Merge commit 'v2.6.27-rc7' into x86/debug
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / soc / fsl / fsl_ssi.c
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
9 * express or implied.
10 */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/delay.h>
17
18 #include <sound/core.h>
19 #include <sound/pcm.h>
20 #include <sound/pcm_params.h>
21 #include <sound/initval.h>
22 #include <sound/soc.h>
23
24 #include <asm/immap_86xx.h>
25
26 #include "fsl_ssi.h"
27
28 /**
29 * FSLSSI_I2S_RATES: sample rates supported by the I2S
30 *
31 * This driver currently only supports the SSI running in I2S slave mode,
32 * which means the codec determines the sample rate. Therefore, we tell
33 * ALSA that we support all rates and let the codec driver decide what rates
34 * are really supported.
35 */
36 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
37 SNDRV_PCM_RATE_CONTINUOUS)
38
39 /**
40 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
41 *
42 * This driver currently only supports the SSI running in I2S slave mode.
43 *
44 * The SSI has a limitation in that the samples must be in the same byte
45 * order as the host CPU. This is because when multiple bytes are written
46 * to the STX register, the bytes and bits must be written in the same
47 * order. The STX is a shift register, so all the bits need to be aligned
48 * (bit-endianness must match byte-endianness). Processors typically write
49 * the bits within a byte in the same order that the bytes of a word are
50 * written in. So if the host CPU is big-endian, then only big-endian
51 * samples will be written to STX properly.
52 */
53 #ifdef __BIG_ENDIAN
54 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
55 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
56 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
57 #else
58 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
59 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
60 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
61 #endif
62
63 /**
64 * fsl_ssi_private: per-SSI private data
65 *
66 * @name: short name for this device ("SSI0", "SSI1", etc)
67 * @ssi: pointer to the SSI's registers
68 * @ssi_phys: physical address of the SSI registers
69 * @irq: IRQ of this SSI
70 * @first_stream: pointer to the stream that was opened first
71 * @second_stream: pointer to second stream
72 * @dev: struct device pointer
73 * @playback: the number of playback streams opened
74 * @capture: the number of capture streams opened
75 * @cpu_dai: the CPU DAI for this device
76 * @dev_attr: the sysfs device attribute structure
77 * @stats: SSI statistics
78 */
79 struct fsl_ssi_private {
80 char name[8];
81 struct ccsr_ssi __iomem *ssi;
82 dma_addr_t ssi_phys;
83 unsigned int irq;
84 struct snd_pcm_substream *first_stream;
85 struct snd_pcm_substream *second_stream;
86 struct device *dev;
87 unsigned int playback;
88 unsigned int capture;
89 struct snd_soc_dai cpu_dai;
90 struct device_attribute dev_attr;
91
92 struct {
93 unsigned int rfrc;
94 unsigned int tfrc;
95 unsigned int cmdau;
96 unsigned int cmddu;
97 unsigned int rxt;
98 unsigned int rdr1;
99 unsigned int rdr0;
100 unsigned int tde1;
101 unsigned int tde0;
102 unsigned int roe1;
103 unsigned int roe0;
104 unsigned int tue1;
105 unsigned int tue0;
106 unsigned int tfs;
107 unsigned int rfs;
108 unsigned int tls;
109 unsigned int rls;
110 unsigned int rff1;
111 unsigned int rff0;
112 unsigned int tfe1;
113 unsigned int tfe0;
114 } stats;
115 };
116
117 /**
118 * fsl_ssi_isr: SSI interrupt handler
119 *
120 * Although it's possible to use the interrupt handler to send and receive
121 * data to/from the SSI, we use the DMA instead. Programming is more
122 * complicated, but the performance is much better.
123 *
124 * This interrupt handler is used only to gather statistics.
125 *
126 * @irq: IRQ of the SSI device
127 * @dev_id: pointer to the ssi_private structure for this SSI device
128 */
129 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
130 {
131 struct fsl_ssi_private *ssi_private = dev_id;
132 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
133 irqreturn_t ret = IRQ_NONE;
134 __be32 sisr;
135 __be32 sisr2 = 0;
136
137 /* We got an interrupt, so read the status register to see what we
138 were interrupted for. We mask it with the Interrupt Enable register
139 so that we only check for events that we're interested in.
140 */
141 sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier);
142
143 if (sisr & CCSR_SSI_SISR_RFRC) {
144 ssi_private->stats.rfrc++;
145 sisr2 |= CCSR_SSI_SISR_RFRC;
146 ret = IRQ_HANDLED;
147 }
148
149 if (sisr & CCSR_SSI_SISR_TFRC) {
150 ssi_private->stats.tfrc++;
151 sisr2 |= CCSR_SSI_SISR_TFRC;
152 ret = IRQ_HANDLED;
153 }
154
155 if (sisr & CCSR_SSI_SISR_CMDAU) {
156 ssi_private->stats.cmdau++;
157 ret = IRQ_HANDLED;
158 }
159
160 if (sisr & CCSR_SSI_SISR_CMDDU) {
161 ssi_private->stats.cmddu++;
162 ret = IRQ_HANDLED;
163 }
164
165 if (sisr & CCSR_SSI_SISR_RXT) {
166 ssi_private->stats.rxt++;
167 ret = IRQ_HANDLED;
168 }
169
170 if (sisr & CCSR_SSI_SISR_RDR1) {
171 ssi_private->stats.rdr1++;
172 ret = IRQ_HANDLED;
173 }
174
175 if (sisr & CCSR_SSI_SISR_RDR0) {
176 ssi_private->stats.rdr0++;
177 ret = IRQ_HANDLED;
178 }
179
180 if (sisr & CCSR_SSI_SISR_TDE1) {
181 ssi_private->stats.tde1++;
182 ret = IRQ_HANDLED;
183 }
184
185 if (sisr & CCSR_SSI_SISR_TDE0) {
186 ssi_private->stats.tde0++;
187 ret = IRQ_HANDLED;
188 }
189
190 if (sisr & CCSR_SSI_SISR_ROE1) {
191 ssi_private->stats.roe1++;
192 sisr2 |= CCSR_SSI_SISR_ROE1;
193 ret = IRQ_HANDLED;
194 }
195
196 if (sisr & CCSR_SSI_SISR_ROE0) {
197 ssi_private->stats.roe0++;
198 sisr2 |= CCSR_SSI_SISR_ROE0;
199 ret = IRQ_HANDLED;
200 }
201
202 if (sisr & CCSR_SSI_SISR_TUE1) {
203 ssi_private->stats.tue1++;
204 sisr2 |= CCSR_SSI_SISR_TUE1;
205 ret = IRQ_HANDLED;
206 }
207
208 if (sisr & CCSR_SSI_SISR_TUE0) {
209 ssi_private->stats.tue0++;
210 sisr2 |= CCSR_SSI_SISR_TUE0;
211 ret = IRQ_HANDLED;
212 }
213
214 if (sisr & CCSR_SSI_SISR_TFS) {
215 ssi_private->stats.tfs++;
216 ret = IRQ_HANDLED;
217 }
218
219 if (sisr & CCSR_SSI_SISR_RFS) {
220 ssi_private->stats.rfs++;
221 ret = IRQ_HANDLED;
222 }
223
224 if (sisr & CCSR_SSI_SISR_TLS) {
225 ssi_private->stats.tls++;
226 ret = IRQ_HANDLED;
227 }
228
229 if (sisr & CCSR_SSI_SISR_RLS) {
230 ssi_private->stats.rls++;
231 ret = IRQ_HANDLED;
232 }
233
234 if (sisr & CCSR_SSI_SISR_RFF1) {
235 ssi_private->stats.rff1++;
236 ret = IRQ_HANDLED;
237 }
238
239 if (sisr & CCSR_SSI_SISR_RFF0) {
240 ssi_private->stats.rff0++;
241 ret = IRQ_HANDLED;
242 }
243
244 if (sisr & CCSR_SSI_SISR_TFE1) {
245 ssi_private->stats.tfe1++;
246 ret = IRQ_HANDLED;
247 }
248
249 if (sisr & CCSR_SSI_SISR_TFE0) {
250 ssi_private->stats.tfe0++;
251 ret = IRQ_HANDLED;
252 }
253
254 /* Clear the bits that we set */
255 if (sisr2)
256 out_be32(&ssi->sisr, sisr2);
257
258 return ret;
259 }
260
261 /**
262 * fsl_ssi_startup: create a new substream
263 *
264 * This is the first function called when a stream is opened.
265 *
266 * If this is the first stream open, then grab the IRQ and program most of
267 * the SSI registers.
268 */
269 static int fsl_ssi_startup(struct snd_pcm_substream *substream)
270 {
271 struct snd_soc_pcm_runtime *rtd = substream->private_data;
272 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
273
274 /*
275 * If this is the first stream opened, then request the IRQ
276 * and initialize the SSI registers.
277 */
278 if (!ssi_private->playback && !ssi_private->capture) {
279 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
280 int ret;
281
282 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
283 ssi_private->name, ssi_private);
284 if (ret < 0) {
285 dev_err(substream->pcm->card->dev,
286 "could not claim irq %u\n", ssi_private->irq);
287 return ret;
288 }
289
290 /*
291 * Section 16.5 of the MPC8610 reference manual says that the
292 * SSI needs to be disabled before updating the registers we set
293 * here.
294 */
295 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
296
297 /*
298 * Program the SSI into I2S Slave Non-Network Synchronous mode.
299 * Also enable the transmit and receive FIFO.
300 *
301 * FIXME: Little-endian samples require a different shift dir
302 */
303 clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK,
304 CCSR_SSI_SCR_TFR_CLK_DIS |
305 CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN);
306
307 out_be32(&ssi->stcr,
308 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
309 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
310 CCSR_SSI_STCR_TSCKP);
311
312 out_be32(&ssi->srcr,
313 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
314 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
315 CCSR_SSI_SRCR_RSCKP);
316
317 /*
318 * The DC and PM bits are only used if the SSI is the clock
319 * master.
320 */
321
322 /* 4. Enable the interrupts and DMA requests */
323 out_be32(&ssi->sier,
324 CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE |
325 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN |
326 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN |
327 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE |
328 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN);
329
330 /*
331 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
332 * don't use FIFO 1. Since the SSI only supports stereo, the
333 * watermark should never be an odd number.
334 */
335 out_be32(&ssi->sfcsr,
336 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
337
338 /*
339 * We keep the SSI disabled because if we enable it, then the
340 * DMA controller will start. It's not supposed to start until
341 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
342 * DMA controller will transfer one "BWC" of data (i.e. the
343 * amount of data that the MR.BWC bits are set to). The reason
344 * this is bad is because at this point, the PCM driver has not
345 * finished initializing the DMA controller.
346 */
347 }
348
349 if (!ssi_private->first_stream)
350 ssi_private->first_stream = substream;
351 else {
352 /* This is the second stream open, so we need to impose sample
353 * rate and maybe sample size constraints. Note that this can
354 * cause a race condition if the second stream is opened before
355 * the first stream is fully initialized.
356 *
357 * We provide some protection by checking to make sure the first
358 * stream is initialized, but it's not perfect. ALSA sometimes
359 * re-initializes the driver with a different sample rate or
360 * size. If the second stream is opened before the first stream
361 * has received its final parameters, then the second stream may
362 * be constrained to the wrong sample rate or size.
363 *
364 * FIXME: This code does not handle opening and closing streams
365 * repeatedly. If you open two streams and then close the first
366 * one, you may not be able to open another stream until you
367 * close the second one as well.
368 */
369 struct snd_pcm_runtime *first_runtime =
370 ssi_private->first_stream->runtime;
371
372 if (!first_runtime->rate || !first_runtime->sample_bits) {
373 dev_err(substream->pcm->card->dev,
374 "set sample rate and size in %s stream first\n",
375 substream->stream == SNDRV_PCM_STREAM_PLAYBACK
376 ? "capture" : "playback");
377 return -EAGAIN;
378 }
379
380 snd_pcm_hw_constraint_minmax(substream->runtime,
381 SNDRV_PCM_HW_PARAM_RATE,
382 first_runtime->rate, first_runtime->rate);
383
384 snd_pcm_hw_constraint_minmax(substream->runtime,
385 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
386 first_runtime->sample_bits,
387 first_runtime->sample_bits);
388
389 ssi_private->second_stream = substream;
390 }
391
392 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
393 ssi_private->playback++;
394
395 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
396 ssi_private->capture++;
397
398 return 0;
399 }
400
401 /**
402 * fsl_ssi_prepare: prepare the SSI.
403 *
404 * Most of the SSI registers have been programmed in the startup function,
405 * but the word length must be programmed here. Unfortunately, programming
406 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
407 * cause a problem with supporting simultaneous playback and capture. If
408 * the SSI is already playing a stream, then that stream may be temporarily
409 * stopped when you start capture.
410 *
411 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
412 * clock master.
413 */
414 static int fsl_ssi_prepare(struct snd_pcm_substream *substream)
415 {
416 struct snd_pcm_runtime *runtime = substream->runtime;
417 struct snd_soc_pcm_runtime *rtd = substream->private_data;
418 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
419
420 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
421
422 if (substream == ssi_private->first_stream) {
423 u32 wl;
424
425 /* The SSI should always be disabled at this points (SSIEN=0) */
426 wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format));
427
428 /* In synchronous mode, the SSI uses STCCR for capture */
429 clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
430 }
431
432 return 0;
433 }
434
435 /**
436 * fsl_ssi_trigger: start and stop the DMA transfer.
437 *
438 * This function is called by ALSA to start, stop, pause, and resume the DMA
439 * transfer of data.
440 *
441 * The DMA channel is in external master start and pause mode, which
442 * means the SSI completely controls the flow of data.
443 */
444 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd)
445 {
446 struct snd_soc_pcm_runtime *rtd = substream->private_data;
447 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
448 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
449
450 switch (cmd) {
451 case SNDRV_PCM_TRIGGER_START:
452 case SNDRV_PCM_TRIGGER_RESUME:
453 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
454 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
455 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
456 setbits32(&ssi->scr,
457 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
458 } else {
459 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
460 setbits32(&ssi->scr,
461 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
462
463 /*
464 * I think we need this delay to allow time for the SSI
465 * to put data into its FIFO. Without it, ALSA starts
466 * to complain about overruns.
467 */
468 mdelay(1);
469 }
470 break;
471
472 case SNDRV_PCM_TRIGGER_STOP:
473 case SNDRV_PCM_TRIGGER_SUSPEND:
474 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
475 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
476 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
477 else
478 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
479 break;
480
481 default:
482 return -EINVAL;
483 }
484
485 return 0;
486 }
487
488 /**
489 * fsl_ssi_shutdown: shutdown the SSI
490 *
491 * Shutdown the SSI if there are no other substreams open.
492 */
493 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream)
494 {
495 struct snd_soc_pcm_runtime *rtd = substream->private_data;
496 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
497
498 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
499 ssi_private->playback--;
500
501 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
502 ssi_private->capture--;
503
504 if (ssi_private->first_stream == substream)
505 ssi_private->first_stream = ssi_private->second_stream;
506
507 ssi_private->second_stream = NULL;
508
509 /*
510 * If this is the last active substream, disable the SSI and release
511 * the IRQ.
512 */
513 if (!ssi_private->playback && !ssi_private->capture) {
514 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
515
516 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
517
518 free_irq(ssi_private->irq, ssi_private);
519 }
520 }
521
522 /**
523 * fsl_ssi_set_sysclk: set the clock frequency and direction
524 *
525 * This function is called by the machine driver to tell us what the clock
526 * frequency and direction are.
527 *
528 * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
529 * and we don't care about the frequency. Return an error if the direction
530 * is not SND_SOC_CLOCK_IN.
531 *
532 * @clk_id: reserved, should be zero
533 * @freq: the frequency of the given clock ID, currently ignored
534 * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
535 */
536 static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai,
537 int clk_id, unsigned int freq, int dir)
538 {
539
540 return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
541 }
542
543 /**
544 * fsl_ssi_set_fmt: set the serial format.
545 *
546 * This function is called by the machine driver to tell us what serial
547 * format to use.
548 *
549 * Currently, we only support I2S mode. Return an error if the format is
550 * not SND_SOC_DAIFMT_I2S.
551 *
552 * @format: one of SND_SOC_DAIFMT_xxx
553 */
554 static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
555 {
556 return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
557 }
558
559 /**
560 * fsl_ssi_dai_template: template CPU DAI for the SSI
561 */
562 static struct snd_soc_dai fsl_ssi_dai_template = {
563 .playback = {
564 /* The SSI does not support monaural audio. */
565 .channels_min = 2,
566 .channels_max = 2,
567 .rates = FSLSSI_I2S_RATES,
568 .formats = FSLSSI_I2S_FORMATS,
569 },
570 .capture = {
571 .channels_min = 2,
572 .channels_max = 2,
573 .rates = FSLSSI_I2S_RATES,
574 .formats = FSLSSI_I2S_FORMATS,
575 },
576 .ops = {
577 .startup = fsl_ssi_startup,
578 .prepare = fsl_ssi_prepare,
579 .shutdown = fsl_ssi_shutdown,
580 .trigger = fsl_ssi_trigger,
581 },
582 .dai_ops = {
583 .set_sysclk = fsl_ssi_set_sysclk,
584 .set_fmt = fsl_ssi_set_fmt,
585 },
586 };
587
588 /**
589 * fsl_sysfs_ssi_show: display SSI statistics
590 *
591 * Display the statistics for the current SSI device.
592 */
593 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct fsl_ssi_private *ssi_private =
597 container_of(attr, struct fsl_ssi_private, dev_attr);
598 ssize_t length;
599
600 length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc);
601 length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc);
602 length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau);
603 length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu);
604 length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt);
605 length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1);
606 length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0);
607 length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1);
608 length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0);
609 length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1);
610 length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0);
611 length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1);
612 length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0);
613 length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs);
614 length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs);
615 length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls);
616 length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls);
617 length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1);
618 length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0);
619 length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1);
620 length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0);
621
622 return length;
623 }
624
625 /**
626 * fsl_ssi_create_dai: create a snd_soc_dai structure
627 *
628 * This function is called by the machine driver to create a snd_soc_dai
629 * structure. The function creates an ssi_private object, which contains
630 * the snd_soc_dai. It also creates the sysfs statistics device.
631 */
632 struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
633 {
634 struct snd_soc_dai *fsl_ssi_dai;
635 struct fsl_ssi_private *ssi_private;
636 int ret = 0;
637 struct device_attribute *dev_attr;
638
639 ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
640 if (!ssi_private) {
641 dev_err(ssi_info->dev, "could not allocate DAI object\n");
642 return NULL;
643 }
644 memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
645 sizeof(struct snd_soc_dai));
646
647 fsl_ssi_dai = &ssi_private->cpu_dai;
648 dev_attr = &ssi_private->dev_attr;
649
650 sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
651 ssi_private->ssi = ssi_info->ssi;
652 ssi_private->ssi_phys = ssi_info->ssi_phys;
653 ssi_private->irq = ssi_info->irq;
654 ssi_private->dev = ssi_info->dev;
655
656 ssi_private->dev->driver_data = fsl_ssi_dai;
657
658 /* Initialize the the device_attribute structure */
659 dev_attr->attr.name = "ssi-stats";
660 dev_attr->attr.mode = S_IRUGO;
661 dev_attr->show = fsl_sysfs_ssi_show;
662
663 ret = device_create_file(ssi_private->dev, dev_attr);
664 if (ret) {
665 dev_err(ssi_info->dev, "could not create sysfs %s file\n",
666 ssi_private->dev_attr.attr.name);
667 kfree(fsl_ssi_dai);
668 return NULL;
669 }
670
671 fsl_ssi_dai->private_data = ssi_private;
672 fsl_ssi_dai->name = ssi_private->name;
673 fsl_ssi_dai->id = ssi_info->id;
674
675 return fsl_ssi_dai;
676 }
677 EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);
678
679 /**
680 * fsl_ssi_destroy_dai: destroy the snd_soc_dai object
681 *
682 * This function undoes the operations of fsl_ssi_create_dai()
683 */
684 void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai)
685 {
686 struct fsl_ssi_private *ssi_private =
687 container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);
688
689 device_remove_file(ssi_private->dev, &ssi_private->dev_attr);
690
691 kfree(ssi_private);
692 }
693 EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
694
695 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
696 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
697 MODULE_LICENSE("GPL");