Merge branch 'nfs-for-2.6.37' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / soc / codecs / tlv320aic3x.c
1 /*
2 * ALSA SoC TLV320AIC3X codec driver
3 *
4 * Author: Vladimir Barinov, <vbarinov@embeddedalley.com>
5 * Copyright: (C) 2007 MontaVista Software, Inc., <source@mvista.com>
6 *
7 * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * Notes:
14 * The AIC3X is a driver for a low power stereo audio
15 * codecs aic31, aic32, aic33, aic3007.
16 *
17 * It supports full aic33 codec functionality.
18 * The compatibility with aic32, aic31 and aic3007 is as follows:
19 * aic32/aic3007 | aic31
20 * ---------------------------------------
21 * MONO_LOUT -> N/A | MONO_LOUT -> N/A
22 * | IN1L -> LINE1L
23 * | IN1R -> LINE1R
24 * | IN2L -> LINE2L
25 * | IN2R -> LINE2R
26 * | MIC3L/R -> N/A
27 * truncated internal functionality in
28 * accordance with documentation
29 * ---------------------------------------
30 *
31 * Hence the machine layer should disable unsupported inputs/outputs by
32 * snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
33 */
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/pm.h>
40 #include <linux/i2c.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <sound/core.h>
46 #include <sound/pcm.h>
47 #include <sound/pcm_params.h>
48 #include <sound/soc.h>
49 #include <sound/soc-dapm.h>
50 #include <sound/initval.h>
51 #include <sound/tlv.h>
52 #include <sound/tlv320aic3x.h>
53
54 #include "tlv320aic3x.h"
55
56 #define AIC3X_NUM_SUPPLIES 4
57 static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
58 "IOVDD", /* I/O Voltage */
59 "DVDD", /* Digital Core Voltage */
60 "AVDD", /* Analog DAC Voltage */
61 "DRVDD", /* ADC Analog and Output Driver Voltage */
62 };
63
64 struct aic3x_priv;
65
66 struct aic3x_disable_nb {
67 struct notifier_block nb;
68 struct aic3x_priv *aic3x;
69 };
70
71 /* codec private data */
72 struct aic3x_priv {
73 struct snd_soc_codec *codec;
74 struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
75 struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES];
76 enum snd_soc_control_type control_type;
77 struct aic3x_setup_data *setup;
78 void *control_data;
79 unsigned int sysclk;
80 int master;
81 int gpio_reset;
82 int power;
83 #define AIC3X_MODEL_3X 0
84 #define AIC3X_MODEL_33 1
85 #define AIC3X_MODEL_3007 2
86 u16 model;
87 };
88
89 /*
90 * AIC3X register cache
91 * We can't read the AIC3X register space when we are
92 * using 2 wire for device control, so we cache them instead.
93 * There is no point in caching the reset register
94 */
95 static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
96 0x00, 0x00, 0x00, 0x10, /* 0 */
97 0x04, 0x00, 0x00, 0x00, /* 4 */
98 0x00, 0x00, 0x00, 0x01, /* 8 */
99 0x00, 0x00, 0x00, 0x80, /* 12 */
100 0x80, 0xff, 0xff, 0x78, /* 16 */
101 0x78, 0x78, 0x78, 0x78, /* 20 */
102 0x78, 0x00, 0x00, 0xfe, /* 24 */
103 0x00, 0x00, 0xfe, 0x00, /* 28 */
104 0x18, 0x18, 0x00, 0x00, /* 32 */
105 0x00, 0x00, 0x00, 0x00, /* 36 */
106 0x00, 0x00, 0x00, 0x80, /* 40 */
107 0x80, 0x00, 0x00, 0x00, /* 44 */
108 0x00, 0x00, 0x00, 0x04, /* 48 */
109 0x00, 0x00, 0x00, 0x00, /* 52 */
110 0x00, 0x00, 0x04, 0x00, /* 56 */
111 0x00, 0x00, 0x00, 0x00, /* 60 */
112 0x00, 0x04, 0x00, 0x00, /* 64 */
113 0x00, 0x00, 0x00, 0x00, /* 68 */
114 0x04, 0x00, 0x00, 0x00, /* 72 */
115 0x00, 0x00, 0x00, 0x00, /* 76 */
116 0x00, 0x00, 0x00, 0x00, /* 80 */
117 0x00, 0x00, 0x00, 0x00, /* 84 */
118 0x00, 0x00, 0x00, 0x00, /* 88 */
119 0x00, 0x00, 0x00, 0x00, /* 92 */
120 0x00, 0x00, 0x00, 0x00, /* 96 */
121 0x00, 0x00, 0x02, /* 100 */
122 };
123
124 /*
125 * read from the aic3x register space. Only use for this function is if
126 * wanting to read volatile bits from those registers that has both read-only
127 * and read/write bits. All other cases should use snd_soc_read.
128 */
129 static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
130 u8 *value)
131 {
132 u8 *cache = codec->reg_cache;
133
134 if (codec->cache_only)
135 return -EINVAL;
136 if (reg >= AIC3X_CACHEREGNUM)
137 return -1;
138
139 *value = codec->hw_read(codec, reg);
140 cache[reg] = *value;
141
142 return 0;
143 }
144
145 #define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
146 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
147 .info = snd_soc_info_volsw, \
148 .get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
149 .private_value = SOC_SINGLE_VALUE(reg, shift, mask, invert) }
150
151 /*
152 * All input lines are connected when !0xf and disconnected with 0xf bit field,
153 * so we have to use specific dapm_put call for input mixer
154 */
155 static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
156 struct snd_ctl_elem_value *ucontrol)
157 {
158 struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
159 struct soc_mixer_control *mc =
160 (struct soc_mixer_control *)kcontrol->private_value;
161 unsigned int reg = mc->reg;
162 unsigned int shift = mc->shift;
163 int max = mc->max;
164 unsigned int mask = (1 << fls(max)) - 1;
165 unsigned int invert = mc->invert;
166 unsigned short val, val_mask;
167 int ret;
168 struct snd_soc_dapm_path *path;
169 int found = 0;
170
171 val = (ucontrol->value.integer.value[0] & mask);
172
173 mask = 0xf;
174 if (val)
175 val = mask;
176
177 if (invert)
178 val = mask - val;
179 val_mask = mask << shift;
180 val = val << shift;
181
182 mutex_lock(&widget->codec->mutex);
183
184 if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
185 /* find dapm widget path assoc with kcontrol */
186 list_for_each_entry(path, &widget->codec->dapm_paths, list) {
187 if (path->kcontrol != kcontrol)
188 continue;
189
190 /* found, now check type */
191 found = 1;
192 if (val)
193 /* new connection */
194 path->connect = invert ? 0 : 1;
195 else
196 /* old connection must be powered down */
197 path->connect = invert ? 1 : 0;
198 break;
199 }
200
201 if (found)
202 snd_soc_dapm_sync(widget->codec);
203 }
204
205 ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
206
207 mutex_unlock(&widget->codec->mutex);
208 return ret;
209 }
210
211 static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
212 static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
213 static const char *aic3x_left_hpcom_mux[] =
214 { "differential of HPLOUT", "constant VCM", "single-ended" };
215 static const char *aic3x_right_hpcom_mux[] =
216 { "differential of HPROUT", "constant VCM", "single-ended",
217 "differential of HPLCOM", "external feedback" };
218 static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
219 static const char *aic3x_adc_hpf[] =
220 { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
221
222 #define LDAC_ENUM 0
223 #define RDAC_ENUM 1
224 #define LHPCOM_ENUM 2
225 #define RHPCOM_ENUM 3
226 #define LINE1L_ENUM 4
227 #define LINE1R_ENUM 5
228 #define LINE2L_ENUM 6
229 #define LINE2R_ENUM 7
230 #define ADC_HPF_ENUM 8
231
232 static const struct soc_enum aic3x_enum[] = {
233 SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
234 SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
235 SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
236 SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
237 SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
238 SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
239 SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
240 SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
241 SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
242 };
243
244 /*
245 * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
246 */
247 static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
248 /* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
249 static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
250 /*
251 * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
252 * Step size is approximately 0.5 dB over most of the scale but increasing
253 * near the very low levels.
254 * Define dB scale so that it is mostly correct for range about -55 to 0 dB
255 * but having increasing dB difference below that (and where it doesn't count
256 * so much). This setting shows -50 dB (actual is -50.3 dB) for register
257 * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
258 */
259 static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);
260
261 static const struct snd_kcontrol_new aic3x_snd_controls[] = {
262 /* Output */
263 SOC_DOUBLE_R_TLV("PCM Playback Volume",
264 LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
265
266 /*
267 * Output controls that map to output mixer switches. Note these are
268 * only for swapped L-to-R and R-to-L routes. See below stereo controls
269 * for direct L-to-L and R-to-R routes.
270 */
271 SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume",
272 LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
273 SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume",
274 PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
275 SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume",
276 DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
277
278 SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume",
279 LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
280 SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume",
281 PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
282 SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume",
283 DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
284
285 SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume",
286 LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
287 SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume",
288 PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
289 SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume",
290 DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
291
292 SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume",
293 LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
294 SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume",
295 PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
296 SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume",
297 DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
298
299 SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume",
300 LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
301 SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume",
302 PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
303 SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume",
304 DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
305
306 SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume",
307 LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
308 SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume",
309 PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
310 SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume",
311 DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
312
313 /* Stereo output controls for direct L-to-L and R-to-R routes */
314 SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume",
315 LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL,
316 0, 118, 1, output_stage_tlv),
317 SOC_DOUBLE_R_TLV("Line PGA Bypass Volume",
318 PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL,
319 0, 118, 1, output_stage_tlv),
320 SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
321 DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
322 0, 118, 1, output_stage_tlv),
323
324 SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume",
325 LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
326 0, 118, 1, output_stage_tlv),
327 SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume",
328 PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
329 0, 118, 1, output_stage_tlv),
330 SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
331 DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
332 0, 118, 1, output_stage_tlv),
333
334 SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume",
335 LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
336 0, 118, 1, output_stage_tlv),
337 SOC_DOUBLE_R_TLV("HP PGA Bypass Volume",
338 PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
339 0, 118, 1, output_stage_tlv),
340 SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
341 DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
342 0, 118, 1, output_stage_tlv),
343
344 SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume",
345 LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
346 0, 118, 1, output_stage_tlv),
347 SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume",
348 PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL,
349 0, 118, 1, output_stage_tlv),
350 SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
351 DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
352 0, 118, 1, output_stage_tlv),
353
354 /* Output pin mute controls */
355 SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
356 0x01, 0),
357 SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
358 SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
359 0x01, 0),
360 SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
361 0x01, 0),
362
363 /*
364 * Note: enable Automatic input Gain Controller with care. It can
365 * adjust PGA to max value when ADC is on and will never go back.
366 */
367 SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),
368
369 /* Input */
370 SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
371 0, 119, 0, adc_tlv),
372 SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
373
374 SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
375 };
376
377 /*
378 * Class-D amplifier gain. From 0 to 18 dB in 6 dB steps
379 */
380 static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0);
381
382 static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl =
383 SOC_DOUBLE_TLV("Class-D Amplifier Gain", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv);
384
385 /* Left DAC Mux */
386 static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
387 SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);
388
389 /* Right DAC Mux */
390 static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
391 SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);
392
393 /* Left HPCOM Mux */
394 static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
395 SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);
396
397 /* Right HPCOM Mux */
398 static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
399 SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);
400
401 /* Left Line Mixer */
402 static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = {
403 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
404 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
405 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
406 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
407 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
408 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
409 };
410
411 /* Right Line Mixer */
412 static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = {
413 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
414 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
415 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
416 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
417 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
418 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
419 };
420
421 /* Mono Mixer */
422 static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = {
423 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
424 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
425 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
426 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
427 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
428 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
429 };
430
431 /* Left HP Mixer */
432 static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = {
433 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
434 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
435 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
436 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0),
437 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
438 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0),
439 };
440
441 /* Right HP Mixer */
442 static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = {
443 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0),
444 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
445 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0),
446 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
447 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
448 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
449 };
450
451 /* Left HPCOM Mixer */
452 static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = {
453 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
454 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
455 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
456 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0),
457 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
458 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0),
459 };
460
461 /* Right HPCOM Mixer */
462 static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = {
463 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0),
464 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
465 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0),
466 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
467 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
468 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
469 };
470
471 /* Left PGA Mixer */
472 static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
473 SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
474 SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
475 SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
476 SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
477 SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
478 };
479
480 /* Right PGA Mixer */
481 static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
482 SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
483 SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
484 SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
485 SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
486 SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
487 };
488
489 /* Left Line1 Mux */
490 static const struct snd_kcontrol_new aic3x_left_line1_mux_controls =
491 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_ENUM]);
492
493 /* Right Line1 Mux */
494 static const struct snd_kcontrol_new aic3x_right_line1_mux_controls =
495 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_ENUM]);
496
497 /* Left Line2 Mux */
498 static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
499 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);
500
501 /* Right Line2 Mux */
502 static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
503 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);
504
505 static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
506 /* Left DAC to Left Outputs */
507 SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
508 SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
509 &aic3x_left_dac_mux_controls),
510 SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
511 &aic3x_left_hpcom_mux_controls),
512 SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
513 SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
514 SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),
515
516 /* Right DAC to Right Outputs */
517 SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
518 SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
519 &aic3x_right_dac_mux_controls),
520 SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
521 &aic3x_right_hpcom_mux_controls),
522 SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
523 SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
524 SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),
525
526 /* Mono Output */
527 SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),
528
529 /* Inputs to Left ADC */
530 SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
531 SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
532 &aic3x_left_pga_mixer_controls[0],
533 ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
534 SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
535 &aic3x_left_line1_mux_controls),
536 SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
537 &aic3x_left_line1_mux_controls),
538 SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
539 &aic3x_left_line2_mux_controls),
540
541 /* Inputs to Right ADC */
542 SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
543 LINE1R_2_RADC_CTRL, 2, 0),
544 SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
545 &aic3x_right_pga_mixer_controls[0],
546 ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
547 SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
548 &aic3x_right_line1_mux_controls),
549 SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
550 &aic3x_right_line1_mux_controls),
551 SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
552 &aic3x_right_line2_mux_controls),
553
554 /*
555 * Not a real mic bias widget but similar function. This is for dynamic
556 * control of GPIO1 digital mic modulator clock output function when
557 * using digital mic.
558 */
559 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
560 AIC3X_GPIO1_REG, 4, 0xf,
561 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
562 AIC3X_GPIO1_FUNC_DISABLED),
563
564 /*
565 * Also similar function like mic bias. Selects digital mic with
566 * configurable oversampling rate instead of ADC converter.
567 */
568 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
569 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
570 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
571 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
572 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
573 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),
574
575 /* Mic Bias */
576 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
577 MICBIAS_CTRL, 6, 3, 1, 0),
578 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
579 MICBIAS_CTRL, 6, 3, 2, 0),
580 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
581 MICBIAS_CTRL, 6, 3, 3, 0),
582
583 /* Output mixers */
584 SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0,
585 &aic3x_left_line_mixer_controls[0],
586 ARRAY_SIZE(aic3x_left_line_mixer_controls)),
587 SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0,
588 &aic3x_right_line_mixer_controls[0],
589 ARRAY_SIZE(aic3x_right_line_mixer_controls)),
590 SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0,
591 &aic3x_mono_mixer_controls[0],
592 ARRAY_SIZE(aic3x_mono_mixer_controls)),
593 SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0,
594 &aic3x_left_hp_mixer_controls[0],
595 ARRAY_SIZE(aic3x_left_hp_mixer_controls)),
596 SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0,
597 &aic3x_right_hp_mixer_controls[0],
598 ARRAY_SIZE(aic3x_right_hp_mixer_controls)),
599 SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0,
600 &aic3x_left_hpcom_mixer_controls[0],
601 ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)),
602 SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0,
603 &aic3x_right_hpcom_mixer_controls[0],
604 ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)),
605
606 SND_SOC_DAPM_OUTPUT("LLOUT"),
607 SND_SOC_DAPM_OUTPUT("RLOUT"),
608 SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
609 SND_SOC_DAPM_OUTPUT("HPLOUT"),
610 SND_SOC_DAPM_OUTPUT("HPROUT"),
611 SND_SOC_DAPM_OUTPUT("HPLCOM"),
612 SND_SOC_DAPM_OUTPUT("HPRCOM"),
613
614 SND_SOC_DAPM_INPUT("MIC3L"),
615 SND_SOC_DAPM_INPUT("MIC3R"),
616 SND_SOC_DAPM_INPUT("LINE1L"),
617 SND_SOC_DAPM_INPUT("LINE1R"),
618 SND_SOC_DAPM_INPUT("LINE2L"),
619 SND_SOC_DAPM_INPUT("LINE2R"),
620
621 /*
622 * Virtual output pin to detection block inside codec. This can be
623 * used to keep codec bias on if gpio or detection features are needed.
624 * Force pin on or construct a path with an input jack and mic bias
625 * widgets.
626 */
627 SND_SOC_DAPM_OUTPUT("Detection"),
628 };
629
630 static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = {
631 /* Class-D outputs */
632 SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0),
633 SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0),
634
635 SND_SOC_DAPM_OUTPUT("SPOP"),
636 SND_SOC_DAPM_OUTPUT("SPOM"),
637 };
638
639 static const struct snd_soc_dapm_route intercon[] = {
640 /* Left Input */
641 {"Left Line1L Mux", "single-ended", "LINE1L"},
642 {"Left Line1L Mux", "differential", "LINE1L"},
643
644 {"Left Line2L Mux", "single-ended", "LINE2L"},
645 {"Left Line2L Mux", "differential", "LINE2L"},
646
647 {"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
648 {"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
649 {"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
650 {"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
651 {"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
652
653 {"Left ADC", NULL, "Left PGA Mixer"},
654 {"Left ADC", NULL, "GPIO1 dmic modclk"},
655
656 /* Right Input */
657 {"Right Line1R Mux", "single-ended", "LINE1R"},
658 {"Right Line1R Mux", "differential", "LINE1R"},
659
660 {"Right Line2R Mux", "single-ended", "LINE2R"},
661 {"Right Line2R Mux", "differential", "LINE2R"},
662
663 {"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
664 {"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
665 {"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
666 {"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
667 {"Right PGA Mixer", "Mic3R Switch", "MIC3R"},
668
669 {"Right ADC", NULL, "Right PGA Mixer"},
670 {"Right ADC", NULL, "GPIO1 dmic modclk"},
671
672 /*
673 * Logical path between digital mic enable and GPIO1 modulator clock
674 * output function
675 */
676 {"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
677 {"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
678 {"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
679
680 /* Left DAC Output */
681 {"Left DAC Mux", "DAC_L1", "Left DAC"},
682 {"Left DAC Mux", "DAC_L2", "Left DAC"},
683 {"Left DAC Mux", "DAC_L3", "Left DAC"},
684
685 /* Right DAC Output */
686 {"Right DAC Mux", "DAC_R1", "Right DAC"},
687 {"Right DAC Mux", "DAC_R2", "Right DAC"},
688 {"Right DAC Mux", "DAC_R3", "Right DAC"},
689
690 /* Left Line Output */
691 {"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
692 {"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
693 {"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"},
694 {"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
695 {"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
696 {"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"},
697
698 {"Left Line Out", NULL, "Left Line Mixer"},
699 {"Left Line Out", NULL, "Left DAC Mux"},
700 {"LLOUT", NULL, "Left Line Out"},
701
702 /* Right Line Output */
703 {"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
704 {"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
705 {"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"},
706 {"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
707 {"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
708 {"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"},
709
710 {"Right Line Out", NULL, "Right Line Mixer"},
711 {"Right Line Out", NULL, "Right DAC Mux"},
712 {"RLOUT", NULL, "Right Line Out"},
713
714 /* Mono Output */
715 {"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
716 {"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
717 {"Mono Mixer", "DACL1 Switch", "Left DAC Mux"},
718 {"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
719 {"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
720 {"Mono Mixer", "DACR1 Switch", "Right DAC Mux"},
721
722 {"Mono Out", NULL, "Mono Mixer"},
723 {"MONO_LOUT", NULL, "Mono Out"},
724
725 /* Left HP Output */
726 {"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
727 {"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
728 {"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"},
729 {"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
730 {"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
731 {"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"},
732
733 {"Left HP Out", NULL, "Left HP Mixer"},
734 {"Left HP Out", NULL, "Left DAC Mux"},
735 {"HPLOUT", NULL, "Left HP Out"},
736
737 /* Right HP Output */
738 {"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
739 {"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
740 {"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"},
741 {"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
742 {"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
743 {"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"},
744
745 {"Right HP Out", NULL, "Right HP Mixer"},
746 {"Right HP Out", NULL, "Right DAC Mux"},
747 {"HPROUT", NULL, "Right HP Out"},
748
749 /* Left HPCOM Output */
750 {"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
751 {"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
752 {"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
753 {"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
754 {"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
755 {"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
756
757 {"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"},
758 {"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"},
759 {"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"},
760 {"Left HP Com", NULL, "Left HPCOM Mux"},
761 {"HPLCOM", NULL, "Left HP Com"},
762
763 /* Right HPCOM Output */
764 {"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
765 {"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
766 {"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
767 {"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
768 {"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
769 {"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
770
771 {"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"},
772 {"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"},
773 {"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"},
774 {"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"},
775 {"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"},
776 {"Right HP Com", NULL, "Right HPCOM Mux"},
777 {"HPRCOM", NULL, "Right HP Com"},
778 };
779
780 static const struct snd_soc_dapm_route intercon_3007[] = {
781 /* Class-D outputs */
782 {"Left Class-D Out", NULL, "Left Line Out"},
783 {"Right Class-D Out", NULL, "Left Line Out"},
784 {"SPOP", NULL, "Left Class-D Out"},
785 {"SPOM", NULL, "Right Class-D Out"},
786 };
787
788 static int aic3x_add_widgets(struct snd_soc_codec *codec)
789 {
790 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
791
792 snd_soc_dapm_new_controls(codec, aic3x_dapm_widgets,
793 ARRAY_SIZE(aic3x_dapm_widgets));
794
795 /* set up audio path interconnects */
796 snd_soc_dapm_add_routes(codec, intercon, ARRAY_SIZE(intercon));
797
798 if (aic3x->model == AIC3X_MODEL_3007) {
799 snd_soc_dapm_new_controls(codec, aic3007_dapm_widgets,
800 ARRAY_SIZE(aic3007_dapm_widgets));
801 snd_soc_dapm_add_routes(codec, intercon_3007, ARRAY_SIZE(intercon_3007));
802 }
803
804 return 0;
805 }
806
807 static int aic3x_hw_params(struct snd_pcm_substream *substream,
808 struct snd_pcm_hw_params *params,
809 struct snd_soc_dai *dai)
810 {
811 struct snd_soc_pcm_runtime *rtd = substream->private_data;
812 struct snd_soc_codec *codec =rtd->codec;
813 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
814 int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
815 u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
816 u16 d, pll_d = 1;
817 u8 reg;
818 int clk;
819
820 /* select data word length */
821 data = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
822 switch (params_format(params)) {
823 case SNDRV_PCM_FORMAT_S16_LE:
824 break;
825 case SNDRV_PCM_FORMAT_S20_3LE:
826 data |= (0x01 << 4);
827 break;
828 case SNDRV_PCM_FORMAT_S24_LE:
829 data |= (0x02 << 4);
830 break;
831 case SNDRV_PCM_FORMAT_S32_LE:
832 data |= (0x03 << 4);
833 break;
834 }
835 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, data);
836
837 /* Fsref can be 44100 or 48000 */
838 fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;
839
840 /* Try to find a value for Q which allows us to bypass the PLL and
841 * generate CODEC_CLK directly. */
842 for (pll_q = 2; pll_q < 18; pll_q++)
843 if (aic3x->sysclk / (128 * pll_q) == fsref) {
844 bypass_pll = 1;
845 break;
846 }
847
848 if (bypass_pll) {
849 pll_q &= 0xf;
850 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
851 snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
852 /* disable PLL if it is bypassed */
853 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
854 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg & ~PLL_ENABLE);
855
856 } else {
857 snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
858 /* enable PLL when it is used */
859 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
860 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg | PLL_ENABLE);
861 }
862
863 /* Route Left DAC to left channel input and
864 * right DAC to right channel input */
865 data = (LDAC2LCH | RDAC2RCH);
866 data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
867 if (params_rate(params) >= 64000)
868 data |= DUAL_RATE_MODE;
869 snd_soc_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
870
871 /* codec sample rate select */
872 data = (fsref * 20) / params_rate(params);
873 if (params_rate(params) < 64000)
874 data /= 2;
875 data /= 5;
876 data -= 2;
877 data |= (data << 4);
878 snd_soc_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
879
880 if (bypass_pll)
881 return 0;
882
883 /* Use PLL, compute apropriate setup for j, d, r and p, the closest
884 * one wins the game. Try with d==0 first, next with d!=0.
885 * Constraints for j are according to the datasheet.
886 * The sysclk is divided by 1000 to prevent integer overflows.
887 */
888
889 codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);
890
891 for (r = 1; r <= 16; r++)
892 for (p = 1; p <= 8; p++) {
893 for (j = 4; j <= 55; j++) {
894 /* This is actually 1000*((j+(d/10000))*r)/p
895 * The term had to be converted to get
896 * rid of the division by 10000; d = 0 here
897 */
898 int tmp_clk = (1000 * j * r) / p;
899
900 /* Check whether this values get closer than
901 * the best ones we had before
902 */
903 if (abs(codec_clk - tmp_clk) <
904 abs(codec_clk - last_clk)) {
905 pll_j = j; pll_d = 0;
906 pll_r = r; pll_p = p;
907 last_clk = tmp_clk;
908 }
909
910 /* Early exit for exact matches */
911 if (tmp_clk == codec_clk)
912 goto found;
913 }
914 }
915
916 /* try with d != 0 */
917 for (p = 1; p <= 8; p++) {
918 j = codec_clk * p / 1000;
919
920 if (j < 4 || j > 11)
921 continue;
922
923 /* do not use codec_clk here since we'd loose precision */
924 d = ((2048 * p * fsref) - j * aic3x->sysclk)
925 * 100 / (aic3x->sysclk/100);
926
927 clk = (10000 * j + d) / (10 * p);
928
929 /* check whether this values get closer than the best
930 * ones we had before */
931 if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
932 pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
933 last_clk = clk;
934 }
935
936 /* Early exit for exact matches */
937 if (clk == codec_clk)
938 goto found;
939 }
940
941 if (last_clk == 0) {
942 printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
943 return -EINVAL;
944 }
945
946 found:
947 data = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
948 snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
949 data | (pll_p << PLLP_SHIFT));
950 snd_soc_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG,
951 pll_r << PLLR_SHIFT);
952 snd_soc_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
953 snd_soc_write(codec, AIC3X_PLL_PROGC_REG,
954 (pll_d >> 6) << PLLD_MSB_SHIFT);
955 snd_soc_write(codec, AIC3X_PLL_PROGD_REG,
956 (pll_d & 0x3F) << PLLD_LSB_SHIFT);
957
958 return 0;
959 }
960
961 static int aic3x_mute(struct snd_soc_dai *dai, int mute)
962 {
963 struct snd_soc_codec *codec = dai->codec;
964 u8 ldac_reg = snd_soc_read(codec, LDAC_VOL) & ~MUTE_ON;
965 u8 rdac_reg = snd_soc_read(codec, RDAC_VOL) & ~MUTE_ON;
966
967 if (mute) {
968 snd_soc_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
969 snd_soc_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
970 } else {
971 snd_soc_write(codec, LDAC_VOL, ldac_reg);
972 snd_soc_write(codec, RDAC_VOL, rdac_reg);
973 }
974
975 return 0;
976 }
977
978 static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
979 int clk_id, unsigned int freq, int dir)
980 {
981 struct snd_soc_codec *codec = codec_dai->codec;
982 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
983
984 aic3x->sysclk = freq;
985 return 0;
986 }
987
988 static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
989 unsigned int fmt)
990 {
991 struct snd_soc_codec *codec = codec_dai->codec;
992 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
993 u8 iface_areg, iface_breg;
994 int delay = 0;
995
996 iface_areg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
997 iface_breg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
998
999 /* set master/slave audio interface */
1000 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1001 case SND_SOC_DAIFMT_CBM_CFM:
1002 aic3x->master = 1;
1003 iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
1004 break;
1005 case SND_SOC_DAIFMT_CBS_CFS:
1006 aic3x->master = 0;
1007 break;
1008 default:
1009 return -EINVAL;
1010 }
1011
1012 /*
1013 * match both interface format and signal polarities since they
1014 * are fixed
1015 */
1016 switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
1017 SND_SOC_DAIFMT_INV_MASK)) {
1018 case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
1019 break;
1020 case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
1021 delay = 1;
1022 case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
1023 iface_breg |= (0x01 << 6);
1024 break;
1025 case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
1026 iface_breg |= (0x02 << 6);
1027 break;
1028 case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
1029 iface_breg |= (0x03 << 6);
1030 break;
1031 default:
1032 return -EINVAL;
1033 }
1034
1035 /* set iface */
1036 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
1037 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
1038 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
1039
1040 return 0;
1041 }
1042
1043 static int aic3x_init_3007(struct snd_soc_codec *codec)
1044 {
1045 u8 tmp1, tmp2, *cache = codec->reg_cache;
1046
1047 /*
1048 * There is no need to cache writes to undocumented page 0xD but
1049 * respective page 0 register cache entries must be preserved
1050 */
1051 tmp1 = cache[0xD];
1052 tmp2 = cache[0x8];
1053 /* Class-D speaker driver init; datasheet p. 46 */
1054 snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x0D);
1055 snd_soc_write(codec, 0xD, 0x0D);
1056 snd_soc_write(codec, 0x8, 0x5C);
1057 snd_soc_write(codec, 0x8, 0x5D);
1058 snd_soc_write(codec, 0x8, 0x5C);
1059 snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x00);
1060 cache[0xD] = tmp1;
1061 cache[0x8] = tmp2;
1062
1063 return 0;
1064 }
1065
1066 static int aic3x_regulator_event(struct notifier_block *nb,
1067 unsigned long event, void *data)
1068 {
1069 struct aic3x_disable_nb *disable_nb =
1070 container_of(nb, struct aic3x_disable_nb, nb);
1071 struct aic3x_priv *aic3x = disable_nb->aic3x;
1072
1073 if (event & REGULATOR_EVENT_DISABLE) {
1074 /*
1075 * Put codec to reset and require cache sync as at least one
1076 * of the supplies was disabled
1077 */
1078 if (aic3x->gpio_reset >= 0)
1079 gpio_set_value(aic3x->gpio_reset, 0);
1080 aic3x->codec->cache_sync = 1;
1081 }
1082
1083 return 0;
1084 }
1085
1086 static int aic3x_set_power(struct snd_soc_codec *codec, int power)
1087 {
1088 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1089 int i, ret;
1090 u8 *cache = codec->reg_cache;
1091
1092 if (power) {
1093 ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
1094 aic3x->supplies);
1095 if (ret)
1096 goto out;
1097 aic3x->power = 1;
1098 /*
1099 * Reset release and cache sync is necessary only if some
1100 * supply was off or if there were cached writes
1101 */
1102 if (!codec->cache_sync)
1103 goto out;
1104
1105 if (aic3x->gpio_reset >= 0) {
1106 udelay(1);
1107 gpio_set_value(aic3x->gpio_reset, 1);
1108 }
1109
1110 /* Sync reg_cache with the hardware */
1111 codec->cache_only = 0;
1112 for (i = 0; i < ARRAY_SIZE(aic3x_reg); i++)
1113 snd_soc_write(codec, i, cache[i]);
1114 if (aic3x->model == AIC3X_MODEL_3007)
1115 aic3x_init_3007(codec);
1116 codec->cache_sync = 0;
1117 } else {
1118 aic3x->power = 0;
1119 /* HW writes are needless when bias is off */
1120 codec->cache_only = 1;
1121 ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies),
1122 aic3x->supplies);
1123 }
1124 out:
1125 return ret;
1126 }
1127
1128 static int aic3x_set_bias_level(struct snd_soc_codec *codec,
1129 enum snd_soc_bias_level level)
1130 {
1131 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1132 u8 reg;
1133
1134 switch (level) {
1135 case SND_SOC_BIAS_ON:
1136 break;
1137 case SND_SOC_BIAS_PREPARE:
1138 if (codec->bias_level == SND_SOC_BIAS_STANDBY &&
1139 aic3x->master) {
1140 /* enable pll */
1141 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
1142 snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
1143 reg | PLL_ENABLE);
1144 }
1145 break;
1146 case SND_SOC_BIAS_STANDBY:
1147 if (!aic3x->power)
1148 aic3x_set_power(codec, 1);
1149 if (codec->bias_level == SND_SOC_BIAS_PREPARE &&
1150 aic3x->master) {
1151 /* disable pll */
1152 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
1153 snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
1154 reg & ~PLL_ENABLE);
1155 }
1156 break;
1157 case SND_SOC_BIAS_OFF:
1158 if (aic3x->power)
1159 aic3x_set_power(codec, 0);
1160 break;
1161 }
1162 codec->bias_level = level;
1163
1164 return 0;
1165 }
1166
1167 void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
1168 {
1169 u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1170 u8 bit = gpio ? 3: 0;
1171 u8 val = snd_soc_read(codec, reg) & ~(1 << bit);
1172 snd_soc_write(codec, reg, val | (!!state << bit));
1173 }
1174 EXPORT_SYMBOL_GPL(aic3x_set_gpio);
1175
1176 int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
1177 {
1178 u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1179 u8 val, bit = gpio ? 2: 1;
1180
1181 aic3x_read(codec, reg, &val);
1182 return (val >> bit) & 1;
1183 }
1184 EXPORT_SYMBOL_GPL(aic3x_get_gpio);
1185
1186 void aic3x_set_headset_detection(struct snd_soc_codec *codec, int detect,
1187 int headset_debounce, int button_debounce)
1188 {
1189 u8 val;
1190
1191 val = ((detect & AIC3X_HEADSET_DETECT_MASK)
1192 << AIC3X_HEADSET_DETECT_SHIFT) |
1193 ((headset_debounce & AIC3X_HEADSET_DEBOUNCE_MASK)
1194 << AIC3X_HEADSET_DEBOUNCE_SHIFT) |
1195 ((button_debounce & AIC3X_BUTTON_DEBOUNCE_MASK)
1196 << AIC3X_BUTTON_DEBOUNCE_SHIFT);
1197
1198 if (detect & AIC3X_HEADSET_DETECT_MASK)
1199 val |= AIC3X_HEADSET_DETECT_ENABLED;
1200
1201 snd_soc_write(codec, AIC3X_HEADSET_DETECT_CTRL_A, val);
1202 }
1203 EXPORT_SYMBOL_GPL(aic3x_set_headset_detection);
1204
1205 int aic3x_headset_detected(struct snd_soc_codec *codec)
1206 {
1207 u8 val;
1208 aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1209 return (val >> 4) & 1;
1210 }
1211 EXPORT_SYMBOL_GPL(aic3x_headset_detected);
1212
1213 int aic3x_button_pressed(struct snd_soc_codec *codec)
1214 {
1215 u8 val;
1216 aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1217 return (val >> 5) & 1;
1218 }
1219 EXPORT_SYMBOL_GPL(aic3x_button_pressed);
1220
1221 #define AIC3X_RATES SNDRV_PCM_RATE_8000_96000
1222 #define AIC3X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
1223 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1224
1225 static struct snd_soc_dai_ops aic3x_dai_ops = {
1226 .hw_params = aic3x_hw_params,
1227 .digital_mute = aic3x_mute,
1228 .set_sysclk = aic3x_set_dai_sysclk,
1229 .set_fmt = aic3x_set_dai_fmt,
1230 };
1231
1232 static struct snd_soc_dai_driver aic3x_dai = {
1233 .name = "tlv320aic3x-hifi",
1234 .playback = {
1235 .stream_name = "Playback",
1236 .channels_min = 1,
1237 .channels_max = 2,
1238 .rates = AIC3X_RATES,
1239 .formats = AIC3X_FORMATS,},
1240 .capture = {
1241 .stream_name = "Capture",
1242 .channels_min = 1,
1243 .channels_max = 2,
1244 .rates = AIC3X_RATES,
1245 .formats = AIC3X_FORMATS,},
1246 .ops = &aic3x_dai_ops,
1247 .symmetric_rates = 1,
1248 };
1249
1250 static int aic3x_suspend(struct snd_soc_codec *codec, pm_message_t state)
1251 {
1252 aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1253
1254 return 0;
1255 }
1256
1257 static int aic3x_resume(struct snd_soc_codec *codec)
1258 {
1259 aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1260
1261 return 0;
1262 }
1263
1264 /*
1265 * initialise the AIC3X driver
1266 * register the mixer and dsp interfaces with the kernel
1267 */
1268 static int aic3x_init(struct snd_soc_codec *codec)
1269 {
1270 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1271 int reg;
1272
1273 snd_soc_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
1274 snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1275
1276 /* DAC default volume and mute */
1277 snd_soc_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
1278 snd_soc_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
1279
1280 /* DAC to HP default volume and route to Output mixer */
1281 snd_soc_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
1282 snd_soc_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
1283 snd_soc_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1284 snd_soc_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1285 /* DAC to Line Out default volume and route to Output mixer */
1286 snd_soc_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1287 snd_soc_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1288 /* DAC to Mono Line Out default volume and route to Output mixer */
1289 snd_soc_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1290 snd_soc_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1291
1292 /* unmute all outputs */
1293 reg = snd_soc_read(codec, LLOPM_CTRL);
1294 snd_soc_write(codec, LLOPM_CTRL, reg | UNMUTE);
1295 reg = snd_soc_read(codec, RLOPM_CTRL);
1296 snd_soc_write(codec, RLOPM_CTRL, reg | UNMUTE);
1297 reg = snd_soc_read(codec, MONOLOPM_CTRL);
1298 snd_soc_write(codec, MONOLOPM_CTRL, reg | UNMUTE);
1299 reg = snd_soc_read(codec, HPLOUT_CTRL);
1300 snd_soc_write(codec, HPLOUT_CTRL, reg | UNMUTE);
1301 reg = snd_soc_read(codec, HPROUT_CTRL);
1302 snd_soc_write(codec, HPROUT_CTRL, reg | UNMUTE);
1303 reg = snd_soc_read(codec, HPLCOM_CTRL);
1304 snd_soc_write(codec, HPLCOM_CTRL, reg | UNMUTE);
1305 reg = snd_soc_read(codec, HPRCOM_CTRL);
1306 snd_soc_write(codec, HPRCOM_CTRL, reg | UNMUTE);
1307
1308 /* ADC default volume and unmute */
1309 snd_soc_write(codec, LADC_VOL, DEFAULT_GAIN);
1310 snd_soc_write(codec, RADC_VOL, DEFAULT_GAIN);
1311 /* By default route Line1 to ADC PGA mixer */
1312 snd_soc_write(codec, LINE1L_2_LADC_CTRL, 0x0);
1313 snd_soc_write(codec, LINE1R_2_RADC_CTRL, 0x0);
1314
1315 /* PGA to HP Bypass default volume, disconnect from Output Mixer */
1316 snd_soc_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
1317 snd_soc_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
1318 snd_soc_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
1319 snd_soc_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
1320 /* PGA to Line Out default volume, disconnect from Output Mixer */
1321 snd_soc_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
1322 snd_soc_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
1323 /* PGA to Mono Line Out default volume, disconnect from Output Mixer */
1324 snd_soc_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
1325 snd_soc_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
1326
1327 /* Line2 to HP Bypass default volume, disconnect from Output Mixer */
1328 snd_soc_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
1329 snd_soc_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
1330 snd_soc_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
1331 snd_soc_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
1332 /* Line2 Line Out default volume, disconnect from Output Mixer */
1333 snd_soc_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
1334 snd_soc_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
1335 /* Line2 to Mono Out default volume, disconnect from Output Mixer */
1336 snd_soc_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
1337 snd_soc_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
1338
1339 if (aic3x->model == AIC3X_MODEL_3007) {
1340 aic3x_init_3007(codec);
1341 snd_soc_write(codec, CLASSD_CTRL, 0);
1342 }
1343
1344 return 0;
1345 }
1346
1347 static int aic3x_probe(struct snd_soc_codec *codec)
1348 {
1349 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1350 int ret, i;
1351
1352 codec->control_data = aic3x->control_data;
1353 aic3x->codec = codec;
1354 codec->idle_bias_off = 1;
1355
1356 ret = snd_soc_codec_set_cache_io(codec, 8, 8, aic3x->control_type);
1357 if (ret != 0) {
1358 dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
1359 return ret;
1360 }
1361
1362 if (aic3x->gpio_reset >= 0) {
1363 ret = gpio_request(aic3x->gpio_reset, "tlv320aic3x reset");
1364 if (ret != 0)
1365 goto err_gpio;
1366 gpio_direction_output(aic3x->gpio_reset, 0);
1367 }
1368
1369 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1370 aic3x->supplies[i].supply = aic3x_supply_names[i];
1371
1372 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
1373 aic3x->supplies);
1374 if (ret != 0) {
1375 dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
1376 goto err_get;
1377 }
1378 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) {
1379 aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event;
1380 aic3x->disable_nb[i].aic3x = aic3x;
1381 ret = regulator_register_notifier(aic3x->supplies[i].consumer,
1382 &aic3x->disable_nb[i].nb);
1383 if (ret) {
1384 dev_err(codec->dev,
1385 "Failed to request regulator notifier: %d\n",
1386 ret);
1387 goto err_notif;
1388 }
1389 }
1390
1391 codec->cache_only = 1;
1392 aic3x_init(codec);
1393
1394 if (aic3x->setup) {
1395 /* setup GPIO functions */
1396 snd_soc_write(codec, AIC3X_GPIO1_REG,
1397 (aic3x->setup->gpio_func[0] & 0xf) << 4);
1398 snd_soc_write(codec, AIC3X_GPIO2_REG,
1399 (aic3x->setup->gpio_func[1] & 0xf) << 4);
1400 }
1401
1402 snd_soc_add_controls(codec, aic3x_snd_controls,
1403 ARRAY_SIZE(aic3x_snd_controls));
1404 if (aic3x->model == AIC3X_MODEL_3007)
1405 snd_soc_add_controls(codec, &aic3x_classd_amp_gain_ctrl, 1);
1406
1407 aic3x_add_widgets(codec);
1408
1409 return 0;
1410
1411 err_notif:
1412 while (i--)
1413 regulator_unregister_notifier(aic3x->supplies[i].consumer,
1414 &aic3x->disable_nb[i].nb);
1415 regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1416 err_get:
1417 if (aic3x->gpio_reset >= 0)
1418 gpio_free(aic3x->gpio_reset);
1419 err_gpio:
1420 kfree(aic3x);
1421 return ret;
1422 }
1423
1424 static int aic3x_remove(struct snd_soc_codec *codec)
1425 {
1426 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1427 int i;
1428
1429 aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1430 if (aic3x->gpio_reset >= 0) {
1431 gpio_set_value(aic3x->gpio_reset, 0);
1432 gpio_free(aic3x->gpio_reset);
1433 }
1434 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1435 regulator_unregister_notifier(aic3x->supplies[i].consumer,
1436 &aic3x->disable_nb[i].nb);
1437 regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1438
1439 return 0;
1440 }
1441
1442 static struct snd_soc_codec_driver soc_codec_dev_aic3x = {
1443 .set_bias_level = aic3x_set_bias_level,
1444 .reg_cache_size = ARRAY_SIZE(aic3x_reg),
1445 .reg_word_size = sizeof(u8),
1446 .reg_cache_default = aic3x_reg,
1447 .probe = aic3x_probe,
1448 .remove = aic3x_remove,
1449 .suspend = aic3x_suspend,
1450 .resume = aic3x_resume,
1451 };
1452
1453 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1454 /*
1455 * AIC3X 2 wire address can be up to 4 devices with device addresses
1456 * 0x18, 0x19, 0x1A, 0x1B
1457 */
1458
1459 static const struct i2c_device_id aic3x_i2c_id[] = {
1460 [AIC3X_MODEL_3X] = { "tlv320aic3x", 0 },
1461 [AIC3X_MODEL_33] = { "tlv320aic33", 0 },
1462 [AIC3X_MODEL_3007] = { "tlv320aic3007", 0 },
1463 { }
1464 };
1465 MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);
1466
1467 /*
1468 * If the i2c layer weren't so broken, we could pass this kind of data
1469 * around
1470 */
1471 static int aic3x_i2c_probe(struct i2c_client *i2c,
1472 const struct i2c_device_id *id)
1473 {
1474 struct aic3x_pdata *pdata = i2c->dev.platform_data;
1475 struct aic3x_priv *aic3x;
1476 int ret;
1477 const struct i2c_device_id *tbl;
1478
1479 aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL);
1480 if (aic3x == NULL) {
1481 dev_err(&i2c->dev, "failed to create private data\n");
1482 return -ENOMEM;
1483 }
1484
1485 aic3x->control_data = i2c;
1486 aic3x->control_type = SND_SOC_I2C;
1487
1488 i2c_set_clientdata(i2c, aic3x);
1489 if (pdata) {
1490 aic3x->gpio_reset = pdata->gpio_reset;
1491 aic3x->setup = pdata->setup;
1492 } else {
1493 aic3x->gpio_reset = -1;
1494 }
1495
1496 for (tbl = aic3x_i2c_id; tbl->name[0]; tbl++) {
1497 if (!strcmp(tbl->name, id->name))
1498 break;
1499 }
1500 aic3x->model = tbl - aic3x_i2c_id;
1501
1502 ret = snd_soc_register_codec(&i2c->dev,
1503 &soc_codec_dev_aic3x, &aic3x_dai, 1);
1504 if (ret < 0)
1505 kfree(aic3x);
1506 return ret;
1507 }
1508
1509 static int aic3x_i2c_remove(struct i2c_client *client)
1510 {
1511 snd_soc_unregister_codec(&client->dev);
1512 kfree(i2c_get_clientdata(client));
1513 return 0;
1514 }
1515
1516 /* machine i2c codec control layer */
1517 static struct i2c_driver aic3x_i2c_driver = {
1518 .driver = {
1519 .name = "tlv320aic3x-codec",
1520 .owner = THIS_MODULE,
1521 },
1522 .probe = aic3x_i2c_probe,
1523 .remove = aic3x_i2c_remove,
1524 .id_table = aic3x_i2c_id,
1525 };
1526
1527 static inline void aic3x_i2c_init(void)
1528 {
1529 int ret;
1530
1531 ret = i2c_add_driver(&aic3x_i2c_driver);
1532 if (ret)
1533 printk(KERN_ERR "%s: error regsitering i2c driver, %d\n",
1534 __func__, ret);
1535 }
1536
1537 static inline void aic3x_i2c_exit(void)
1538 {
1539 i2c_del_driver(&aic3x_i2c_driver);
1540 }
1541 #endif
1542
1543 static int __init aic3x_modinit(void)
1544 {
1545 int ret = 0;
1546 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1547 ret = i2c_add_driver(&aic3x_i2c_driver);
1548 if (ret != 0) {
1549 printk(KERN_ERR "Failed to register TLV320AIC3x I2C driver: %d\n",
1550 ret);
1551 }
1552 #endif
1553 return ret;
1554 }
1555 module_init(aic3x_modinit);
1556
1557 static void __exit aic3x_exit(void)
1558 {
1559 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1560 i2c_del_driver(&aic3x_i2c_driver);
1561 #endif
1562 }
1563 module_exit(aic3x_exit);
1564
1565 MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
1566 MODULE_AUTHOR("Vladimir Barinov");
1567 MODULE_LICENSE("GPL");