TOMOYO: Fix wrong domainname validation.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE 32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64 * This is a timeout to do a DAPM powerdown after a stream is closed().
65 * It can be used to eliminate pops between different playback streams, e.g.
66 * between two audio tracks.
67 */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /* returns the minimum number of bytes needed to represent
73 * a particular given value */
74 static int min_bytes_needed(unsigned long val)
75 {
76 int c = 0;
77 int i;
78
79 for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
80 if (val & (1UL << i))
81 break;
82 c = (sizeof val * 8) - c;
83 if (!c || (c % 8))
84 c = (c + 8) / 8;
85 else
86 c /= 8;
87 return c;
88 }
89
90 /* fill buf which is 'len' bytes with a formatted
91 * string of the form 'reg: value\n' */
92 static int format_register_str(struct snd_soc_codec *codec,
93 unsigned int reg, char *buf, size_t len)
94 {
95 int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
96 int regsize = codec->driver->reg_word_size * 2;
97 int ret;
98 char tmpbuf[len + 1];
99 char regbuf[regsize + 1];
100
101 /* since tmpbuf is allocated on the stack, warn the callers if they
102 * try to abuse this function */
103 WARN_ON(len > 63);
104
105 /* +2 for ': ' and + 1 for '\n' */
106 if (wordsize + regsize + 2 + 1 != len)
107 return -EINVAL;
108
109 ret = snd_soc_read(codec , reg);
110 if (ret < 0) {
111 memset(regbuf, 'X', regsize);
112 regbuf[regsize] = '\0';
113 } else {
114 snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
115 }
116
117 /* prepare the buffer */
118 snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
119 /* copy it back to the caller without the '\0' */
120 memcpy(buf, tmpbuf, len);
121
122 return 0;
123 }
124
125 /* codec register dump */
126 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
127 size_t count, loff_t pos)
128 {
129 int i, step = 1;
130 int wordsize, regsize;
131 int len;
132 size_t total = 0;
133 loff_t p = 0;
134
135 wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
136 regsize = codec->driver->reg_word_size * 2;
137
138 len = wordsize + regsize + 2 + 1;
139
140 if (!codec->driver->reg_cache_size)
141 return 0;
142
143 if (codec->driver->reg_cache_step)
144 step = codec->driver->reg_cache_step;
145
146 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
147 if (codec->readable_register && !codec->readable_register(codec, i))
148 continue;
149 if (codec->driver->display_register) {
150 count += codec->driver->display_register(codec, buf + count,
151 PAGE_SIZE - count, i);
152 } else {
153 /* only support larger than PAGE_SIZE bytes debugfs
154 * entries for the default case */
155 if (p >= pos) {
156 if (total + len >= count - 1)
157 break;
158 format_register_str(codec, i, buf + total, len);
159 total += len;
160 }
161 p += len;
162 }
163 }
164
165 total = min(total, count - 1);
166
167 return total;
168 }
169
170 static ssize_t codec_reg_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172 {
173 struct snd_soc_pcm_runtime *rtd =
174 container_of(dev, struct snd_soc_pcm_runtime, dev);
175
176 return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
177 }
178
179 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
180
181 static ssize_t pmdown_time_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct snd_soc_pcm_runtime *rtd =
185 container_of(dev, struct snd_soc_pcm_runtime, dev);
186
187 return sprintf(buf, "%ld\n", rtd->pmdown_time);
188 }
189
190 static ssize_t pmdown_time_set(struct device *dev,
191 struct device_attribute *attr,
192 const char *buf, size_t count)
193 {
194 struct snd_soc_pcm_runtime *rtd =
195 container_of(dev, struct snd_soc_pcm_runtime, dev);
196 int ret;
197
198 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
199 if (ret)
200 return ret;
201
202 return count;
203 }
204
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206
207 #ifdef CONFIG_DEBUG_FS
208 static int codec_reg_open_file(struct inode *inode, struct file *file)
209 {
210 file->private_data = inode->i_private;
211 return 0;
212 }
213
214 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
215 size_t count, loff_t *ppos)
216 {
217 ssize_t ret;
218 struct snd_soc_codec *codec = file->private_data;
219 char *buf;
220
221 if (*ppos < 0 || !count)
222 return -EINVAL;
223
224 buf = kmalloc(count, GFP_KERNEL);
225 if (!buf)
226 return -ENOMEM;
227
228 ret = soc_codec_reg_show(codec, buf, count, *ppos);
229 if (ret >= 0) {
230 if (copy_to_user(user_buf, buf, ret)) {
231 kfree(buf);
232 return -EFAULT;
233 }
234 *ppos += ret;
235 }
236
237 kfree(buf);
238 return ret;
239 }
240
241 static ssize_t codec_reg_write_file(struct file *file,
242 const char __user *user_buf, size_t count, loff_t *ppos)
243 {
244 char buf[32];
245 int buf_size;
246 char *start = buf;
247 unsigned long reg, value;
248 int step = 1;
249 struct snd_soc_codec *codec = file->private_data;
250
251 buf_size = min(count, (sizeof(buf)-1));
252 if (copy_from_user(buf, user_buf, buf_size))
253 return -EFAULT;
254 buf[buf_size] = 0;
255
256 if (codec->driver->reg_cache_step)
257 step = codec->driver->reg_cache_step;
258
259 while (*start == ' ')
260 start++;
261 reg = simple_strtoul(start, &start, 16);
262 while (*start == ' ')
263 start++;
264 if (strict_strtoul(start, 16, &value))
265 return -EINVAL;
266
267 /* Userspace has been fiddling around behind the kernel's back */
268 add_taint(TAINT_USER);
269
270 snd_soc_write(codec, reg, value);
271 return buf_size;
272 }
273
274 static const struct file_operations codec_reg_fops = {
275 .open = codec_reg_open_file,
276 .read = codec_reg_read_file,
277 .write = codec_reg_write_file,
278 .llseek = default_llseek,
279 };
280
281 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
282 {
283 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
284
285 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
286 debugfs_card_root);
287 if (!codec->debugfs_codec_root) {
288 printk(KERN_WARNING
289 "ASoC: Failed to create codec debugfs directory\n");
290 return;
291 }
292
293 debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
294 &codec->cache_sync);
295 debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
296 &codec->cache_only);
297
298 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
299 codec->debugfs_codec_root,
300 codec, &codec_reg_fops);
301 if (!codec->debugfs_reg)
302 printk(KERN_WARNING
303 "ASoC: Failed to create codec register debugfs file\n");
304
305 codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
306 codec->debugfs_codec_root);
307 if (!codec->dapm.debugfs_dapm)
308 printk(KERN_WARNING
309 "Failed to create DAPM debugfs directory\n");
310
311 snd_soc_dapm_debugfs_init(&codec->dapm);
312 }
313
314 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
315 {
316 debugfs_remove_recursive(codec->debugfs_codec_root);
317 }
318
319 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
320 size_t count, loff_t *ppos)
321 {
322 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
323 ssize_t len, ret = 0;
324 struct snd_soc_codec *codec;
325
326 if (!buf)
327 return -ENOMEM;
328
329 list_for_each_entry(codec, &codec_list, list) {
330 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
331 codec->name);
332 if (len >= 0)
333 ret += len;
334 if (ret > PAGE_SIZE) {
335 ret = PAGE_SIZE;
336 break;
337 }
338 }
339
340 if (ret >= 0)
341 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
342
343 kfree(buf);
344
345 return ret;
346 }
347
348 static const struct file_operations codec_list_fops = {
349 .read = codec_list_read_file,
350 .llseek = default_llseek,/* read accesses f_pos */
351 };
352
353 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
354 size_t count, loff_t *ppos)
355 {
356 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
357 ssize_t len, ret = 0;
358 struct snd_soc_dai *dai;
359
360 if (!buf)
361 return -ENOMEM;
362
363 list_for_each_entry(dai, &dai_list, list) {
364 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
365 if (len >= 0)
366 ret += len;
367 if (ret > PAGE_SIZE) {
368 ret = PAGE_SIZE;
369 break;
370 }
371 }
372
373 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
374
375 kfree(buf);
376
377 return ret;
378 }
379
380 static const struct file_operations dai_list_fops = {
381 .read = dai_list_read_file,
382 .llseek = default_llseek,/* read accesses f_pos */
383 };
384
385 static ssize_t platform_list_read_file(struct file *file,
386 char __user *user_buf,
387 size_t count, loff_t *ppos)
388 {
389 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
390 ssize_t len, ret = 0;
391 struct snd_soc_platform *platform;
392
393 if (!buf)
394 return -ENOMEM;
395
396 list_for_each_entry(platform, &platform_list, list) {
397 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
398 platform->name);
399 if (len >= 0)
400 ret += len;
401 if (ret > PAGE_SIZE) {
402 ret = PAGE_SIZE;
403 break;
404 }
405 }
406
407 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
408
409 kfree(buf);
410
411 return ret;
412 }
413
414 static const struct file_operations platform_list_fops = {
415 .read = platform_list_read_file,
416 .llseek = default_llseek,/* read accesses f_pos */
417 };
418
419 static void soc_init_card_debugfs(struct snd_soc_card *card)
420 {
421 card->debugfs_card_root = debugfs_create_dir(card->name,
422 snd_soc_debugfs_root);
423 if (!card->debugfs_card_root) {
424 dev_warn(card->dev,
425 "ASoC: Failed to create codec debugfs directory\n");
426 return;
427 }
428
429 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
430 card->debugfs_card_root,
431 &card->pop_time);
432 if (!card->debugfs_pop_time)
433 dev_warn(card->dev,
434 "Failed to create pop time debugfs file\n");
435 }
436
437 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
438 {
439 debugfs_remove_recursive(card->debugfs_card_root);
440 }
441
442 #else
443
444 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
445 {
446 }
447
448 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
449 {
450 }
451
452 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
453 {
454 }
455
456 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
457 {
458 }
459 #endif
460
461 #ifdef CONFIG_SND_SOC_AC97_BUS
462 /* unregister ac97 codec */
463 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
464 {
465 if (codec->ac97->dev.bus)
466 device_unregister(&codec->ac97->dev);
467 return 0;
468 }
469
470 /* stop no dev release warning */
471 static void soc_ac97_device_release(struct device *dev){}
472
473 /* register ac97 codec to bus */
474 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
475 {
476 int err;
477
478 codec->ac97->dev.bus = &ac97_bus_type;
479 codec->ac97->dev.parent = codec->card->dev;
480 codec->ac97->dev.release = soc_ac97_device_release;
481
482 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
483 codec->card->snd_card->number, 0, codec->name);
484 err = device_register(&codec->ac97->dev);
485 if (err < 0) {
486 snd_printk(KERN_ERR "Can't register ac97 bus\n");
487 codec->ac97->dev.bus = NULL;
488 return err;
489 }
490 return 0;
491 }
492 #endif
493
494 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
495 {
496 struct snd_soc_pcm_runtime *rtd = substream->private_data;
497 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
498 struct snd_soc_dai *codec_dai = rtd->codec_dai;
499 int ret;
500
501 if (!codec_dai->driver->symmetric_rates &&
502 !cpu_dai->driver->symmetric_rates &&
503 !rtd->dai_link->symmetric_rates)
504 return 0;
505
506 /* This can happen if multiple streams are starting simultaneously -
507 * the second can need to get its constraints before the first has
508 * picked a rate. Complain and allow the application to carry on.
509 */
510 if (!rtd->rate) {
511 dev_warn(&rtd->dev,
512 "Not enforcing symmetric_rates due to race\n");
513 return 0;
514 }
515
516 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n", rtd->rate);
517
518 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
519 SNDRV_PCM_HW_PARAM_RATE,
520 rtd->rate, rtd->rate);
521 if (ret < 0) {
522 dev_err(&rtd->dev,
523 "Unable to apply rate symmetry constraint: %d\n", ret);
524 return ret;
525 }
526
527 return 0;
528 }
529
530 /*
531 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
532 * then initialized and any private data can be allocated. This also calls
533 * startup for the cpu DAI, platform, machine and codec DAI.
534 */
535 static int soc_pcm_open(struct snd_pcm_substream *substream)
536 {
537 struct snd_soc_pcm_runtime *rtd = substream->private_data;
538 struct snd_pcm_runtime *runtime = substream->runtime;
539 struct snd_soc_platform *platform = rtd->platform;
540 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
541 struct snd_soc_dai *codec_dai = rtd->codec_dai;
542 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
543 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
544 int ret = 0;
545
546 mutex_lock(&pcm_mutex);
547
548 /* startup the audio subsystem */
549 if (cpu_dai->driver->ops->startup) {
550 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
551 if (ret < 0) {
552 printk(KERN_ERR "asoc: can't open interface %s\n",
553 cpu_dai->name);
554 goto out;
555 }
556 }
557
558 if (platform->driver->ops->open) {
559 ret = platform->driver->ops->open(substream);
560 if (ret < 0) {
561 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
562 goto platform_err;
563 }
564 }
565
566 if (codec_dai->driver->ops->startup) {
567 ret = codec_dai->driver->ops->startup(substream, codec_dai);
568 if (ret < 0) {
569 printk(KERN_ERR "asoc: can't open codec %s\n",
570 codec_dai->name);
571 goto codec_dai_err;
572 }
573 }
574
575 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
576 ret = rtd->dai_link->ops->startup(substream);
577 if (ret < 0) {
578 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
579 goto machine_err;
580 }
581 }
582
583 /* Check that the codec and cpu DAIs are compatible */
584 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
585 runtime->hw.rate_min =
586 max(codec_dai_drv->playback.rate_min,
587 cpu_dai_drv->playback.rate_min);
588 runtime->hw.rate_max =
589 min(codec_dai_drv->playback.rate_max,
590 cpu_dai_drv->playback.rate_max);
591 runtime->hw.channels_min =
592 max(codec_dai_drv->playback.channels_min,
593 cpu_dai_drv->playback.channels_min);
594 runtime->hw.channels_max =
595 min(codec_dai_drv->playback.channels_max,
596 cpu_dai_drv->playback.channels_max);
597 runtime->hw.formats =
598 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
599 runtime->hw.rates =
600 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
601 if (codec_dai_drv->playback.rates
602 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
603 runtime->hw.rates |= cpu_dai_drv->playback.rates;
604 if (cpu_dai_drv->playback.rates
605 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
606 runtime->hw.rates |= codec_dai_drv->playback.rates;
607 } else {
608 runtime->hw.rate_min =
609 max(codec_dai_drv->capture.rate_min,
610 cpu_dai_drv->capture.rate_min);
611 runtime->hw.rate_max =
612 min(codec_dai_drv->capture.rate_max,
613 cpu_dai_drv->capture.rate_max);
614 runtime->hw.channels_min =
615 max(codec_dai_drv->capture.channels_min,
616 cpu_dai_drv->capture.channels_min);
617 runtime->hw.channels_max =
618 min(codec_dai_drv->capture.channels_max,
619 cpu_dai_drv->capture.channels_max);
620 runtime->hw.formats =
621 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
622 runtime->hw.rates =
623 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
624 if (codec_dai_drv->capture.rates
625 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
626 runtime->hw.rates |= cpu_dai_drv->capture.rates;
627 if (cpu_dai_drv->capture.rates
628 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
629 runtime->hw.rates |= codec_dai_drv->capture.rates;
630 }
631
632 snd_pcm_limit_hw_rates(runtime);
633 if (!runtime->hw.rates) {
634 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
635 codec_dai->name, cpu_dai->name);
636 goto config_err;
637 }
638 if (!runtime->hw.formats) {
639 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
640 codec_dai->name, cpu_dai->name);
641 goto config_err;
642 }
643 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
644 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
645 codec_dai->name, cpu_dai->name);
646 goto config_err;
647 }
648
649 /* Symmetry only applies if we've already got an active stream. */
650 if (cpu_dai->active || codec_dai->active) {
651 ret = soc_pcm_apply_symmetry(substream);
652 if (ret != 0)
653 goto config_err;
654 }
655
656 pr_debug("asoc: %s <-> %s info:\n",
657 codec_dai->name, cpu_dai->name);
658 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
659 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
660 runtime->hw.channels_max);
661 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
662 runtime->hw.rate_max);
663
664 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
665 cpu_dai->playback_active++;
666 codec_dai->playback_active++;
667 } else {
668 cpu_dai->capture_active++;
669 codec_dai->capture_active++;
670 }
671 cpu_dai->active++;
672 codec_dai->active++;
673 rtd->codec->active++;
674 mutex_unlock(&pcm_mutex);
675 return 0;
676
677 config_err:
678 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
679 rtd->dai_link->ops->shutdown(substream);
680
681 machine_err:
682 if (codec_dai->driver->ops->shutdown)
683 codec_dai->driver->ops->shutdown(substream, codec_dai);
684
685 codec_dai_err:
686 if (platform->driver->ops->close)
687 platform->driver->ops->close(substream);
688
689 platform_err:
690 if (cpu_dai->driver->ops->shutdown)
691 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
692 out:
693 mutex_unlock(&pcm_mutex);
694 return ret;
695 }
696
697 /*
698 * Power down the audio subsystem pmdown_time msecs after close is called.
699 * This is to ensure there are no pops or clicks in between any music tracks
700 * due to DAPM power cycling.
701 */
702 static void close_delayed_work(struct work_struct *work)
703 {
704 struct snd_soc_pcm_runtime *rtd =
705 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
706 struct snd_soc_dai *codec_dai = rtd->codec_dai;
707
708 mutex_lock(&pcm_mutex);
709
710 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
711 codec_dai->driver->playback.stream_name,
712 codec_dai->playback_active ? "active" : "inactive",
713 codec_dai->pop_wait ? "yes" : "no");
714
715 /* are we waiting on this codec DAI stream */
716 if (codec_dai->pop_wait == 1) {
717 codec_dai->pop_wait = 0;
718 snd_soc_dapm_stream_event(rtd,
719 codec_dai->driver->playback.stream_name,
720 SND_SOC_DAPM_STREAM_STOP);
721 }
722
723 mutex_unlock(&pcm_mutex);
724 }
725
726 /*
727 * Called by ALSA when a PCM substream is closed. Private data can be
728 * freed here. The cpu DAI, codec DAI, machine and platform are also
729 * shutdown.
730 */
731 static int soc_codec_close(struct snd_pcm_substream *substream)
732 {
733 struct snd_soc_pcm_runtime *rtd = substream->private_data;
734 struct snd_soc_platform *platform = rtd->platform;
735 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
736 struct snd_soc_dai *codec_dai = rtd->codec_dai;
737 struct snd_soc_codec *codec = rtd->codec;
738
739 mutex_lock(&pcm_mutex);
740
741 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
742 cpu_dai->playback_active--;
743 codec_dai->playback_active--;
744 } else {
745 cpu_dai->capture_active--;
746 codec_dai->capture_active--;
747 }
748
749 cpu_dai->active--;
750 codec_dai->active--;
751 codec->active--;
752
753 /* Muting the DAC suppresses artifacts caused during digital
754 * shutdown, for example from stopping clocks.
755 */
756 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
757 snd_soc_dai_digital_mute(codec_dai, 1);
758
759 if (cpu_dai->driver->ops->shutdown)
760 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
761
762 if (codec_dai->driver->ops->shutdown)
763 codec_dai->driver->ops->shutdown(substream, codec_dai);
764
765 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
766 rtd->dai_link->ops->shutdown(substream);
767
768 if (platform->driver->ops->close)
769 platform->driver->ops->close(substream);
770 cpu_dai->runtime = NULL;
771
772 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
773 /* start delayed pop wq here for playback streams */
774 codec_dai->pop_wait = 1;
775 schedule_delayed_work(&rtd->delayed_work,
776 msecs_to_jiffies(rtd->pmdown_time));
777 } else {
778 /* capture streams can be powered down now */
779 snd_soc_dapm_stream_event(rtd,
780 codec_dai->driver->capture.stream_name,
781 SND_SOC_DAPM_STREAM_STOP);
782 }
783
784 mutex_unlock(&pcm_mutex);
785 return 0;
786 }
787
788 /*
789 * Called by ALSA when the PCM substream is prepared, can set format, sample
790 * rate, etc. This function is non atomic and can be called multiple times,
791 * it can refer to the runtime info.
792 */
793 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
794 {
795 struct snd_soc_pcm_runtime *rtd = substream->private_data;
796 struct snd_soc_platform *platform = rtd->platform;
797 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
798 struct snd_soc_dai *codec_dai = rtd->codec_dai;
799 int ret = 0;
800
801 mutex_lock(&pcm_mutex);
802
803 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
804 ret = rtd->dai_link->ops->prepare(substream);
805 if (ret < 0) {
806 printk(KERN_ERR "asoc: machine prepare error\n");
807 goto out;
808 }
809 }
810
811 if (platform->driver->ops->prepare) {
812 ret = platform->driver->ops->prepare(substream);
813 if (ret < 0) {
814 printk(KERN_ERR "asoc: platform prepare error\n");
815 goto out;
816 }
817 }
818
819 if (codec_dai->driver->ops->prepare) {
820 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
821 if (ret < 0) {
822 printk(KERN_ERR "asoc: codec DAI prepare error\n");
823 goto out;
824 }
825 }
826
827 if (cpu_dai->driver->ops->prepare) {
828 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
829 if (ret < 0) {
830 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
831 goto out;
832 }
833 }
834
835 /* cancel any delayed stream shutdown that is pending */
836 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
837 codec_dai->pop_wait) {
838 codec_dai->pop_wait = 0;
839 cancel_delayed_work(&rtd->delayed_work);
840 }
841
842 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
843 snd_soc_dapm_stream_event(rtd,
844 codec_dai->driver->playback.stream_name,
845 SND_SOC_DAPM_STREAM_START);
846 else
847 snd_soc_dapm_stream_event(rtd,
848 codec_dai->driver->capture.stream_name,
849 SND_SOC_DAPM_STREAM_START);
850
851 snd_soc_dai_digital_mute(codec_dai, 0);
852
853 out:
854 mutex_unlock(&pcm_mutex);
855 return ret;
856 }
857
858 /*
859 * Called by ALSA when the hardware params are set by application. This
860 * function can also be called multiple times and can allocate buffers
861 * (using snd_pcm_lib_* ). It's non-atomic.
862 */
863 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
864 struct snd_pcm_hw_params *params)
865 {
866 struct snd_soc_pcm_runtime *rtd = substream->private_data;
867 struct snd_soc_platform *platform = rtd->platform;
868 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
869 struct snd_soc_dai *codec_dai = rtd->codec_dai;
870 int ret = 0;
871
872 mutex_lock(&pcm_mutex);
873
874 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
875 ret = rtd->dai_link->ops->hw_params(substream, params);
876 if (ret < 0) {
877 printk(KERN_ERR "asoc: machine hw_params failed\n");
878 goto out;
879 }
880 }
881
882 if (codec_dai->driver->ops->hw_params) {
883 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
884 if (ret < 0) {
885 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
886 codec_dai->name);
887 goto codec_err;
888 }
889 }
890
891 if (cpu_dai->driver->ops->hw_params) {
892 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
893 if (ret < 0) {
894 printk(KERN_ERR "asoc: interface %s hw params failed\n",
895 cpu_dai->name);
896 goto interface_err;
897 }
898 }
899
900 if (platform->driver->ops->hw_params) {
901 ret = platform->driver->ops->hw_params(substream, params);
902 if (ret < 0) {
903 printk(KERN_ERR "asoc: platform %s hw params failed\n",
904 platform->name);
905 goto platform_err;
906 }
907 }
908
909 rtd->rate = params_rate(params);
910
911 out:
912 mutex_unlock(&pcm_mutex);
913 return ret;
914
915 platform_err:
916 if (cpu_dai->driver->ops->hw_free)
917 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
918
919 interface_err:
920 if (codec_dai->driver->ops->hw_free)
921 codec_dai->driver->ops->hw_free(substream, codec_dai);
922
923 codec_err:
924 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
925 rtd->dai_link->ops->hw_free(substream);
926
927 mutex_unlock(&pcm_mutex);
928 return ret;
929 }
930
931 /*
932 * Frees resources allocated by hw_params, can be called multiple times
933 */
934 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
935 {
936 struct snd_soc_pcm_runtime *rtd = substream->private_data;
937 struct snd_soc_platform *platform = rtd->platform;
938 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
939 struct snd_soc_dai *codec_dai = rtd->codec_dai;
940 struct snd_soc_codec *codec = rtd->codec;
941
942 mutex_lock(&pcm_mutex);
943
944 /* apply codec digital mute */
945 if (!codec->active)
946 snd_soc_dai_digital_mute(codec_dai, 1);
947
948 /* free any machine hw params */
949 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
950 rtd->dai_link->ops->hw_free(substream);
951
952 /* free any DMA resources */
953 if (platform->driver->ops->hw_free)
954 platform->driver->ops->hw_free(substream);
955
956 /* now free hw params for the DAIs */
957 if (codec_dai->driver->ops->hw_free)
958 codec_dai->driver->ops->hw_free(substream, codec_dai);
959
960 if (cpu_dai->driver->ops->hw_free)
961 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
962
963 mutex_unlock(&pcm_mutex);
964 return 0;
965 }
966
967 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
968 {
969 struct snd_soc_pcm_runtime *rtd = substream->private_data;
970 struct snd_soc_platform *platform = rtd->platform;
971 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
972 struct snd_soc_dai *codec_dai = rtd->codec_dai;
973 int ret;
974
975 if (codec_dai->driver->ops->trigger) {
976 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
977 if (ret < 0)
978 return ret;
979 }
980
981 if (platform->driver->ops->trigger) {
982 ret = platform->driver->ops->trigger(substream, cmd);
983 if (ret < 0)
984 return ret;
985 }
986
987 if (cpu_dai->driver->ops->trigger) {
988 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
989 if (ret < 0)
990 return ret;
991 }
992 return 0;
993 }
994
995 /*
996 * soc level wrapper for pointer callback
997 * If cpu_dai, codec_dai, platform driver has the delay callback, than
998 * the runtime->delay will be updated accordingly.
999 */
1000 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
1001 {
1002 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1003 struct snd_soc_platform *platform = rtd->platform;
1004 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1005 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1006 struct snd_pcm_runtime *runtime = substream->runtime;
1007 snd_pcm_uframes_t offset = 0;
1008 snd_pcm_sframes_t delay = 0;
1009
1010 if (platform->driver->ops->pointer)
1011 offset = platform->driver->ops->pointer(substream);
1012
1013 if (cpu_dai->driver->ops->delay)
1014 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
1015
1016 if (codec_dai->driver->ops->delay)
1017 delay += codec_dai->driver->ops->delay(substream, codec_dai);
1018
1019 if (platform->driver->delay)
1020 delay += platform->driver->delay(substream, codec_dai);
1021
1022 runtime->delay = delay;
1023
1024 return offset;
1025 }
1026
1027 /* ASoC PCM operations */
1028 static struct snd_pcm_ops soc_pcm_ops = {
1029 .open = soc_pcm_open,
1030 .close = soc_codec_close,
1031 .hw_params = soc_pcm_hw_params,
1032 .hw_free = soc_pcm_hw_free,
1033 .prepare = soc_pcm_prepare,
1034 .trigger = soc_pcm_trigger,
1035 .pointer = soc_pcm_pointer,
1036 };
1037
1038 #ifdef CONFIG_PM_SLEEP
1039 /* powers down audio subsystem for suspend */
1040 int snd_soc_suspend(struct device *dev)
1041 {
1042 struct snd_soc_card *card = dev_get_drvdata(dev);
1043 struct snd_soc_codec *codec;
1044 int i;
1045
1046 /* If the initialization of this soc device failed, there is no codec
1047 * associated with it. Just bail out in this case.
1048 */
1049 if (list_empty(&card->codec_dev_list))
1050 return 0;
1051
1052 /* Due to the resume being scheduled into a workqueue we could
1053 * suspend before that's finished - wait for it to complete.
1054 */
1055 snd_power_lock(card->snd_card);
1056 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1057 snd_power_unlock(card->snd_card);
1058
1059 /* we're going to block userspace touching us until resume completes */
1060 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1061
1062 /* mute any active DACs */
1063 for (i = 0; i < card->num_rtd; i++) {
1064 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1065 struct snd_soc_dai_driver *drv = dai->driver;
1066
1067 if (card->rtd[i].dai_link->ignore_suspend)
1068 continue;
1069
1070 if (drv->ops->digital_mute && dai->playback_active)
1071 drv->ops->digital_mute(dai, 1);
1072 }
1073
1074 /* suspend all pcms */
1075 for (i = 0; i < card->num_rtd; i++) {
1076 if (card->rtd[i].dai_link->ignore_suspend)
1077 continue;
1078
1079 snd_pcm_suspend_all(card->rtd[i].pcm);
1080 }
1081
1082 if (card->suspend_pre)
1083 card->suspend_pre(card);
1084
1085 for (i = 0; i < card->num_rtd; i++) {
1086 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1087 struct snd_soc_platform *platform = card->rtd[i].platform;
1088
1089 if (card->rtd[i].dai_link->ignore_suspend)
1090 continue;
1091
1092 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1093 cpu_dai->driver->suspend(cpu_dai);
1094 if (platform->driver->suspend && !platform->suspended) {
1095 platform->driver->suspend(cpu_dai);
1096 platform->suspended = 1;
1097 }
1098 }
1099
1100 /* close any waiting streams and save state */
1101 for (i = 0; i < card->num_rtd; i++) {
1102 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1103 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1104 }
1105
1106 for (i = 0; i < card->num_rtd; i++) {
1107 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1108
1109 if (card->rtd[i].dai_link->ignore_suspend)
1110 continue;
1111
1112 if (driver->playback.stream_name != NULL)
1113 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1114 SND_SOC_DAPM_STREAM_SUSPEND);
1115
1116 if (driver->capture.stream_name != NULL)
1117 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1118 SND_SOC_DAPM_STREAM_SUSPEND);
1119 }
1120
1121 /* suspend all CODECs */
1122 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1123 /* If there are paths active then the CODEC will be held with
1124 * bias _ON and should not be suspended. */
1125 if (!codec->suspended && codec->driver->suspend) {
1126 switch (codec->dapm.bias_level) {
1127 case SND_SOC_BIAS_STANDBY:
1128 case SND_SOC_BIAS_OFF:
1129 codec->driver->suspend(codec, PMSG_SUSPEND);
1130 codec->suspended = 1;
1131 break;
1132 default:
1133 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1134 break;
1135 }
1136 }
1137 }
1138
1139 for (i = 0; i < card->num_rtd; i++) {
1140 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1141
1142 if (card->rtd[i].dai_link->ignore_suspend)
1143 continue;
1144
1145 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1146 cpu_dai->driver->suspend(cpu_dai);
1147 }
1148
1149 if (card->suspend_post)
1150 card->suspend_post(card);
1151
1152 return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(snd_soc_suspend);
1155
1156 /* deferred resume work, so resume can complete before we finished
1157 * setting our codec back up, which can be very slow on I2C
1158 */
1159 static void soc_resume_deferred(struct work_struct *work)
1160 {
1161 struct snd_soc_card *card =
1162 container_of(work, struct snd_soc_card, deferred_resume_work);
1163 struct snd_soc_codec *codec;
1164 int i;
1165
1166 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1167 * so userspace apps are blocked from touching us
1168 */
1169
1170 dev_dbg(card->dev, "starting resume work\n");
1171
1172 /* Bring us up into D2 so that DAPM starts enabling things */
1173 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1174
1175 if (card->resume_pre)
1176 card->resume_pre(card);
1177
1178 /* resume AC97 DAIs */
1179 for (i = 0; i < card->num_rtd; i++) {
1180 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1181
1182 if (card->rtd[i].dai_link->ignore_suspend)
1183 continue;
1184
1185 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1186 cpu_dai->driver->resume(cpu_dai);
1187 }
1188
1189 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1190 /* If the CODEC was idle over suspend then it will have been
1191 * left with bias OFF or STANDBY and suspended so we must now
1192 * resume. Otherwise the suspend was suppressed.
1193 */
1194 if (codec->driver->resume && codec->suspended) {
1195 switch (codec->dapm.bias_level) {
1196 case SND_SOC_BIAS_STANDBY:
1197 case SND_SOC_BIAS_OFF:
1198 codec->driver->resume(codec);
1199 codec->suspended = 0;
1200 break;
1201 default:
1202 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1203 break;
1204 }
1205 }
1206 }
1207
1208 for (i = 0; i < card->num_rtd; i++) {
1209 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1210
1211 if (card->rtd[i].dai_link->ignore_suspend)
1212 continue;
1213
1214 if (driver->playback.stream_name != NULL)
1215 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1216 SND_SOC_DAPM_STREAM_RESUME);
1217
1218 if (driver->capture.stream_name != NULL)
1219 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1220 SND_SOC_DAPM_STREAM_RESUME);
1221 }
1222
1223 /* unmute any active DACs */
1224 for (i = 0; i < card->num_rtd; i++) {
1225 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1226 struct snd_soc_dai_driver *drv = dai->driver;
1227
1228 if (card->rtd[i].dai_link->ignore_suspend)
1229 continue;
1230
1231 if (drv->ops->digital_mute && dai->playback_active)
1232 drv->ops->digital_mute(dai, 0);
1233 }
1234
1235 for (i = 0; i < card->num_rtd; i++) {
1236 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1237 struct snd_soc_platform *platform = card->rtd[i].platform;
1238
1239 if (card->rtd[i].dai_link->ignore_suspend)
1240 continue;
1241
1242 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1243 cpu_dai->driver->resume(cpu_dai);
1244 if (platform->driver->resume && platform->suspended) {
1245 platform->driver->resume(cpu_dai);
1246 platform->suspended = 0;
1247 }
1248 }
1249
1250 if (card->resume_post)
1251 card->resume_post(card);
1252
1253 dev_dbg(card->dev, "resume work completed\n");
1254
1255 /* userspace can access us now we are back as we were before */
1256 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1257 }
1258
1259 /* powers up audio subsystem after a suspend */
1260 int snd_soc_resume(struct device *dev)
1261 {
1262 struct snd_soc_card *card = dev_get_drvdata(dev);
1263 int i;
1264
1265 /* AC97 devices might have other drivers hanging off them so
1266 * need to resume immediately. Other drivers don't have that
1267 * problem and may take a substantial amount of time to resume
1268 * due to I/O costs and anti-pop so handle them out of line.
1269 */
1270 for (i = 0; i < card->num_rtd; i++) {
1271 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1272 if (cpu_dai->driver->ac97_control) {
1273 dev_dbg(dev, "Resuming AC97 immediately\n");
1274 soc_resume_deferred(&card->deferred_resume_work);
1275 } else {
1276 dev_dbg(dev, "Scheduling resume work\n");
1277 if (!schedule_work(&card->deferred_resume_work))
1278 dev_err(dev, "resume work item may be lost\n");
1279 }
1280 }
1281
1282 return 0;
1283 }
1284 EXPORT_SYMBOL_GPL(snd_soc_resume);
1285 #else
1286 #define snd_soc_suspend NULL
1287 #define snd_soc_resume NULL
1288 #endif
1289
1290 static struct snd_soc_dai_ops null_dai_ops = {
1291 };
1292
1293 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1294 {
1295 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1296 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1297 struct snd_soc_codec *codec;
1298 struct snd_soc_platform *platform;
1299 struct snd_soc_dai *codec_dai, *cpu_dai;
1300
1301 if (rtd->complete)
1302 return 1;
1303 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1304
1305 /* do we already have the CPU DAI for this link ? */
1306 if (rtd->cpu_dai) {
1307 goto find_codec;
1308 }
1309 /* no, then find CPU DAI from registered DAIs*/
1310 list_for_each_entry(cpu_dai, &dai_list, list) {
1311 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1312
1313 if (!try_module_get(cpu_dai->dev->driver->owner))
1314 return -ENODEV;
1315
1316 rtd->cpu_dai = cpu_dai;
1317 goto find_codec;
1318 }
1319 }
1320 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1321 dai_link->cpu_dai_name);
1322
1323 find_codec:
1324 /* do we already have the CODEC for this link ? */
1325 if (rtd->codec) {
1326 goto find_platform;
1327 }
1328
1329 /* no, then find CODEC from registered CODECs*/
1330 list_for_each_entry(codec, &codec_list, list) {
1331 if (!strcmp(codec->name, dai_link->codec_name)) {
1332 rtd->codec = codec;
1333
1334 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1335 list_for_each_entry(codec_dai, &dai_list, list) {
1336 if (codec->dev == codec_dai->dev &&
1337 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1338 rtd->codec_dai = codec_dai;
1339 goto find_platform;
1340 }
1341 }
1342 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1343 dai_link->codec_dai_name);
1344
1345 goto find_platform;
1346 }
1347 }
1348 dev_dbg(card->dev, "CODEC %s not registered\n",
1349 dai_link->codec_name);
1350
1351 find_platform:
1352 /* do we already have the CODEC DAI for this link ? */
1353 if (rtd->platform) {
1354 goto out;
1355 }
1356 /* no, then find CPU DAI from registered DAIs*/
1357 list_for_each_entry(platform, &platform_list, list) {
1358 if (!strcmp(platform->name, dai_link->platform_name)) {
1359 rtd->platform = platform;
1360 goto out;
1361 }
1362 }
1363
1364 dev_dbg(card->dev, "platform %s not registered\n",
1365 dai_link->platform_name);
1366 return 0;
1367
1368 out:
1369 /* mark rtd as complete if we found all 4 of our client devices */
1370 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1371 rtd->complete = 1;
1372 card->num_rtd++;
1373 }
1374 return 1;
1375 }
1376
1377 static void soc_remove_codec(struct snd_soc_codec *codec)
1378 {
1379 int err;
1380
1381 if (codec->driver->remove) {
1382 err = codec->driver->remove(codec);
1383 if (err < 0)
1384 dev_err(codec->dev,
1385 "asoc: failed to remove %s: %d\n",
1386 codec->name, err);
1387 }
1388
1389 /* Make sure all DAPM widgets are freed */
1390 snd_soc_dapm_free(&codec->dapm);
1391
1392 soc_cleanup_codec_debugfs(codec);
1393 codec->probed = 0;
1394 list_del(&codec->card_list);
1395 module_put(codec->dev->driver->owner);
1396 }
1397
1398 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1399 {
1400 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1401 struct snd_soc_codec *codec = rtd->codec;
1402 struct snd_soc_platform *platform = rtd->platform;
1403 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1404 int err;
1405
1406 /* unregister the rtd device */
1407 if (rtd->dev_registered) {
1408 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1409 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1410 device_unregister(&rtd->dev);
1411 rtd->dev_registered = 0;
1412 }
1413
1414 /* remove the CODEC DAI */
1415 if (codec_dai && codec_dai->probed) {
1416 if (codec_dai->driver->remove) {
1417 err = codec_dai->driver->remove(codec_dai);
1418 if (err < 0)
1419 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1420 }
1421 codec_dai->probed = 0;
1422 list_del(&codec_dai->card_list);
1423 }
1424
1425 /* remove the platform */
1426 if (platform && platform->probed) {
1427 if (platform->driver->remove) {
1428 err = platform->driver->remove(platform);
1429 if (err < 0)
1430 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1431 }
1432 platform->probed = 0;
1433 list_del(&platform->card_list);
1434 module_put(platform->dev->driver->owner);
1435 }
1436
1437 /* remove the CODEC */
1438 if (codec && codec->probed)
1439 soc_remove_codec(codec);
1440
1441 /* remove the cpu_dai */
1442 if (cpu_dai && cpu_dai->probed) {
1443 if (cpu_dai->driver->remove) {
1444 err = cpu_dai->driver->remove(cpu_dai);
1445 if (err < 0)
1446 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1447 }
1448 cpu_dai->probed = 0;
1449 list_del(&cpu_dai->card_list);
1450 module_put(cpu_dai->dev->driver->owner);
1451 }
1452 }
1453
1454 static void soc_set_name_prefix(struct snd_soc_card *card,
1455 struct snd_soc_codec *codec)
1456 {
1457 int i;
1458
1459 if (card->codec_conf == NULL)
1460 return;
1461
1462 for (i = 0; i < card->num_configs; i++) {
1463 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1464 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1465 codec->name_prefix = map->name_prefix;
1466 break;
1467 }
1468 }
1469 }
1470
1471 static int soc_probe_codec(struct snd_soc_card *card,
1472 struct snd_soc_codec *codec)
1473 {
1474 int ret = 0;
1475 const struct snd_soc_codec_driver *driver = codec->driver;
1476
1477 codec->card = card;
1478 codec->dapm.card = card;
1479 soc_set_name_prefix(card, codec);
1480
1481 if (!try_module_get(codec->dev->driver->owner))
1482 return -ENODEV;
1483
1484 if (driver->probe) {
1485 ret = driver->probe(codec);
1486 if (ret < 0) {
1487 dev_err(codec->dev,
1488 "asoc: failed to probe CODEC %s: %d\n",
1489 codec->name, ret);
1490 goto err_probe;
1491 }
1492 }
1493
1494 if (driver->dapm_widgets)
1495 snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets,
1496 driver->num_dapm_widgets);
1497 if (driver->dapm_routes)
1498 snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1499 driver->num_dapm_routes);
1500
1501 soc_init_codec_debugfs(codec);
1502
1503 /* mark codec as probed and add to card codec list */
1504 codec->probed = 1;
1505 list_add(&codec->card_list, &card->codec_dev_list);
1506 list_add(&codec->dapm.list, &card->dapm_list);
1507
1508 return 0;
1509
1510 err_probe:
1511 module_put(codec->dev->driver->owner);
1512
1513 return ret;
1514 }
1515
1516 static void rtd_release(struct device *dev) {}
1517
1518 static int soc_post_component_init(struct snd_soc_card *card,
1519 struct snd_soc_codec *codec,
1520 int num, int dailess)
1521 {
1522 struct snd_soc_dai_link *dai_link = NULL;
1523 struct snd_soc_aux_dev *aux_dev = NULL;
1524 struct snd_soc_pcm_runtime *rtd;
1525 const char *temp, *name;
1526 int ret = 0;
1527
1528 if (!dailess) {
1529 dai_link = &card->dai_link[num];
1530 rtd = &card->rtd[num];
1531 name = dai_link->name;
1532 } else {
1533 aux_dev = &card->aux_dev[num];
1534 rtd = &card->rtd_aux[num];
1535 name = aux_dev->name;
1536 }
1537 rtd->card = card;
1538
1539 /* machine controls, routes and widgets are not prefixed */
1540 temp = codec->name_prefix;
1541 codec->name_prefix = NULL;
1542
1543 /* do machine specific initialization */
1544 if (!dailess && dai_link->init)
1545 ret = dai_link->init(rtd);
1546 else if (dailess && aux_dev->init)
1547 ret = aux_dev->init(&codec->dapm);
1548 if (ret < 0) {
1549 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1550 return ret;
1551 }
1552 codec->name_prefix = temp;
1553
1554 /* Make sure all DAPM widgets are instantiated */
1555 snd_soc_dapm_new_widgets(&codec->dapm);
1556
1557 /* register the rtd device */
1558 rtd->codec = codec;
1559 rtd->dev.parent = card->dev;
1560 rtd->dev.release = rtd_release;
1561 rtd->dev.init_name = name;
1562 ret = device_register(&rtd->dev);
1563 if (ret < 0) {
1564 dev_err(card->dev,
1565 "asoc: failed to register runtime device: %d\n", ret);
1566 return ret;
1567 }
1568 rtd->dev_registered = 1;
1569
1570 /* add DAPM sysfs entries for this codec */
1571 ret = snd_soc_dapm_sys_add(&rtd->dev);
1572 if (ret < 0)
1573 dev_err(codec->dev,
1574 "asoc: failed to add codec dapm sysfs entries: %d\n",
1575 ret);
1576
1577 /* add codec sysfs entries */
1578 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1579 if (ret < 0)
1580 dev_err(codec->dev,
1581 "asoc: failed to add codec sysfs files: %d\n", ret);
1582
1583 return 0;
1584 }
1585
1586 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1587 {
1588 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1589 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1590 struct snd_soc_codec *codec = rtd->codec;
1591 struct snd_soc_platform *platform = rtd->platform;
1592 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1593 int ret;
1594
1595 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1596
1597 /* config components */
1598 codec_dai->codec = codec;
1599 cpu_dai->platform = platform;
1600 codec_dai->card = card;
1601 cpu_dai->card = card;
1602
1603 /* set default power off timeout */
1604 rtd->pmdown_time = pmdown_time;
1605
1606 /* probe the cpu_dai */
1607 if (!cpu_dai->probed) {
1608 if (cpu_dai->driver->probe) {
1609 ret = cpu_dai->driver->probe(cpu_dai);
1610 if (ret < 0) {
1611 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1612 cpu_dai->name);
1613 return ret;
1614 }
1615 }
1616 cpu_dai->probed = 1;
1617 /* mark cpu_dai as probed and add to card cpu_dai list */
1618 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1619 }
1620
1621 /* probe the CODEC */
1622 if (!codec->probed) {
1623 ret = soc_probe_codec(card, codec);
1624 if (ret < 0)
1625 return ret;
1626 }
1627
1628 /* probe the platform */
1629 if (!platform->probed) {
1630 if (!try_module_get(platform->dev->driver->owner))
1631 return -ENODEV;
1632
1633 if (platform->driver->probe) {
1634 ret = platform->driver->probe(platform);
1635 if (ret < 0) {
1636 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1637 platform->name);
1638 module_put(platform->dev->driver->owner);
1639 return ret;
1640 }
1641 }
1642 /* mark platform as probed and add to card platform list */
1643 platform->probed = 1;
1644 list_add(&platform->card_list, &card->platform_dev_list);
1645 }
1646
1647 /* probe the CODEC DAI */
1648 if (!codec_dai->probed) {
1649 if (codec_dai->driver->probe) {
1650 ret = codec_dai->driver->probe(codec_dai);
1651 if (ret < 0) {
1652 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1653 codec_dai->name);
1654 return ret;
1655 }
1656 }
1657
1658 /* mark cpu_dai as probed and add to card cpu_dai list */
1659 codec_dai->probed = 1;
1660 list_add(&codec_dai->card_list, &card->dai_dev_list);
1661 }
1662
1663 /* DAPM dai link stream work */
1664 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1665
1666 ret = soc_post_component_init(card, codec, num, 0);
1667 if (ret)
1668 return ret;
1669
1670 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1671 if (ret < 0)
1672 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1673
1674 /* create the pcm */
1675 ret = soc_new_pcm(rtd, num);
1676 if (ret < 0) {
1677 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1678 return ret;
1679 }
1680
1681 /* add platform data for AC97 devices */
1682 if (rtd->codec_dai->driver->ac97_control)
1683 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1684
1685 return 0;
1686 }
1687
1688 #ifdef CONFIG_SND_SOC_AC97_BUS
1689 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1690 {
1691 int ret;
1692
1693 /* Only instantiate AC97 if not already done by the adaptor
1694 * for the generic AC97 subsystem.
1695 */
1696 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1697 /*
1698 * It is possible that the AC97 device is already registered to
1699 * the device subsystem. This happens when the device is created
1700 * via snd_ac97_mixer(). Currently only SoC codec that does so
1701 * is the generic AC97 glue but others migh emerge.
1702 *
1703 * In those cases we don't try to register the device again.
1704 */
1705 if (!rtd->codec->ac97_created)
1706 return 0;
1707
1708 ret = soc_ac97_dev_register(rtd->codec);
1709 if (ret < 0) {
1710 printk(KERN_ERR "asoc: AC97 device register failed\n");
1711 return ret;
1712 }
1713
1714 rtd->codec->ac97_registered = 1;
1715 }
1716 return 0;
1717 }
1718
1719 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1720 {
1721 if (codec->ac97_registered) {
1722 soc_ac97_dev_unregister(codec);
1723 codec->ac97_registered = 0;
1724 }
1725 }
1726 #endif
1727
1728 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1729 {
1730 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1731 struct snd_soc_codec *codec;
1732 int ret = -ENODEV;
1733
1734 /* find CODEC from registered CODECs*/
1735 list_for_each_entry(codec, &codec_list, list) {
1736 if (!strcmp(codec->name, aux_dev->codec_name)) {
1737 if (codec->probed) {
1738 dev_err(codec->dev,
1739 "asoc: codec already probed");
1740 ret = -EBUSY;
1741 goto out;
1742 }
1743 goto found;
1744 }
1745 }
1746 /* codec not found */
1747 dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1748 goto out;
1749
1750 found:
1751 ret = soc_probe_codec(card, codec);
1752 if (ret < 0)
1753 return ret;
1754
1755 ret = soc_post_component_init(card, codec, num, 1);
1756
1757 out:
1758 return ret;
1759 }
1760
1761 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1762 {
1763 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1764 struct snd_soc_codec *codec = rtd->codec;
1765
1766 /* unregister the rtd device */
1767 if (rtd->dev_registered) {
1768 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1769 device_unregister(&rtd->dev);
1770 rtd->dev_registered = 0;
1771 }
1772
1773 if (codec && codec->probed)
1774 soc_remove_codec(codec);
1775 }
1776
1777 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1778 enum snd_soc_compress_type compress_type)
1779 {
1780 int ret;
1781
1782 if (codec->cache_init)
1783 return 0;
1784
1785 /* override the compress_type if necessary */
1786 if (compress_type && codec->compress_type != compress_type)
1787 codec->compress_type = compress_type;
1788 ret = snd_soc_cache_init(codec);
1789 if (ret < 0) {
1790 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1791 ret);
1792 return ret;
1793 }
1794 codec->cache_init = 1;
1795 return 0;
1796 }
1797
1798 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1799 {
1800 struct snd_soc_codec *codec;
1801 struct snd_soc_codec_conf *codec_conf;
1802 enum snd_soc_compress_type compress_type;
1803 int ret, i;
1804
1805 mutex_lock(&card->mutex);
1806
1807 if (card->instantiated) {
1808 mutex_unlock(&card->mutex);
1809 return;
1810 }
1811
1812 /* bind DAIs */
1813 for (i = 0; i < card->num_links; i++)
1814 soc_bind_dai_link(card, i);
1815
1816 /* bind completed ? */
1817 if (card->num_rtd != card->num_links) {
1818 mutex_unlock(&card->mutex);
1819 return;
1820 }
1821
1822 /* initialize the register cache for each available codec */
1823 list_for_each_entry(codec, &codec_list, list) {
1824 if (codec->cache_init)
1825 continue;
1826 /* by default we don't override the compress_type */
1827 compress_type = 0;
1828 /* check to see if we need to override the compress_type */
1829 for (i = 0; i < card->num_configs; ++i) {
1830 codec_conf = &card->codec_conf[i];
1831 if (!strcmp(codec->name, codec_conf->dev_name)) {
1832 compress_type = codec_conf->compress_type;
1833 if (compress_type && compress_type
1834 != codec->compress_type)
1835 break;
1836 }
1837 }
1838 ret = snd_soc_init_codec_cache(codec, compress_type);
1839 if (ret < 0) {
1840 mutex_unlock(&card->mutex);
1841 return;
1842 }
1843 }
1844
1845 /* card bind complete so register a sound card */
1846 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1847 card->owner, 0, &card->snd_card);
1848 if (ret < 0) {
1849 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1850 card->name);
1851 mutex_unlock(&card->mutex);
1852 return;
1853 }
1854 card->snd_card->dev = card->dev;
1855
1856 card->dapm.bias_level = SND_SOC_BIAS_OFF;
1857 card->dapm.dev = card->dev;
1858 card->dapm.card = card;
1859 list_add(&card->dapm.list, &card->dapm_list);
1860
1861 #ifdef CONFIG_PM_SLEEP
1862 /* deferred resume work */
1863 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1864 #endif
1865
1866 /* initialise the sound card only once */
1867 if (card->probe) {
1868 ret = card->probe(card);
1869 if (ret < 0)
1870 goto card_probe_error;
1871 }
1872
1873 for (i = 0; i < card->num_links; i++) {
1874 ret = soc_probe_dai_link(card, i);
1875 if (ret < 0) {
1876 pr_err("asoc: failed to instantiate card %s: %d\n",
1877 card->name, ret);
1878 goto probe_dai_err;
1879 }
1880 }
1881
1882 for (i = 0; i < card->num_aux_devs; i++) {
1883 ret = soc_probe_aux_dev(card, i);
1884 if (ret < 0) {
1885 pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1886 card->name, ret);
1887 goto probe_aux_dev_err;
1888 }
1889 }
1890
1891 if (card->dapm_widgets)
1892 snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1893 card->num_dapm_widgets);
1894 if (card->dapm_routes)
1895 snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1896 card->num_dapm_routes);
1897
1898 #ifdef CONFIG_DEBUG_FS
1899 card->dapm.debugfs_dapm = debugfs_create_dir("dapm",
1900 card->debugfs_card_root);
1901 if (!card->dapm.debugfs_dapm)
1902 printk(KERN_WARNING
1903 "Failed to create card DAPM debugfs directory\n");
1904
1905 snd_soc_dapm_debugfs_init(&card->dapm);
1906 #endif
1907
1908 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1909 "%s", card->name);
1910 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1911 "%s", card->name);
1912
1913 if (card->late_probe) {
1914 ret = card->late_probe(card);
1915 if (ret < 0) {
1916 dev_err(card->dev, "%s late_probe() failed: %d\n",
1917 card->name, ret);
1918 goto probe_aux_dev_err;
1919 }
1920 }
1921
1922 ret = snd_card_register(card->snd_card);
1923 if (ret < 0) {
1924 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1925 goto probe_aux_dev_err;
1926 }
1927
1928 #ifdef CONFIG_SND_SOC_AC97_BUS
1929 /* register any AC97 codecs */
1930 for (i = 0; i < card->num_rtd; i++) {
1931 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1932 if (ret < 0) {
1933 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1934 while (--i >= 0)
1935 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1936 goto probe_aux_dev_err;
1937 }
1938 }
1939 #endif
1940
1941 card->instantiated = 1;
1942 mutex_unlock(&card->mutex);
1943 return;
1944
1945 probe_aux_dev_err:
1946 for (i = 0; i < card->num_aux_devs; i++)
1947 soc_remove_aux_dev(card, i);
1948
1949 probe_dai_err:
1950 for (i = 0; i < card->num_links; i++)
1951 soc_remove_dai_link(card, i);
1952
1953 card_probe_error:
1954 if (card->remove)
1955 card->remove(card);
1956
1957 snd_card_free(card->snd_card);
1958
1959 mutex_unlock(&card->mutex);
1960 }
1961
1962 /*
1963 * Attempt to initialise any uninitialised cards. Must be called with
1964 * client_mutex.
1965 */
1966 static void snd_soc_instantiate_cards(void)
1967 {
1968 struct snd_soc_card *card;
1969 list_for_each_entry(card, &card_list, list)
1970 snd_soc_instantiate_card(card);
1971 }
1972
1973 /* probes a new socdev */
1974 static int soc_probe(struct platform_device *pdev)
1975 {
1976 struct snd_soc_card *card = platform_get_drvdata(pdev);
1977 int ret = 0;
1978
1979 /*
1980 * no card, so machine driver should be registering card
1981 * we should not be here in that case so ret error
1982 */
1983 if (!card)
1984 return -EINVAL;
1985
1986 /* Bodge while we unpick instantiation */
1987 card->dev = &pdev->dev;
1988
1989 ret = snd_soc_register_card(card);
1990 if (ret != 0) {
1991 dev_err(&pdev->dev, "Failed to register card\n");
1992 return ret;
1993 }
1994
1995 return 0;
1996 }
1997
1998 static int soc_cleanup_card_resources(struct snd_soc_card *card)
1999 {
2000 int i;
2001
2002 /* make sure any delayed work runs */
2003 for (i = 0; i < card->num_rtd; i++) {
2004 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2005 flush_delayed_work_sync(&rtd->delayed_work);
2006 }
2007
2008 /* remove auxiliary devices */
2009 for (i = 0; i < card->num_aux_devs; i++)
2010 soc_remove_aux_dev(card, i);
2011
2012 /* remove and free each DAI */
2013 for (i = 0; i < card->num_rtd; i++)
2014 soc_remove_dai_link(card, i);
2015
2016 soc_cleanup_card_debugfs(card);
2017
2018 /* remove the card */
2019 if (card->remove)
2020 card->remove(card);
2021
2022 kfree(card->rtd);
2023 snd_card_free(card->snd_card);
2024 return 0;
2025
2026 }
2027
2028 /* removes a socdev */
2029 static int soc_remove(struct platform_device *pdev)
2030 {
2031 struct snd_soc_card *card = platform_get_drvdata(pdev);
2032
2033 snd_soc_unregister_card(card);
2034 return 0;
2035 }
2036
2037 int snd_soc_poweroff(struct device *dev)
2038 {
2039 struct snd_soc_card *card = dev_get_drvdata(dev);
2040 int i;
2041
2042 if (!card->instantiated)
2043 return 0;
2044
2045 /* Flush out pmdown_time work - we actually do want to run it
2046 * now, we're shutting down so no imminent restart. */
2047 for (i = 0; i < card->num_rtd; i++) {
2048 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2049 flush_delayed_work_sync(&rtd->delayed_work);
2050 }
2051
2052 snd_soc_dapm_shutdown(card);
2053
2054 return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
2057
2058 const struct dev_pm_ops snd_soc_pm_ops = {
2059 .suspend = snd_soc_suspend,
2060 .resume = snd_soc_resume,
2061 .poweroff = snd_soc_poweroff,
2062 };
2063
2064 /* ASoC platform driver */
2065 static struct platform_driver soc_driver = {
2066 .driver = {
2067 .name = "soc-audio",
2068 .owner = THIS_MODULE,
2069 .pm = &snd_soc_pm_ops,
2070 },
2071 .probe = soc_probe,
2072 .remove = soc_remove,
2073 };
2074
2075 /* create a new pcm */
2076 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
2077 {
2078 struct snd_soc_codec *codec = rtd->codec;
2079 struct snd_soc_platform *platform = rtd->platform;
2080 struct snd_soc_dai *codec_dai = rtd->codec_dai;
2081 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
2082 struct snd_pcm *pcm;
2083 char new_name[64];
2084 int ret = 0, playback = 0, capture = 0;
2085
2086 /* check client and interface hw capabilities */
2087 snprintf(new_name, sizeof(new_name), "%s %s-%d",
2088 rtd->dai_link->stream_name, codec_dai->name, num);
2089
2090 if (codec_dai->driver->playback.channels_min)
2091 playback = 1;
2092 if (codec_dai->driver->capture.channels_min)
2093 capture = 1;
2094
2095 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
2096 ret = snd_pcm_new(rtd->card->snd_card, new_name,
2097 num, playback, capture, &pcm);
2098 if (ret < 0) {
2099 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
2100 return ret;
2101 }
2102
2103 rtd->pcm = pcm;
2104 pcm->private_data = rtd;
2105 soc_pcm_ops.mmap = platform->driver->ops->mmap;
2106 soc_pcm_ops.pointer = platform->driver->ops->pointer;
2107 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2108 soc_pcm_ops.copy = platform->driver->ops->copy;
2109 soc_pcm_ops.silence = platform->driver->ops->silence;
2110 soc_pcm_ops.ack = platform->driver->ops->ack;
2111 soc_pcm_ops.page = platform->driver->ops->page;
2112
2113 if (playback)
2114 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2115
2116 if (capture)
2117 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2118
2119 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2120 if (ret < 0) {
2121 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2122 return ret;
2123 }
2124
2125 pcm->private_free = platform->driver->pcm_free;
2126 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2127 cpu_dai->name);
2128 return ret;
2129 }
2130
2131 /**
2132 * snd_soc_codec_volatile_register: Report if a register is volatile.
2133 *
2134 * @codec: CODEC to query.
2135 * @reg: Register to query.
2136 *
2137 * Boolean function indiciating if a CODEC register is volatile.
2138 */
2139 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
2140 unsigned int reg)
2141 {
2142 if (codec->volatile_register)
2143 return codec->volatile_register(codec, reg);
2144 else
2145 return 0;
2146 }
2147 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2148
2149 /**
2150 * snd_soc_new_ac97_codec - initailise AC97 device
2151 * @codec: audio codec
2152 * @ops: AC97 bus operations
2153 * @num: AC97 codec number
2154 *
2155 * Initialises AC97 codec resources for use by ad-hoc devices only.
2156 */
2157 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2158 struct snd_ac97_bus_ops *ops, int num)
2159 {
2160 mutex_lock(&codec->mutex);
2161
2162 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2163 if (codec->ac97 == NULL) {
2164 mutex_unlock(&codec->mutex);
2165 return -ENOMEM;
2166 }
2167
2168 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2169 if (codec->ac97->bus == NULL) {
2170 kfree(codec->ac97);
2171 codec->ac97 = NULL;
2172 mutex_unlock(&codec->mutex);
2173 return -ENOMEM;
2174 }
2175
2176 codec->ac97->bus->ops = ops;
2177 codec->ac97->num = num;
2178
2179 /*
2180 * Mark the AC97 device to be created by us. This way we ensure that the
2181 * device will be registered with the device subsystem later on.
2182 */
2183 codec->ac97_created = 1;
2184
2185 mutex_unlock(&codec->mutex);
2186 return 0;
2187 }
2188 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2189
2190 /**
2191 * snd_soc_free_ac97_codec - free AC97 codec device
2192 * @codec: audio codec
2193 *
2194 * Frees AC97 codec device resources.
2195 */
2196 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2197 {
2198 mutex_lock(&codec->mutex);
2199 #ifdef CONFIG_SND_SOC_AC97_BUS
2200 soc_unregister_ac97_dai_link(codec);
2201 #endif
2202 kfree(codec->ac97->bus);
2203 kfree(codec->ac97);
2204 codec->ac97 = NULL;
2205 codec->ac97_created = 0;
2206 mutex_unlock(&codec->mutex);
2207 }
2208 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2209
2210 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2211 {
2212 unsigned int ret;
2213
2214 ret = codec->read(codec, reg);
2215 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2216 trace_snd_soc_reg_read(codec, reg, ret);
2217
2218 return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(snd_soc_read);
2221
2222 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2223 unsigned int reg, unsigned int val)
2224 {
2225 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2226 trace_snd_soc_reg_write(codec, reg, val);
2227 return codec->write(codec, reg, val);
2228 }
2229 EXPORT_SYMBOL_GPL(snd_soc_write);
2230
2231 /**
2232 * snd_soc_update_bits - update codec register bits
2233 * @codec: audio codec
2234 * @reg: codec register
2235 * @mask: register mask
2236 * @value: new value
2237 *
2238 * Writes new register value.
2239 *
2240 * Returns 1 for change, 0 for no change, or negative error code.
2241 */
2242 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2243 unsigned int mask, unsigned int value)
2244 {
2245 int change;
2246 unsigned int old, new;
2247 int ret;
2248
2249 ret = snd_soc_read(codec, reg);
2250 if (ret < 0)
2251 return ret;
2252
2253 old = ret;
2254 new = (old & ~mask) | value;
2255 change = old != new;
2256 if (change) {
2257 ret = snd_soc_write(codec, reg, new);
2258 if (ret < 0)
2259 return ret;
2260 }
2261
2262 return change;
2263 }
2264 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2265
2266 /**
2267 * snd_soc_update_bits_locked - update codec register bits
2268 * @codec: audio codec
2269 * @reg: codec register
2270 * @mask: register mask
2271 * @value: new value
2272 *
2273 * Writes new register value, and takes the codec mutex.
2274 *
2275 * Returns 1 for change else 0.
2276 */
2277 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2278 unsigned short reg, unsigned int mask,
2279 unsigned int value)
2280 {
2281 int change;
2282
2283 mutex_lock(&codec->mutex);
2284 change = snd_soc_update_bits(codec, reg, mask, value);
2285 mutex_unlock(&codec->mutex);
2286
2287 return change;
2288 }
2289 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2290
2291 /**
2292 * snd_soc_test_bits - test register for change
2293 * @codec: audio codec
2294 * @reg: codec register
2295 * @mask: register mask
2296 * @value: new value
2297 *
2298 * Tests a register with a new value and checks if the new value is
2299 * different from the old value.
2300 *
2301 * Returns 1 for change else 0.
2302 */
2303 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2304 unsigned int mask, unsigned int value)
2305 {
2306 int change;
2307 unsigned int old, new;
2308
2309 old = snd_soc_read(codec, reg);
2310 new = (old & ~mask) | value;
2311 change = old != new;
2312
2313 return change;
2314 }
2315 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2316
2317 /**
2318 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2319 * @substream: the pcm substream
2320 * @hw: the hardware parameters
2321 *
2322 * Sets the substream runtime hardware parameters.
2323 */
2324 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2325 const struct snd_pcm_hardware *hw)
2326 {
2327 struct snd_pcm_runtime *runtime = substream->runtime;
2328 runtime->hw.info = hw->info;
2329 runtime->hw.formats = hw->formats;
2330 runtime->hw.period_bytes_min = hw->period_bytes_min;
2331 runtime->hw.period_bytes_max = hw->period_bytes_max;
2332 runtime->hw.periods_min = hw->periods_min;
2333 runtime->hw.periods_max = hw->periods_max;
2334 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2335 runtime->hw.fifo_size = hw->fifo_size;
2336 return 0;
2337 }
2338 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2339
2340 /**
2341 * snd_soc_cnew - create new control
2342 * @_template: control template
2343 * @data: control private data
2344 * @long_name: control long name
2345 * @prefix: control name prefix
2346 *
2347 * Create a new mixer control from a template control.
2348 *
2349 * Returns 0 for success, else error.
2350 */
2351 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2352 void *data, char *long_name,
2353 const char *prefix)
2354 {
2355 struct snd_kcontrol_new template;
2356 struct snd_kcontrol *kcontrol;
2357 char *name = NULL;
2358 int name_len;
2359
2360 memcpy(&template, _template, sizeof(template));
2361 template.index = 0;
2362
2363 if (!long_name)
2364 long_name = template.name;
2365
2366 if (prefix) {
2367 name_len = strlen(long_name) + strlen(prefix) + 2;
2368 name = kmalloc(name_len, GFP_ATOMIC);
2369 if (!name)
2370 return NULL;
2371
2372 snprintf(name, name_len, "%s %s", prefix, long_name);
2373
2374 template.name = name;
2375 } else {
2376 template.name = long_name;
2377 }
2378
2379 kcontrol = snd_ctl_new1(&template, data);
2380
2381 kfree(name);
2382
2383 return kcontrol;
2384 }
2385 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2386
2387 /**
2388 * snd_soc_add_controls - add an array of controls to a codec.
2389 * Convienience function to add a list of controls. Many codecs were
2390 * duplicating this code.
2391 *
2392 * @codec: codec to add controls to
2393 * @controls: array of controls to add
2394 * @num_controls: number of elements in the array
2395 *
2396 * Return 0 for success, else error.
2397 */
2398 int snd_soc_add_controls(struct snd_soc_codec *codec,
2399 const struct snd_kcontrol_new *controls, int num_controls)
2400 {
2401 struct snd_card *card = codec->card->snd_card;
2402 int err, i;
2403
2404 for (i = 0; i < num_controls; i++) {
2405 const struct snd_kcontrol_new *control = &controls[i];
2406 err = snd_ctl_add(card, snd_soc_cnew(control, codec,
2407 control->name,
2408 codec->name_prefix));
2409 if (err < 0) {
2410 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2411 codec->name, control->name, err);
2412 return err;
2413 }
2414 }
2415
2416 return 0;
2417 }
2418 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2419
2420 /**
2421 * snd_soc_info_enum_double - enumerated double mixer info callback
2422 * @kcontrol: mixer control
2423 * @uinfo: control element information
2424 *
2425 * Callback to provide information about a double enumerated
2426 * mixer control.
2427 *
2428 * Returns 0 for success.
2429 */
2430 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2431 struct snd_ctl_elem_info *uinfo)
2432 {
2433 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2434
2435 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2436 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2437 uinfo->value.enumerated.items = e->max;
2438
2439 if (uinfo->value.enumerated.item > e->max - 1)
2440 uinfo->value.enumerated.item = e->max - 1;
2441 strcpy(uinfo->value.enumerated.name,
2442 e->texts[uinfo->value.enumerated.item]);
2443 return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2446
2447 /**
2448 * snd_soc_get_enum_double - enumerated double mixer get callback
2449 * @kcontrol: mixer control
2450 * @ucontrol: control element information
2451 *
2452 * Callback to get the value of a double enumerated mixer.
2453 *
2454 * Returns 0 for success.
2455 */
2456 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2457 struct snd_ctl_elem_value *ucontrol)
2458 {
2459 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2460 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2461 unsigned int val, bitmask;
2462
2463 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2464 ;
2465 val = snd_soc_read(codec, e->reg);
2466 ucontrol->value.enumerated.item[0]
2467 = (val >> e->shift_l) & (bitmask - 1);
2468 if (e->shift_l != e->shift_r)
2469 ucontrol->value.enumerated.item[1] =
2470 (val >> e->shift_r) & (bitmask - 1);
2471
2472 return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2475
2476 /**
2477 * snd_soc_put_enum_double - enumerated double mixer put callback
2478 * @kcontrol: mixer control
2479 * @ucontrol: control element information
2480 *
2481 * Callback to set the value of a double enumerated mixer.
2482 *
2483 * Returns 0 for success.
2484 */
2485 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2486 struct snd_ctl_elem_value *ucontrol)
2487 {
2488 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2489 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2490 unsigned int val;
2491 unsigned int mask, bitmask;
2492
2493 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2494 ;
2495 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2496 return -EINVAL;
2497 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2498 mask = (bitmask - 1) << e->shift_l;
2499 if (e->shift_l != e->shift_r) {
2500 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2501 return -EINVAL;
2502 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2503 mask |= (bitmask - 1) << e->shift_r;
2504 }
2505
2506 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2507 }
2508 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2509
2510 /**
2511 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2512 * @kcontrol: mixer control
2513 * @ucontrol: control element information
2514 *
2515 * Callback to get the value of a double semi enumerated mixer.
2516 *
2517 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2518 * used for handling bitfield coded enumeration for example.
2519 *
2520 * Returns 0 for success.
2521 */
2522 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2523 struct snd_ctl_elem_value *ucontrol)
2524 {
2525 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2526 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2527 unsigned int reg_val, val, mux;
2528
2529 reg_val = snd_soc_read(codec, e->reg);
2530 val = (reg_val >> e->shift_l) & e->mask;
2531 for (mux = 0; mux < e->max; mux++) {
2532 if (val == e->values[mux])
2533 break;
2534 }
2535 ucontrol->value.enumerated.item[0] = mux;
2536 if (e->shift_l != e->shift_r) {
2537 val = (reg_val >> e->shift_r) & e->mask;
2538 for (mux = 0; mux < e->max; mux++) {
2539 if (val == e->values[mux])
2540 break;
2541 }
2542 ucontrol->value.enumerated.item[1] = mux;
2543 }
2544
2545 return 0;
2546 }
2547 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2548
2549 /**
2550 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2551 * @kcontrol: mixer control
2552 * @ucontrol: control element information
2553 *
2554 * Callback to set the value of a double semi enumerated mixer.
2555 *
2556 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2557 * used for handling bitfield coded enumeration for example.
2558 *
2559 * Returns 0 for success.
2560 */
2561 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2562 struct snd_ctl_elem_value *ucontrol)
2563 {
2564 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2565 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2566 unsigned int val;
2567 unsigned int mask;
2568
2569 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2570 return -EINVAL;
2571 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2572 mask = e->mask << e->shift_l;
2573 if (e->shift_l != e->shift_r) {
2574 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2575 return -EINVAL;
2576 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2577 mask |= e->mask << e->shift_r;
2578 }
2579
2580 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2581 }
2582 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2583
2584 /**
2585 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2586 * @kcontrol: mixer control
2587 * @uinfo: control element information
2588 *
2589 * Callback to provide information about an external enumerated
2590 * single mixer.
2591 *
2592 * Returns 0 for success.
2593 */
2594 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2595 struct snd_ctl_elem_info *uinfo)
2596 {
2597 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2598
2599 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2600 uinfo->count = 1;
2601 uinfo->value.enumerated.items = e->max;
2602
2603 if (uinfo->value.enumerated.item > e->max - 1)
2604 uinfo->value.enumerated.item = e->max - 1;
2605 strcpy(uinfo->value.enumerated.name,
2606 e->texts[uinfo->value.enumerated.item]);
2607 return 0;
2608 }
2609 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2610
2611 /**
2612 * snd_soc_info_volsw_ext - external single mixer info callback
2613 * @kcontrol: mixer control
2614 * @uinfo: control element information
2615 *
2616 * Callback to provide information about a single external mixer control.
2617 *
2618 * Returns 0 for success.
2619 */
2620 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2621 struct snd_ctl_elem_info *uinfo)
2622 {
2623 int max = kcontrol->private_value;
2624
2625 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2626 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2627 else
2628 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2629
2630 uinfo->count = 1;
2631 uinfo->value.integer.min = 0;
2632 uinfo->value.integer.max = max;
2633 return 0;
2634 }
2635 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2636
2637 /**
2638 * snd_soc_info_volsw - single mixer info callback
2639 * @kcontrol: mixer control
2640 * @uinfo: control element information
2641 *
2642 * Callback to provide information about a single mixer control.
2643 *
2644 * Returns 0 for success.
2645 */
2646 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2647 struct snd_ctl_elem_info *uinfo)
2648 {
2649 struct soc_mixer_control *mc =
2650 (struct soc_mixer_control *)kcontrol->private_value;
2651 int platform_max;
2652 unsigned int shift = mc->shift;
2653 unsigned int rshift = mc->rshift;
2654
2655 if (!mc->platform_max)
2656 mc->platform_max = mc->max;
2657 platform_max = mc->platform_max;
2658
2659 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2660 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2661 else
2662 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2663
2664 uinfo->count = shift == rshift ? 1 : 2;
2665 uinfo->value.integer.min = 0;
2666 uinfo->value.integer.max = platform_max;
2667 return 0;
2668 }
2669 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2670
2671 /**
2672 * snd_soc_get_volsw - single mixer get callback
2673 * @kcontrol: mixer control
2674 * @ucontrol: control element information
2675 *
2676 * Callback to get the value of a single mixer control.
2677 *
2678 * Returns 0 for success.
2679 */
2680 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2681 struct snd_ctl_elem_value *ucontrol)
2682 {
2683 struct soc_mixer_control *mc =
2684 (struct soc_mixer_control *)kcontrol->private_value;
2685 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2686 unsigned int reg = mc->reg;
2687 unsigned int shift = mc->shift;
2688 unsigned int rshift = mc->rshift;
2689 int max = mc->max;
2690 unsigned int mask = (1 << fls(max)) - 1;
2691 unsigned int invert = mc->invert;
2692
2693 ucontrol->value.integer.value[0] =
2694 (snd_soc_read(codec, reg) >> shift) & mask;
2695 if (shift != rshift)
2696 ucontrol->value.integer.value[1] =
2697 (snd_soc_read(codec, reg) >> rshift) & mask;
2698 if (invert) {
2699 ucontrol->value.integer.value[0] =
2700 max - ucontrol->value.integer.value[0];
2701 if (shift != rshift)
2702 ucontrol->value.integer.value[1] =
2703 max - ucontrol->value.integer.value[1];
2704 }
2705
2706 return 0;
2707 }
2708 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2709
2710 /**
2711 * snd_soc_put_volsw - single mixer put callback
2712 * @kcontrol: mixer control
2713 * @ucontrol: control element information
2714 *
2715 * Callback to set the value of a single mixer control.
2716 *
2717 * Returns 0 for success.
2718 */
2719 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2720 struct snd_ctl_elem_value *ucontrol)
2721 {
2722 struct soc_mixer_control *mc =
2723 (struct soc_mixer_control *)kcontrol->private_value;
2724 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2725 unsigned int reg = mc->reg;
2726 unsigned int shift = mc->shift;
2727 unsigned int rshift = mc->rshift;
2728 int max = mc->max;
2729 unsigned int mask = (1 << fls(max)) - 1;
2730 unsigned int invert = mc->invert;
2731 unsigned int val, val2, val_mask;
2732
2733 val = (ucontrol->value.integer.value[0] & mask);
2734 if (invert)
2735 val = max - val;
2736 val_mask = mask << shift;
2737 val = val << shift;
2738 if (shift != rshift) {
2739 val2 = (ucontrol->value.integer.value[1] & mask);
2740 if (invert)
2741 val2 = max - val2;
2742 val_mask |= mask << rshift;
2743 val |= val2 << rshift;
2744 }
2745 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2746 }
2747 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2748
2749 /**
2750 * snd_soc_info_volsw_2r - double mixer info callback
2751 * @kcontrol: mixer control
2752 * @uinfo: control element information
2753 *
2754 * Callback to provide information about a double mixer control that
2755 * spans 2 codec registers.
2756 *
2757 * Returns 0 for success.
2758 */
2759 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2760 struct snd_ctl_elem_info *uinfo)
2761 {
2762 struct soc_mixer_control *mc =
2763 (struct soc_mixer_control *)kcontrol->private_value;
2764 int platform_max;
2765
2766 if (!mc->platform_max)
2767 mc->platform_max = mc->max;
2768 platform_max = mc->platform_max;
2769
2770 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2771 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2772 else
2773 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2774
2775 uinfo->count = 2;
2776 uinfo->value.integer.min = 0;
2777 uinfo->value.integer.max = platform_max;
2778 return 0;
2779 }
2780 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2781
2782 /**
2783 * snd_soc_get_volsw_2r - double mixer get callback
2784 * @kcontrol: mixer control
2785 * @ucontrol: control element information
2786 *
2787 * Callback to get the value of a double mixer control that spans 2 registers.
2788 *
2789 * Returns 0 for success.
2790 */
2791 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2792 struct snd_ctl_elem_value *ucontrol)
2793 {
2794 struct soc_mixer_control *mc =
2795 (struct soc_mixer_control *)kcontrol->private_value;
2796 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2797 unsigned int reg = mc->reg;
2798 unsigned int reg2 = mc->rreg;
2799 unsigned int shift = mc->shift;
2800 int max = mc->max;
2801 unsigned int mask = (1 << fls(max)) - 1;
2802 unsigned int invert = mc->invert;
2803
2804 ucontrol->value.integer.value[0] =
2805 (snd_soc_read(codec, reg) >> shift) & mask;
2806 ucontrol->value.integer.value[1] =
2807 (snd_soc_read(codec, reg2) >> shift) & mask;
2808 if (invert) {
2809 ucontrol->value.integer.value[0] =
2810 max - ucontrol->value.integer.value[0];
2811 ucontrol->value.integer.value[1] =
2812 max - ucontrol->value.integer.value[1];
2813 }
2814
2815 return 0;
2816 }
2817 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2818
2819 /**
2820 * snd_soc_put_volsw_2r - double mixer set callback
2821 * @kcontrol: mixer control
2822 * @ucontrol: control element information
2823 *
2824 * Callback to set the value of a double mixer control that spans 2 registers.
2825 *
2826 * Returns 0 for success.
2827 */
2828 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2829 struct snd_ctl_elem_value *ucontrol)
2830 {
2831 struct soc_mixer_control *mc =
2832 (struct soc_mixer_control *)kcontrol->private_value;
2833 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2834 unsigned int reg = mc->reg;
2835 unsigned int reg2 = mc->rreg;
2836 unsigned int shift = mc->shift;
2837 int max = mc->max;
2838 unsigned int mask = (1 << fls(max)) - 1;
2839 unsigned int invert = mc->invert;
2840 int err;
2841 unsigned int val, val2, val_mask;
2842
2843 val_mask = mask << shift;
2844 val = (ucontrol->value.integer.value[0] & mask);
2845 val2 = (ucontrol->value.integer.value[1] & mask);
2846
2847 if (invert) {
2848 val = max - val;
2849 val2 = max - val2;
2850 }
2851
2852 val = val << shift;
2853 val2 = val2 << shift;
2854
2855 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2856 if (err < 0)
2857 return err;
2858
2859 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2860 return err;
2861 }
2862 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2863
2864 /**
2865 * snd_soc_info_volsw_s8 - signed mixer info callback
2866 * @kcontrol: mixer control
2867 * @uinfo: control element information
2868 *
2869 * Callback to provide information about a signed mixer control.
2870 *
2871 * Returns 0 for success.
2872 */
2873 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2874 struct snd_ctl_elem_info *uinfo)
2875 {
2876 struct soc_mixer_control *mc =
2877 (struct soc_mixer_control *)kcontrol->private_value;
2878 int platform_max;
2879 int min = mc->min;
2880
2881 if (!mc->platform_max)
2882 mc->platform_max = mc->max;
2883 platform_max = mc->platform_max;
2884
2885 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2886 uinfo->count = 2;
2887 uinfo->value.integer.min = 0;
2888 uinfo->value.integer.max = platform_max - min;
2889 return 0;
2890 }
2891 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2892
2893 /**
2894 * snd_soc_get_volsw_s8 - signed mixer get callback
2895 * @kcontrol: mixer control
2896 * @ucontrol: control element information
2897 *
2898 * Callback to get the value of a signed mixer control.
2899 *
2900 * Returns 0 for success.
2901 */
2902 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2903 struct snd_ctl_elem_value *ucontrol)
2904 {
2905 struct soc_mixer_control *mc =
2906 (struct soc_mixer_control *)kcontrol->private_value;
2907 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2908 unsigned int reg = mc->reg;
2909 int min = mc->min;
2910 int val = snd_soc_read(codec, reg);
2911
2912 ucontrol->value.integer.value[0] =
2913 ((signed char)(val & 0xff))-min;
2914 ucontrol->value.integer.value[1] =
2915 ((signed char)((val >> 8) & 0xff))-min;
2916 return 0;
2917 }
2918 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2919
2920 /**
2921 * snd_soc_put_volsw_sgn - signed mixer put callback
2922 * @kcontrol: mixer control
2923 * @ucontrol: control element information
2924 *
2925 * Callback to set the value of a signed mixer control.
2926 *
2927 * Returns 0 for success.
2928 */
2929 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2930 struct snd_ctl_elem_value *ucontrol)
2931 {
2932 struct soc_mixer_control *mc =
2933 (struct soc_mixer_control *)kcontrol->private_value;
2934 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2935 unsigned int reg = mc->reg;
2936 int min = mc->min;
2937 unsigned int val;
2938
2939 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2940 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2941
2942 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2943 }
2944 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2945
2946 /**
2947 * snd_soc_limit_volume - Set new limit to an existing volume control.
2948 *
2949 * @codec: where to look for the control
2950 * @name: Name of the control
2951 * @max: new maximum limit
2952 *
2953 * Return 0 for success, else error.
2954 */
2955 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2956 const char *name, int max)
2957 {
2958 struct snd_card *card = codec->card->snd_card;
2959 struct snd_kcontrol *kctl;
2960 struct soc_mixer_control *mc;
2961 int found = 0;
2962 int ret = -EINVAL;
2963
2964 /* Sanity check for name and max */
2965 if (unlikely(!name || max <= 0))
2966 return -EINVAL;
2967
2968 list_for_each_entry(kctl, &card->controls, list) {
2969 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2970 found = 1;
2971 break;
2972 }
2973 }
2974 if (found) {
2975 mc = (struct soc_mixer_control *)kctl->private_value;
2976 if (max <= mc->max) {
2977 mc->platform_max = max;
2978 ret = 0;
2979 }
2980 }
2981 return ret;
2982 }
2983 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2984
2985 /**
2986 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2987 * mixer info callback
2988 * @kcontrol: mixer control
2989 * @uinfo: control element information
2990 *
2991 * Returns 0 for success.
2992 */
2993 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2994 struct snd_ctl_elem_info *uinfo)
2995 {
2996 struct soc_mixer_control *mc =
2997 (struct soc_mixer_control *)kcontrol->private_value;
2998 int max = mc->max;
2999 int min = mc->min;
3000
3001 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3002 uinfo->count = 2;
3003 uinfo->value.integer.min = 0;
3004 uinfo->value.integer.max = max-min;
3005
3006 return 0;
3007 }
3008 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
3009
3010 /**
3011 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
3012 * mixer get callback
3013 * @kcontrol: mixer control
3014 * @uinfo: control element information
3015 *
3016 * Returns 0 for success.
3017 */
3018 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3019 struct snd_ctl_elem_value *ucontrol)
3020 {
3021 struct soc_mixer_control *mc =
3022 (struct soc_mixer_control *)kcontrol->private_value;
3023 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3024 unsigned int mask = (1<<mc->shift)-1;
3025 int min = mc->min;
3026 int val = snd_soc_read(codec, mc->reg) & mask;
3027 int valr = snd_soc_read(codec, mc->rreg) & mask;
3028
3029 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
3030 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
3031 return 0;
3032 }
3033 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
3034
3035 /**
3036 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
3037 * mixer put callback
3038 * @kcontrol: mixer control
3039 * @uinfo: control element information
3040 *
3041 * Returns 0 for success.
3042 */
3043 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
3044 struct snd_ctl_elem_value *ucontrol)
3045 {
3046 struct soc_mixer_control *mc =
3047 (struct soc_mixer_control *)kcontrol->private_value;
3048 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3049 unsigned int mask = (1<<mc->shift)-1;
3050 int min = mc->min;
3051 int ret;
3052 unsigned int val, valr, oval, ovalr;
3053
3054 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
3055 val &= mask;
3056 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
3057 valr &= mask;
3058
3059 oval = snd_soc_read(codec, mc->reg) & mask;
3060 ovalr = snd_soc_read(codec, mc->rreg) & mask;
3061
3062 ret = 0;
3063 if (oval != val) {
3064 ret = snd_soc_write(codec, mc->reg, val);
3065 if (ret < 0)
3066 return ret;
3067 }
3068 if (ovalr != valr) {
3069 ret = snd_soc_write(codec, mc->rreg, valr);
3070 if (ret < 0)
3071 return ret;
3072 }
3073
3074 return 0;
3075 }
3076 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
3077
3078 /**
3079 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3080 * @dai: DAI
3081 * @clk_id: DAI specific clock ID
3082 * @freq: new clock frequency in Hz
3083 * @dir: new clock direction - input/output.
3084 *
3085 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3086 */
3087 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3088 unsigned int freq, int dir)
3089 {
3090 if (dai->driver && dai->driver->ops->set_sysclk)
3091 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3092 else if (dai->codec && dai->codec->driver->set_sysclk)
3093 return dai->codec->driver->set_sysclk(dai->codec, clk_id,
3094 freq, dir);
3095 else
3096 return -EINVAL;
3097 }
3098 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3099
3100 /**
3101 * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3102 * @codec: CODEC
3103 * @clk_id: DAI specific clock ID
3104 * @freq: new clock frequency in Hz
3105 * @dir: new clock direction - input/output.
3106 *
3107 * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3108 */
3109 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3110 unsigned int freq, int dir)
3111 {
3112 if (codec->driver->set_sysclk)
3113 return codec->driver->set_sysclk(codec, clk_id, freq, dir);
3114 else
3115 return -EINVAL;
3116 }
3117 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3118
3119 /**
3120 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3121 * @dai: DAI
3122 * @div_id: DAI specific clock divider ID
3123 * @div: new clock divisor.
3124 *
3125 * Configures the clock dividers. This is used to derive the best DAI bit and
3126 * frame clocks from the system or master clock. It's best to set the DAI bit
3127 * and frame clocks as low as possible to save system power.
3128 */
3129 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3130 int div_id, int div)
3131 {
3132 if (dai->driver && dai->driver->ops->set_clkdiv)
3133 return dai->driver->ops->set_clkdiv(dai, div_id, div);
3134 else
3135 return -EINVAL;
3136 }
3137 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3138
3139 /**
3140 * snd_soc_dai_set_pll - configure DAI PLL.
3141 * @dai: DAI
3142 * @pll_id: DAI specific PLL ID
3143 * @source: DAI specific source for the PLL
3144 * @freq_in: PLL input clock frequency in Hz
3145 * @freq_out: requested PLL output clock frequency in Hz
3146 *
3147 * Configures and enables PLL to generate output clock based on input clock.
3148 */
3149 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3150 unsigned int freq_in, unsigned int freq_out)
3151 {
3152 if (dai->driver && dai->driver->ops->set_pll)
3153 return dai->driver->ops->set_pll(dai, pll_id, source,
3154 freq_in, freq_out);
3155 else if (dai->codec && dai->codec->driver->set_pll)
3156 return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3157 freq_in, freq_out);
3158 else
3159 return -EINVAL;
3160 }
3161 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3162
3163 /*
3164 * snd_soc_codec_set_pll - configure codec PLL.
3165 * @codec: CODEC
3166 * @pll_id: DAI specific PLL ID
3167 * @source: DAI specific source for the PLL
3168 * @freq_in: PLL input clock frequency in Hz
3169 * @freq_out: requested PLL output clock frequency in Hz
3170 *
3171 * Configures and enables PLL to generate output clock based on input clock.
3172 */
3173 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3174 unsigned int freq_in, unsigned int freq_out)
3175 {
3176 if (codec->driver->set_pll)
3177 return codec->driver->set_pll(codec, pll_id, source,
3178 freq_in, freq_out);
3179 else
3180 return -EINVAL;
3181 }
3182 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3183
3184 /**
3185 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3186 * @dai: DAI
3187 * @fmt: SND_SOC_DAIFMT_ format value.
3188 *
3189 * Configures the DAI hardware format and clocking.
3190 */
3191 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3192 {
3193 if (dai->driver && dai->driver->ops->set_fmt)
3194 return dai->driver->ops->set_fmt(dai, fmt);
3195 else
3196 return -EINVAL;
3197 }
3198 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3199
3200 /**
3201 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3202 * @dai: DAI
3203 * @tx_mask: bitmask representing active TX slots.
3204 * @rx_mask: bitmask representing active RX slots.
3205 * @slots: Number of slots in use.
3206 * @slot_width: Width in bits for each slot.
3207 *
3208 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3209 * specific.
3210 */
3211 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3212 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3213 {
3214 if (dai->driver && dai->driver->ops->set_tdm_slot)
3215 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3216 slots, slot_width);
3217 else
3218 return -EINVAL;
3219 }
3220 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3221
3222 /**
3223 * snd_soc_dai_set_channel_map - configure DAI audio channel map
3224 * @dai: DAI
3225 * @tx_num: how many TX channels
3226 * @tx_slot: pointer to an array which imply the TX slot number channel
3227 * 0~num-1 uses
3228 * @rx_num: how many RX channels
3229 * @rx_slot: pointer to an array which imply the RX slot number channel
3230 * 0~num-1 uses
3231 *
3232 * configure the relationship between channel number and TDM slot number.
3233 */
3234 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3235 unsigned int tx_num, unsigned int *tx_slot,
3236 unsigned int rx_num, unsigned int *rx_slot)
3237 {
3238 if (dai->driver && dai->driver->ops->set_channel_map)
3239 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3240 rx_num, rx_slot);
3241 else
3242 return -EINVAL;
3243 }
3244 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3245
3246 /**
3247 * snd_soc_dai_set_tristate - configure DAI system or master clock.
3248 * @dai: DAI
3249 * @tristate: tristate enable
3250 *
3251 * Tristates the DAI so that others can use it.
3252 */
3253 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3254 {
3255 if (dai->driver && dai->driver->ops->set_tristate)
3256 return dai->driver->ops->set_tristate(dai, tristate);
3257 else
3258 return -EINVAL;
3259 }
3260 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3261
3262 /**
3263 * snd_soc_dai_digital_mute - configure DAI system or master clock.
3264 * @dai: DAI
3265 * @mute: mute enable
3266 *
3267 * Mutes the DAI DAC.
3268 */
3269 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3270 {
3271 if (dai->driver && dai->driver->ops->digital_mute)
3272 return dai->driver->ops->digital_mute(dai, mute);
3273 else
3274 return -EINVAL;
3275 }
3276 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3277
3278 /**
3279 * snd_soc_register_card - Register a card with the ASoC core
3280 *
3281 * @card: Card to register
3282 *
3283 */
3284 int snd_soc_register_card(struct snd_soc_card *card)
3285 {
3286 int i;
3287
3288 if (!card->name || !card->dev)
3289 return -EINVAL;
3290
3291 snd_soc_initialize_card_lists(card);
3292
3293 soc_init_card_debugfs(card);
3294
3295 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3296 (card->num_links + card->num_aux_devs),
3297 GFP_KERNEL);
3298 if (card->rtd == NULL)
3299 return -ENOMEM;
3300 card->rtd_aux = &card->rtd[card->num_links];
3301
3302 for (i = 0; i < card->num_links; i++)
3303 card->rtd[i].dai_link = &card->dai_link[i];
3304
3305 INIT_LIST_HEAD(&card->list);
3306 card->instantiated = 0;
3307 mutex_init(&card->mutex);
3308
3309 mutex_lock(&client_mutex);
3310 list_add(&card->list, &card_list);
3311 snd_soc_instantiate_cards();
3312 mutex_unlock(&client_mutex);
3313
3314 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3315
3316 return 0;
3317 }
3318 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3319
3320 /**
3321 * snd_soc_unregister_card - Unregister a card with the ASoC core
3322 *
3323 * @card: Card to unregister
3324 *
3325 */
3326 int snd_soc_unregister_card(struct snd_soc_card *card)
3327 {
3328 if (card->instantiated)
3329 soc_cleanup_card_resources(card);
3330 mutex_lock(&client_mutex);
3331 list_del(&card->list);
3332 mutex_unlock(&client_mutex);
3333 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3334
3335 return 0;
3336 }
3337 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3338
3339 /*
3340 * Simplify DAI link configuration by removing ".-1" from device names
3341 * and sanitizing names.
3342 */
3343 static char *fmt_single_name(struct device *dev, int *id)
3344 {
3345 char *found, name[NAME_SIZE];
3346 int id1, id2;
3347
3348 if (dev_name(dev) == NULL)
3349 return NULL;
3350
3351 strlcpy(name, dev_name(dev), NAME_SIZE);
3352
3353 /* are we a "%s.%d" name (platform and SPI components) */
3354 found = strstr(name, dev->driver->name);
3355 if (found) {
3356 /* get ID */
3357 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3358
3359 /* discard ID from name if ID == -1 */
3360 if (*id == -1)
3361 found[strlen(dev->driver->name)] = '\0';
3362 }
3363
3364 } else {
3365 /* I2C component devices are named "bus-addr" */
3366 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3367 char tmp[NAME_SIZE];
3368
3369 /* create unique ID number from I2C addr and bus */
3370 *id = ((id1 & 0xffff) << 16) + id2;
3371
3372 /* sanitize component name for DAI link creation */
3373 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3374 strlcpy(name, tmp, NAME_SIZE);
3375 } else
3376 *id = 0;
3377 }
3378
3379 return kstrdup(name, GFP_KERNEL);
3380 }
3381
3382 /*
3383 * Simplify DAI link naming for single devices with multiple DAIs by removing
3384 * any ".-1" and using the DAI name (instead of device name).
3385 */
3386 static inline char *fmt_multiple_name(struct device *dev,
3387 struct snd_soc_dai_driver *dai_drv)
3388 {
3389 if (dai_drv->name == NULL) {
3390 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3391 dev_name(dev));
3392 return NULL;
3393 }
3394
3395 return kstrdup(dai_drv->name, GFP_KERNEL);
3396 }
3397
3398 /**
3399 * snd_soc_register_dai - Register a DAI with the ASoC core
3400 *
3401 * @dai: DAI to register
3402 */
3403 int snd_soc_register_dai(struct device *dev,
3404 struct snd_soc_dai_driver *dai_drv)
3405 {
3406 struct snd_soc_dai *dai;
3407
3408 dev_dbg(dev, "dai register %s\n", dev_name(dev));
3409
3410 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3411 if (dai == NULL)
3412 return -ENOMEM;
3413
3414 /* create DAI component name */
3415 dai->name = fmt_single_name(dev, &dai->id);
3416 if (dai->name == NULL) {
3417 kfree(dai);
3418 return -ENOMEM;
3419 }
3420
3421 dai->dev = dev;
3422 dai->driver = dai_drv;
3423 if (!dai->driver->ops)
3424 dai->driver->ops = &null_dai_ops;
3425
3426 mutex_lock(&client_mutex);
3427 list_add(&dai->list, &dai_list);
3428 snd_soc_instantiate_cards();
3429 mutex_unlock(&client_mutex);
3430
3431 pr_debug("Registered DAI '%s'\n", dai->name);
3432
3433 return 0;
3434 }
3435 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3436
3437 /**
3438 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3439 *
3440 * @dai: DAI to unregister
3441 */
3442 void snd_soc_unregister_dai(struct device *dev)
3443 {
3444 struct snd_soc_dai *dai;
3445
3446 list_for_each_entry(dai, &dai_list, list) {
3447 if (dev == dai->dev)
3448 goto found;
3449 }
3450 return;
3451
3452 found:
3453 mutex_lock(&client_mutex);
3454 list_del(&dai->list);
3455 mutex_unlock(&client_mutex);
3456
3457 pr_debug("Unregistered DAI '%s'\n", dai->name);
3458 kfree(dai->name);
3459 kfree(dai);
3460 }
3461 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3462
3463 /**
3464 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3465 *
3466 * @dai: Array of DAIs to register
3467 * @count: Number of DAIs
3468 */
3469 int snd_soc_register_dais(struct device *dev,
3470 struct snd_soc_dai_driver *dai_drv, size_t count)
3471 {
3472 struct snd_soc_dai *dai;
3473 int i, ret = 0;
3474
3475 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3476
3477 for (i = 0; i < count; i++) {
3478
3479 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3480 if (dai == NULL) {
3481 ret = -ENOMEM;
3482 goto err;
3483 }
3484
3485 /* create DAI component name */
3486 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3487 if (dai->name == NULL) {
3488 kfree(dai);
3489 ret = -EINVAL;
3490 goto err;
3491 }
3492
3493 dai->dev = dev;
3494 dai->driver = &dai_drv[i];
3495 if (dai->driver->id)
3496 dai->id = dai->driver->id;
3497 else
3498 dai->id = i;
3499 if (!dai->driver->ops)
3500 dai->driver->ops = &null_dai_ops;
3501
3502 mutex_lock(&client_mutex);
3503 list_add(&dai->list, &dai_list);
3504 mutex_unlock(&client_mutex);
3505
3506 pr_debug("Registered DAI '%s'\n", dai->name);
3507 }
3508
3509 mutex_lock(&client_mutex);
3510 snd_soc_instantiate_cards();
3511 mutex_unlock(&client_mutex);
3512 return 0;
3513
3514 err:
3515 for (i--; i >= 0; i--)
3516 snd_soc_unregister_dai(dev);
3517
3518 return ret;
3519 }
3520 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3521
3522 /**
3523 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3524 *
3525 * @dai: Array of DAIs to unregister
3526 * @count: Number of DAIs
3527 */
3528 void snd_soc_unregister_dais(struct device *dev, size_t count)
3529 {
3530 int i;
3531
3532 for (i = 0; i < count; i++)
3533 snd_soc_unregister_dai(dev);
3534 }
3535 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3536
3537 /**
3538 * snd_soc_register_platform - Register a platform with the ASoC core
3539 *
3540 * @platform: platform to register
3541 */
3542 int snd_soc_register_platform(struct device *dev,
3543 struct snd_soc_platform_driver *platform_drv)
3544 {
3545 struct snd_soc_platform *platform;
3546
3547 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3548
3549 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3550 if (platform == NULL)
3551 return -ENOMEM;
3552
3553 /* create platform component name */
3554 platform->name = fmt_single_name(dev, &platform->id);
3555 if (platform->name == NULL) {
3556 kfree(platform);
3557 return -ENOMEM;
3558 }
3559
3560 platform->dev = dev;
3561 platform->driver = platform_drv;
3562
3563 mutex_lock(&client_mutex);
3564 list_add(&platform->list, &platform_list);
3565 snd_soc_instantiate_cards();
3566 mutex_unlock(&client_mutex);
3567
3568 pr_debug("Registered platform '%s'\n", platform->name);
3569
3570 return 0;
3571 }
3572 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3573
3574 /**
3575 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3576 *
3577 * @platform: platform to unregister
3578 */
3579 void snd_soc_unregister_platform(struct device *dev)
3580 {
3581 struct snd_soc_platform *platform;
3582
3583 list_for_each_entry(platform, &platform_list, list) {
3584 if (dev == platform->dev)
3585 goto found;
3586 }
3587 return;
3588
3589 found:
3590 mutex_lock(&client_mutex);
3591 list_del(&platform->list);
3592 mutex_unlock(&client_mutex);
3593
3594 pr_debug("Unregistered platform '%s'\n", platform->name);
3595 kfree(platform->name);
3596 kfree(platform);
3597 }
3598 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3599
3600 static u64 codec_format_map[] = {
3601 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3602 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3603 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3604 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3605 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3606 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3607 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3608 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3609 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3610 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3611 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3612 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3613 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3614 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3615 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3616 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3617 };
3618
3619 /* Fix up the DAI formats for endianness: codecs don't actually see
3620 * the endianness of the data but we're using the CPU format
3621 * definitions which do need to include endianness so we ensure that
3622 * codec DAIs always have both big and little endian variants set.
3623 */
3624 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3625 {
3626 int i;
3627
3628 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3629 if (stream->formats & codec_format_map[i])
3630 stream->formats |= codec_format_map[i];
3631 }
3632
3633 /**
3634 * snd_soc_register_codec - Register a codec with the ASoC core
3635 *
3636 * @codec: codec to register
3637 */
3638 int snd_soc_register_codec(struct device *dev,
3639 const struct snd_soc_codec_driver *codec_drv,
3640 struct snd_soc_dai_driver *dai_drv,
3641 int num_dai)
3642 {
3643 size_t reg_size;
3644 struct snd_soc_codec *codec;
3645 int ret, i;
3646
3647 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3648
3649 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3650 if (codec == NULL)
3651 return -ENOMEM;
3652
3653 /* create CODEC component name */
3654 codec->name = fmt_single_name(dev, &codec->id);
3655 if (codec->name == NULL) {
3656 kfree(codec);
3657 return -ENOMEM;
3658 }
3659
3660 if (codec_drv->compress_type)
3661 codec->compress_type = codec_drv->compress_type;
3662 else
3663 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3664
3665 codec->write = codec_drv->write;
3666 codec->read = codec_drv->read;
3667 codec->volatile_register = codec_drv->volatile_register;
3668 codec->readable_register = codec_drv->readable_register;
3669 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3670 codec->dapm.dev = dev;
3671 codec->dapm.codec = codec;
3672 codec->dapm.seq_notifier = codec_drv->seq_notifier;
3673 codec->dev = dev;
3674 codec->driver = codec_drv;
3675 codec->num_dai = num_dai;
3676 mutex_init(&codec->mutex);
3677
3678 /* allocate CODEC register cache */
3679 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3680 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3681 codec->reg_size = reg_size;
3682 /* it is necessary to make a copy of the default register cache
3683 * because in the case of using a compression type that requires
3684 * the default register cache to be marked as __devinitconst the
3685 * kernel might have freed the array by the time we initialize
3686 * the cache.
3687 */
3688 if (codec_drv->reg_cache_default) {
3689 codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3690 reg_size, GFP_KERNEL);
3691 if (!codec->reg_def_copy) {
3692 ret = -ENOMEM;
3693 goto fail;
3694 }
3695 }
3696 }
3697
3698 if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3699 if (!codec->volatile_register)
3700 codec->volatile_register = snd_soc_default_volatile_register;
3701 if (!codec->readable_register)
3702 codec->readable_register = snd_soc_default_readable_register;
3703 }
3704
3705 for (i = 0; i < num_dai; i++) {
3706 fixup_codec_formats(&dai_drv[i].playback);
3707 fixup_codec_formats(&dai_drv[i].capture);
3708 }
3709
3710 /* register any DAIs */
3711 if (num_dai) {
3712 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3713 if (ret < 0)
3714 goto fail;
3715 }
3716
3717 mutex_lock(&client_mutex);
3718 list_add(&codec->list, &codec_list);
3719 snd_soc_instantiate_cards();
3720 mutex_unlock(&client_mutex);
3721
3722 pr_debug("Registered codec '%s'\n", codec->name);
3723 return 0;
3724
3725 fail:
3726 kfree(codec->reg_def_copy);
3727 codec->reg_def_copy = NULL;
3728 kfree(codec->name);
3729 kfree(codec);
3730 return ret;
3731 }
3732 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3733
3734 /**
3735 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3736 *
3737 * @codec: codec to unregister
3738 */
3739 void snd_soc_unregister_codec(struct device *dev)
3740 {
3741 struct snd_soc_codec *codec;
3742 int i;
3743
3744 list_for_each_entry(codec, &codec_list, list) {
3745 if (dev == codec->dev)
3746 goto found;
3747 }
3748 return;
3749
3750 found:
3751 if (codec->num_dai)
3752 for (i = 0; i < codec->num_dai; i++)
3753 snd_soc_unregister_dai(dev);
3754
3755 mutex_lock(&client_mutex);
3756 list_del(&codec->list);
3757 mutex_unlock(&client_mutex);
3758
3759 pr_debug("Unregistered codec '%s'\n", codec->name);
3760
3761 snd_soc_cache_exit(codec);
3762 kfree(codec->reg_def_copy);
3763 kfree(codec->name);
3764 kfree(codec);
3765 }
3766 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3767
3768 static int __init snd_soc_init(void)
3769 {
3770 #ifdef CONFIG_DEBUG_FS
3771 snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3772 if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3773 printk(KERN_WARNING
3774 "ASoC: Failed to create debugfs directory\n");
3775 snd_soc_debugfs_root = NULL;
3776 }
3777
3778 if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3779 &codec_list_fops))
3780 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3781
3782 if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3783 &dai_list_fops))
3784 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3785
3786 if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3787 &platform_list_fops))
3788 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3789 #endif
3790
3791 return platform_driver_register(&soc_driver);
3792 }
3793 module_init(snd_soc_init);
3794
3795 static void __exit snd_soc_exit(void)
3796 {
3797 #ifdef CONFIG_DEBUG_FS
3798 debugfs_remove_recursive(snd_soc_debugfs_root);
3799 #endif
3800 platform_driver_unregister(&soc_driver);
3801 }
3802 module_exit(snd_soc_exit);
3803
3804 /* Module information */
3805 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3806 MODULE_DESCRIPTION("ALSA SoC Core");
3807 MODULE_LICENSE("GPL");
3808 MODULE_ALIAS("platform:soc-audio");