Merge tag 'stable/for-linus-3.10-rc5-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / soc / fsl / fsl_ssi.c
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 */
12
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/clk.h>
18 #include <linux/device.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/initval.h>
29 #include <sound/soc.h>
30 #include <sound/dmaengine_pcm.h>
31
32 #include "fsl_ssi.h"
33 #include "imx-pcm.h"
34
35 #ifdef PPC
36 #define read_ssi(addr) in_be32(addr)
37 #define write_ssi(val, addr) out_be32(addr, val)
38 #define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
39 #elif defined ARM
40 #define read_ssi(addr) readl(addr)
41 #define write_ssi(val, addr) writel(val, addr)
42 /*
43 * FIXME: Proper locking should be added at write_ssi_mask caller level
44 * to ensure this register read/modify/write sequence is race free.
45 */
46 static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
47 {
48 u32 val = readl(addr);
49 val = (val & ~clear) | set;
50 writel(val, addr);
51 }
52 #endif
53
54 /**
55 * FSLSSI_I2S_RATES: sample rates supported by the I2S
56 *
57 * This driver currently only supports the SSI running in I2S slave mode,
58 * which means the codec determines the sample rate. Therefore, we tell
59 * ALSA that we support all rates and let the codec driver decide what rates
60 * are really supported.
61 */
62 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
63 SNDRV_PCM_RATE_CONTINUOUS)
64
65 /**
66 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
67 *
68 * This driver currently only supports the SSI running in I2S slave mode.
69 *
70 * The SSI has a limitation in that the samples must be in the same byte
71 * order as the host CPU. This is because when multiple bytes are written
72 * to the STX register, the bytes and bits must be written in the same
73 * order. The STX is a shift register, so all the bits need to be aligned
74 * (bit-endianness must match byte-endianness). Processors typically write
75 * the bits within a byte in the same order that the bytes of a word are
76 * written in. So if the host CPU is big-endian, then only big-endian
77 * samples will be written to STX properly.
78 */
79 #ifdef __BIG_ENDIAN
80 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83 #else
84 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88
89 /* SIER bitflag of interrupts to enable */
90 #define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
91 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
92 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
93 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
94 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
95
96 /**
97 * fsl_ssi_private: per-SSI private data
98 *
99 * @ssi: pointer to the SSI's registers
100 * @ssi_phys: physical address of the SSI registers
101 * @irq: IRQ of this SSI
102 * @first_stream: pointer to the stream that was opened first
103 * @second_stream: pointer to second stream
104 * @playback: the number of playback streams opened
105 * @capture: the number of capture streams opened
106 * @cpu_dai: the CPU DAI for this device
107 * @dev_attr: the sysfs device attribute structure
108 * @stats: SSI statistics
109 * @name: name for this device
110 */
111 struct fsl_ssi_private {
112 struct ccsr_ssi __iomem *ssi;
113 dma_addr_t ssi_phys;
114 unsigned int irq;
115 struct snd_pcm_substream *first_stream;
116 struct snd_pcm_substream *second_stream;
117 unsigned int fifo_depth;
118 struct snd_soc_dai_driver cpu_dai_drv;
119 struct device_attribute dev_attr;
120 struct platform_device *pdev;
121
122 bool new_binding;
123 bool ssi_on_imx;
124 struct clk *clk;
125 struct platform_device *imx_pcm_pdev;
126 struct snd_dmaengine_dai_dma_data dma_params_tx;
127 struct snd_dmaengine_dai_dma_data dma_params_rx;
128 struct imx_dma_data filter_data_tx;
129 struct imx_dma_data filter_data_rx;
130
131 struct {
132 unsigned int rfrc;
133 unsigned int tfrc;
134 unsigned int cmdau;
135 unsigned int cmddu;
136 unsigned int rxt;
137 unsigned int rdr1;
138 unsigned int rdr0;
139 unsigned int tde1;
140 unsigned int tde0;
141 unsigned int roe1;
142 unsigned int roe0;
143 unsigned int tue1;
144 unsigned int tue0;
145 unsigned int tfs;
146 unsigned int rfs;
147 unsigned int tls;
148 unsigned int rls;
149 unsigned int rff1;
150 unsigned int rff0;
151 unsigned int tfe1;
152 unsigned int tfe0;
153 } stats;
154
155 char name[1];
156 };
157
158 /**
159 * fsl_ssi_isr: SSI interrupt handler
160 *
161 * Although it's possible to use the interrupt handler to send and receive
162 * data to/from the SSI, we use the DMA instead. Programming is more
163 * complicated, but the performance is much better.
164 *
165 * This interrupt handler is used only to gather statistics.
166 *
167 * @irq: IRQ of the SSI device
168 * @dev_id: pointer to the ssi_private structure for this SSI device
169 */
170 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
171 {
172 struct fsl_ssi_private *ssi_private = dev_id;
173 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
174 irqreturn_t ret = IRQ_NONE;
175 __be32 sisr;
176 __be32 sisr2 = 0;
177
178 /* We got an interrupt, so read the status register to see what we
179 were interrupted for. We mask it with the Interrupt Enable register
180 so that we only check for events that we're interested in.
181 */
182 sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
183
184 if (sisr & CCSR_SSI_SISR_RFRC) {
185 ssi_private->stats.rfrc++;
186 sisr2 |= CCSR_SSI_SISR_RFRC;
187 ret = IRQ_HANDLED;
188 }
189
190 if (sisr & CCSR_SSI_SISR_TFRC) {
191 ssi_private->stats.tfrc++;
192 sisr2 |= CCSR_SSI_SISR_TFRC;
193 ret = IRQ_HANDLED;
194 }
195
196 if (sisr & CCSR_SSI_SISR_CMDAU) {
197 ssi_private->stats.cmdau++;
198 ret = IRQ_HANDLED;
199 }
200
201 if (sisr & CCSR_SSI_SISR_CMDDU) {
202 ssi_private->stats.cmddu++;
203 ret = IRQ_HANDLED;
204 }
205
206 if (sisr & CCSR_SSI_SISR_RXT) {
207 ssi_private->stats.rxt++;
208 ret = IRQ_HANDLED;
209 }
210
211 if (sisr & CCSR_SSI_SISR_RDR1) {
212 ssi_private->stats.rdr1++;
213 ret = IRQ_HANDLED;
214 }
215
216 if (sisr & CCSR_SSI_SISR_RDR0) {
217 ssi_private->stats.rdr0++;
218 ret = IRQ_HANDLED;
219 }
220
221 if (sisr & CCSR_SSI_SISR_TDE1) {
222 ssi_private->stats.tde1++;
223 ret = IRQ_HANDLED;
224 }
225
226 if (sisr & CCSR_SSI_SISR_TDE0) {
227 ssi_private->stats.tde0++;
228 ret = IRQ_HANDLED;
229 }
230
231 if (sisr & CCSR_SSI_SISR_ROE1) {
232 ssi_private->stats.roe1++;
233 sisr2 |= CCSR_SSI_SISR_ROE1;
234 ret = IRQ_HANDLED;
235 }
236
237 if (sisr & CCSR_SSI_SISR_ROE0) {
238 ssi_private->stats.roe0++;
239 sisr2 |= CCSR_SSI_SISR_ROE0;
240 ret = IRQ_HANDLED;
241 }
242
243 if (sisr & CCSR_SSI_SISR_TUE1) {
244 ssi_private->stats.tue1++;
245 sisr2 |= CCSR_SSI_SISR_TUE1;
246 ret = IRQ_HANDLED;
247 }
248
249 if (sisr & CCSR_SSI_SISR_TUE0) {
250 ssi_private->stats.tue0++;
251 sisr2 |= CCSR_SSI_SISR_TUE0;
252 ret = IRQ_HANDLED;
253 }
254
255 if (sisr & CCSR_SSI_SISR_TFS) {
256 ssi_private->stats.tfs++;
257 ret = IRQ_HANDLED;
258 }
259
260 if (sisr & CCSR_SSI_SISR_RFS) {
261 ssi_private->stats.rfs++;
262 ret = IRQ_HANDLED;
263 }
264
265 if (sisr & CCSR_SSI_SISR_TLS) {
266 ssi_private->stats.tls++;
267 ret = IRQ_HANDLED;
268 }
269
270 if (sisr & CCSR_SSI_SISR_RLS) {
271 ssi_private->stats.rls++;
272 ret = IRQ_HANDLED;
273 }
274
275 if (sisr & CCSR_SSI_SISR_RFF1) {
276 ssi_private->stats.rff1++;
277 ret = IRQ_HANDLED;
278 }
279
280 if (sisr & CCSR_SSI_SISR_RFF0) {
281 ssi_private->stats.rff0++;
282 ret = IRQ_HANDLED;
283 }
284
285 if (sisr & CCSR_SSI_SISR_TFE1) {
286 ssi_private->stats.tfe1++;
287 ret = IRQ_HANDLED;
288 }
289
290 if (sisr & CCSR_SSI_SISR_TFE0) {
291 ssi_private->stats.tfe0++;
292 ret = IRQ_HANDLED;
293 }
294
295 /* Clear the bits that we set */
296 if (sisr2)
297 write_ssi(sisr2, &ssi->sisr);
298
299 return ret;
300 }
301
302 /**
303 * fsl_ssi_startup: create a new substream
304 *
305 * This is the first function called when a stream is opened.
306 *
307 * If this is the first stream open, then grab the IRQ and program most of
308 * the SSI registers.
309 */
310 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
311 struct snd_soc_dai *dai)
312 {
313 struct snd_soc_pcm_runtime *rtd = substream->private_data;
314 struct fsl_ssi_private *ssi_private =
315 snd_soc_dai_get_drvdata(rtd->cpu_dai);
316 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
317
318 /*
319 * If this is the first stream opened, then request the IRQ
320 * and initialize the SSI registers.
321 */
322 if (!ssi_private->first_stream) {
323 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
324
325 ssi_private->first_stream = substream;
326
327 /*
328 * Section 16.5 of the MPC8610 reference manual says that the
329 * SSI needs to be disabled before updating the registers we set
330 * here.
331 */
332 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
333
334 /*
335 * Program the SSI into I2S Slave Non-Network Synchronous mode.
336 * Also enable the transmit and receive FIFO.
337 *
338 * FIXME: Little-endian samples require a different shift dir
339 */
340 write_ssi_mask(&ssi->scr,
341 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
342 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
343 | (synchronous ? CCSR_SSI_SCR_SYN : 0));
344
345 write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
346 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
347 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
348
349 write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
350 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
351 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
352
353 /*
354 * The DC and PM bits are only used if the SSI is the clock
355 * master.
356 */
357
358 /* Enable the interrupts and DMA requests */
359 write_ssi(SIER_FLAGS, &ssi->sier);
360
361 /*
362 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
363 * don't use FIFO 1. We program the transmit water to signal a
364 * DMA transfer if there are only two (or fewer) elements left
365 * in the FIFO. Two elements equals one frame (left channel,
366 * right channel). This value, however, depends on the depth of
367 * the transmit buffer.
368 *
369 * We program the receive FIFO to notify us if at least two
370 * elements (one frame) have been written to the FIFO. We could
371 * make this value larger (and maybe we should), but this way
372 * data will be written to memory as soon as it's available.
373 */
374 write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
375 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
376 &ssi->sfcsr);
377
378 /*
379 * We keep the SSI disabled because if we enable it, then the
380 * DMA controller will start. It's not supposed to start until
381 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
382 * DMA controller will transfer one "BWC" of data (i.e. the
383 * amount of data that the MR.BWC bits are set to). The reason
384 * this is bad is because at this point, the PCM driver has not
385 * finished initializing the DMA controller.
386 */
387 } else {
388 if (synchronous) {
389 struct snd_pcm_runtime *first_runtime =
390 ssi_private->first_stream->runtime;
391 /*
392 * This is the second stream open, and we're in
393 * synchronous mode, so we need to impose sample
394 * sample size constraints. This is because STCCR is
395 * used for playback and capture in synchronous mode,
396 * so there's no way to specify different word
397 * lengths.
398 *
399 * Note that this can cause a race condition if the
400 * second stream is opened before the first stream is
401 * fully initialized. We provide some protection by
402 * checking to make sure the first stream is
403 * initialized, but it's not perfect. ALSA sometimes
404 * re-initializes the driver with a different sample
405 * rate or size. If the second stream is opened
406 * before the first stream has received its final
407 * parameters, then the second stream may be
408 * constrained to the wrong sample rate or size.
409 */
410 if (!first_runtime->sample_bits) {
411 dev_err(substream->pcm->card->dev,
412 "set sample size in %s stream first\n",
413 substream->stream ==
414 SNDRV_PCM_STREAM_PLAYBACK
415 ? "capture" : "playback");
416 return -EAGAIN;
417 }
418
419 snd_pcm_hw_constraint_minmax(substream->runtime,
420 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
421 first_runtime->sample_bits,
422 first_runtime->sample_bits);
423 }
424
425 ssi_private->second_stream = substream;
426 }
427
428 return 0;
429 }
430
431 /**
432 * fsl_ssi_hw_params - program the sample size
433 *
434 * Most of the SSI registers have been programmed in the startup function,
435 * but the word length must be programmed here. Unfortunately, programming
436 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
437 * cause a problem with supporting simultaneous playback and capture. If
438 * the SSI is already playing a stream, then that stream may be temporarily
439 * stopped when you start capture.
440 *
441 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
442 * clock master.
443 */
444 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
445 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
446 {
447 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
448 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
449 unsigned int sample_size =
450 snd_pcm_format_width(params_format(hw_params));
451 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
452 int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
453
454 /*
455 * If we're in synchronous mode, and the SSI is already enabled,
456 * then STCCR is already set properly.
457 */
458 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
459 return 0;
460
461 /*
462 * FIXME: The documentation says that SxCCR[WL] should not be
463 * modified while the SSI is enabled. The only time this can
464 * happen is if we're trying to do simultaneous playback and
465 * capture in asynchronous mode. Unfortunately, I have been enable
466 * to get that to work at all on the P1022DS. Therefore, we don't
467 * bother to disable/enable the SSI when setting SxCCR[WL], because
468 * the SSI will stop anyway. Maybe one day, this will get fixed.
469 */
470
471 /* In synchronous mode, the SSI uses STCCR for capture */
472 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
473 ssi_private->cpu_dai_drv.symmetric_rates)
474 write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
475 else
476 write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
477
478 return 0;
479 }
480
481 /**
482 * fsl_ssi_trigger: start and stop the DMA transfer.
483 *
484 * This function is called by ALSA to start, stop, pause, and resume the DMA
485 * transfer of data.
486 *
487 * The DMA channel is in external master start and pause mode, which
488 * means the SSI completely controls the flow of data.
489 */
490 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
491 struct snd_soc_dai *dai)
492 {
493 struct snd_soc_pcm_runtime *rtd = substream->private_data;
494 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
495 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
496
497 switch (cmd) {
498 case SNDRV_PCM_TRIGGER_START:
499 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
500 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
501 write_ssi_mask(&ssi->scr, 0,
502 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
503 else
504 write_ssi_mask(&ssi->scr, 0,
505 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
506 break;
507
508 case SNDRV_PCM_TRIGGER_STOP:
509 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
510 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
511 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
512 else
513 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
514 break;
515
516 default:
517 return -EINVAL;
518 }
519
520 return 0;
521 }
522
523 /**
524 * fsl_ssi_shutdown: shutdown the SSI
525 *
526 * Shutdown the SSI if there are no other substreams open.
527 */
528 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
529 struct snd_soc_dai *dai)
530 {
531 struct snd_soc_pcm_runtime *rtd = substream->private_data;
532 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
533
534 if (ssi_private->first_stream == substream)
535 ssi_private->first_stream = ssi_private->second_stream;
536
537 ssi_private->second_stream = NULL;
538
539 /*
540 * If this is the last active substream, disable the SSI.
541 */
542 if (!ssi_private->first_stream) {
543 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
544
545 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
546 }
547 }
548
549 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
550 {
551 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
552
553 if (ssi_private->ssi_on_imx) {
554 dai->playback_dma_data = &ssi_private->dma_params_tx;
555 dai->capture_dma_data = &ssi_private->dma_params_rx;
556 }
557
558 return 0;
559 }
560
561 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
562 .startup = fsl_ssi_startup,
563 .hw_params = fsl_ssi_hw_params,
564 .shutdown = fsl_ssi_shutdown,
565 .trigger = fsl_ssi_trigger,
566 };
567
568 /* Template for the CPU dai driver structure */
569 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
570 .probe = fsl_ssi_dai_probe,
571 .playback = {
572 /* The SSI does not support monaural audio. */
573 .channels_min = 2,
574 .channels_max = 2,
575 .rates = FSLSSI_I2S_RATES,
576 .formats = FSLSSI_I2S_FORMATS,
577 },
578 .capture = {
579 .channels_min = 2,
580 .channels_max = 2,
581 .rates = FSLSSI_I2S_RATES,
582 .formats = FSLSSI_I2S_FORMATS,
583 },
584 .ops = &fsl_ssi_dai_ops,
585 };
586
587 static const struct snd_soc_component_driver fsl_ssi_component = {
588 .name = "fsl-ssi",
589 };
590
591 /* Show the statistics of a flag only if its interrupt is enabled. The
592 * compiler will optimze this code to a no-op if the interrupt is not
593 * enabled.
594 */
595 #define SIER_SHOW(flag, name) \
596 do { \
597 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
598 length += sprintf(buf + length, #name "=%u\n", \
599 ssi_private->stats.name); \
600 } while (0)
601
602
603 /**
604 * fsl_sysfs_ssi_show: display SSI statistics
605 *
606 * Display the statistics for the current SSI device. To avoid confusion,
607 * we only show those counts that are enabled.
608 */
609 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct fsl_ssi_private *ssi_private =
613 container_of(attr, struct fsl_ssi_private, dev_attr);
614 ssize_t length = 0;
615
616 SIER_SHOW(RFRC_EN, rfrc);
617 SIER_SHOW(TFRC_EN, tfrc);
618 SIER_SHOW(CMDAU_EN, cmdau);
619 SIER_SHOW(CMDDU_EN, cmddu);
620 SIER_SHOW(RXT_EN, rxt);
621 SIER_SHOW(RDR1_EN, rdr1);
622 SIER_SHOW(RDR0_EN, rdr0);
623 SIER_SHOW(TDE1_EN, tde1);
624 SIER_SHOW(TDE0_EN, tde0);
625 SIER_SHOW(ROE1_EN, roe1);
626 SIER_SHOW(ROE0_EN, roe0);
627 SIER_SHOW(TUE1_EN, tue1);
628 SIER_SHOW(TUE0_EN, tue0);
629 SIER_SHOW(TFS_EN, tfs);
630 SIER_SHOW(RFS_EN, rfs);
631 SIER_SHOW(TLS_EN, tls);
632 SIER_SHOW(RLS_EN, rls);
633 SIER_SHOW(RFF1_EN, rff1);
634 SIER_SHOW(RFF0_EN, rff0);
635 SIER_SHOW(TFE1_EN, tfe1);
636 SIER_SHOW(TFE0_EN, tfe0);
637
638 return length;
639 }
640
641 /**
642 * Make every character in a string lower-case
643 */
644 static void make_lowercase(char *s)
645 {
646 char *p = s;
647 char c;
648
649 while ((c = *p)) {
650 if ((c >= 'A') && (c <= 'Z'))
651 *p = c + ('a' - 'A');
652 p++;
653 }
654 }
655
656 static int fsl_ssi_probe(struct platform_device *pdev)
657 {
658 struct fsl_ssi_private *ssi_private;
659 int ret = 0;
660 struct device_attribute *dev_attr = NULL;
661 struct device_node *np = pdev->dev.of_node;
662 const char *p, *sprop;
663 const uint32_t *iprop;
664 struct resource res;
665 char name[64];
666 bool shared;
667
668 /* SSIs that are not connected on the board should have a
669 * status = "disabled"
670 * property in their device tree nodes.
671 */
672 if (!of_device_is_available(np))
673 return -ENODEV;
674
675 /* We only support the SSI in "I2S Slave" mode */
676 sprop = of_get_property(np, "fsl,mode", NULL);
677 if (!sprop || strcmp(sprop, "i2s-slave")) {
678 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
679 return -ENODEV;
680 }
681
682 /* The DAI name is the last part of the full name of the node. */
683 p = strrchr(np->full_name, '/') + 1;
684 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
685 GFP_KERNEL);
686 if (!ssi_private) {
687 dev_err(&pdev->dev, "could not allocate DAI object\n");
688 return -ENOMEM;
689 }
690
691 strcpy(ssi_private->name, p);
692
693 /* Initialize this copy of the CPU DAI driver structure */
694 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
695 sizeof(fsl_ssi_dai_template));
696 ssi_private->cpu_dai_drv.name = ssi_private->name;
697
698 /* Get the addresses and IRQ */
699 ret = of_address_to_resource(np, 0, &res);
700 if (ret) {
701 dev_err(&pdev->dev, "could not determine device resources\n");
702 goto error_kmalloc;
703 }
704 ssi_private->ssi = of_iomap(np, 0);
705 if (!ssi_private->ssi) {
706 dev_err(&pdev->dev, "could not map device resources\n");
707 ret = -ENOMEM;
708 goto error_kmalloc;
709 }
710 ssi_private->ssi_phys = res.start;
711
712 ssi_private->irq = irq_of_parse_and_map(np, 0);
713 if (ssi_private->irq == NO_IRQ) {
714 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
715 ret = -ENXIO;
716 goto error_iomap;
717 }
718
719 /* The 'name' should not have any slashes in it. */
720 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
721 ssi_private);
722 if (ret < 0) {
723 dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
724 goto error_irqmap;
725 }
726
727 /* Are the RX and the TX clocks locked? */
728 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
729 ssi_private->cpu_dai_drv.symmetric_rates = 1;
730
731 /* Determine the FIFO depth. */
732 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
733 if (iprop)
734 ssi_private->fifo_depth = be32_to_cpup(iprop);
735 else
736 /* Older 8610 DTs didn't have the fifo-depth property */
737 ssi_private->fifo_depth = 8;
738
739 if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
740 u32 dma_events[2];
741 ssi_private->ssi_on_imx = true;
742
743 ssi_private->clk = clk_get(&pdev->dev, NULL);
744 if (IS_ERR(ssi_private->clk)) {
745 ret = PTR_ERR(ssi_private->clk);
746 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
747 goto error_irq;
748 }
749 clk_prepare_enable(ssi_private->clk);
750
751 /*
752 * We have burstsize be "fifo_depth - 2" to match the SSI
753 * watermark setting in fsl_ssi_startup().
754 */
755 ssi_private->dma_params_tx.maxburst =
756 ssi_private->fifo_depth - 2;
757 ssi_private->dma_params_rx.maxburst =
758 ssi_private->fifo_depth - 2;
759 ssi_private->dma_params_tx.addr =
760 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
761 ssi_private->dma_params_rx.addr =
762 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
763 ssi_private->dma_params_tx.filter_data =
764 &ssi_private->filter_data_tx;
765 ssi_private->dma_params_rx.filter_data =
766 &ssi_private->filter_data_rx;
767 /*
768 * TODO: This is a temporary solution and should be changed
769 * to use generic DMA binding later when the helplers get in.
770 */
771 ret = of_property_read_u32_array(pdev->dev.of_node,
772 "fsl,ssi-dma-events", dma_events, 2);
773 if (ret) {
774 dev_err(&pdev->dev, "could not get dma events\n");
775 goto error_clk;
776 }
777
778 shared = of_device_is_compatible(of_get_parent(np),
779 "fsl,spba-bus");
780
781 imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
782 dma_events[0], shared);
783 imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
784 dma_events[1], shared);
785 }
786
787 /* Initialize the the device_attribute structure */
788 dev_attr = &ssi_private->dev_attr;
789 sysfs_attr_init(&dev_attr->attr);
790 dev_attr->attr.name = "statistics";
791 dev_attr->attr.mode = S_IRUGO;
792 dev_attr->show = fsl_sysfs_ssi_show;
793
794 ret = device_create_file(&pdev->dev, dev_attr);
795 if (ret) {
796 dev_err(&pdev->dev, "could not create sysfs %s file\n",
797 ssi_private->dev_attr.attr.name);
798 goto error_irq;
799 }
800
801 /* Register with ASoC */
802 dev_set_drvdata(&pdev->dev, ssi_private);
803
804 ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
805 &ssi_private->cpu_dai_drv, 1);
806 if (ret) {
807 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
808 goto error_dev;
809 }
810
811 if (ssi_private->ssi_on_imx) {
812 ssi_private->imx_pcm_pdev =
813 platform_device_register_simple("imx-pcm-audio",
814 -1, NULL, 0);
815 if (IS_ERR(ssi_private->imx_pcm_pdev)) {
816 ret = PTR_ERR(ssi_private->imx_pcm_pdev);
817 goto error_dev;
818 }
819 }
820
821 /*
822 * If codec-handle property is missing from SSI node, we assume
823 * that the machine driver uses new binding which does not require
824 * SSI driver to trigger machine driver's probe.
825 */
826 if (!of_get_property(np, "codec-handle", NULL)) {
827 ssi_private->new_binding = true;
828 goto done;
829 }
830
831 /* Trigger the machine driver's probe function. The platform driver
832 * name of the machine driver is taken from /compatible property of the
833 * device tree. We also pass the address of the CPU DAI driver
834 * structure.
835 */
836 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
837 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
838 p = strrchr(sprop, ',');
839 if (p)
840 sprop = p + 1;
841 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
842 make_lowercase(name);
843
844 ssi_private->pdev =
845 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
846 if (IS_ERR(ssi_private->pdev)) {
847 ret = PTR_ERR(ssi_private->pdev);
848 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
849 goto error_dai;
850 }
851
852 done:
853 return 0;
854
855 error_dai:
856 if (ssi_private->ssi_on_imx)
857 platform_device_unregister(ssi_private->imx_pcm_pdev);
858 snd_soc_unregister_component(&pdev->dev);
859
860 error_dev:
861 dev_set_drvdata(&pdev->dev, NULL);
862 device_remove_file(&pdev->dev, dev_attr);
863
864 error_clk:
865 if (ssi_private->ssi_on_imx) {
866 clk_disable_unprepare(ssi_private->clk);
867 clk_put(ssi_private->clk);
868 }
869
870 error_irq:
871 free_irq(ssi_private->irq, ssi_private);
872
873 error_irqmap:
874 irq_dispose_mapping(ssi_private->irq);
875
876 error_iomap:
877 iounmap(ssi_private->ssi);
878
879 error_kmalloc:
880 kfree(ssi_private);
881
882 return ret;
883 }
884
885 static int fsl_ssi_remove(struct platform_device *pdev)
886 {
887 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
888
889 if (!ssi_private->new_binding)
890 platform_device_unregister(ssi_private->pdev);
891 if (ssi_private->ssi_on_imx) {
892 platform_device_unregister(ssi_private->imx_pcm_pdev);
893 clk_disable_unprepare(ssi_private->clk);
894 clk_put(ssi_private->clk);
895 }
896 snd_soc_unregister_component(&pdev->dev);
897 device_remove_file(&pdev->dev, &ssi_private->dev_attr);
898
899 free_irq(ssi_private->irq, ssi_private);
900 irq_dispose_mapping(ssi_private->irq);
901
902 kfree(ssi_private);
903 dev_set_drvdata(&pdev->dev, NULL);
904
905 return 0;
906 }
907
908 static const struct of_device_id fsl_ssi_ids[] = {
909 { .compatible = "fsl,mpc8610-ssi", },
910 { .compatible = "fsl,imx21-ssi", },
911 {}
912 };
913 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
914
915 static struct platform_driver fsl_ssi_driver = {
916 .driver = {
917 .name = "fsl-ssi-dai",
918 .owner = THIS_MODULE,
919 .of_match_table = fsl_ssi_ids,
920 },
921 .probe = fsl_ssi_probe,
922 .remove = fsl_ssi_remove,
923 };
924
925 module_platform_driver(fsl_ssi_driver);
926
927 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
928 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
929 MODULE_LICENSE("GPL v2");