recursive(codec->debugfs_codec_root);
317 }
318
319 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
320 size_t count, loff_t *ppos)
321 {
322 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
323 ssize_t len, ret = 0;
324 struct snd_soc_codec *codec;
325
326 if (!buf)
327 return -ENOMEM;
328
329 list_for_each_entry(codec, &codec_list, list) {
330 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
331 codec->name);
332 if (len >= 0)
333 ret += len;
334 if (ret > PAGE_SIZE) {
335 ret = PAGE_SIZE;
336 break;
337 }
338 }
339
340 if (ret >= 0)
341 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
342
343 kfree(buf);
344
345 return ret;
346 }
347
348 static const struct file_operations codec_list_fops = {
349 .read = codec_list_read_file,
350 .llseek = default_llseek,/* read accesses f_pos */
351 };
352
353 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
354 size_t count, loff_t *ppos)
355 {
356 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
357 ssize_t len, ret = 0;
358 struct snd_soc_dai *dai;
359
360 if (!buf)
361 return -ENOMEM;
362
363 list_for_each_entry(dai, &dai_list, list) {
364 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
365 if (len >= 0)
366 ret += len;
367 if (ret > PAGE_SIZE) {
368 ret = PAGE_SIZE;
369 break;
370 }
371 }
372
373 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
374
375 kfree(buf);
376
377 return ret;
378 }
379
380 static const struct file_operations dai_list_fops = {
381 .read = dai_list_read_file,
382 .llseek = default_llseek,/* read accesses f_pos */
383 };
384
385 static ssize_t platform_list_read_file(struct file *file,
386 char __user *user_buf,
387 size_t count, loff_t *ppos)
388 {
389 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
390 ssize_t len, ret = 0;
391 struct snd_soc_platform *platform;
392
393 if (!buf)
394 return -ENOMEM;
395
396 list_for_each_entry(platform, &platform_list, list) {
397 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
398 platform->name);
399 if (len >= 0)
400 ret += len;
401 if (ret > PAGE_SIZE) {
402 ret = PAGE_SIZE;
403 break;
404 }
405 }
406
407 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
408
409 kfree(buf);
410
411 return ret;
412 }
413
414 static const struct file_operations platform_list_fops = {
415 .read = platform_list_read_file,
416 .llseek = default_llseek,/* read accesses f_pos */
417 };
418
419 static void soc_init_card_debugfs(struct snd_soc_card *card)
420 {
421 card->debugfs_card_root = debugfs_create_dir(card->name,
422 snd_soc_debugfs_root);
423 if (!card->debugfs_card_root) {
424 dev_warn(card->dev,
425 "ASoC: Failed to create codec debugfs directory\n");
426 return;
427 }
428
429 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
430 card->debugfs_card_root,
431 &card->pop_time);
432 if (!card->debugfs_pop_time)
433 dev_warn(card->dev,
434 "Failed to create pop time debugfs file\n");
435 }
436
437 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
438 {
439 debugfs_remove_recursive(card->debugfs_card_root);
440 }
441
442 #else
443
444 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
445 {
446 }
447
448 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
449 {
450 }
451
452 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
453 {
454 }
455
456 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
457 {
458 }
459 #endif
460
461 #ifdef CONFIG_SND_SOC_AC97_BUS
462 /* unregister ac97 codec */
463 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
464 {
465 if (codec->ac97->dev.bus)
466 device_unregister(&codec->ac97->dev);
467 return 0;
468 }
469
470 /* stop no dev release warning */
471 static void soc_ac97_device_release(struct device *dev){}
472
473 /* register ac97 codec to bus */
474 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
475 {
476 int err;
477
478 codec->ac97->dev.bus = &ac97_bus_type;
479 codec->ac97->dev.parent = codec->card->dev;
480 codec->ac97->dev.release = soc_ac97_device_release;
481
482 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
483 codec->card->snd_card->number, 0, codec->name);
484 err = device_register(&codec->ac97->dev);
485 if (err < 0) {
486 snd_printk(KERN_ERR "Can't register ac97 bus\n");
487 codec->ac97->dev.bus = NULL;
488 return err;
489 }
490 return 0;
491 }
492 #endif
493
494 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
495 {
496 struct snd_soc_pcm_runtime *rtd = substream->private_data;
497 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
498 struct snd_soc_dai *codec_dai = rtd->codec_dai;
499 int ret;
500
501 if (!codec_dai->driver->symmetric_rates &&
502 !cpu_dai->driver->symmetric_rates &&
503 !rtd->dai_link->symmetric_rates)
504 return 0;
505
506 /* This can happen if multiple streams are starting simultaneously -
507 * the second can need to get its constraints before the first has
508 * picked a rate. Complain and allow the application to carry on.
509 */
510 if (!rtd->rate) {
511 dev_warn(&rtd->dev,
512 "Not enforcing symmetric_rates due to race\n");
513 return 0;
514 }
515
516 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n", rtd->rate);
517
518 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
519 SNDRV_PCM_HW_PARAM_RATE,
520 rtd->rate, rtd->rate);
521 if (ret < 0) {
522 dev_err(&rtd->dev,
523 "Unable to apply rate symmetry constraint: %d\n", ret);
524 return ret;
525 }
526
527 return 0;
528 }
529
530 /*
531 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
532 * then initialized and any private data can be allocated. This also calls
533 * startup for the cpu DAI, platform, machine and codec DAI.
534 */
535 static int soc_pcm_open(struct snd_pcm_substream *substream)
536 {
537 struct snd_soc_pcm_runtime *rtd = substream->private_data;
538 struct snd_pcm_runtime *runtime = substream->runtime;
539 struct snd_soc_platform *platform = rtd->platform;
540 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
541 struct snd_soc_dai *codec_dai = rtd->codec_dai;
542 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
543 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
544 int ret = 0;
545
546 mutex_lock(&pcm_mutex);
547
548 /* startup the audio subsystem */
549 if (cpu_dai->driver->ops->startup) {
550 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
551 if (ret < 0) {
552 printk(KERN_ERR "asoc: can't open interface %s\n",
553 cpu_dai->name);
554 goto out;
555 }
556 }
557
558 if (platform->driver->ops->open) {
559 ret = platform->driver->ops->open(substream);
560 if (ret < 0) {
561 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
562 goto platform_err;
563 }
564 }
565
566 if (codec_dai->driver->ops->startup) {
567 ret = codec_dai->driver->ops->startup(substream, codec_dai);
568 if (ret < 0) {
569 printk(KERN_ERR "asoc: can't open codec %s\n",
570 codec_dai->name);
571 goto codec_dai_err;
572 }
573 }
574
575 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
576 ret = rtd->dai_link->ops->startup(substream);
577 if (ret < 0) {
578 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
579 goto machine_err;
580 }
581 }
582
583 /* Check that the codec and cpu DAIs are compatible */
584 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
585 runtime->hw.rate_min =
586 max(codec_dai_drv->playback.rate_min,
587 cpu_dai_drv->playback.rate_min);
588 runtime->hw.rate_max =
589 min(codec_dai_drv->playback.rate_max,
590 cpu_dai_drv->playback.rate_max);
591 runtime->hw.channels_min =
592 max(codec_dai_drv->playback.channels_min,
593 cpu_dai_drv->playback.channels_min);
594 runtime->hw.channels_max =
595 min(codec_dai_drv->playback.channels_max,
596 cpu_dai_drv->playback.channels_max);
597 runtime->hw.formats =
598 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
599 runtime->hw.rates =
600 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
601 if (codec_dai_drv->playback.rates
602 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
603 runtime->hw.rates |= cpu_dai_drv->playback.rates;
604 if (cpu_dai_drv->playback.rates
605 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
606 runtime->hw.rates |= codec_dai_drv->playback.rates;
607 } else {
608 runtime->hw.rate_min =
609 max(codec_dai_drv->capture.rate_min,
610 cpu_dai_drv->capture.rate_min);
611 runtime->hw.rate_max =
612 min(codec_dai_drv->capture.rate_max,
613 cpu_dai_drv->capture.rate_max);
614 runtime->hw.channels_min =
615 max(codec_dai_drv->capture.channels_min,
616 cpu_dai_drv->capture.channels_min);
617 runtime->hw.channels_max =
618 min(codec_dai_drv->capture.channels_max,
619 cpu_dai_drv->capture.channels_max);
620 runtime->hw.formats =
621 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
622 runtime->hw.rates =
623 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
624 if (codec_dai_drv->capture.rates
625 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
626 runtime->hw.rates |= cpu_dai_drv->capture.rates;
627 if (cpu_dai_drv->capture.rates
628 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
629 runtime->hw.rates |= codec_dai_drv->capture.rates;
630 }
631
632 ret = -EINVAL;
633 snd_pcm_limit_hw_rates(runtime);
634 if (!runtime->hw.rates) {
635 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
636 codec_dai->name, cpu_dai->name);
637 goto config_err;
638 }
639 if (!runtime->hw.formats) {
640 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
641 codec_dai->name, cpu_dai->name);
642 goto config_err;
643 }
644 if (!runtime->hw.channels_min || !runtime->hw.channels_max ||
645 runtime->hw.channels_min > runtime->hw.channels_max) {
646 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
647 codec_dai->name, cpu_dai->name);
648 goto config_err;
649 }
650
651 /* Symmetry only applies if we've already got an active stream. */
652 if (cpu_dai->active || codec_dai->active) {
653 ret = soc_pcm_apply_symmetry(substream);
654 if (ret != 0)
655 goto config_err;
656 }
657
658 pr_debug("asoc: %s <-> %s info:\n",
659 codec_dai->name, cpu_dai->name);
660 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
661 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
662 runtime->hw.channels_max);
663 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
664 runtime->hw.rate_max);
665
666 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
667 cpu_dai->playback_active++;
668 codec_dai->playback_active++;
669 } else {
670 cpu_dai->capture_active++;
671 codec_dai->capture_active++;
672 }
673 cpu_dai->active++;
674 codec_dai->active++;
675 rtd->codec->active++;
676 mutex_unlock(&pcm_mutex);
677 return 0;
678
679 config_err:
680 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
681 rtd->dai_link->ops->shutdown(substream);
682
683 machine_err:
684 if (codec_dai->driver->ops->shutdown)
685 codec_dai->driver->ops->shutdown(substream, codec_dai);
686
687 codec_dai_err:
688 if (platform->driver->ops->close)
689 platform->driver->ops->close(substream);
690
691 platform_err:
692 if (cpu_dai->driver->ops->shutdown)
693 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
694 out:
695 mutex_unlock(&pcm_mutex);
696 return ret;
697 }
698
699 /*
700 * Power down the audio subsystem pmdown_time msecs after close is called.
701 * This is to ensure there are no pops or clicks in between any music tracks
702 * due to DAPM power cycling.
703 */
704 static void close_delayed_work(struct work_struct *work)
705 {
706 struct snd_soc_pcm_runtime *rtd =
707 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
708 struct snd_soc_dai *codec_dai = rtd->codec_dai;
709
710 mutex_lock(&pcm_mutex);
711
712 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
713 codec_dai->driver->playback.stream_name,
714 codec_dai->playback_active ? "active" : "inactive",
715 codec_dai->pop_wait ? "yes" : "no");
716
717 /* are we waiting on this codec DAI stream */
718 if (codec_dai->pop_wait == 1) {
719 codec_dai->pop_wait = 0;
720 snd_soc_dapm_stream_event(rtd,
721 codec_dai->driver->playback.stream_name,
722 SND_SOC_DAPM_STREAM_STOP);
723 }
724
725 mutex_unlock(&pcm_mutex);
726 }
727
728 /*
729 * Called by ALSA when a PCM substream is closed. Private data can be
730 * freed here. The cpu DAI, codec DAI, machine and platform are also
731 * shutdown.
732 */
733 static int soc_codec_close(struct snd_pcm_substream *substream)
734 {
735 struct snd_soc_pcm_runtime *rtd = substream->private_data;
736 struct snd_soc_platform *platform = rtd->platform;
737 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
738 struct snd_soc_dai *codec_dai = rtd->codec_dai;
739 struct snd_soc_codec *codec = rtd->codec;
740
741 mutex_lock(&pcm_mutex);
742
743 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
744 cpu_dai->playback_active--;
745 codec_dai->playback_active--;
746 } else {
747 cpu_dai->capture_active--;
748 codec_dai->capture_active--;
749 }
750
751 cpu_dai->active--;
752 codec_dai->active--;
753 codec->active--;
754
755 /* Muting the DAC suppresses artifacts caused during digital
756 * shutdown, for example from stopping clocks.
757 */
758 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
759 snd_soc_dai_digital_mute(codec_dai, 1);
760
761 if (cpu_dai->driver->ops->shutdown)
762 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
763
764 if (codec_dai->driver->ops->shutdown)
765 codec_dai->driver->ops->shutdown(substream, codec_dai);
766
767 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
768 rtd->dai_link->ops->shutdown(substream);
769
770 if (platform->driver->ops->close)
771 platform->driver->ops->close(substream);
772 cpu_dai->runtime = NULL;
773
774 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
775 /* start delayed pop wq here for playback streams */
776 codec_dai->pop_wait = 1;
777 schedule_delayed_work(&rtd->delayed_work,
778 msecs_to_jiffies(rtd->pmdown_time));
779 } else {
780 /* capture streams can be powered down now */
781 snd_soc_dapm_stream_event(rtd,
782 codec_dai->driver->capture.stream_name,
783 SND_SOC_DAPM_STREAM_STOP);
784 }
785
786 mutex_unlock(&pcm_mutex);
787 return 0;
788 }
789
790 /*
791 * Called by ALSA when the PCM substream is prepared, can set format, sample
792 * rate, etc. This function is non atomic and can be called multiple times,
793 * it can refer to the runtime info.
794 */
795 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
796 {
797 struct snd_soc_pcm_runtime *rtd = substream->private_data;
798 struct snd_soc_platform *platform = rtd->platform;
799 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
800 struct snd_soc_dai *codec_dai = rtd->codec_dai;
801 int ret = 0;
802
803 mutex_lock(&pcm_mutex);
804
805 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
806 ret = rtd->dai_link->ops->prepare(substream);
807 if (ret < 0) {
808 printk(KERN_ERR "asoc: machine prepare error\n");
809 goto out;
810 }
811 }
812
813 if (platform->driver->ops->prepare) {
814 ret = platform->driver->ops->prepare(substream);
815 if (ret < 0) {
816 printk(KERN_ERR "asoc: platform prepare error\n");
817 goto out;
818 }
819 }
820
821 if (codec_dai->driver->ops->prepare) {
822 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
823 if (ret < 0) {
824 printk(KERN_ERR "asoc: codec DAI prepare error\n");
825 goto out;
826 }
827 }
828
829 if (cpu_dai->driver->ops->prepare) {
830 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
831 if (ret < 0) {
832 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
833 goto out;
834 }
835 }
836
837 /* cancel any delayed stream shutdown that is pending */
838 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
839 codec_dai->pop_wait) {
840 codec_dai->pop_wait = 0;
841 cancel_delayed_work(&rtd->delayed_work);
842 }
843
844 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
845 snd_soc_dapm_stream_event(rtd,
846 codec_dai->driver->playback.stream_name,
847 SND_SOC_DAPM_STREAM_START);
848 else
849 snd_soc_dapm_stream_event(rtd,
850 codec_dai->driver->capture.stream_name,
851 SND_SOC_DAPM_STREAM_START);
852
853 snd_soc_dai_digital_mute(codec_dai, 0);
854
855 out:
856 mutex_unlock(&pcm_mutex);
857 return ret;
858 }
859
860 /*
861 * Called by ALSA when the hardware params are set by application. This
862 * function can also be called multiple times and can allocate buffers
863 * (using snd_pcm_lib_* ). It's non-atomic.
864 */
865 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
866 struct snd_pcm_hw_params *params)
867 {
868 struct snd_soc_pcm_runtime *rtd = substream->private_data;
869 struct snd_soc_platform *platform = rtd->platform;
870 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
871 struct snd_soc_dai *codec_dai = rtd->codec_dai;
872 int ret = 0;
873
874 mutex_lock(&pcm_mutex);
875
876 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
877 ret = rtd->dai_link->ops->hw_params(substream, params);
878 if (ret < 0) {
879 printk(KERN_ERR "asoc: machine hw_params failed\n");
880 goto out;
881 }
882 }
883
884 if (codec_dai->driver->ops->hw_params) {
885 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
886 if (ret < 0) {
887 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
888 codec_dai->name);
889 goto codec_err;
890 }
891 }
892
893 if (cpu_dai->driver->ops->hw_params) {
894 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
895 if (ret < 0) {
896 printk(KERN_ERR "asoc: interface %s hw params failed\n",
897 cpu_dai->name);
898 goto interface_err;
899 }
900 }
901
902 if (platform->driver->ops->hw_params) {
903 ret = platform->driver->ops->hw_params(substream, params);
904 if (ret < 0) {
905 printk(KERN_ERR "asoc: platform %s hw params failed\n",
906 platform->name);
907 goto platform_err;
908 }
909 }
910
911 rtd->rate = params_rate(params);
912
913 out:
914 mutex_unlock(&pcm_mutex);
915 return ret;
916
917 platform_err:
918 if (cpu_dai->driver->ops->hw_free)
919 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
920
921 interface_err:
922 if (codec_dai->driver->ops->hw_free)
923 codec_dai->driver->ops->hw_free(substream, codec_dai);
924
925 codec_err:
926 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
927 rtd->dai_link->ops->hw_free(substream);
928
929 mutex_unlock(&pcm_mutex);
930 return ret;
931 }
932
933 /*
934 * Frees resources allocated by hw_params, can be called multiple times
935 */
936 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
937 {
938 struct snd_soc_pcm_runtime *rtd = substream->private_data;
939 struct snd_soc_platform *platform = rtd->platform;
940 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
941 struct snd_soc_dai *codec_dai = rtd->codec_dai;
942 struct snd_soc_codec *codec = rtd->codec;
943
944 mutex_lock(&pcm_mutex);
945
946 /* apply codec digital mute */
947 if (!codec->active)
948 snd_soc_dai_digital_mute(codec_dai, 1);
949
950 /* free any machine hw params */
951 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
952 rtd->dai_link->ops->hw_free(substream);
953
954 /* free any DMA resources */
955 if (platform->driver->ops->hw_free)
956 platform->driver->ops->hw_free(substream);
957
958 /* now free hw params for the DAIs */
959 if (codec_dai->driver->ops->hw_free)
960 codec_dai->driver->ops->hw_free(substream, codec_dai);
961
962 if (cpu_dai->driver->ops->hw_free)
963 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
964
965 mutex_unlock(&pcm_mutex);
966 return 0;
967 }
968
969 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
970 {
971 struct snd_soc_pcm_runtime *rtd = substream->private_data;
972 struct snd_soc_platform *platform = rtd->platform;
973 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
974 struct snd_soc_dai *codec_dai = rtd->codec_dai;
975 int ret;
976
977 if (codec_dai->driver->ops->trigger) {
978 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
979 if (ret < 0)
980 return ret;
981 }
982
983 if (platform->driver->ops->trigger) {
984 ret = platform->driver->ops->trigger(substream, cmd);
985 if (ret < 0)
986 return ret;
987 }
988
989 if (cpu_dai->driver->ops->trigger) {
990 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
991 if (ret < 0)
992 return ret;
993 }
994 return 0;
995 }
996
997 /*
998 * soc level wrapper for pointer callback
999 * If cpu_dai, codec_dai, platform driver has the delay callback, than
1000 * the runtime->delay will be updated accordingly.
1001 */
1002 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
1003 {
1004 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1005 struct snd_soc_platform *platform = rtd->platform;
1006 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1007 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1008 struct snd_pcm_runtime *runtime = substream->runtime;
1009 snd_pcm_uframes_t offset = 0;
1010 snd_pcm_sframes_t delay = 0;
1011
1012 if (platform->driver->ops->pointer)
1013 offset = platform->driver->ops->pointer(substream);
1014
1015 if (cpu_dai->driver->ops->delay)
1016 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
1017
1018 if (codec_dai->driver->ops->delay)
1019 delay += codec_dai->driver->ops->delay(substream, codec_dai);
1020
1021 if (platform->driver->delay)
1022 delay += platform->driver->delay(substream, codec_dai);
1023
1024 runtime->delay = delay;
1025
1026 return offset;
1027 }
1028
1029 /* ASoC PCM operations */
1030 static struct snd_pcm_ops soc_pcm_ops = {
1031 .open = soc_pcm_open,
1032 .close = soc_codec_close,
1033 .hw_params = soc_pcm_hw_params,
1034 .hw_free = soc_pcm_hw_free,
1035 .prepare = soc_pcm_prepare,
1036 .trigger = soc_pcm_trigger,
1037 .pointer = soc_pcm_pointer,
1038 };
1039
1040 #ifdef CONFIG_PM_SLEEP
1041 /* powers down audio subsystem for suspend */
1042 int snd_soc_suspend(struct device *dev)
1043 {
1044 struct snd_soc_card *card = dev_get_drvdata(dev);
1045 struct snd_soc_codec *codec;
1046 int i;
1047
1048 /* If the initialization of this soc device failed, there is no codec
1049 * associated with it. Just bail out in this case.
1050 */
1051 if (list_empty(&card->codec_dev_list))
1052 return 0;
1053
1054 /* Due to the resume being scheduled into a workqueue we could
1055 * suspend before that's finished - wait for it to complete.
1056 */
1057 snd_power_lock(card->snd_card);
1058 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1059 snd_power_unlock(card->snd_card);
1060
1061 /* we're going to block userspace touching us until resume completes */
1062 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1063
1064 /* mute any active DACs */
1065 for (i = 0; i < card->num_rtd; i++) {
1066 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1067 struct snd_soc_dai_driver *drv = dai->driver;
1068
1069 if (card->rtd[i].dai_link->ignore_suspend)
1070 continue;
1071
1072 if (drv->ops->digital_mute && dai->playback_active)
1073 drv->ops->digital_mute(dai, 1);
1074 }
1075
1076 /* suspend all pcms */
1077 for (i = 0; i < card->num_rtd; i++) {
1078 if (card->rtd[i].dai_link->ignore_suspend)
1079 continue;
1080
1081 snd_pcm_suspend_all(card->rtd[i].pcm);
1082 }
1083
1084 if (card->suspend_pre)
1085 card->suspend_pre(card);
1086
1087 for (i = 0; i < card->num_rtd; i++) {
1088 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1089 struct snd_soc_platform *platform = card->rtd[i].platform;
1090
1091 if (card->rtd[i].dai_link->ignore_suspend)
1092 continue;
1093
1094 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1095 cpu_dai->driver->suspend(cpu_dai);
1096 if (platform->driver->suspend && !platform->suspended) {
1097 platform->driver->suspend(cpu_dai);
1098 platform->suspended = 1;
1099 }
1100 }
1101
1102 /* close any waiting streams and save state */
1103 for (i = 0; i < card->num_rtd; i++) {
1104 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1105 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1106 }
1107
1108 for (i = 0; i < card->num_rtd; i++) {
1109 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1110
1111 if (card->rtd[i].dai_link->ignore_suspend)
1112 continue;
1113
1114 if (driver->playback.stream_name != NULL)
1115 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1116 SND_SOC_DAPM_STREAM_SUSPEND);
1117
1118 if (driver->capture.stream_name != NULL)
1119 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1120 SND_SOC_DAPM_STREAM_SUSPEND);
1121 }
1122
1123 /* suspend all CODECs */
1124 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1125 /* If there are paths active then the CODEC will be held with
1126 * bias _ON and should not be suspended. */
1127 if (!codec->suspended && codec->driver->suspend) {
1128 switch (codec->dapm.bias_level) {
1129 case SND_SOC_BIAS_STANDBY:
1130 case SND_SOC_BIAS_OFF:
1131 codec->driver->suspend(codec, PMSG_SUSPEND);
1132 codec->suspended = 1;
1133 break;
1134 default:
1135 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1136 break;
1137 }
1138 }
1139 }
1140
1141 for (i = 0; i < card->num_rtd; i++) {
1142 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1143
1144 if (card->rtd[i].dai_link->ignore_suspend)
1145 continue;
1146
1147 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1148 cpu_dai->driver->suspend(cpu_dai);
1149 }
1150
1151 if (card->suspend_post)
1152 card->suspend_post(card);
1153
1154 return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(snd_soc_suspend);
1157
1158 /* deferred resume work, so resume can complete before we finished
1159 * setting our codec back up, which can be very slow on I2C
1160 */
1161 static void soc_resume_deferred(struct work_struct *work)
1162 {
1163 struct snd_soc_card *card =
1164 container_of(work, struct snd_soc_card, deferred_resume_work);
1165 struct snd_soc_codec *codec;
1166 int i;
1167
1168 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1169 * so userspace apps are blocked from touching us
1170 */
1171
1172 dev_dbg(card->dev, "starting resume work\n");
1173
1174 /* Bring us up into D2 so that DAPM starts enabling things */
1175 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1176
1177 if (card->resume_pre)
1178 card->resume_pre(card);
1179
1180 /* resume AC97 DAIs */
1181 for (i = 0; i < card->num_rtd; i++) {
1182 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1183
1184 if (card->rtd[i].dai_link->ignore_suspend)
1185 continue;
1186
1187 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1188 cpu_dai->driver->resume(cpu_dai);
1189 }
1190
1191 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1192 /* If the CODEC was idle over suspend then it will have been
1193 * left with bias OFF or STANDBY and suspended so we must now
1194 * resume. Otherwise the suspend was suppressed.
1195 */
1196 if (codec->driver->resume && codec->suspended) {
1197 switch (codec->dapm.bias_level) {
1198 case SND_SOC_BIAS_STANDBY:
1199 case SND_SOC_BIAS_OFF:
1200 codec->driver->resume(codec);
1201 codec->suspended = 0;
1202 break;
1203 default:
1204 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1205 break;
1206 }
1207 }
1208 }
1209
1210 for (i = 0; i < card->num_rtd; i++) {
1211 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1212
1213 if (card->rtd[i].dai_link->ignore_suspend)
1214 continue;
1215
1216 if (driver->playback.stream_name != NULL)
1217 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1218 SND_SOC_DAPM_STREAM_RESUME);
1219
1220 if (driver->capture.stream_name != NULL)
1221 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1222 SND_SOC_DAPM_STREAM_RESUME);
1223 }
1224
1225 /* unmute any active DACs */
1226 for (i = 0; i < card->num_rtd; i++) {
1227 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1228 struct snd_soc_dai_driver *drv = dai->driver;
1229
1230 if (card->rtd[i].dai_link->ignore_suspend)
1231 continue;
1232
1233 if (drv->ops->digital_mute && dai->playback_active)
1234 drv->ops->digital_mute(dai, 0);
1235 }
1236
1237 for (i = 0; i < card->num_rtd; i++) {
1238 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1239 struct snd_soc_platform *platform = card->rtd[i].platform;
1240
1241 if (card->rtd[i].dai_link->ignore_suspend)
1242 continue;
1243
1244 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1245 cpu_dai->driver->resume(cpu_dai);
1246 if (platform->driver->resume && platform->suspended) {
1247 platform->driver->resume(cpu_dai);
1248 platform->suspended = 0;
1249 }
1250 }
1251
1252 if (card->resume_post)
1253 card->resume_post(card);
1254
1255 dev_dbg(card->dev, "resume work completed\n");
1256
1257 /* userspace can access us now we are back as we were before */
1258 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1259 }
1260
1261 /* powers up audio subsystem after a suspend */
1262 int snd_soc_resume(struct device *dev)
1263 {
1264 struct snd_soc_card *card = dev_get_drvdata(dev);
1265 int i;
1266
1267 /* AC97 devices might have other drivers hanging off them so
1268 * need to resume immediately. Other drivers don't have that
1269 * problem and may take a substantial amount of time to resume
1270 * due to I/O costs and anti-pop so handle them out of line.
1271 */
1272 for (i = 0; i < card->num_rtd; i++) {
1273 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1274 if (cpu_dai->driver->ac97_control) {
1275 dev_dbg(dev, "Resuming AC97 immediately\n");
1276 soc_resume_deferred(&card->deferred_resume_work);
1277 } else {
1278 dev_dbg(dev, "Scheduling resume work\n");
1279 if (!schedule_work(&card->deferred_resume_work))
1280 dev_err(dev, "resume work item may be lost\n");
1281 }
1282 }
1283
1284 return 0;
1285 }
1286 EXPORT_SYMBOL_GPL(snd_soc_resume);
1287 #else
1288 #define snd_soc_suspend NULL
1289 #define snd_soc_resume NULL
1290 #endif
1291
1292 static struct snd_soc_dai_ops null_dai_ops = {
1293 };
1294
1295 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1296 {
1297 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1298 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1299 struct snd_soc_codec *codec;
1300 struct snd_soc_platform *platform;
1301 struct snd_soc_dai *codec_dai, *cpu_dai;
1302
1303 if (rtd->complete)
1304 return 1;
1305 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1306
1307 /* do we already have the CPU DAI for this link ? */
1308 if (rtd->cpu_dai) {
1309 goto find_codec;
1310 }
1311 /* no, then find CPU DAI from registered DAIs*/
1312 list_for_each_entry(cpu_dai, &dai_list, list) {
1313 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1314
1315 if (!try_module_get(cpu_dai->dev->driver->owner))
1316 return -ENODEV;
1317
1318 rtd->cpu_dai = cpu_dai;
1319 goto find_codec;
1320 }
1321 }
1322 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1323 dai_link->cpu_dai_name);
1324
1325 find_codec:
1326 /* do we already have the CODEC for this link ? */
1327 if (rtd->codec) {
1328 goto find_platform;
1329 }
1330
1331 /* no, then find CODEC from registered CODECs*/
1332 list_for_each_entry(codec, &codec_list, list) {
1333 if (!strcmp(codec->name, dai_link->codec_name)) {
1334 rtd->codec = codec;
1335
1336 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1337 list_for_each_entry(codec_dai, &dai_list, list) {
1338 if (codec->dev == codec_dai->dev &&
1339 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1340 rtd->codec_dai = codec_dai;
1341 goto find_platform;
1342 }
1343 }
1344 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1345 dai_link->codec_dai_name);
1346
1347 goto find_platform;
1348 }
1349 }
1350 dev_dbg(card->dev, "CODEC %s not registered\n",
1351 dai_link->codec_name);
1352
1353 find_platform:
1354 /* do we already have the CODEC DAI for this link ? */
1355 if (rtd->platform) {
1356 goto out;
1357 }
1358 /* no, then find CPU DAI from registered DAIs*/
1359 list_for_each_entry(platform, &platform_list, list) {
1360 if (!strcmp(platform->name, dai_link->platform_name)) {
1361 rtd->platform = platform;
1362 goto out;
1363 }
1364 }
1365
1366 dev_dbg(card->dev, "platform %s not registered\n",
1367 dai_link->platform_name);
1368 return 0;
1369
1370 out:
1371 /* mark rtd as complete if we found all 4 of our client devices */
1372 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1373 rtd->complete = 1;
1374 card->num_rtd++;
1375 }
1376 return 1;
1377 }
1378
1379 static void soc_remove_codec(struct snd_soc_codec *codec)
1380 {
1381 int err;
1382
1383 if (codec->driver->remove) {
1384 err = codec->driver->remove(codec);
1385 if (err < 0)
1386 dev_err(codec->dev,
1387 "asoc: failed to remove %s: %d\n",
1388 codec->name, err);
1389 }
1390
1391 /* Make sure all DAPM widgets are freed */
1392 snd_soc_dapm_free(&codec->dapm);
1393
1394 soc_cleanup_codec_debugfs(codec);
1395 codec->probed = 0;
1396 list_del(&codec->card_list);
1397 module_put(codec->dev->driver->owner);
1398 }
1399
1400 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1401 {
1402 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1403 struct snd_soc_codec *codec = rtd->codec;
1404 struct snd_soc_platform *platform = rtd->platform;
1405 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1406 int err;
1407
1408 /* unregister the rtd device */
1409 if (rtd->dev_registered) {
1410 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1411 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1412 device_unregister(&rtd->dev);
1413 rtd->dev_registered = 0;
1414 }
1415
1416 /* remove the CODEC DAI */
1417 if (codec_dai && codec_dai->probed) {
1418 if (codec_dai->driver->remove) {
1419 err = codec_dai->driver->remove(codec_dai);
1420 if (err < 0)
1421 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1422 }
1423 codec_dai->probed = 0;
1424 list_del(&codec_dai->card_list);
1425 }
1426
1427 /* remove the platform */
1428 if (platform && platform->probed) {
1429 if (platform->driver->remove) {
1430 err = platform->driver->remove(platform);
1431 if (err < 0)
1432 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1433 }
1434 platform->probed = 0;
1435 list_del(&platform->card_list);
1436 module_put(platform->dev->driver->owner);
1437 }
1438
1439 /* remove the CODEC */
1440 if (codec && codec->probed)
1441 soc_remove_codec(codec);
1442
1443 /* remove the cpu_dai */
1444 if (cpu_dai && cpu_dai->probed) {
1445 if (cpu_dai->driver->remove) {
1446 err = cpu_dai->driver->remove(cpu_dai);
1447 if (err < 0)
1448 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1449 }
1450 cpu_dai->probed = 0;
1451 list_del(&cpu_dai->card_list);
1452 module_put(cpu_dai->dev->driver->owner);
1453 }
1454 }
1455
1456 static void soc_set_name_prefix(struct snd_soc_card *card,
1457 struct snd_soc_codec *codec)
1458 {
1459 int i;
1460
1461 if (card->codec_conf == NULL)
1462 return;
1463
1464 for (i = 0; i < card->num_configs; i++) {
1465 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1466 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1467 codec->name_prefix = map->name_prefix;
1468 break;
1469 }
1470 }
1471 }
1472
1473 static int soc_probe_codec(struct snd_soc_card *card,
1474 struct snd_soc_codec *codec)
1475 {
1476 int ret = 0;
1477 const struct snd_soc_codec_driver *driver = codec->driver;
1478
1479 codec->card = card;
1480 codec->dapm.card = card;
1481 soc_set_name_prefix(card, codec);
1482
1483 if (!try_module_get(codec->dev->driver->owner))
1484 return -ENODEV;
1485
1486 if (driver->probe) {
1487 ret = driver->probe(codec);
1488 if (ret < 0) {
1489 dev_err(codec->dev,
1490 "asoc: failed to probe CODEC %s: %d\n",
1491 codec->name, ret);
1492 goto err_probe;
1493 }
1494 }
1495
1496 if (driver->dapm_widgets)
1497 snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets,
1498 driver->num_dapm_widgets);
1499 if (driver->dapm_routes)
1500 snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1501 driver->num_dapm_routes);
1502
1503 soc_init_codec_debugfs(codec);
1504
1505 /* mark codec as probed and add to card codec list */
1506 codec->probed = 1;
1507 list_add(&codec->card_list, &card->codec_dev_list);
1508 list_add(&codec->dapm.list, &card->dapm_list);
1509
1510 return 0;
1511
1512 err_probe:
1513 module_put(codec->dev->driver->owner);
1514
1515 return ret;
1516 }
1517
1518 static void rtd_release(struct device *dev) {}
1519
1520 static int soc_post_component_init(struct snd_soc_card *card,
1521 struct snd_soc_codec *codec,
1522 int num, int dailess)
1523 {
1524 struct snd_soc_dai_link *dai_link = NULL;
1525 struct snd_soc_aux_dev *aux_dev = NULL;
1526 struct snd_soc_pcm_runtime *rtd;
1527 const char *temp, *name;
1528 int ret = 0;
1529
1530 if (!dailess) {
1531 dai_link = &card->dai_link[num];
1532 rtd = &card->rtd[num];
1533 name = dai_link->name;
1534 } else {
1535 aux_dev = &card->aux_dev[num];
1536 rtd = &card->rtd_aux[num];
1537 name = aux_dev->name;
1538 }
1539 rtd->card = card;
1540
1541 /* machine controls, routes and widgets are not prefixed */
1542 temp = codec->name_prefix;
1543 codec->name_prefix = NULL;
1544
1545 /* do machine specific initialization */
1546 if (!dailess && dai_link->init)
1547 ret = dai_link->init(rtd);
1548 else if (dailess && aux_dev->init)
1549 ret = aux_dev->init(&codec->dapm);
1550 if (ret < 0) {
1551 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1552 return ret;
1553 }
1554 codec->name_prefix = temp;
1555
1556 /* Make sure all DAPM widgets are instantiated */
1557 snd_soc_dapm_new_widgets(&codec->dapm);
1558
1559 /* register the rtd device */
1560 rtd->codec = codec;
1561 rtd->dev.parent = card->dev;
1562 rtd->dev.release = rtd_release;
1563 rtd->dev.init_name = name;
1564 ret = device_register(&rtd->dev);
1565 if (ret < 0) {
1566 dev_err(card->dev,
1567 "asoc: failed to register runtime device: %d\n", ret);
1568 return ret;
1569 }
1570 rtd->dev_registered = 1;
1571
1572 /* add DAPM sysfs entries for this codec */
1573 ret = snd_soc_dapm_sys_add(&rtd->dev);
1574 if (ret < 0)
1575 dev_err(codec->dev,
1576 "asoc: failed to add codec dapm sysfs entries: %d\n",
1577 ret);
1578
1579 /* add codec sysfs entries */
1580 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1581 if (ret < 0)
1582 dev_err(codec->dev,
1583 "asoc: failed to add codec sysfs files: %d\n", ret);
1584
1585 return 0;
1586 }
1587
1588 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1589 {
1590 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1591 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1592 struct snd_soc_codec *codec = rtd->codec;
1593 struct snd_soc_platform *platform = rtd->platform;
1594 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1595 int ret;
1596
1597 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1598
1599 /* config components */
1600 codec_dai->codec = codec;
1601 cpu_dai->platform = platform;
1602 codec_dai->card = card;
1603 cpu_dai->card = card;
1604
1605 /* set default power off timeout */
1606 rtd->pmdown_time = pmdown_time;
1607
1608 /* probe the cpu_dai */
1609 if (!cpu_dai->probed) {
1610 if (cpu_dai->driver->probe) {
1611 ret = cpu_dai->driver->probe(cpu_dai);
1612 if (ret < 0) {
1613 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1614 cpu_dai->name);
1615 return ret;
1616 }
1617 }
1618 cpu_dai->probed = 1;
1619 /* mark cpu_dai as probed and add to card cpu_dai list */
1620 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1621 }
1622
1623 /* probe the CODEC */
1624 if (!codec->probed) {
1625 ret = soc_probe_codec(card, codec);
1626 if (ret < 0)
1627 return ret;
1628 }
1629
1630 /* probe the platform */
1631 if (!platform->probed) {
1632 if (!try_module_get(platform->dev->driver->owner))
1633 return -ENODEV;
1634
1635 if (platform->driver->probe) {
1636 ret = platform->driver->probe(platform);
1637 if (ret < 0) {
1638 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1639 platform->name);
1640 module_put(platform->dev->driver->owner);
1641 return ret;
1642 }
1643 }
1644 /* mark platform as probed and add to card platform list */
1645 platform->probed = 1;
1646 list_add(&platform->card_list, &card->platform_dev_list);
1647 }
1648
1649 /* probe the CODEC DAI */
1650 if (!codec_dai->probed) {
1651 if (codec_dai->driver->probe) {
1652 ret = codec_dai->driver->probe(codec_dai);
1653 if (ret < 0) {
1654 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1655 codec_dai->name);
1656 return ret;
1657 }
1658 }
1659
1660 /* mark cpu_dai as probed and add to card cpu_dai list */
1661 codec_dai->probed = 1;
1662 list_add(&codec_dai->card_list, &card->dai_dev_list);
1663 }
1664
1665 /* DAPM dai link stream work */
1666 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1667
1668 ret = soc_post_component_init(card, codec, num, 0);
1669 if (ret)
1670 return ret;
1671
1672 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1673 if (ret < 0)
1674 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1675
1676 /* create the pcm */
1677 ret = soc_new_pcm(rtd, num);
1678 if (ret < 0) {
1679 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1680 return ret;
1681 }
1682
1683 /* add platform data for AC97 devices */
1684 if (rtd->codec_dai->driver->ac97_control)
1685 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1686
1687 return 0;
1688 }
1689
1690 #ifdef CONFIG_SND_SOC_AC97_BUS
1691 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1692 {
1693 int ret;
1694
1695 /* Only instantiate AC97 if not already done by the adaptor
1696 * for the generic AC97 subsystem.
1697 */
1698 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1699 /*
1700 * It is possible that the AC97 device is already registered to
1701 * the device subsystem. This happens when the device is created
1702 * via snd_ac97_mixer(). Currently only SoC codec that does so
1703 * is the generic AC97 glue but others migh emerge.
1704 *
1705 * In those cases we don't try to register the device again.
1706 */
1707 if (!rtd->codec->ac97_created)
1708 return 0;
1709
1710 ret = soc_ac97_dev_register(rtd->codec);
1711 if (ret < 0) {
1712 printk(KERN_ERR "asoc: AC97 device register failed\n");
1713 return ret;
1714 }
1715
1716 rtd->codec->ac97_registered = 1;
1717 }
1718 return 0;
1719 }
1720
1721 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1722 {
1723 if (codec->ac97_registered) {
1724 soc_ac97_dev_unregister(codec);
1725 codec->ac97_registered = 0;
1726 }
1727 }
1728 #endif
1729
1730 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1731 {
1732 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1733 struct snd_soc_codec *codec;
1734 int ret = -ENODEV;
1735
1736 /* find CODEC from registered CODECs*/
1737 list_for_each_entry(codec, &codec_list, list) {
1738 if (!strcmp(codec->name, aux_dev->codec_name)) {
1739 if (codec->probed) {
1740 dev_err(codec->dev,
1741 "asoc: codec already probed");
1742 ret = -EBUSY;
1743 goto out;
1744 }
1745 goto found;
1746 }
1747 }
1748 /* codec not found */
1749 dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1750 goto out;
1751
1752 found:
1753 ret = soc_probe_codec(card, codec);
1754 if (ret < 0)
1755 return ret;
1756
1757 ret = soc_post_component_init(card, codec, num, 1);
1758
1759 out:
1760 return ret;
1761 }
1762
1763 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1764 {
1765 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1766 struct snd_soc_codec *codec = rtd->codec;
1767
1768 /* unregister the rtd device */
1769 if (rtd->dev_registered) {
1770 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1771 device_unregister(&rtd->dev);
1772 rtd->dev_registered = 0;
1773 }
1774
1775 if (codec && codec->probed)
1776 soc_remove_codec(codec);
1777 }
1778
1779 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1780 enum snd_soc_compress_type compress_type)
1781 {
1782 int ret;
1783
1784 if (codec->cache_init)
1785 return 0;
1786
1787 /* override the compress_type if necessary */
1788 if (compress_type && codec->compress_type != compress_type)
1789 codec->compress_type = compress_type;
1790 ret = snd_soc_cache_init(codec);
1791 if (ret < 0) {
1792 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1793 ret);
1794 return ret;
1795 }
1796 codec->cache_init = 1;
1797 return 0;
1798 }
1799
1800 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1801 {
1802 struct snd_soc_codec *codec;
1803 struct snd_soc_codec_conf *codec_conf;
1804 enum snd_soc_compress_type compress_type;
1805 int ret, i;
1806
1807 mutex_lock(&card->mutex);
1808
1809 if (card->instantiated) {
1810 mutex_unlock(&card->mutex);
1811 return;
1812 }
1813
1814 /* bind DAIs */
1815 for (i = 0; i < card->num_links; i++)
1816 soc_bind_dai_link(card, i);
1817
1818 /* bind completed ? */
1819 if (card->num_rtd != card->num_links) {
1820 mutex_unlock(&card->mutex);
1821 return;
1822 }
1823
1824 /* initialize the register cache for each available codec */
1825 list_for_each_entry(codec, &codec_list, list) {
1826 if (codec->cache_init)
1827 continue;
1828 /* by default we don't override the compress_type */
1829 compress_type = 0;
1830 /* check to see if we need to override the compress_type */
1831 for (i = 0; i < card->num_configs; ++i) {
1832 codec_conf = &card->codec_conf[i];
1833 if (!strcmp(codec->name, codec_conf->dev_name)) {
1834 compress_type = codec_conf->compress_type;
1835 if (compress_type && compress_type
1836 != codec->compress_type)
1837 break;
1838 }
1839 }
1840 ret = snd_soc_init_codec_cache(codec, compress_type);
1841 if (ret < 0) {
1842 mutex_unlock(&card->mutex);
1843 return;
1844 }
1845 }
1846
1847 /* card bind complete so register a sound card */
1848 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1849 card->owner, 0, &card->snd_card);
1850 if (ret < 0) {
1851 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1852 card->name);
1853 mutex_unlock(&card->mutex);
1854 return;
1855 }
1856 card->snd_card->dev = card->dev;
1857
1858 card->dapm.bias_level = SND_SOC_BIAS_OFF;
1859 card->dapm.dev = card->dev;
1860 card->dapm.card = card;
1861 list_add(&card->dapm.list, &card->dapm_list);
1862
1863 #ifdef CONFIG_PM_SLEEP
1864 /* deferred resume work */
1865 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1866 #endif
1867
1868 /* initialise the sound card only once */
1869 if (card->probe) {
1870 ret = card->probe(card);
1871 if (ret < 0)
1872 goto card_probe_error;
1873 }
1874
1875 for (i = 0; i < card->num_links; i++) {
1876 ret = soc_probe_dai_link(card, i);
1877 if (ret < 0) {
1878 pr_err("asoc: failed to instantiate card %s: %d\n",
1879 card->name, ret);
1880 goto probe_dai_err;
1881 }
1882 }
1883
1884 for (i = 0; i < card->num_aux_devs; i++) {
1885 ret = soc_probe_aux_dev(card, i);
1886 if (ret < 0) {
1887 pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1888 card->name, ret);
1889 goto probe_aux_dev_err;
1890 }
1891 }
1892
1893 if (card->dapm_widgets)
1894 snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1895 card->num_dapm_widgets);
1896 if (card->dapm_routes)
1897 snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1898 card->num_dapm_routes);
1899
1900 #ifdef CONFIG_DEBUG_FS
1901 card->dapm.debugfs_dapm = debugfs_create_dir("dapm",
1902 card->debugfs_card_root);
1903 if (!card->dapm.debugfs_dapm)
1904 printk(KERN_WARNING
1905 "Failed to create card DAPM debugfs directory\n");
1906
1907 snd_soc_dapm_debugfs_init(&card->dapm);
1908 #endif
1909
1910 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1911 "%s", card->name);
1912 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1913 "%s", card->name);
1914
1915 if (card->late_probe) {
1916 ret = card->late_probe(card);
1917 if (ret < 0) {
1918 dev_err(card->dev, "%s late_probe() failed: %d\n",
1919 card->name, ret);
1920 goto probe_aux_dev_err;
1921 }
1922 }
1923
1924 ret = snd_card_register(card->snd_card);
1925 if (ret < 0) {
1926 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1927 goto probe_aux_dev_err;
1928 }
1929
1930 #ifdef CONFIG_SND_SOC_AC97_BUS
1931 /* register any AC97 codecs */
1932 for (i = 0; i < card->num_rtd; i++) {
1933 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1934 if (ret < 0) {
1935 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1936 while (--i >= 0)
1937 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1938 goto probe_aux_dev_err;
1939 }
1940 }
1941 #endif
1942
1943 card->instantiated = 1;
1944 mutex_unlock(&card->mutex);
1945 return;
1946
1947 probe_aux_dev_err:
1948 for (i = 0; i < card->num_aux_devs; i++)
1949 soc_remove_aux_dev(card, i);
1950
1951 probe_dai_err:
1952 for (i = 0; i < card->num_links; i++)
1953 soc_remove_dai_link(card, i);
1954
1955 card_probe_error:
1956 if (card->remove)
1957 card->remove(card);
1958
1959 snd_card_free(card->snd_card);
1960
1961 mutex_unlock(&card->mutex);
1962 }
1963
1964 /*
1965 * Attempt to initialise any uninitialised cards. Must be called with
1966 * client_mutex.
1967 */
1968 static void snd_soc_instantiate_cards(void)
1969 {
1970 struct snd_soc_card *card;
1971 list_for_each_entry(card, &card_list, list)
1972 snd_soc_instantiate_card(card);
1973 }
1974
1975 /* probes a new socdev */
1976 static int soc_probe(struct platform_device *pdev)
1977 {
1978 struct snd_soc_card *card = platform_get_drvdata(pdev);
1979 int ret = 0;
1980
1981 /*
1982 * no card, so machine driver should be registering card
1983 * we should not be here in that case so ret error
1984 */
1985 if (!card)
1986 return -EINVAL;
1987
1988 /* Bodge while we unpick instantiation */
1989 card->dev = &pdev->dev;
1990
1991 ret = snd_soc_register_card(card);
1992 if (ret != 0) {
1993 dev_err(&pdev->dev, "Failed to register card\n");
1994 return ret;
1995 }
1996
1997 return 0;
1998 }
1999
2000 static int soc_cleanup_card_resources(struct snd_soc_card *card)
2001 {
2002 int i;
2003
2004 /* make sure any delayed work runs */
2005 for (i = 0; i < card->num_rtd; i++) {
2006 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2007 flush_delayed_work_sync(&rtd->delayed_work);
2008 }
2009
2010 /* remove auxiliary devices */
2011 for (i = 0; i < card->num_aux_devs; i++)
2012 soc_remove_aux_dev(card, i);
2013
2014 /* remove and free each DAI */
2015 for (i = 0; i < card->num_rtd; i++)
2016 soc_remove_dai_link(card, i);
2017
2018 soc_cleanup_card_debugfs(card);
2019
2020 /* remove the card */
2021 if (card->remove)
2022 card->remove(card);
2023
2024 kfree(card->rtd);
2025 snd_card_free(card->snd_card);
2026 return 0;
2027
2028 }
2029
2030 /* removes a socdev */
2031 static int soc_remove(struct platform_device *pdev)
2032 {
2033 struct snd_soc_card *card = platform_get_drvdata(pdev);
2034
2035 snd_soc_unregister_card(card);
2036 return 0;
2037 }
2038
2039 int snd_soc_poweroff(struct device *dev)
2040 {
2041 struct snd_soc_card *card = dev_get_drvdata(dev);
2042 int i;
2043
2044 if (!card->instantiated)
2045 return 0;
2046
2047 /* Flush out pmdown_time work - we actually do want to run it
2048 * now, we're shutting down so no imminent restart. */
2049 for (i = 0; i < card->num_rtd; i++) {
2050 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2051 flush_delayed_work_sync(&rtd->delayed_work);
2052 }
2053
2054 snd_soc_dapm_shutdown(card);
2055
2056 return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
2059
2060 const struct dev_pm_ops snd_soc_pm_ops = {
2061 .suspend = snd_soc_suspend,
2062 .resume = snd_soc_resume,
2063 .poweroff = snd_soc_poweroff,
2064 };
2065 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
2066
2067 /* ASoC platform driver */
2068 static struct platform_driver soc_driver = {
2069 .driver = {
2070 .name = "soc-audio",
2071 .owner = THIS_MODULE,
2072 .pm = &snd_soc_pm_ops,
2073 },
2074 .probe = soc_probe,
2075 .remove = soc_remove,
2076 };
2077
2078 /* create a new pcm */
2079 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
2080 {
2081 struct snd_soc_codec *codec = rtd->codec;
2082 struct snd_soc_platform *platform = rtd->platform;
2083 struct snd_soc_dai *codec_dai = rtd->codec_dai;
2084 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
2085 struct snd_pcm *pcm;
2086 char new_name[64];
2087 int ret = 0, playback = 0, capture = 0;
2088
2089 /* check client and interface hw capabilities */
2090 snprintf(new_name, sizeof(new_name), "%s %s-%d",
2091 rtd->dai_link->stream_name, codec_dai->name, num);
2092
2093 if (codec_dai->driver->playback.channels_min)
2094 playback = 1;
2095 if (codec_dai->driver->capture.channels_min)
2096 capture = 1;
2097
2098 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
2099 ret = snd_pcm_new(rtd->card->snd_card, new_name,
2100 num, playback, capture, &pcm);
2101 if (ret < 0) {
2102 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
2103 return ret;
2104 }
2105
2106 rtd->pcm = pcm;
2107 pcm->private_data = rtd;
2108 soc_pcm_ops.mmap = platform->driver->ops->mmap;
2109 soc_pcm_ops.pointer = platform->driver->ops->pointer;
2110 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2111 soc_pcm_ops.copy = platform->driver->ops->copy;
2112 soc_pcm_ops.silence = platform->driver->ops->silence;
2113 soc_pcm_ops.ack = platform->driver->ops->ack;
2114 soc_pcm_ops.page = platform->driver->ops->page;
2115
2116 if (playback)
2117 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2118
2119 if (capture)
2120 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2121
2122 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2123 if (ret < 0) {
2124 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2125 return ret;
2126 }
2127
2128 pcm->private_free = platform->driver->pcm_free;
2129 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2130 cpu_dai->name);
2131 return ret;
2132 }
2133
2134 /**
2135 * snd_soc_codec_volatile_register: Report if a register is volatile.
2136 *
2137 * @codec: CODEC to query.
2138 * @reg: Register to query.
2139 *
2140 * Boolean function indiciating if a CODEC register is volatile.
2141 */
2142 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
2143 unsigned int reg)
2144 {
2145 if (codec->volatile_register)
2146 return codec->volatile_register(codec, reg);
2147 else
2148 return 0;
2149 }
2150 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2151
2152 /**
2153 * snd_soc_new_ac97_codec - initailise AC97 device
2154 * @codec: audio codec
2155 * @ops: AC97 bus operations
2156 * @num: AC97 codec number
2157 *
2158 * Initialises AC97 codec resources for use by ad-hoc devices only.
2159 */
2160 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2161 struct snd_ac97_bus_ops *ops, int num)
2162 {
2163 mutex_lock(&codec->mutex);
2164
2165 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2166 if (codec->ac97 == NULL) {
2167 mutex_unlock(&codec->mutex);
2168 return -ENOMEM;
2169 }
2170
2171 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2172 if (codec->ac97->bus == NULL) {
2173 kfree(codec->ac97);
2174 codec->ac97 = NULL;
2175 mutex_unlock(&codec->mutex);
2176 return -ENOMEM;
2177 }
2178
2179 codec->ac97->bus->ops = ops;
2180 codec->ac97->num = num;
2181
2182 /*
2183 * Mark the AC97 device to be created by us. This way we ensure that the
2184 * device will be registered with the device subsystem later on.
2185 */
2186 codec->ac97_created = 1;
2187
2188 mutex_unlock(&codec->mutex);
2189 return 0;
2190 }
2191 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2192
2193 /**
2194 * snd_soc_free_ac97_codec - free AC97 codec device
2195 * @codec: audio codec
2196 *
2197 * Frees AC97 codec device resources.
2198 */
2199 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2200 {
2201 mutex_lock(&codec->mutex);
2202 #ifdef CONFIG_SND_SOC_AC97_BUS
2203 soc_unregister_ac97_dai_link(codec);
2204 #endif
2205 kfree(codec->ac97->bus);
2206 kfree(codec->ac97);
2207 codec->ac97 = NULL;
2208 codec->ac97_created = 0;
2209 mutex_unlock(&codec->mutex);
2210 }
2211 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2212
2213 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2214 {
2215 unsigned int ret;
2216
2217 ret = codec->read(codec, reg);
2218 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2219 trace_snd_soc_reg_read(codec, reg, ret);
2220
2221 return ret;
2222 }
2223 EXPORT_SYMBOL_GPL(snd_soc_read);
2224
2225 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2226 unsigned int reg, unsigned int val)
2227 {
2228 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2229 trace_snd_soc_reg_write(codec, reg, val);
2230 return codec->write(codec, reg, val);
2231 }
2232 EXPORT_SYMBOL_GPL(snd_soc_write);
2233
2234 /**
2235 * snd_soc_update_bits - update codec register bits
2236 * @codec: audio codec
2237 * @reg: codec register
2238 * @mask: register mask
2239 * @value: new value
2240 *
2241 * Writes new register value.
2242 *
2243 * Returns 1 for change, 0 for no change, or negative error code.
2244 */
2245 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2246 unsigned int mask, unsigned int value)
2247 {
2248 int change;
2249 unsigned int old, new;
2250 int ret;
2251
2252 ret = snd_soc_read(codec, reg);
2253 if (ret < 0)
2254 return ret;
2255
2256 old = ret;
2257 new = (old & ~mask) | value;
2258 change = old != new;
2259 if (change) {
2260 ret = snd_soc_write(codec, reg, new);
2261 if (ret < 0)
2262 return ret;
2263 }
2264
2265 return change;
2266 }
2267 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2268
2269 /**
2270 * snd_soc_update_bits_locked - update codec register bits
2271 * @codec: audio codec
2272 * @reg: codec register
2273 * @mask: register mask
2274 * @value: new value
2275 *
2276 * Writes new register value, and takes the codec mutex.
2277 *
2278 * Returns 1 for change else 0.
2279 */
2280 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2281 unsigned short reg, unsigned int mask,
2282 unsigned int value)
2283 {
2284 int change;
2285
2286 mutex_lock(&codec->mutex);
2287 change = snd_soc_update_bits(codec, reg, mask, value);
2288 mutex_unlock(&codec->mutex);
2289
2290 return change;
2291 }
2292 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2293
2294 /**
2295 * snd_soc_test_bits - test register for change
2296 * @codec: audio codec
2297 * @reg: codec register
2298 * @mask: register mask
2299 * @value: new value
2300 *
2301 * Tests a register with a new value and checks if the new value is
2302 * different from the old value.
2303 *
2304 * Returns 1 for change else 0.
2305 */
2306 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2307 unsigned int mask, unsigned int value)
2308 {
2309 int change;
2310 unsigned int old, new;
2311
2312 old = snd_soc_read(codec, reg);
2313 new = (old & ~mask) | value;
2314 change = old != new;
2315
2316 return change;
2317 }
2318 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2319
2320 /**
2321 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2322 * @substream: the pcm substream
2323 * @hw: the hardware parameters
2324 *
2325 * Sets the substream runtime hardware parameters.
2326 */
2327 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2328 const struct snd_pcm_hardware *hw)
2329 {
2330 struct snd_pcm_runtime *runtime = substream->runtime;
2331 runtime->hw.info = hw->info;
2332 runtime->hw.formats = hw->formats;
2333 runtime->hw.period_bytes_min = hw->period_bytes_min;
2334 runtime->hw.period_bytes_max = hw->period_bytes_max;
2335 runtime->hw.periods_min = hw->periods_min;
2336 runtime->hw.periods_max = hw->periods_max;
2337 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2338 runtime->hw.fifo_size = hw->fifo_size;
2339 return 0;
2340 }
2341 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2342
2343 /**
2344 * snd_soc_cnew - create new control
2345 * @_template: control template
2346 * @data: control private data
2347 * @long_name: control long name
2348 * @prefix: control name prefix
2349 *
2350 * Create a new mixer control from a template control.
2351 *
2352 * Returns 0 for success, else error.
2353 */
2354 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2355 void *data, char *long_name,
2356 const char *prefix)
2357 {
2358 struct snd_kcontrol_new template;
2359 struct snd_kcontrol *kcontrol;
2360 char *name = NULL;
2361 int name_len;
2362
2363 memcpy(&template, _template, sizeof(template));
2364 template.index = 0;
2365
2366 if (!long_name)
2367 long_name = template.name;
2368
2369 if (prefix) {
2370 name_len = strlen(long_name) + strlen(prefix) + 2;
2371 name = kmalloc(name_len, GFP_ATOMIC);
2372 if (!name)
2373 return NULL;
2374
2375 snprintf(name, name_len, "%s %s", prefix, long_name);
2376
2377 template.name = name;
2378 } else {
2379 template.name = long_name;
2380 }
2381
2382 kcontrol = snd_ctl_new1(&template, data);
2383
2384 kfree(name);
2385
2386 return kcontrol;
2387 }
2388 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2389
2390 /**
2391 * snd_soc_add_controls - add an array of controls to a codec.
2392 * Convienience function to add a list of controls. Many codecs were
2393 * duplicating this code.
2394 *
2395 * @codec: codec to add controls to
2396 * @controls: array of controls to add
2397 * @num_controls: number of elements in the array
2398 *
2399 * Return 0 for success, else error.
2400 */
2401 int snd_soc_add_controls(struct snd_soc_codec *codec,
2402 const struct snd_kcontrol_new *controls, int num_controls)
2403 {
2404 struct snd_card *card = codec->card->snd_card;
2405 int err, i;
2406
2407 for (i = 0; i < num_controls; i++) {
2408 const struct snd_kcontrol_new *control = &controls[i];
2409 err = snd_ctl_add(card, snd_soc_cnew(control, codec,
2410 control->name,
2411 codec->name_prefix));
2412 if (err < 0) {
2413 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2414 codec->name, control->name, err);
2415 return err;
2416 }
2417 }
2418
2419 return 0;
2420 }
2421 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2422
2423 /**
2424 * snd_soc_info_enum_double - enumerated double mixer info callback
2425 * @kcontrol: mixer control
2426 * @uinfo: control element information
2427 *
2428 * Callback to provide information about a double enumerated
2429 * mixer control.
2430 *
2431 * Returns 0 for success.
2432 */
2433 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2434 struct snd_ctl_elem_info *uinfo)
2435 {
2436 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2437
2438 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2439 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2440 uinfo->value.enumerated.items = e->max;
2441
2442 if (uinfo->value.enumerated.item > e->max - 1)
2443 uinfo->value.enumerated.item = e->max - 1;
2444 strcpy(uinfo->value.enumerated.name,
2445 e->texts[uinfo->value.enumerated.item]);
2446 return 0;
2447 }
2448 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2449
2450 /**
2451 * snd_soc_get_enum_double - enumerated double mixer get callback
2452 * @kcontrol: mixer control
2453 * @ucontrol: control element information
2454 *
2455 * Callback to get the value of a double enumerated mixer.
2456 *
2457 * Returns 0 for success.
2458 */
2459 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2460 struct snd_ctl_elem_value *ucontrol)
2461 {
2462 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2463 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2464 unsigned int val, bitmask;
2465
2466 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2467 ;
2468 val = snd_soc_read(codec, e->reg);
2469 ucontrol->value.enumerated.item[0]
2470 = (val >> e->shift_l) & (bitmask - 1);
2471 if (e->shift_l != e->shift_r)
2472 ucontrol->value.enumerated.item[1] =
2473 (val >> e->shift_r) & (bitmask - 1);
2474
2475 return 0;
2476 }
2477 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2478
2479 /**
2480 * snd_soc_put_enum_double - enumerated double mixer put callback
2481 * @kcontrol: mixer control
2482 * @ucontrol: control element information
2483 *
2484 * Callback to set the value of a double enumerated mixer.
2485 *
2486 * Returns 0 for success.
2487 */
2488 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2489 struct snd_ctl_elem_value *ucontrol)
2490 {
2491 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2492 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2493 unsigned int val;
2494 unsigned int mask, bitmask;
2495
2496 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2497 ;
2498 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2499 return -EINVAL;
2500 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2501 mask = (bitmask - 1) << e->shift_l;
2502 if (e->shift_l != e->shift_r) {
2503 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2504 return -EINVAL;
2505 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2506 mask |= (bitmask - 1) << e->shift_r;
2507 }
2508
2509 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2510 }
2511 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2512
2513 /**
2514 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2515 * @kcontrol: mixer control
2516 * @ucontrol: control element information
2517 *
2518 * Callback to get the value of a double semi enumerated mixer.
2519 *
2520 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2521 * used for handling bitfield coded enumeration for example.
2522 *
2523 * Returns 0 for success.
2524 */
2525 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2526 struct snd_ctl_elem_value *ucontrol)
2527 {
2528 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2529 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2530 unsigned int reg_val, val, mux;
2531
2532 reg_val = snd_soc_read(codec, e->reg);
2533 val = (reg_val >> e->shift_l) & e->mask;
2534 for (mux = 0; mux < e->max; mux++) {
2535 if (val == e->values[mux])
2536 break;
2537 }
2538 ucontrol->value.enumerated.item[0] = mux;
2539 if (e->shift_l != e->shift_r) {
2540 val = (reg_val >> e->shift_r) & e->mask;
2541 for (mux = 0; mux < e->max; mux++) {
2542 if (val == e->values[mux])
2543 break;
2544 }
2545 ucontrol->value.enumerated.item[1] = mux;
2546 }
2547
2548 return 0;
2549 }
2550 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2551
2552 /**
2553 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2554 * @kcontrol: mixer control
2555 * @ucontrol: control element information
2556 *
2557 * Callback to set the value of a double semi enumerated mixer.
2558 *
2559 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2560 * used for handling bitfield coded enumeration for example.
2561 *
2562 * Returns 0 for success.
2563 */
2564 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2565 struct snd_ctl_elem_value *ucontrol)
2566 {
2567 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2568 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2569 unsigned int val;
2570 unsigned int mask;
2571
2572 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2573 return -EINVAL;
2574 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2575 mask = e->mask << e->shift_l;
2576 if (e->shift_l != e->shift_r) {
2577 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2578 return -EINVAL;
2579 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2580 mask |= e->mask << e->shift_r;
2581 }
2582
2583 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2584 }
2585 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2586
2587 /**
2588 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2589 * @kcontrol: mixer control
2590 * @uinfo: control element information
2591 *
2592 * Callback to provide information about an external enumerated
2593 * single mixer.
2594 *
2595 * Returns 0 for success.
2596 */
2597 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2598 struct snd_ctl_elem_info *uinfo)
2599 {
2600 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2601
2602 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2603 uinfo->count = 1;
2604 uinfo->value.enumerated.items = e->max;
2605
2606 if (uinfo->value.enumerated.item > e->max - 1)
2607 uinfo->value.enumerated.item = e->max - 1;
2608 strcpy(uinfo->value.enumerated.name,
2609 e->texts[uinfo->value.enumerated.item]);
2610 return 0;
2611 }
2612 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2613
2614 /**
2615 * snd_soc_info_volsw_ext - external single mixer info callback
2616 * @kcontrol: mixer control
2617 * @uinfo: control element information
2618 *
2619 * Callback to provide information about a single external mixer control.
2620 *
2621 * Returns 0 for success.
2622 */
2623 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2624 struct snd_ctl_elem_info *uinfo)
2625 {
2626 int max = kcontrol->private_value;
2627
2628 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2629 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2630 else
2631 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2632
2633 uinfo->count = 1;
2634 uinfo->value.integer.min = 0;
2635 uinfo->value.integer.max = max;
2636 return 0;
2637 }
2638 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2639
2640 /**
2641 * snd_soc_info_volsw - single mixer info callback
2642 * @kcontrol: mixer control
2643 * @uinfo: control element information
2644 *
2645 * Callback to provide information about a single mixer control.
2646 *
2647 * Returns 0 for success.
2648 */
2649 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2650 struct snd_ctl_elem_info *uinfo)
2651 {
2652 struct soc_mixer_control *mc =
2653 (struct soc_mixer_control *)kcontrol->private_value;
2654 int platform_max;
2655 unsigned int shift = mc->shift;
2656 unsigned int rshift = mc->rshift;
2657
2658 if (!mc->platform_max)
2659 mc->platform_max = mc->max;
2660 platform_max = mc->platform_max;
2661
2662 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2663 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2664 else
2665 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2666
2667 uinfo->count = shift == rshift ? 1 : 2;
2668 uinfo->value.integer.min = 0;
2669 uinfo->value.integer.max = platform_max;
2670 return 0;
2671 }
2672 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2673
2674 /**
2675 * snd_soc_get_volsw - single mixer get callback
2676 * @kcontrol: mixer control
2677 * @ucontrol: control element information
2678 *
2679 * Callback to get the value of a single mixer control.
2680 *
2681 * Returns 0 for success.
2682 */
2683 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2684 struct snd_ctl_elem_value *ucontrol)
2685 {
2686 struct soc_mixer_control *mc =
2687 (struct soc_mixer_control *)kcontrol->private_value;
2688 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2689 unsigned int reg = mc->reg;
2690 unsigned int shift = mc->shift;
2691 unsigned int rshift = mc->rshift;
2692 int max = mc->max;
2693 unsigned int mask = (1 << fls(max)) - 1;
2694 unsigned int invert = mc->invert;
2695
2696 ucontrol->value.integer.value[0] =
2697 (snd_soc_read(codec, reg) >> shift) & mask;
2698 if (shift != rshift)
2699 ucontrol->value.integer.value[1] =
2700 (snd_soc_read(codec, reg) >> rshift) & mask;
2701 if (invert) {
2702 ucontrol->value.integer.value[0] =
2703 max - ucontrol->value.integer.value[0];
2704 if (shift != rshift)
2705 ucontrol->value.integer.value[1] =
2706 max - ucontrol->value.integer.value[1];
2707 }
2708
2709 return 0;
2710 }
2711 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2712
2713 /**
2714 * snd_soc_put_volsw - single mixer put callback
2715 * @kcontrol: mixer control
2716 * @ucontrol: control element information
2717 *
2718 * Callback to set the value of a single mixer control.
2719 *
2720 * Returns 0 for success.
2721 */
2722 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2723 struct snd_ctl_elem_value *ucontrol)
2724 {
2725 struct soc_mixer_control *mc =
2726 (struct soc_mixer_control *)kcontrol->private_value;
2727 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2728 unsigned int reg = mc->reg;
2729 unsigned int shift = mc->shift;
2730 unsigned int rshift = mc->rshift;
2731 int max = mc->max;
2732 unsigned int mask = (1 << fls(max)) - 1;
2733 unsigned int invert = mc->invert;
2734 unsigned int val, val2, val_mask;
2735
2736 val = (ucontrol->value.integer.value[0] & mask);
2737 if (invert)
2738 val = max - val;
2739 val_mask = mask << shift;
2740 val = val << shift;
2741 if (shift != rshift) {
2742 val2 = (ucontrol->value.integer.value[1] & mask);
2743 if (invert)
2744 val2 = max - val2;
2745 val_mask |= mask << rshift;
2746 val |= val2 << rshift;
2747 }
2748 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2749 }
2750 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2751
2752 /**
2753 * snd_soc_info_volsw_2r - double mixer info callback
2754 * @kcontrol: mixer control
2755 * @uinfo: control element information
2756 *
2757 * Callback to provide information about a double mixer control that
2758 * spans 2 codec registers.
2759 *
2760 * Returns 0 for success.
2761 */
2762 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2763 struct snd_ctl_elem_info *uinfo)
2764 {
2765 struct soc_mixer_control *mc =
2766 (struct soc_mixer_control *)kcontrol->private_value;
2767 int platform_max;
2768
2769 if (!mc->platform_max)
2770 mc->platform_max = mc->max;
2771 platform_max = mc->platform_max;
2772
2773 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2774 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2775 else
2776 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2777
2778 uinfo->count = 2;
2779 uinfo->value.integer.min = 0;
2780 uinfo->value.integer.max = platform_max;
2781 return 0;
2782 }
2783 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2784
2785 /**
2786 * snd_soc_get_volsw_2r - double mixer get callback
2787 * @kcontrol: mixer control
2788 * @ucontrol: control element information
2789 *
2790 * Callback to get the value of a double mixer control that spans 2 registers.
2791 *
2792 * Returns 0 for success.
2793 */
2794 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2795 struct snd_ctl_elem_value *ucontrol)
2796 {
2797 struct soc_mixer_control *mc =
2798 (struct soc_mixer_control *)kcontrol->private_value;
2799 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2800 unsigned int reg = mc->reg;
2801 unsigned int reg2 = mc->rreg;
2802 unsigned int shift = mc->shift;
2803 int max = mc->max;
2804 unsigned int mask = (1 << fls(max)) - 1;
2805 unsigned int invert = mc->invert;
2806
2807 ucontrol->value.integer.value[0] =
2808 (snd_soc_read(codec, reg) >> shift) & mask;
2809 ucontrol->value.integer.value[1] =
2810 (snd_soc_read(codec, reg2) >> shift) & mask;
2811 if (invert) {
2812 ucontrol->value.integer.value[0] =
2813 max - ucontrol->value.integer.value[0];
2814 ucontrol->value.integer.value[1] =
2815 max - ucontrol->value.integer.value[1];
2816 }
2817
2818 return 0;
2819 }
2820 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2821
2822 /**
2823 * snd_soc_put_volsw_2r - double mixer set callback
2824 * @kcontrol: mixer control
2825 * @ucontrol: control element information
2826 *
2827 * Callback to set the value of a double mixer control that spans 2 registers.
2828 *
2829 * Returns 0 for success.
2830 */
2831 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2832 struct snd_ctl_elem_value *ucontrol)
2833 {
2834 struct soc_mixer_control *mc =
2835 (struct soc_mixer_control *)kcontrol->private_value;
2836 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2837 unsigned int reg = mc->reg;
2838 unsigned int reg2 = mc->rreg;
2839 unsigned int shift = mc->shift;
2840 int max = mc->max;
2841 unsigned int mask = (1 << fls(max)) - 1;
2842 unsigned int invert = mc->invert;
2843 int err;
2844 unsigned int val, val2, val_mask;
2845
2846 val_mask = mask << shift;
2847 val = (ucontrol->value.integer.value[0] & mask);
2848 val2 = (ucontrol->value.integer.value[1] & mask);
2849
2850 if (invert) {
2851 val = max - val;
2852 val2 = max - val2;
2853 }
2854
2855 val = val << shift;
2856 val2 = val2 << shift;
2857
2858 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2859 if (err < 0)
2860 return err;
2861
2862 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2863 return err;
2864 }
2865 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2866
2867 /**
2868 * snd_soc_info_volsw_s8 - signed mixer info callback
2869 * @kcontrol: mixer control
2870 * @uinfo: control element information
2871 *
2872 * Callback to provide information about a signed mixer control.
2873 *
2874 * Returns 0 for success.
2875 */
2876 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2877 struct snd_ctl_elem_info *uinfo)
2878 {
2879 struct soc_mixer_control *mc =
2880 (struct soc_mixer_control *)kcontrol->private_value;
2881 int platform_max;
2882 int min = mc->min;
2883
2884 if (!mc->platform_max)
2885 mc->platform_max = mc->max;
2886 platform_max = mc->platform_max;
2887
2888 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2889 uinfo->count = 2;
2890 uinfo->value.integer.min = 0;
2891 uinfo->value.integer.max = platform_max - min;
2892 return 0;
2893 }
2894 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2895
2896 /**
2897 * snd_soc_get_volsw_s8 - signed mixer get callback
2898 * @kcontrol: mixer control
2899 * @ucontrol: control element information
2900 *
2901 * Callback to get the value of a signed mixer control.
2902 *
2903 * Returns 0 for success.
2904 */
2905 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2906 struct snd_ctl_elem_value *ucontrol)
2907 {
2908 struct soc_mixer_control *mc =
2909 (struct soc_mixer_control *)kcontrol->private_value;
2910 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2911 unsigned int reg = mc->reg;
2912 int min = mc->min;
2913 int val = snd_soc_read(codec, reg);
2914
2915 ucontrol->value.integer.value[0] =
2916 ((signed char)(val & 0xff))-min;
2917 ucontrol->value.integer.value[1] =
2918 ((signed char)((val >> 8) & 0xff))-min;
2919 return 0;
2920 }
2921 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2922
2923 /**
2924 * snd_soc_put_volsw_sgn - signed mixer put callback
2925 * @kcontrol: mixer control
2926 * @ucontrol: control element information
2927 *
2928 * Callback to set the value of a signed mixer control.
2929 *
2930 * Returns 0 for success.
2931 */
2932 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2933 struct snd_ctl_elem_value *ucontrol)
2934 {
2935 struct soc_mixer_control *mc =
2936 (struct soc_mixer_control *)kcontrol->private_value;
2937 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2938 unsigned int reg = mc->reg;
2939 int min = mc->min;
2940 unsigned int val;
2941
2942 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2943 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2944
2945 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2946 }
2947 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2948
2949 /**
2950 * snd_soc_limit_volume - Set new limit to an existing volume control.
2951 *
2952 * @codec: where to look for the control
2953 * @name: Name of the control
2954 * @max: new maximum limit
2955 *
2956 * Return 0 for success, else error.
2957 */
2958 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2959 const char *name, int max)
2960 {
2961 struct snd_card *card = codec->card->snd_card;
2962 struct snd_kcontrol *kctl;
2963 struct soc_mixer_control *mc;
2964 int found = 0;
2965 int ret = -EINVAL;
2966
2967 /* Sanity check for name and max */
2968 if (unlikely(!name || max <= 0))
2969 return -EINVAL;
2970
2971 list_for_each_entry(kctl, &card->controls, list) {
2972 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2973 found = 1;
2974 break;
2975 }
2976 }
2977 if (found) {
2978 mc = (struct soc_mixer_control *)kctl->private_value;
2979 if (max <= mc->max) {
2980 mc->platform_max = max;
2981 ret = 0;
2982 }
2983 }
2984 return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2987
2988 /**
2989 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2990 * mixer info callback
2991 * @kcontrol: mixer control
2992 * @uinfo: control element information
2993 *
2994 * Returns 0 for success.
2995 */
2996 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2997 struct snd_ctl_elem_info *uinfo)
2998 {
2999 struct soc_mixer_control *mc =
3000 (struct soc_mixer_control *)kcontrol->private_value;
3001 int max = mc->max;
3002 int min = mc->min;
3003
3004 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3005 uinfo->count = 2;
3006 uinfo->value.integer.min = 0;
3007 uinfo->value.integer.max = max-min;
3008
3009 return 0;
3010 }
3011 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
3012
3013 /**
3014 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
3015 * mixer get callback
3016 * @kcontrol: mixer control
3017 * @uinfo: control element information
3018 *
3019 * Returns 0 for success.
3020 */
3021 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3022 struct snd_ctl_elem_value *ucontrol)
3023 {
3024 struct soc_mixer_control *mc =
3025 (struct soc_mixer_control *)kcontrol->private_value;
3026 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3027 unsigned int mask = (1<<mc->shift)-1;
3028 int min = mc->min;
3029 int val = snd_soc_read(codec, mc->reg) & mask;
3030 int valr = snd_soc_read(codec, mc->rreg) & mask;
3031
3032 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
3033 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
3034 return 0;
3035 }
3036 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
3037
3038 /**
3039 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
3040 * mixer put callback
3041 * @kcontrol: mixer control
3042 * @uinfo: control element information
3043 *
3044 * Returns 0 for success.
3045 */
3046 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3047 struct snd_ctl_elem_value *ucontrol)
3048 {
3049 struct soc_mixer_control *mc =
3050 (struct soc_mixer_control *)kcontrol->private_value;
3051 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3052 unsigned int mask = (1<<mc->shift)-1;
3053 int min = mc->min;
3054 int ret;
3055 unsigned int val, valr, oval, ovalr;
3056
3057 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
3058 val &= mask;
3059 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
3060 valr &= mask;
3061
3062 oval = snd_soc_read(codec, mc->reg) & mask;
3063 ovalr = snd_soc_read(codec, mc->rreg) & mask;
3064
3065 ret = 0;
3066 if (oval != val) {
3067 ret = snd_soc_write(codec, mc->reg, val);
3068 if (ret < 0)
3069 return ret;
3070 }
3071 if (ovalr != valr) {
3072 ret = snd_soc_write(codec, mc->rreg, valr);
3073 if (ret < 0)
3074 return ret;
3075 }
3076
3077 return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
3080
3081 /**
3082 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3083 * @dai: DAI
3084 * @clk_id: DAI specific clock ID
3085 * @freq: new clock frequency in Hz
3086 * @dir: new clock direction - input/output.
3087 *
3088 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3089 */
3090 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3091 unsigned int freq, int dir)
3092 {
3093 if (dai->driver && dai->driver->ops->set_sysclk)
3094 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3095 else if (dai->codec && dai->codec->driver->set_sysclk)
3096 return dai->codec->driver->set_sysclk(dai->codec, clk_id,
3097 freq, dir);
3098 else
3099 return -EINVAL;
3100 }
3101 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3102
3103 /**
3104 * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3105 * @codec: CODEC
3106 * @clk_id: DAI specific clock ID
3107 * @freq: new clock frequency in Hz
3108 * @dir: new clock direction - input/output.
3109 *
3110 * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3111 */
3112 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3113 unsigned int freq, int dir)
3114 {
3115 if (codec->driver->set_sysclk)
3116 return codec->driver->set_sysclk(codec, clk_id, freq, dir);
3117 else
3118 return -EINVAL;
3119 }
3120 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3121
3122 /**
3123 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3124 * @dai: DAI
3125 * @div_id: DAI specific clock divider ID
3126 * @div: new clock divisor.
3127 *
3128 * Configures the clock dividers. This is used to derive the best DAI bit and
3129 * frame clocks from the system or master clock. It's best to set the DAI bit
3130 * and frame clocks as low as possible to save system power.
3131 */
3132 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3133 int div_id, int div)
3134 {
3135 if (dai->driver && dai->driver->ops->set_clkdiv)
3136 return dai->driver->ops->set_clkdiv(dai, div_id, div);
3137 else
3138 return -EINVAL;
3139 }
3140 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3141
3142 /**
3143 * snd_soc_dai_set_pll - configure DAI PLL.
3144 * @dai: DAI
3145 * @pll_id: DAI specific PLL ID
3146 * @source: DAI specific source for the PLL
3147 * @freq_in: PLL input clock frequency in Hz
3148 * @freq_out: requested PLL output clock frequency in Hz
3149 *
3150 * Configures and enables PLL to generate output clock based on input clock.
3151 */
3152 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3153 unsigned int freq_in, unsigned int freq_out)
3154 {
3155 if (dai->driver && dai->driver->ops->set_pll)
3156 return dai->driver->ops->set_pll(dai, pll_id, source,
3157 freq_in, freq_out);
3158 else if (dai->codec && dai->codec->driver->set_pll)
3159 return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3160 freq_in, freq_out);
3161 else
3162 return -EINVAL;
3163 }
3164 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3165
3166 /*
3167 * snd_soc_codec_set_pll - configure codec PLL.
3168 * @codec: CODEC
3169 * @pll_id: DAI specific PLL ID
3170 * @source: DAI specific source for the PLL
3171 * @freq_in: PLL input clock frequency in Hz
3172 * @freq_out: requested PLL output clock frequency in Hz
3173 *
3174 * Configures and enables PLL to generate output clock based on input clock.
3175 */
3176 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3177 unsigned int freq_in, unsigned int freq_out)
3178 {
3179 if (codec->driver->set_pll)
3180 return codec->driver->set_pll(codec, pll_id, source,
3181 freq_in, freq_out);
3182 else
3183 return -EINVAL;
3184 }
3185 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3186
3187 /**
3188 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3189 * @dai: DAI
3190 * @fmt: SND_SOC_DAIFMT_ format value.
3191 *
3192 * Configures the DAI hardware format and clocking.
3193 */
3194 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3195 {
3196 if (dai->driver && dai->driver->ops->set_fmt)
3197 return dai->driver->ops->set_fmt(dai, fmt);
3198 else
3199 return -EINVAL;
3200 }
3201 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3202
3203 /**
3204 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3205 * @dai: DAI
3206 * @tx_mask: bitmask representing active TX slots.
3207 * @rx_mask: bitmask representing active RX slots.
3208 * @slots: Number of slots in use.
3209 * @slot_width: Width in bits for each slot.
3210 *
3211 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3212 * specific.
3213 */
3214 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3215 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3216 {
3217 if (dai->driver && dai->driver->ops->set_tdm_slot)
3218 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3219 slots, slot_width);
3220 else
3221 return -EINVAL;
3222 }
3223 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3224
3225 /**
3226 * snd_soc_dai_set_channel_map - configure DAI audio channel map
3227 * @dai: DAI
3228 * @tx_num: how many TX channels
3229 * @tx_slot: pointer to an array which imply the TX slot number channel
3230 * 0~num-1 uses
3231 * @rx_num: how many RX channels
3232 * @rx_slot: pointer to an array which imply the RX slot number channel
3233 * 0~num-1 uses
3234 *
3235 * configure the relationship between channel number and TDM slot number.
3236 */
3237 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3238 unsigned int tx_num, unsigned int *tx_slot,
3239 unsigned int rx_num, unsigned int *rx_slot)
3240 {
3241 if (dai->driver && dai->driver->ops->set_channel_map)
3242 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3243 rx_num, rx_slot);
3244 else
3245 return -EINVAL;
3246 }
3247 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3248
3249 /**
3250 * snd_soc_dai_set_tristate - configure DAI system or master clock.
3251 * @dai: DAI
3252 * @tristate: tristate enable
3253 *
3254 * Tristates the DAI so that others can use it.
3255 */
3256 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3257 {
3258 if (dai->driver && dai->driver->ops->set_tristate)
3259 return dai->driver->ops->set_tristate(dai, tristate);
3260 else
3261 return -EINVAL;
3262 }
3263 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3264
3265 /**
3266 * snd_soc_dai_digital_mute - configure DAI system or master clock.
3267 * @dai: DAI
3268 * @mute: mute enable
3269 *
3270 * Mutes the DAI DAC.
3271 */
3272 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3273 {
3274 if (dai->driver && dai->driver->ops->digital_mute)
3275 return dai->driver->ops->digital_mute(dai, mute);
3276 else
3277 return -EINVAL;
3278 }
3279 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3280
3281 /**
3282 * snd_soc_register_card - Register a card with the ASoC core
3283 *
3284 * @card: Card to register
3285 *
3286 */
3287 int snd_soc_register_card(struct snd_soc_card *card)
3288 {
3289 int i;
3290
3291 if (!card->name || !card->dev)
3292 return -EINVAL;
3293
3294 dev_set_drvdata(card->dev, card);
3295
3296 snd_soc_initialize_card_lists(card);
3297
3298 soc_init_card_debugfs(card);
3299
3300 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3301 (card->num_links + card->num_aux_devs),
3302 GFP_KERNEL);
3303 if (card->rtd == NULL)
3304 return -ENOMEM;
3305 card->rtd_aux = &card->rtd[card->num_links];
3306
3307 for (i = 0; i < card->num_links; i++)
3308 card->rtd[i].dai_link = &card->dai_link[i];
3309
3310 INIT_LIST_HEAD(&card->list);
3311 card->instantiated = 0;
3312 mutex_init(&card->mutex);
3313
3314 mutex_lock(&client_mutex);
3315 list_add(&card->list, &card_list);
3316 snd_soc_instantiate_cards();
3317 mutex_unlock(&client_mutex);
3318
3319 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3320
3321 return 0;
3322 }
3323 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3324
3325 /**
3326 * snd_soc_unregister_card - Unregister a card with the ASoC core
3327 *
3328 * @card: Card to unregister
3329 *
3330 */
3331 int snd_soc_unregister_card(struct snd_soc_card *card)
3332 {
3333 if (card->instantiated)
3334 soc_cleanup_card_resources(card);
3335 mutex_lock(&client_mutex);
3336 list_del(&card->list);
3337 mutex_unlock(&client_mutex);
3338 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3339
3340 return 0;
3341 }
3342 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3343
3344 /*
3345 * Simplify DAI link configuration by removing ".-1" from device names
3346 * and sanitizing names.
3347 */
3348 static char *fmt_single_name(struct device *dev, int *id)
3349 {
3350 char *found, name[NAME_SIZE];
3351 int id1, id2;
3352
3353 if (dev_name(dev) == NULL)
3354 return NULL;
3355
3356 strlcpy(name, dev_name(dev), NAME_SIZE);
3357
3358 /* are we a "%s.%d" name (platform and SPI components) */
3359 found = strstr(name, dev->driver->name);
3360 if (found) {
3361 /* get ID */
3362 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3363
3364 /* discard ID from name if ID == -1 */
3365 if (*id == -1)
3366 found[strlen(dev->driver->name)] = '\0';
3367 }
3368
3369 } else {
3370 /* I2C component devices are named "bus-addr" */
3371 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3372 char tmp[NAME_SIZE];
3373
3374 /* create unique ID number from I2C addr and bus */
3375 *id = ((id1 & 0xffff) << 16) + id2;
3376
3377 /* sanitize component name for DAI link creation */
3378 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3379 strlcpy(name, tmp, NAME_SIZE);
3380 } else
3381 *id = 0;
3382 }
3383
3384 return kstrdup(name, GFP_KERNEL);
3385 }
3386
3387 /*
3388 * Simplify DAI link naming for single devices with multiple DAIs by removing
3389 * any ".-1" and using the DAI name (instead of device name).
3390 */
3391 static inline char *fmt_multiple_name(struct device *dev,
3392 struct snd_soc_dai_driver *dai_drv)
3393 {
3394 if (dai_drv->name == NULL) {
3395 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3396 dev_name(dev));
3397 return NULL;
3398 }
3399
3400 return kstrdup(dai_drv->name, GFP_KERNEL);
3401 }
3402
3403 /**
3404 * snd_soc_register_dai - Register a DAI with the ASoC core
3405 *
3406 * @dai: DAI to register
3407 */
3408 int snd_soc_register_dai(struct device *dev,
3409 struct snd_soc_dai_driver *dai_drv)
3410 {
3411 struct snd_soc_dai *dai;
3412
3413 dev_dbg(dev, "dai register %s\n", dev_name(dev));
3414
3415 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3416 if (dai == NULL)
3417 return -ENOMEM;
3418
3419 /* create DAI component name */
3420 dai->name = fmt_single_name(dev, &dai->id);
3421 if (dai->name == NULL) {
3422 kfree(dai);
3423 return -ENOMEM;
3424 }
3425
3426 dai->dev = dev;
3427 dai->driver = dai_drv;
3428 if (!dai->driver->ops)
3429 dai->driver->ops = &null_dai_ops;
3430
3431 mutex_lock(&client_mutex);
3432 list_add(&dai->list, &dai_list);
3433 snd_soc_instantiate_cards();
3434 mutex_unlock(&client_mutex);
3435
3436 pr_debug("Registered DAI '%s'\n", dai->name);
3437
3438 return 0;
3439 }
3440 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3441
3442 /**
3443 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3444 *
3445 * @dai: DAI to unregister
3446 */
3447 void snd_soc_unregister_dai(struct device *dev)
3448 {
3449 struct snd_soc_dai *dai;
3450
3451 list_for_each_entry(dai, &dai_list, list) {
3452 if (dev == dai->dev)
3453 goto found;
3454 }
3455 return;
3456
3457 found:
3458 mutex_lock(&client_mutex);
3459 list_del(&dai->list);
3460 mutex_unlock(&client_mutex);
3461
3462 pr_debug("Unregistered DAI '%s'\n", dai->name);
3463 kfree(dai->name);
3464 kfree(dai);
3465 }
3466 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3467
3468 /**
3469 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3470 *
3471 * @dai: Array of DAIs to register
3472 * @count: Number of DAIs
3473 */
3474 int snd_soc_register_dais(struct device *dev,
3475 struct snd_soc_dai_driver *dai_drv, size_t count)
3476 {
3477 struct snd_soc_dai *dai;
3478 int i, ret = 0;
3479
3480 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3481
3482 for (i = 0; i < count; i++) {
3483
3484 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3485 if (dai == NULL) {
3486 ret = -ENOMEM;
3487 goto err;
3488 }
3489
3490 /* create DAI component name */
3491 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3492 if (dai->name == NULL) {
3493 kfree(dai);
3494 ret = -EINVAL;
3495 goto err;
3496 }
3497
3498 dai->dev = dev;
3499 dai->driver = &dai_drv[i];
3500 if (dai->driver->id)
3501 dai->id = dai->driver->id;
3502 else
3503 dai->id = i;
3504 if (!dai->driver->ops)
3505 dai->driver->ops = &null_dai_ops;
3506
3507 mutex_lock(&client_mutex);
3508 list_add(&dai->list, &dai_list);
3509 mutex_unlock(&client_mutex);
3510
3511 pr_debug("Registered DAI '%s'\n", dai->name);
3512 }
3513
3514 mutex_lock(&client_mutex);
3515 snd_soc_instantiate_cards();
3516 mutex_unlock(&client_mutex);
3517 return 0;
3518
3519 err:
3520 for (i--; i >= 0; i--)
3521 snd_soc_unregister_dai(dev);
3522
3523 return ret;
3524 }
3525 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3526
3527 /**
3528 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3529 *
3530 * @dai: Array of DAIs to unregister
3531 * @count: Number of DAIs
3532 */
3533 void snd_soc_unregister_dais(struct device *dev, size_t count)
3534 {
3535 int i;
3536
3537 for (i = 0; i < count; i++)
3538 snd_soc_unregister_dai(dev);
3539 }
3540 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3541
3542 /**
3543 * snd_soc_register_platform - Register a platform with the ASoC core
3544 *
3545 * @platform: platform to register
3546 */
3547 int snd_soc_register_platform(struct device *dev,
3548 struct snd_soc_platform_driver *platform_drv)
3549 {
3550 struct snd_soc_platform *platform;
3551
3552 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3553
3554 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3555 if (platform == NULL)
3556 return -ENOMEM;
3557
3558 /* create platform component name */
3559 platform->name = fmt_single_name(dev, &platform->id);
3560 if (platform->name == NULL) {
3561 kfree(platform);
3562 return -ENOMEM;
3563 }
3564
3565 platform->dev = dev;
3566 platform->driver = platform_drv;
3567
3568 mutex_lock(&client_mutex);
3569 list_add(&platform->list, &platform_list);
3570 snd_soc_instantiate_cards();
3571 mutex_unlock(&client_mutex);
3572
3573 pr_debug("Registered platform '%s'\n", platform->name);
3574
3575 return 0;
3576 }
3577 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3578
3579 /**
3580 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3581 *
3582 * @platform: platform to unregister
3583 */
3584 void snd_soc_unregister_platform(struct device *dev)
3585 {
3586 struct snd_soc_platform *platform;
3587
3588 list_for_each_entry(platform, &platform_list, list) {
3589 if (dev == platform->dev)
3590 goto found;
3591 }
3592 return;
3593
3594 found:
3595 mutex_lock(&client_mutex);
3596 list_del(&platform->list);
3597 mutex_unlock(&client_mutex);
3598
3599 pr_debug("Unregistered platform '%s'\n", platform->name);
3600 kfree(platform->name);
3601 kfree(platform);
3602 }
3603 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3604
3605 static u64 codec_format_map[] = {
3606 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3607 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3608 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3609 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3610 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3611 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3612 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3613 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3614 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3615 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3616 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3617 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3618 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3619 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3620 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3621 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3622 };
3623
3624 /* Fix up the DAI formats for endianness: codecs don't actually see
3625 * the endianness of the data but we're using the CPU format
3626 * definitions which do need to include endianness so we ensure that
3627 * codec DAIs always have both big and little endian variants set.
3628 */
3629 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3630 {
3631 int i;
3632
3633 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3634 if (stream->formats & codec_format_map[i])
3635 stream->formats |= codec_format_map[i];
3636 }
3637
3638 /**
3639 * snd_soc_register_codec - Register a codec with the ASoC core
3640 *
3641 * @codec: codec to register
3642 */
3643 int snd_soc_register_codec(struct device *dev,
3644 const struct snd_soc_codec_driver *codec_drv,
3645 struct snd_soc_dai_driver *dai_drv,
3646 int num_dai)
3647 {
3648 size_t reg_size;
3649 struct snd_soc_codec *codec;
3650 int ret, i;
3651
3652 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3653
3654 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3655 if (codec == NULL)
3656 return -ENOMEM;
3657
3658 /* create CODEC component name */
3659 codec->name = fmt_single_name(dev, &codec->id);
3660 if (codec->name == NULL) {
3661 kfree(codec);
3662 return -ENOMEM;
3663 }
3664
3665 if (codec_drv->compress_type)
3666 codec->compress_type = codec_drv->compress_type;
3667 else
3668 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3669
3670 codec->write = codec_drv->write;
3671 codec->read = codec_drv->read;
3672 codec->volatile_register = codec_drv->volatile_register;
3673 codec->readable_register = codec_drv->readable_register;
3674 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3675 codec->dapm.dev = dev;
3676 codec->dapm.codec = codec;
3677 codec->dapm.seq_notifier = codec_drv->seq_notifier;
3678 codec->dev = dev;
3679 codec->driver = codec_drv;
3680 codec->num_dai = num_dai;
3681 mutex_init(&codec->mutex);
3682
3683 /* allocate CODEC register cache */
3684 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3685 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3686 codec->reg_size = reg_size;
3687 /* it is necessary to make a copy of the default register cache
3688 * because in the case of using a compression type that requires
3689 * the default register cache to be marked as __devinitconst the
3690 * kernel might have freed the array by the time we initialize
3691 * the cache.
3692 */
3693 if (codec_drv->reg_cache_default) {
3694 codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3695 reg_size, GFP_KERNEL);
3696 if (!codec->reg_def_copy) {
3697 ret = -ENOMEM;
3698 goto fail;
3699 }
3700 }
3701 }
3702
3703 if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3704 if (!codec->volatile_register)
3705 codec->volatile_register = snd_soc_default_volatile_register;
3706 if (!codec->readable_register)
3707 codec->readable_register = snd_soc_default_readable_register;
3708 }
3709
3710 for (i = 0; i < num_dai; i++) {
3711 fixup_codec_formats(&dai_drv[i].playback);
3712 fixup_codec_formats(&dai_drv[i].capture);
3713 }
3714
3715 /* register any DAIs */
3716 if (num_dai) {
3717 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3718 if (ret < 0)
3719 goto fail;
3720 }
3721
3722 mutex_lock(&client_mutex);
3723 list_add(&codec->list, &codec_list);
3724 snd_soc_instantiate_cards();
3725 mutex_unlock(&client_mutex);
3726
3727 pr_debug("Registered codec '%s'\n", codec->name);
3728 return 0;
3729
3730 fail:
3731 kfree(codec->reg_def_copy);
3732 codec->reg_def_copy = NULL;
3733 kfree(codec->name);
3734 kfree(codec);
3735 return ret;
3736 }
3737 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3738
3739 /**
3740 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3741 *
3742 * @codec: codec to unregister
3743 */
3744 void snd_soc_unregister_codec(struct device *dev)
3745 {
3746 struct snd_soc_codec *codec;
3747 int i;
3748
3749 list_for_each_entry(codec, &codec_list, list) {
3750 if (dev == codec->dev)
3751 goto found;
3752 }
3753 return;
3754
3755 found:
3756 if (codec->num_dai)
3757 for (i = 0; i < codec->num_dai; i++)
3758 snd_soc_unregister_dai(dev);
3759
3760 mutex_lock(&client_mutex);
3761 list_del(&codec->list);
3762 mutex_unlock(&client_mutex);
3763
3764 pr_debug("Unregistered codec '%s'\n", codec->name);
3765
3766 snd_soc_cache_exit(codec);
3767 kfree(codec->reg_def_copy);
3768 kfree(codec->name);
3769 kfree(codec);
3770 }
3771 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3772
3773 static int __init snd_soc_init(void)
3774 {
3775 #ifdef CONFIG_DEBUG_FS
3776 snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3777 if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3778 printk(KERN_WARNING
3779 "ASoC: Failed to create debugfs directory\n");
3780 snd_soc_debugfs_root = NULL;
3781 }
3782
3783 if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3784 &codec_list_fops))
3785 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3786
3787 if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3788 &dai_list_fops))
3789 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3790
3791 if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3792 &platform_list_fops))
3793 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3794 #endif
3795
3796 return platform_driver_register(&soc_driver);
3797 }
3798 module_init(snd_soc_init);
3799
3800 static void __exit snd_soc_exit(void)
3801 {
3802 #ifdef CONFIG_DEBUG_FS
3803 debugfs_remove_recursive(snd_soc_debugfs_root);
3804 #endif
3805 platform_driver_unregister(&soc_driver);
3806 }
3807 module_exit(snd_soc_exit);
3808
3809 /* Module information */
3810 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3811 MODULE_DESCRIPTION("ALSA SoC Core");
3812 MODULE_LICENSE("GPL");
3813 MODULE_ALIAS("platform:soc-audio");