Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2 * Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3 * Routines for control of YMF724/740/744/754 chips
4 *
5 * BUGS:
6 * --
7 *
8 * TODO:
9 * --
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 *
25 */
26
27 #include <sound/driver.h>
28 #include <linux/delay.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/vmalloc.h>
35
36 #include <sound/core.h>
37 #include <sound/control.h>
38 #include <sound/info.h>
39 #include <sound/tlv.h>
40 #include <sound/ymfpci.h>
41 #include <sound/asoundef.h>
42 #include <sound/mpu401.h>
43
44 #include <asm/io.h>
45
46 /*
47 * constants
48 */
49
50 /*
51 * common I/O routines
52 */
53
54 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
55
56 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
57 {
58 return readb(chip->reg_area_virt + offset);
59 }
60
61 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
62 {
63 writeb(val, chip->reg_area_virt + offset);
64 }
65
66 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
67 {
68 return readw(chip->reg_area_virt + offset);
69 }
70
71 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
72 {
73 writew(val, chip->reg_area_virt + offset);
74 }
75
76 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
77 {
78 return readl(chip->reg_area_virt + offset);
79 }
80
81 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
82 {
83 writel(val, chip->reg_area_virt + offset);
84 }
85
86 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
87 {
88 unsigned long end_time;
89 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
90
91 end_time = jiffies + msecs_to_jiffies(750);
92 do {
93 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
94 return 0;
95 set_current_state(TASK_UNINTERRUPTIBLE);
96 schedule_timeout_uninterruptible(1);
97 } while (time_before(jiffies, end_time));
98 snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
99 return -EBUSY;
100 }
101
102 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
103 {
104 struct snd_ymfpci *chip = ac97->private_data;
105 u32 cmd;
106
107 snd_ymfpci_codec_ready(chip, 0);
108 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
109 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
110 }
111
112 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
113 {
114 struct snd_ymfpci *chip = ac97->private_data;
115
116 if (snd_ymfpci_codec_ready(chip, 0))
117 return ~0;
118 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
119 if (snd_ymfpci_codec_ready(chip, 0))
120 return ~0;
121 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
122 int i;
123 for (i = 0; i < 600; i++)
124 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
125 }
126 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
127 }
128
129 /*
130 * Misc routines
131 */
132
133 static u32 snd_ymfpci_calc_delta(u32 rate)
134 {
135 switch (rate) {
136 case 8000: return 0x02aaab00;
137 case 11025: return 0x03accd00;
138 case 16000: return 0x05555500;
139 case 22050: return 0x07599a00;
140 case 32000: return 0x0aaaab00;
141 case 44100: return 0x0eb33300;
142 default: return ((rate << 16) / 375) << 5;
143 }
144 }
145
146 static u32 def_rate[8] = {
147 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
148 };
149
150 static u32 snd_ymfpci_calc_lpfK(u32 rate)
151 {
152 u32 i;
153 static u32 val[8] = {
154 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
155 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
156 };
157
158 if (rate == 44100)
159 return 0x40000000; /* FIXME: What's the right value? */
160 for (i = 0; i < 8; i++)
161 if (rate <= def_rate[i])
162 return val[i];
163 return val[0];
164 }
165
166 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
167 {
168 u32 i;
169 static u32 val[8] = {
170 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
171 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
172 };
173
174 if (rate == 44100)
175 return 0x370A0000;
176 for (i = 0; i < 8; i++)
177 if (rate <= def_rate[i])
178 return val[i];
179 return val[0];
180 }
181
182 /*
183 * Hardware start management
184 */
185
186 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
187 {
188 unsigned long flags;
189
190 spin_lock_irqsave(&chip->reg_lock, flags);
191 if (chip->start_count++ > 0)
192 goto __end;
193 snd_ymfpci_writel(chip, YDSXGR_MODE,
194 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
195 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
196 __end:
197 spin_unlock_irqrestore(&chip->reg_lock, flags);
198 }
199
200 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
201 {
202 unsigned long flags;
203 long timeout = 1000;
204
205 spin_lock_irqsave(&chip->reg_lock, flags);
206 if (--chip->start_count > 0)
207 goto __end;
208 snd_ymfpci_writel(chip, YDSXGR_MODE,
209 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
210 while (timeout-- > 0) {
211 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
212 break;
213 }
214 if (atomic_read(&chip->interrupt_sleep_count)) {
215 atomic_set(&chip->interrupt_sleep_count, 0);
216 wake_up(&chip->interrupt_sleep);
217 }
218 __end:
219 spin_unlock_irqrestore(&chip->reg_lock, flags);
220 }
221
222 /*
223 * Playback voice management
224 */
225
226 static int voice_alloc(struct snd_ymfpci *chip,
227 enum snd_ymfpci_voice_type type, int pair,
228 struct snd_ymfpci_voice **rvoice)
229 {
230 struct snd_ymfpci_voice *voice, *voice2;
231 int idx;
232
233 *rvoice = NULL;
234 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
235 voice = &chip->voices[idx];
236 voice2 = pair ? &chip->voices[idx+1] : NULL;
237 if (voice->use || (voice2 && voice2->use))
238 continue;
239 voice->use = 1;
240 if (voice2)
241 voice2->use = 1;
242 switch (type) {
243 case YMFPCI_PCM:
244 voice->pcm = 1;
245 if (voice2)
246 voice2->pcm = 1;
247 break;
248 case YMFPCI_SYNTH:
249 voice->synth = 1;
250 break;
251 case YMFPCI_MIDI:
252 voice->midi = 1;
253 break;
254 }
255 snd_ymfpci_hw_start(chip);
256 if (voice2)
257 snd_ymfpci_hw_start(chip);
258 *rvoice = voice;
259 return 0;
260 }
261 return -ENOMEM;
262 }
263
264 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
265 enum snd_ymfpci_voice_type type, int pair,
266 struct snd_ymfpci_voice **rvoice)
267 {
268 unsigned long flags;
269 int result;
270
271 snd_assert(rvoice != NULL, return -EINVAL);
272 snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
273
274 spin_lock_irqsave(&chip->voice_lock, flags);
275 for (;;) {
276 result = voice_alloc(chip, type, pair, rvoice);
277 if (result == 0 || type != YMFPCI_PCM)
278 break;
279 /* TODO: synth/midi voice deallocation */
280 break;
281 }
282 spin_unlock_irqrestore(&chip->voice_lock, flags);
283 return result;
284 }
285
286 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
287 {
288 unsigned long flags;
289
290 snd_assert(pvoice != NULL, return -EINVAL);
291 snd_ymfpci_hw_stop(chip);
292 spin_lock_irqsave(&chip->voice_lock, flags);
293 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
294 pvoice->ypcm = NULL;
295 pvoice->interrupt = NULL;
296 spin_unlock_irqrestore(&chip->voice_lock, flags);
297 return 0;
298 }
299
300 /*
301 * PCM part
302 */
303
304 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
305 {
306 struct snd_ymfpci_pcm *ypcm;
307 u32 pos, delta;
308
309 if ((ypcm = voice->ypcm) == NULL)
310 return;
311 if (ypcm->substream == NULL)
312 return;
313 spin_lock(&chip->reg_lock);
314 if (ypcm->running) {
315 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
316 if (pos < ypcm->last_pos)
317 delta = pos + (ypcm->buffer_size - ypcm->last_pos);
318 else
319 delta = pos - ypcm->last_pos;
320 ypcm->period_pos += delta;
321 ypcm->last_pos = pos;
322 if (ypcm->period_pos >= ypcm->period_size) {
323 // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
324 ypcm->period_pos %= ypcm->period_size;
325 spin_unlock(&chip->reg_lock);
326 snd_pcm_period_elapsed(ypcm->substream);
327 spin_lock(&chip->reg_lock);
328 }
329
330 if (unlikely(ypcm->update_pcm_vol)) {
331 unsigned int subs = ypcm->substream->number;
332 unsigned int next_bank = 1 - chip->active_bank;
333 struct snd_ymfpci_playback_bank *bank;
334 u32 volume;
335
336 bank = &voice->bank[next_bank];
337 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
338 bank->left_gain_end = volume;
339 if (ypcm->output_rear)
340 bank->eff2_gain_end = volume;
341 if (ypcm->voices[1])
342 bank = &ypcm->voices[1]->bank[next_bank];
343 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
344 bank->right_gain_end = volume;
345 if (ypcm->output_rear)
346 bank->eff3_gain_end = volume;
347 ypcm->update_pcm_vol--;
348 }
349 }
350 spin_unlock(&chip->reg_lock);
351 }
352
353 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
354 {
355 struct snd_pcm_runtime *runtime = substream->runtime;
356 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
357 struct snd_ymfpci *chip = ypcm->chip;
358 u32 pos, delta;
359
360 spin_lock(&chip->reg_lock);
361 if (ypcm->running) {
362 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
363 if (pos < ypcm->last_pos)
364 delta = pos + (ypcm->buffer_size - ypcm->last_pos);
365 else
366 delta = pos - ypcm->last_pos;
367 ypcm->period_pos += delta;
368 ypcm->last_pos = pos;
369 if (ypcm->period_pos >= ypcm->period_size) {
370 ypcm->period_pos %= ypcm->period_size;
371 // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
372 spin_unlock(&chip->reg_lock);
373 snd_pcm_period_elapsed(substream);
374 spin_lock(&chip->reg_lock);
375 }
376 }
377 spin_unlock(&chip->reg_lock);
378 }
379
380 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
381 int cmd)
382 {
383 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
384 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
385 int result = 0;
386
387 spin_lock(&chip->reg_lock);
388 if (ypcm->voices[0] == NULL) {
389 result = -EINVAL;
390 goto __unlock;
391 }
392 switch (cmd) {
393 case SNDRV_PCM_TRIGGER_START:
394 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
395 case SNDRV_PCM_TRIGGER_RESUME:
396 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
397 if (ypcm->voices[1] != NULL)
398 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
399 ypcm->running = 1;
400 break;
401 case SNDRV_PCM_TRIGGER_STOP:
402 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
403 case SNDRV_PCM_TRIGGER_SUSPEND:
404 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
405 if (ypcm->voices[1] != NULL)
406 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
407 ypcm->running = 0;
408 break;
409 default:
410 result = -EINVAL;
411 break;
412 }
413 __unlock:
414 spin_unlock(&chip->reg_lock);
415 return result;
416 }
417 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
418 int cmd)
419 {
420 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
421 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
422 int result = 0;
423 u32 tmp;
424
425 spin_lock(&chip->reg_lock);
426 switch (cmd) {
427 case SNDRV_PCM_TRIGGER_START:
428 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
429 case SNDRV_PCM_TRIGGER_RESUME:
430 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
431 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
432 ypcm->running = 1;
433 break;
434 case SNDRV_PCM_TRIGGER_STOP:
435 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
436 case SNDRV_PCM_TRIGGER_SUSPEND:
437 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
438 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
439 ypcm->running = 0;
440 break;
441 default:
442 result = -EINVAL;
443 break;
444 }
445 spin_unlock(&chip->reg_lock);
446 return result;
447 }
448
449 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
450 {
451 int err;
452
453 if (ypcm->voices[1] != NULL && voices < 2) {
454 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
455 ypcm->voices[1] = NULL;
456 }
457 if (voices == 1 && ypcm->voices[0] != NULL)
458 return 0; /* already allocated */
459 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
460 return 0; /* already allocated */
461 if (voices > 1) {
462 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
463 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
464 ypcm->voices[0] = NULL;
465 }
466 }
467 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
468 if (err < 0)
469 return err;
470 ypcm->voices[0]->ypcm = ypcm;
471 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
472 if (voices > 1) {
473 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
474 ypcm->voices[1]->ypcm = ypcm;
475 }
476 return 0;
477 }
478
479 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
480 struct snd_pcm_runtime *runtime,
481 int has_pcm_volume)
482 {
483 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
484 u32 format;
485 u32 delta = snd_ymfpci_calc_delta(runtime->rate);
486 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
487 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
488 struct snd_ymfpci_playback_bank *bank;
489 unsigned int nbank;
490 u32 vol_left, vol_right;
491 u8 use_left, use_right;
492
493 snd_assert(voice != NULL, return);
494 if (runtime->channels == 1) {
495 use_left = 1;
496 use_right = 1;
497 } else {
498 use_left = (voiceidx & 1) == 0;
499 use_right = !use_left;
500 }
501 if (has_pcm_volume) {
502 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
503 [ypcm->substream->number].left << 15);
504 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
505 [ypcm->substream->number].right << 15);
506 } else {
507 vol_left = cpu_to_le32(0x40000000);
508 vol_right = cpu_to_le32(0x40000000);
509 }
510 format = runtime->channels == 2 ? 0x00010000 : 0;
511 if (snd_pcm_format_width(runtime->format) == 8)
512 format |= 0x80000000;
513 if (runtime->channels == 2 && (voiceidx & 1) != 0)
514 format |= 1;
515 for (nbank = 0; nbank < 2; nbank++) {
516 bank = &voice->bank[nbank];
517 memset(bank, 0, sizeof(*bank));
518 bank->format = cpu_to_le32(format);
519 bank->base = cpu_to_le32(runtime->dma_addr);
520 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
521 bank->lpfQ = cpu_to_le32(lpfQ);
522 bank->delta =
523 bank->delta_end = cpu_to_le32(delta);
524 bank->lpfK =
525 bank->lpfK_end = cpu_to_le32(lpfK);
526 bank->eg_gain =
527 bank->eg_gain_end = cpu_to_le32(0x40000000);
528
529 if (ypcm->output_front) {
530 if (use_left) {
531 bank->left_gain =
532 bank->left_gain_end = vol_left;
533 }
534 if (use_right) {
535 bank->right_gain =
536 bank->right_gain_end = vol_right;
537 }
538 }
539 if (ypcm->output_rear) {
540 if (!ypcm->swap_rear) {
541 if (use_left) {
542 bank->eff2_gain =
543 bank->eff2_gain_end = vol_left;
544 }
545 if (use_right) {
546 bank->eff3_gain =
547 bank->eff3_gain_end = vol_right;
548 }
549 } else {
550 /* The SPDIF out channels seem to be swapped, so we have
551 * to swap them here, too. The rear analog out channels
552 * will be wrong, but otherwise AC3 would not work.
553 */
554 if (use_left) {
555 bank->eff3_gain =
556 bank->eff3_gain_end = vol_left;
557 }
558 if (use_right) {
559 bank->eff2_gain =
560 bank->eff2_gain_end = vol_right;
561 }
562 }
563 }
564 }
565 }
566
567 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
568 {
569 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
570 4096, &chip->ac3_tmp_base) < 0)
571 return -ENOMEM;
572
573 chip->bank_effect[3][0]->base =
574 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
575 chip->bank_effect[3][0]->loop_end =
576 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
577 chip->bank_effect[4][0]->base =
578 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
579 chip->bank_effect[4][0]->loop_end =
580 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
581
582 spin_lock_irq(&chip->reg_lock);
583 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
584 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
585 spin_unlock_irq(&chip->reg_lock);
586 return 0;
587 }
588
589 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
590 {
591 spin_lock_irq(&chip->reg_lock);
592 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
593 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
594 spin_unlock_irq(&chip->reg_lock);
595 // snd_ymfpci_irq_wait(chip);
596 if (chip->ac3_tmp_base.area) {
597 snd_dma_free_pages(&chip->ac3_tmp_base);
598 chip->ac3_tmp_base.area = NULL;
599 }
600 return 0;
601 }
602
603 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
604 struct snd_pcm_hw_params *hw_params)
605 {
606 struct snd_pcm_runtime *runtime = substream->runtime;
607 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
608 int err;
609
610 if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
611 return err;
612 if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
613 return err;
614 return 0;
615 }
616
617 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
618 {
619 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
620 struct snd_pcm_runtime *runtime = substream->runtime;
621 struct snd_ymfpci_pcm *ypcm;
622
623 if (runtime->private_data == NULL)
624 return 0;
625 ypcm = runtime->private_data;
626
627 /* wait, until the PCI operations are not finished */
628 snd_ymfpci_irq_wait(chip);
629 snd_pcm_lib_free_pages(substream);
630 if (ypcm->voices[1]) {
631 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
632 ypcm->voices[1] = NULL;
633 }
634 if (ypcm->voices[0]) {
635 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
636 ypcm->voices[0] = NULL;
637 }
638 return 0;
639 }
640
641 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
642 {
643 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
644 struct snd_pcm_runtime *runtime = substream->runtime;
645 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
646 unsigned int nvoice;
647
648 ypcm->period_size = runtime->period_size;
649 ypcm->buffer_size = runtime->buffer_size;
650 ypcm->period_pos = 0;
651 ypcm->last_pos = 0;
652 for (nvoice = 0; nvoice < runtime->channels; nvoice++)
653 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
654 substream->pcm == chip->pcm);
655 return 0;
656 }
657
658 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
659 struct snd_pcm_hw_params *hw_params)
660 {
661 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
662 }
663
664 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
665 {
666 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
667
668 /* wait, until the PCI operations are not finished */
669 snd_ymfpci_irq_wait(chip);
670 return snd_pcm_lib_free_pages(substream);
671 }
672
673 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
674 {
675 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
676 struct snd_pcm_runtime *runtime = substream->runtime;
677 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
678 struct snd_ymfpci_capture_bank * bank;
679 int nbank;
680 u32 rate, format;
681
682 ypcm->period_size = runtime->period_size;
683 ypcm->buffer_size = runtime->buffer_size;
684 ypcm->period_pos = 0;
685 ypcm->last_pos = 0;
686 ypcm->shift = 0;
687 rate = ((48000 * 4096) / runtime->rate) - 1;
688 format = 0;
689 if (runtime->channels == 2) {
690 format |= 2;
691 ypcm->shift++;
692 }
693 if (snd_pcm_format_width(runtime->format) == 8)
694 format |= 1;
695 else
696 ypcm->shift++;
697 switch (ypcm->capture_bank_number) {
698 case 0:
699 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
700 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
701 break;
702 case 1:
703 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
704 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
705 break;
706 }
707 for (nbank = 0; nbank < 2; nbank++) {
708 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
709 bank->base = cpu_to_le32(runtime->dma_addr);
710 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
711 bank->start = 0;
712 bank->num_of_loops = 0;
713 }
714 return 0;
715 }
716
717 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
718 {
719 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
720 struct snd_pcm_runtime *runtime = substream->runtime;
721 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
722 struct snd_ymfpci_voice *voice = ypcm->voices[0];
723
724 if (!(ypcm->running && voice))
725 return 0;
726 return le32_to_cpu(voice->bank[chip->active_bank].start);
727 }
728
729 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
730 {
731 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
732 struct snd_pcm_runtime *runtime = substream->runtime;
733 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
734
735 if (!ypcm->running)
736 return 0;
737 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
738 }
739
740 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
741 {
742 wait_queue_t wait;
743 int loops = 4;
744
745 while (loops-- > 0) {
746 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
747 continue;
748 init_waitqueue_entry(&wait, current);
749 add_wait_queue(&chip->interrupt_sleep, &wait);
750 atomic_inc(&chip->interrupt_sleep_count);
751 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
752 remove_wait_queue(&chip->interrupt_sleep, &wait);
753 }
754 }
755
756 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
757 {
758 struct snd_ymfpci *chip = dev_id;
759 u32 status, nvoice, mode;
760 struct snd_ymfpci_voice *voice;
761
762 status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
763 if (status & 0x80000000) {
764 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
765 spin_lock(&chip->voice_lock);
766 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
767 voice = &chip->voices[nvoice];
768 if (voice->interrupt)
769 voice->interrupt(chip, voice);
770 }
771 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
772 if (chip->capture_substream[nvoice])
773 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
774 }
775 #if 0
776 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
777 if (chip->effect_substream[nvoice])
778 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
779 }
780 #endif
781 spin_unlock(&chip->voice_lock);
782 spin_lock(&chip->reg_lock);
783 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
784 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
785 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
786 spin_unlock(&chip->reg_lock);
787
788 if (atomic_read(&chip->interrupt_sleep_count)) {
789 atomic_set(&chip->interrupt_sleep_count, 0);
790 wake_up(&chip->interrupt_sleep);
791 }
792 }
793
794 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
795 if (status & 1) {
796 if (chip->timer)
797 snd_timer_interrupt(chip->timer, chip->timer->sticks);
798 }
799 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
800
801 if (chip->rawmidi)
802 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
803 return IRQ_HANDLED;
804 }
805
806 static struct snd_pcm_hardware snd_ymfpci_playback =
807 {
808 .info = (SNDRV_PCM_INFO_MMAP |
809 SNDRV_PCM_INFO_MMAP_VALID |
810 SNDRV_PCM_INFO_INTERLEAVED |
811 SNDRV_PCM_INFO_BLOCK_TRANSFER |
812 SNDRV_PCM_INFO_PAUSE |
813 SNDRV_PCM_INFO_RESUME),
814 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
815 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
816 .rate_min = 8000,
817 .rate_max = 48000,
818 .channels_min = 1,
819 .channels_max = 2,
820 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */
821 .period_bytes_min = 64,
822 .period_bytes_max = 256 * 1024, /* FIXME: enough? */
823 .periods_min = 3,
824 .periods_max = 1024,
825 .fifo_size = 0,
826 };
827
828 static struct snd_pcm_hardware snd_ymfpci_capture =
829 {
830 .info = (SNDRV_PCM_INFO_MMAP |
831 SNDRV_PCM_INFO_MMAP_VALID |
832 SNDRV_PCM_INFO_INTERLEAVED |
833 SNDRV_PCM_INFO_BLOCK_TRANSFER |
834 SNDRV_PCM_INFO_PAUSE |
835 SNDRV_PCM_INFO_RESUME),
836 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
837 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
838 .rate_min = 8000,
839 .rate_max = 48000,
840 .channels_min = 1,
841 .channels_max = 2,
842 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */
843 .period_bytes_min = 64,
844 .period_bytes_max = 256 * 1024, /* FIXME: enough? */
845 .periods_min = 3,
846 .periods_max = 1024,
847 .fifo_size = 0,
848 };
849
850 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
851 {
852 kfree(runtime->private_data);
853 }
854
855 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
856 {
857 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
858 struct snd_pcm_runtime *runtime = substream->runtime;
859 struct snd_ymfpci_pcm *ypcm;
860
861 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
862 if (ypcm == NULL)
863 return -ENOMEM;
864 ypcm->chip = chip;
865 ypcm->type = PLAYBACK_VOICE;
866 ypcm->substream = substream;
867 runtime->hw = snd_ymfpci_playback;
868 runtime->private_data = ypcm;
869 runtime->private_free = snd_ymfpci_pcm_free_substream;
870 /* FIXME? True value is 256/48 = 5.33333 ms */
871 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
872 return 0;
873 }
874
875 /* call with spinlock held */
876 static void ymfpci_open_extension(struct snd_ymfpci *chip)
877 {
878 if (! chip->rear_opened) {
879 if (! chip->spdif_opened) /* set AC3 */
880 snd_ymfpci_writel(chip, YDSXGR_MODE,
881 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
882 /* enable second codec (4CHEN) */
883 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
884 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
885 }
886 }
887
888 /* call with spinlock held */
889 static void ymfpci_close_extension(struct snd_ymfpci *chip)
890 {
891 if (! chip->rear_opened) {
892 if (! chip->spdif_opened)
893 snd_ymfpci_writel(chip, YDSXGR_MODE,
894 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
895 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
896 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
897 }
898 }
899
900 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
901 {
902 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
903 struct snd_pcm_runtime *runtime = substream->runtime;
904 struct snd_ymfpci_pcm *ypcm;
905 struct snd_kcontrol *kctl;
906 int err;
907
908 if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
909 return err;
910 ypcm = runtime->private_data;
911 ypcm->output_front = 1;
912 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
913 ypcm->swap_rear = 0;
914 spin_lock_irq(&chip->reg_lock);
915 if (ypcm->output_rear) {
916 ymfpci_open_extension(chip);
917 chip->rear_opened++;
918 }
919 spin_unlock_irq(&chip->reg_lock);
920
921 kctl = chip->pcm_mixer[substream->number].ctl;
922 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
923 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
924 return 0;
925 }
926
927 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
928 {
929 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
930 struct snd_pcm_runtime *runtime = substream->runtime;
931 struct snd_ymfpci_pcm *ypcm;
932 int err;
933
934 if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
935 return err;
936 ypcm = runtime->private_data;
937 ypcm->output_front = 0;
938 ypcm->output_rear = 1;
939 ypcm->swap_rear = 1;
940 spin_lock_irq(&chip->reg_lock);
941 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
942 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
943 ymfpci_open_extension(chip);
944 chip->spdif_pcm_bits = chip->spdif_bits;
945 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
946 chip->spdif_opened++;
947 spin_unlock_irq(&chip->reg_lock);
948
949 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
950 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
951 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
952 return 0;
953 }
954
955 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
956 {
957 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
958 struct snd_pcm_runtime *runtime = substream->runtime;
959 struct snd_ymfpci_pcm *ypcm;
960 int err;
961
962 if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
963 return err;
964 ypcm = runtime->private_data;
965 ypcm->output_front = 0;
966 ypcm->output_rear = 1;
967 ypcm->swap_rear = 0;
968 spin_lock_irq(&chip->reg_lock);
969 ymfpci_open_extension(chip);
970 chip->rear_opened++;
971 spin_unlock_irq(&chip->reg_lock);
972 return 0;
973 }
974
975 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
976 u32 capture_bank_number)
977 {
978 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
979 struct snd_pcm_runtime *runtime = substream->runtime;
980 struct snd_ymfpci_pcm *ypcm;
981
982 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
983 if (ypcm == NULL)
984 return -ENOMEM;
985 ypcm->chip = chip;
986 ypcm->type = capture_bank_number + CAPTURE_REC;
987 ypcm->substream = substream;
988 ypcm->capture_bank_number = capture_bank_number;
989 chip->capture_substream[capture_bank_number] = substream;
990 runtime->hw = snd_ymfpci_capture;
991 /* FIXME? True value is 256/48 = 5.33333 ms */
992 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
993 runtime->private_data = ypcm;
994 runtime->private_free = snd_ymfpci_pcm_free_substream;
995 snd_ymfpci_hw_start(chip);
996 return 0;
997 }
998
999 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1000 {
1001 return snd_ymfpci_capture_open(substream, 0);
1002 }
1003
1004 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1005 {
1006 return snd_ymfpci_capture_open(substream, 1);
1007 }
1008
1009 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1010 {
1011 return 0;
1012 }
1013
1014 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1015 {
1016 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1017 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1018 struct snd_kcontrol *kctl;
1019
1020 spin_lock_irq(&chip->reg_lock);
1021 if (ypcm->output_rear && chip->rear_opened > 0) {
1022 chip->rear_opened--;
1023 ymfpci_close_extension(chip);
1024 }
1025 spin_unlock_irq(&chip->reg_lock);
1026 kctl = chip->pcm_mixer[substream->number].ctl;
1027 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1028 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
1029 return snd_ymfpci_playback_close_1(substream);
1030 }
1031
1032 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1033 {
1034 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1035
1036 spin_lock_irq(&chip->reg_lock);
1037 chip->spdif_opened = 0;
1038 ymfpci_close_extension(chip);
1039 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1040 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1041 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1042 spin_unlock_irq(&chip->reg_lock);
1043 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1044 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1045 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1046 return snd_ymfpci_playback_close_1(substream);
1047 }
1048
1049 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1050 {
1051 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1052
1053 spin_lock_irq(&chip->reg_lock);
1054 if (chip->rear_opened > 0) {
1055 chip->rear_opened--;
1056 ymfpci_close_extension(chip);
1057 }
1058 spin_unlock_irq(&chip->reg_lock);
1059 return snd_ymfpci_playback_close_1(substream);
1060 }
1061
1062 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1063 {
1064 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1065 struct snd_pcm_runtime *runtime = substream->runtime;
1066 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1067
1068 if (ypcm != NULL) {
1069 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1070 snd_ymfpci_hw_stop(chip);
1071 }
1072 return 0;
1073 }
1074
1075 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1076 .open = snd_ymfpci_playback_open,
1077 .close = snd_ymfpci_playback_close,
1078 .ioctl = snd_pcm_lib_ioctl,
1079 .hw_params = snd_ymfpci_playback_hw_params,
1080 .hw_free = snd_ymfpci_playback_hw_free,
1081 .prepare = snd_ymfpci_playback_prepare,
1082 .trigger = snd_ymfpci_playback_trigger,
1083 .pointer = snd_ymfpci_playback_pointer,
1084 };
1085
1086 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1087 .open = snd_ymfpci_capture_rec_open,
1088 .close = snd_ymfpci_capture_close,
1089 .ioctl = snd_pcm_lib_ioctl,
1090 .hw_params = snd_ymfpci_capture_hw_params,
1091 .hw_free = snd_ymfpci_capture_hw_free,
1092 .prepare = snd_ymfpci_capture_prepare,
1093 .trigger = snd_ymfpci_capture_trigger,
1094 .pointer = snd_ymfpci_capture_pointer,
1095 };
1096
1097 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1098 {
1099 struct snd_pcm *pcm;
1100 int err;
1101
1102 if (rpcm)
1103 *rpcm = NULL;
1104 if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1105 return err;
1106 pcm->private_data = chip;
1107
1108 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1109 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1110
1111 /* global setup */
1112 pcm->info_flags = 0;
1113 strcpy(pcm->name, "YMFPCI");
1114 chip->pcm = pcm;
1115
1116 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1117 snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1118
1119 if (rpcm)
1120 *rpcm = pcm;
1121 return 0;
1122 }
1123
1124 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1125 .open = snd_ymfpci_capture_ac97_open,
1126 .close = snd_ymfpci_capture_close,
1127 .ioctl = snd_pcm_lib_ioctl,
1128 .hw_params = snd_ymfpci_capture_hw_params,
1129 .hw_free = snd_ymfpci_capture_hw_free,
1130 .prepare = snd_ymfpci_capture_prepare,
1131 .trigger = snd_ymfpci_capture_trigger,
1132 .pointer = snd_ymfpci_capture_pointer,
1133 };
1134
1135 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1136 {
1137 struct snd_pcm *pcm;
1138 int err;
1139
1140 if (rpcm)
1141 *rpcm = NULL;
1142 if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1143 return err;
1144 pcm->private_data = chip;
1145
1146 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1147
1148 /* global setup */
1149 pcm->info_flags = 0;
1150 sprintf(pcm->name, "YMFPCI - %s",
1151 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1152 chip->pcm2 = pcm;
1153
1154 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1155 snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1156
1157 if (rpcm)
1158 *rpcm = pcm;
1159 return 0;
1160 }
1161
1162 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1163 .open = snd_ymfpci_playback_spdif_open,
1164 .close = snd_ymfpci_playback_spdif_close,
1165 .ioctl = snd_pcm_lib_ioctl,
1166 .hw_params = snd_ymfpci_playback_hw_params,
1167 .hw_free = snd_ymfpci_playback_hw_free,
1168 .prepare = snd_ymfpci_playback_prepare,
1169 .trigger = snd_ymfpci_playback_trigger,
1170 .pointer = snd_ymfpci_playback_pointer,
1171 };
1172
1173 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1174 {
1175 struct snd_pcm *pcm;
1176 int err;
1177
1178 if (rpcm)
1179 *rpcm = NULL;
1180 if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1181 return err;
1182 pcm->private_data = chip;
1183
1184 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1185
1186 /* global setup */
1187 pcm->info_flags = 0;
1188 strcpy(pcm->name, "YMFPCI - IEC958");
1189 chip->pcm_spdif = pcm;
1190
1191 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1192 snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1193
1194 if (rpcm)
1195 *rpcm = pcm;
1196 return 0;
1197 }
1198
1199 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1200 .open = snd_ymfpci_playback_4ch_open,
1201 .close = snd_ymfpci_playback_4ch_close,
1202 .ioctl = snd_pcm_lib_ioctl,
1203 .hw_params = snd_ymfpci_playback_hw_params,
1204 .hw_free = snd_ymfpci_playback_hw_free,
1205 .prepare = snd_ymfpci_playback_prepare,
1206 .trigger = snd_ymfpci_playback_trigger,
1207 .pointer = snd_ymfpci_playback_pointer,
1208 };
1209
1210 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1211 {
1212 struct snd_pcm *pcm;
1213 int err;
1214
1215 if (rpcm)
1216 *rpcm = NULL;
1217 if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1218 return err;
1219 pcm->private_data = chip;
1220
1221 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1222
1223 /* global setup */
1224 pcm->info_flags = 0;
1225 strcpy(pcm->name, "YMFPCI - Rear PCM");
1226 chip->pcm_4ch = pcm;
1227
1228 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1229 snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1230
1231 if (rpcm)
1232 *rpcm = pcm;
1233 return 0;
1234 }
1235
1236 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1237 {
1238 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1239 uinfo->count = 1;
1240 return 0;
1241 }
1242
1243 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1244 struct snd_ctl_elem_value *ucontrol)
1245 {
1246 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1247
1248 spin_lock_irq(&chip->reg_lock);
1249 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1250 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1251 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1252 spin_unlock_irq(&chip->reg_lock);
1253 return 0;
1254 }
1255
1256 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1257 struct snd_ctl_elem_value *ucontrol)
1258 {
1259 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1260 unsigned int val;
1261 int change;
1262
1263 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1264 (ucontrol->value.iec958.status[1] << 8);
1265 spin_lock_irq(&chip->reg_lock);
1266 change = chip->spdif_bits != val;
1267 chip->spdif_bits = val;
1268 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1269 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1270 spin_unlock_irq(&chip->reg_lock);
1271 return change;
1272 }
1273
1274 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1275 {
1276 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1277 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1278 .info = snd_ymfpci_spdif_default_info,
1279 .get = snd_ymfpci_spdif_default_get,
1280 .put = snd_ymfpci_spdif_default_put
1281 };
1282
1283 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1284 {
1285 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1286 uinfo->count = 1;
1287 return 0;
1288 }
1289
1290 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1291 struct snd_ctl_elem_value *ucontrol)
1292 {
1293 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1294
1295 spin_lock_irq(&chip->reg_lock);
1296 ucontrol->value.iec958.status[0] = 0x3e;
1297 ucontrol->value.iec958.status[1] = 0xff;
1298 spin_unlock_irq(&chip->reg_lock);
1299 return 0;
1300 }
1301
1302 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1303 {
1304 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1305 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1306 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1307 .info = snd_ymfpci_spdif_mask_info,
1308 .get = snd_ymfpci_spdif_mask_get,
1309 };
1310
1311 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1312 {
1313 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1314 uinfo->count = 1;
1315 return 0;
1316 }
1317
1318 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1319 struct snd_ctl_elem_value *ucontrol)
1320 {
1321 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1322
1323 spin_lock_irq(&chip->reg_lock);
1324 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1325 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1326 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1327 spin_unlock_irq(&chip->reg_lock);
1328 return 0;
1329 }
1330
1331 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1332 struct snd_ctl_elem_value *ucontrol)
1333 {
1334 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1335 unsigned int val;
1336 int change;
1337
1338 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1339 (ucontrol->value.iec958.status[1] << 8);
1340 spin_lock_irq(&chip->reg_lock);
1341 change = chip->spdif_pcm_bits != val;
1342 chip->spdif_pcm_bits = val;
1343 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1344 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1345 spin_unlock_irq(&chip->reg_lock);
1346 return change;
1347 }
1348
1349 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1350 {
1351 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1352 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1353 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1354 .info = snd_ymfpci_spdif_stream_info,
1355 .get = snd_ymfpci_spdif_stream_get,
1356 .put = snd_ymfpci_spdif_stream_put
1357 };
1358
1359 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1360 {
1361 static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1362
1363 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1364 info->count = 1;
1365 info->value.enumerated.items = 3;
1366 if (info->value.enumerated.item > 2)
1367 info->value.enumerated.item = 2;
1368 strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1369 return 0;
1370 }
1371
1372 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1373 {
1374 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1375 u16 reg;
1376
1377 spin_lock_irq(&chip->reg_lock);
1378 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1379 spin_unlock_irq(&chip->reg_lock);
1380 if (!(reg & 0x100))
1381 value->value.enumerated.item[0] = 0;
1382 else
1383 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1384 return 0;
1385 }
1386
1387 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1388 {
1389 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1390 u16 reg, old_reg;
1391
1392 spin_lock_irq(&chip->reg_lock);
1393 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1394 if (value->value.enumerated.item[0] == 0)
1395 reg = old_reg & ~0x100;
1396 else
1397 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1398 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1399 spin_unlock_irq(&chip->reg_lock);
1400 return reg != old_reg;
1401 }
1402
1403 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1404 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1405 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1406 .name = "Direct Recording Source",
1407 .info = snd_ymfpci_drec_source_info,
1408 .get = snd_ymfpci_drec_source_get,
1409 .put = snd_ymfpci_drec_source_put
1410 };
1411
1412 /*
1413 * Mixer controls
1414 */
1415
1416 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1417 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1418 .info = snd_ymfpci_info_single, \
1419 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1420 .private_value = ((reg) | ((shift) << 16)) }
1421
1422 static int snd_ymfpci_info_single(struct snd_kcontrol *kcontrol,
1423 struct snd_ctl_elem_info *uinfo)
1424 {
1425 int reg = kcontrol->private_value & 0xffff;
1426
1427 switch (reg) {
1428 case YDSXGR_SPDIFOUTCTRL: break;
1429 case YDSXGR_SPDIFINCTRL: break;
1430 default: return -EINVAL;
1431 }
1432 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1433 uinfo->count = 1;
1434 uinfo->value.integer.min = 0;
1435 uinfo->value.integer.max = 1;
1436 return 0;
1437 }
1438
1439 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1440 struct snd_ctl_elem_value *ucontrol)
1441 {
1442 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1443 int reg = kcontrol->private_value & 0xffff;
1444 unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1445 unsigned int mask = 1;
1446
1447 switch (reg) {
1448 case YDSXGR_SPDIFOUTCTRL: break;
1449 case YDSXGR_SPDIFINCTRL: break;
1450 default: return -EINVAL;
1451 }
1452 ucontrol->value.integer.value[0] =
1453 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1454 return 0;
1455 }
1456
1457 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1458 struct snd_ctl_elem_value *ucontrol)
1459 {
1460 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1461 int reg = kcontrol->private_value & 0xffff;
1462 unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1463 unsigned int mask = 1;
1464 int change;
1465 unsigned int val, oval;
1466
1467 switch (reg) {
1468 case YDSXGR_SPDIFOUTCTRL: break;
1469 case YDSXGR_SPDIFINCTRL: break;
1470 default: return -EINVAL;
1471 }
1472 val = (ucontrol->value.integer.value[0] & mask);
1473 val <<= shift;
1474 spin_lock_irq(&chip->reg_lock);
1475 oval = snd_ymfpci_readl(chip, reg);
1476 val = (oval & ~(mask << shift)) | val;
1477 change = val != oval;
1478 snd_ymfpci_writel(chip, reg, val);
1479 spin_unlock_irq(&chip->reg_lock);
1480 return change;
1481 }
1482
1483 static DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1484
1485 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1486 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1487 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1488 .info = snd_ymfpci_info_double, \
1489 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1490 .private_value = reg, \
1491 .tlv = { .p = db_scale_native } }
1492
1493 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1494 {
1495 unsigned int reg = kcontrol->private_value;
1496
1497 if (reg < 0x80 || reg >= 0xc0)
1498 return -EINVAL;
1499 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1500 uinfo->count = 2;
1501 uinfo->value.integer.min = 0;
1502 uinfo->value.integer.max = 16383;
1503 return 0;
1504 }
1505
1506 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1507 {
1508 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1509 unsigned int reg = kcontrol->private_value;
1510 unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1511 unsigned int val;
1512
1513 if (reg < 0x80 || reg >= 0xc0)
1514 return -EINVAL;
1515 spin_lock_irq(&chip->reg_lock);
1516 val = snd_ymfpci_readl(chip, reg);
1517 spin_unlock_irq(&chip->reg_lock);
1518 ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1519 ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1520 return 0;
1521 }
1522
1523 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1524 {
1525 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1526 unsigned int reg = kcontrol->private_value;
1527 unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1528 int change;
1529 unsigned int val1, val2, oval;
1530
1531 if (reg < 0x80 || reg >= 0xc0)
1532 return -EINVAL;
1533 val1 = ucontrol->value.integer.value[0] & mask;
1534 val2 = ucontrol->value.integer.value[1] & mask;
1535 val1 <<= shift_left;
1536 val2 <<= shift_right;
1537 spin_lock_irq(&chip->reg_lock);
1538 oval = snd_ymfpci_readl(chip, reg);
1539 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1540 change = val1 != oval;
1541 snd_ymfpci_writel(chip, reg, val1);
1542 spin_unlock_irq(&chip->reg_lock);
1543 return change;
1544 }
1545
1546 /*
1547 * 4ch duplication
1548 */
1549 static int snd_ymfpci_info_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1550 {
1551 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1552 uinfo->count = 1;
1553 uinfo->value.integer.min = 0;
1554 uinfo->value.integer.max = 1;
1555 return 0;
1556 }
1557
1558 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1559 {
1560 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1561 ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1562 return 0;
1563 }
1564
1565 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1566 {
1567 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1568 int change;
1569 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1570 if (change)
1571 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1572 return change;
1573 }
1574
1575
1576 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1577 YMFPCI_DOUBLE("Wave Playback Volume", 0, YDSXGR_NATIVEDACOUTVOL),
1578 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1579 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1580 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1581 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1582 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1583 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1584 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1585 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1586 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1587 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1588 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1589 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1590 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1591 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1592 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1593 {
1594 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1595 .name = "4ch Duplication",
1596 .info = snd_ymfpci_info_dup4ch,
1597 .get = snd_ymfpci_get_dup4ch,
1598 .put = snd_ymfpci_put_dup4ch,
1599 },
1600 };
1601
1602
1603 /*
1604 * GPIO
1605 */
1606
1607 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1608 {
1609 u16 reg, mode;
1610 unsigned long flags;
1611
1612 spin_lock_irqsave(&chip->reg_lock, flags);
1613 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1614 reg &= ~(1 << (pin + 8));
1615 reg |= (1 << pin);
1616 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1617 /* set the level mode for input line */
1618 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1619 mode &= ~(3 << (pin * 2));
1620 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1621 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1622 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1623 spin_unlock_irqrestore(&chip->reg_lock, flags);
1624 return (mode >> pin) & 1;
1625 }
1626
1627 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1628 {
1629 u16 reg;
1630 unsigned long flags;
1631
1632 spin_lock_irqsave(&chip->reg_lock, flags);
1633 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1634 reg &= ~(1 << pin);
1635 reg &= ~(1 << (pin + 8));
1636 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1637 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1638 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1639 spin_unlock_irqrestore(&chip->reg_lock, flags);
1640
1641 return 0;
1642 }
1643
1644 static int snd_ymfpci_gpio_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1645 {
1646 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1647 uinfo->count = 1;
1648 uinfo->value.integer.min = 0;
1649 uinfo->value.integer.max = 1;
1650 return 0;
1651 }
1652
1653 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1654 {
1655 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1656 int pin = (int)kcontrol->private_value;
1657 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1658 return 0;
1659 }
1660
1661 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1662 {
1663 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1664 int pin = (int)kcontrol->private_value;
1665
1666 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1667 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1668 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1669 return 1;
1670 }
1671 return 0;
1672 }
1673
1674 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1675 .name = "Shared Rear/Line-In Switch",
1676 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1677 .info = snd_ymfpci_gpio_sw_info,
1678 .get = snd_ymfpci_gpio_sw_get,
1679 .put = snd_ymfpci_gpio_sw_put,
1680 .private_value = 2,
1681 };
1682
1683 /*
1684 * PCM voice volume
1685 */
1686
1687 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1688 struct snd_ctl_elem_info *uinfo)
1689 {
1690 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1691 uinfo->count = 2;
1692 uinfo->value.integer.min = 0;
1693 uinfo->value.integer.max = 0x8000;
1694 return 0;
1695 }
1696
1697 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1698 struct snd_ctl_elem_value *ucontrol)
1699 {
1700 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1701 unsigned int subs = kcontrol->id.subdevice;
1702
1703 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1704 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1705 return 0;
1706 }
1707
1708 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1709 struct snd_ctl_elem_value *ucontrol)
1710 {
1711 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1712 unsigned int subs = kcontrol->id.subdevice;
1713 struct snd_pcm_substream *substream;
1714 unsigned long flags;
1715
1716 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1717 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1718 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1719 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1720
1721 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1722 spin_lock_irqsave(&chip->voice_lock, flags);
1723 if (substream->runtime && substream->runtime->private_data) {
1724 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1725 ypcm->update_pcm_vol = 2;
1726 }
1727 spin_unlock_irqrestore(&chip->voice_lock, flags);
1728 return 1;
1729 }
1730 return 0;
1731 }
1732
1733 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1734 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1735 .name = "PCM Playback Volume",
1736 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1737 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1738 .info = snd_ymfpci_pcm_vol_info,
1739 .get = snd_ymfpci_pcm_vol_get,
1740 .put = snd_ymfpci_pcm_vol_put,
1741 };
1742
1743
1744 /*
1745 * Mixer routines
1746 */
1747
1748 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1749 {
1750 struct snd_ymfpci *chip = bus->private_data;
1751 chip->ac97_bus = NULL;
1752 }
1753
1754 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1755 {
1756 struct snd_ymfpci *chip = ac97->private_data;
1757 chip->ac97 = NULL;
1758 }
1759
1760 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1761 {
1762 struct snd_ac97_template ac97;
1763 struct snd_kcontrol *kctl;
1764 struct snd_pcm_substream *substream;
1765 unsigned int idx;
1766 int err;
1767 static struct snd_ac97_bus_ops ops = {
1768 .write = snd_ymfpci_codec_write,
1769 .read = snd_ymfpci_codec_read,
1770 };
1771
1772 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1773 return err;
1774 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1775 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1776
1777 memset(&ac97, 0, sizeof(ac97));
1778 ac97.private_data = chip;
1779 ac97.private_free = snd_ymfpci_mixer_free_ac97;
1780 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1781 return err;
1782
1783 /* to be sure */
1784 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1785 AC97_EA_VRA|AC97_EA_VRM, 0);
1786
1787 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1788 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1789 return err;
1790 }
1791
1792 /* add S/PDIF control */
1793 snd_assert(chip->pcm_spdif != NULL, return -EIO);
1794 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1795 return err;
1796 kctl->id.device = chip->pcm_spdif->device;
1797 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1798 return err;
1799 kctl->id.device = chip->pcm_spdif->device;
1800 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1801 return err;
1802 kctl->id.device = chip->pcm_spdif->device;
1803 chip->spdif_pcm_ctl = kctl;
1804
1805 /* direct recording source */
1806 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1807 (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1808 return err;
1809
1810 /*
1811 * shared rear/line-in
1812 */
1813 if (rear_switch) {
1814 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1815 return err;
1816 }
1817
1818 /* per-voice volume */
1819 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1820 for (idx = 0; idx < 32; ++idx) {
1821 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1822 if (!kctl)
1823 return -ENOMEM;
1824 kctl->id.device = chip->pcm->device;
1825 kctl->id.subdevice = idx;
1826 kctl->private_value = (unsigned long)substream;
1827 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1828 return err;
1829 chip->pcm_mixer[idx].left = 0x8000;
1830 chip->pcm_mixer[idx].right = 0x8000;
1831 chip->pcm_mixer[idx].ctl = kctl;
1832 substream = substream->next;
1833 }
1834
1835 return 0;
1836 }
1837
1838
1839 /*
1840 * timer
1841 */
1842
1843 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1844 {
1845 struct snd_ymfpci *chip;
1846 unsigned long flags;
1847 unsigned int count;
1848
1849 chip = snd_timer_chip(timer);
1850 count = (timer->sticks << 1) - 1;
1851 spin_lock_irqsave(&chip->reg_lock, flags);
1852 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1853 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1854 spin_unlock_irqrestore(&chip->reg_lock, flags);
1855 return 0;
1856 }
1857
1858 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1859 {
1860 struct snd_ymfpci *chip;
1861 unsigned long flags;
1862
1863 chip = snd_timer_chip(timer);
1864 spin_lock_irqsave(&chip->reg_lock, flags);
1865 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1866 spin_unlock_irqrestore(&chip->reg_lock, flags);
1867 return 0;
1868 }
1869
1870 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1871 unsigned long *num, unsigned long *den)
1872 {
1873 *num = 1;
1874 *den = 48000;
1875 return 0;
1876 }
1877
1878 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1879 .flags = SNDRV_TIMER_HW_AUTO,
1880 .resolution = 20833, /* 1/fs = 20.8333...us */
1881 .ticks = 0x8000,
1882 .start = snd_ymfpci_timer_start,
1883 .stop = snd_ymfpci_timer_stop,
1884 .precise_resolution = snd_ymfpci_timer_precise_resolution,
1885 };
1886
1887 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1888 {
1889 struct snd_timer *timer = NULL;
1890 struct snd_timer_id tid;
1891 int err;
1892
1893 tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1894 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1895 tid.card = chip->card->number;
1896 tid.device = device;
1897 tid.subdevice = 0;
1898 if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1899 strcpy(timer->name, "YMFPCI timer");
1900 timer->private_data = chip;
1901 timer->hw = snd_ymfpci_timer_hw;
1902 }
1903 chip->timer = timer;
1904 return err;
1905 }
1906
1907
1908 /*
1909 * proc interface
1910 */
1911
1912 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1913 struct snd_info_buffer *buffer)
1914 {
1915 struct snd_ymfpci *chip = entry->private_data;
1916 int i;
1917
1918 snd_iprintf(buffer, "YMFPCI\n\n");
1919 for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1920 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1921 }
1922
1923 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1924 {
1925 struct snd_info_entry *entry;
1926
1927 if (! snd_card_proc_new(card, "ymfpci", &entry))
1928 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1929 return 0;
1930 }
1931
1932 /*
1933 * initialization routines
1934 */
1935
1936 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1937 {
1938 u8 cmd;
1939
1940 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1941 #if 0 // force to reset
1942 if (cmd & 0x03) {
1943 #endif
1944 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1945 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1946 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1947 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1948 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1949 #if 0
1950 }
1951 #endif
1952 }
1953
1954 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1955 {
1956 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1957 }
1958
1959 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1960 {
1961 u32 val;
1962 int timeout = 1000;
1963
1964 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1965 if (val)
1966 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1967 while (timeout-- > 0) {
1968 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1969 if ((val & 0x00000002) == 0)
1970 break;
1971 }
1972 }
1973
1974 #include "ymfpci_image.h"
1975
1976 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
1977 {
1978 int i;
1979 u16 ctrl;
1980 unsigned long *inst;
1981
1982 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
1983 snd_ymfpci_disable_dsp(chip);
1984 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
1985 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
1986 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
1987 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
1988 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
1989 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
1990 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
1991 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1992 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
1993
1994 /* setup DSP instruction code */
1995 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
1996 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), DspInst[i]);
1997
1998 /* setup control instruction code */
1999 switch (chip->device_id) {
2000 case PCI_DEVICE_ID_YAMAHA_724F:
2001 case PCI_DEVICE_ID_YAMAHA_740C:
2002 case PCI_DEVICE_ID_YAMAHA_744:
2003 case PCI_DEVICE_ID_YAMAHA_754:
2004 inst = CntrlInst1E;
2005 break;
2006 default:
2007 inst = CntrlInst;
2008 break;
2009 }
2010 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2011 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]);
2012
2013 snd_ymfpci_enable_dsp(chip);
2014 }
2015
2016 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2017 {
2018 long size, playback_ctrl_size;
2019 int voice, bank, reg;
2020 u8 *ptr;
2021 dma_addr_t ptr_addr;
2022
2023 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2024 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2025 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2026 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2027 chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2028
2029 size = ALIGN(playback_ctrl_size, 0x100) +
2030 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2031 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2032 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2033 chip->work_size;
2034 /* work_ptr must be aligned to 256 bytes, but it's already
2035 covered with the kernel page allocation mechanism */
2036 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2037 size, &chip->work_ptr) < 0)
2038 return -ENOMEM;
2039 ptr = chip->work_ptr.area;
2040 ptr_addr = chip->work_ptr.addr;
2041 memset(ptr, 0, size); /* for sure */
2042
2043 chip->bank_base_playback = ptr;
2044 chip->bank_base_playback_addr = ptr_addr;
2045 chip->ctrl_playback = (u32 *)ptr;
2046 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2047 ptr += ALIGN(playback_ctrl_size, 0x100);
2048 ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2049 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2050 chip->voices[voice].number = voice;
2051 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2052 chip->voices[voice].bank_addr = ptr_addr;
2053 for (bank = 0; bank < 2; bank++) {
2054 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2055 ptr += chip->bank_size_playback;
2056 ptr_addr += chip->bank_size_playback;
2057 }
2058 }
2059 ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2060 ptr_addr = ALIGN(ptr_addr, 0x100);
2061 chip->bank_base_capture = ptr;
2062 chip->bank_base_capture_addr = ptr_addr;
2063 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2064 for (bank = 0; bank < 2; bank++) {
2065 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2066 ptr += chip->bank_size_capture;
2067 ptr_addr += chip->bank_size_capture;
2068 }
2069 ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2070 ptr_addr = ALIGN(ptr_addr, 0x100);
2071 chip->bank_base_effect = ptr;
2072 chip->bank_base_effect_addr = ptr_addr;
2073 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2074 for (bank = 0; bank < 2; bank++) {
2075 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2076 ptr += chip->bank_size_effect;
2077 ptr_addr += chip->bank_size_effect;
2078 }
2079 ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2080 ptr_addr = ALIGN(ptr_addr, 0x100);
2081 chip->work_base = ptr;
2082 chip->work_base_addr = ptr_addr;
2083
2084 snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );
2085
2086 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2087 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2088 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2089 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2090 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2091
2092 /* S/PDIF output initialization */
2093 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2094 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2095 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2096
2097 /* S/PDIF input initialization */
2098 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2099
2100 /* digital mixer setup */
2101 for (reg = 0x80; reg < 0xc0; reg += 4)
2102 snd_ymfpci_writel(chip, reg, 0);
2103 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2104 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2105 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2106 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2107 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2108 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2109 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2110
2111 return 0;
2112 }
2113
2114 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2115 {
2116 u16 ctrl;
2117
2118 snd_assert(chip != NULL, return -EINVAL);
2119
2120 if (chip->res_reg_area) { /* don't touch busy hardware */
2121 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2122 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2123 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2124 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2125 snd_ymfpci_disable_dsp(chip);
2126 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2127 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2128 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2129 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2130 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2131 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2132 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2133 }
2134
2135 snd_ymfpci_ac3_done(chip);
2136
2137 /* Set PCI device to D3 state */
2138 #if 0
2139 /* FIXME: temporarily disabled, otherwise we cannot fire up
2140 * the chip again unless reboot. ACPI bug?
2141 */
2142 pci_set_power_state(chip->pci, 3);
2143 #endif
2144
2145 #ifdef CONFIG_PM
2146 vfree(chip->saved_regs);
2147 #endif
2148 release_and_free_resource(chip->mpu_res);
2149 release_and_free_resource(chip->fm_res);
2150 snd_ymfpci_free_gameport(chip);
2151 if (chip->reg_area_virt)
2152 iounmap(chip->reg_area_virt);
2153 if (chip->work_ptr.area)
2154 snd_dma_free_pages(&chip->work_ptr);
2155
2156 if (chip->irq >= 0)
2157 free_irq(chip->irq, chip);
2158 release_and_free_resource(chip->res_reg_area);
2159
2160 pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2161
2162 pci_disable_device(chip->pci);
2163 kfree(chip);
2164 return 0;
2165 }
2166
2167 static int snd_ymfpci_dev_free(struct snd_device *device)
2168 {
2169 struct snd_ymfpci *chip = device->device_data;
2170 return snd_ymfpci_free(chip);
2171 }
2172
2173 #ifdef CONFIG_PM
2174 static int saved_regs_index[] = {
2175 /* spdif */
2176 YDSXGR_SPDIFOUTCTRL,
2177 YDSXGR_SPDIFOUTSTATUS,
2178 YDSXGR_SPDIFINCTRL,
2179 /* volumes */
2180 YDSXGR_PRIADCLOOPVOL,
2181 YDSXGR_NATIVEDACINVOL,
2182 YDSXGR_NATIVEDACOUTVOL,
2183 // YDSXGR_BUF441OUTVOL,
2184 YDSXGR_NATIVEADCINVOL,
2185 YDSXGR_SPDIFLOOPVOL,
2186 YDSXGR_SPDIFOUTVOL,
2187 YDSXGR_ZVOUTVOL,
2188 YDSXGR_LEGACYOUTVOL,
2189 /* address bases */
2190 YDSXGR_PLAYCTRLBASE,
2191 YDSXGR_RECCTRLBASE,
2192 YDSXGR_EFFCTRLBASE,
2193 YDSXGR_WORKBASE,
2194 /* capture set up */
2195 YDSXGR_MAPOFREC,
2196 YDSXGR_RECFORMAT,
2197 YDSXGR_RECSLOTSR,
2198 YDSXGR_ADCFORMAT,
2199 YDSXGR_ADCSLOTSR,
2200 };
2201 #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index)
2202
2203 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2204 {
2205 struct snd_card *card = pci_get_drvdata(pci);
2206 struct snd_ymfpci *chip = card->private_data;
2207 unsigned int i;
2208
2209 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2210 snd_pcm_suspend_all(chip->pcm);
2211 snd_pcm_suspend_all(chip->pcm2);
2212 snd_pcm_suspend_all(chip->pcm_spdif);
2213 snd_pcm_suspend_all(chip->pcm_4ch);
2214 snd_ac97_suspend(chip->ac97);
2215 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2216 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2217 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2218 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2219 snd_ymfpci_disable_dsp(chip);
2220 pci_disable_device(pci);
2221 pci_save_state(pci);
2222 pci_set_power_state(pci, pci_choose_state(pci, state));
2223 return 0;
2224 }
2225
2226 int snd_ymfpci_resume(struct pci_dev *pci)
2227 {
2228 struct snd_card *card = pci_get_drvdata(pci);
2229 struct snd_ymfpci *chip = card->private_data;
2230 unsigned int i;
2231
2232 pci_set_power_state(pci, PCI_D0);
2233 pci_restore_state(pci);
2234 if (pci_enable_device(pci) < 0) {
2235 printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2236 "disabling device\n");
2237 snd_card_disconnect(card);
2238 return -EIO;
2239 }
2240 pci_set_master(pci);
2241 snd_ymfpci_aclink_reset(pci);
2242 snd_ymfpci_codec_ready(chip, 0);
2243 snd_ymfpci_download_image(chip);
2244 udelay(100);
2245
2246 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2247 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2248
2249 snd_ac97_resume(chip->ac97);
2250
2251 /* start hw again */
2252 if (chip->start_count > 0) {
2253 spin_lock_irq(&chip->reg_lock);
2254 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2255 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2256 spin_unlock_irq(&chip->reg_lock);
2257 }
2258 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2259 return 0;
2260 }
2261 #endif /* CONFIG_PM */
2262
2263 int __devinit snd_ymfpci_create(struct snd_card *card,
2264 struct pci_dev * pci,
2265 unsigned short old_legacy_ctrl,
2266 struct snd_ymfpci ** rchip)
2267 {
2268 struct snd_ymfpci *chip;
2269 int err;
2270 static struct snd_device_ops ops = {
2271 .dev_free = snd_ymfpci_dev_free,
2272 };
2273
2274 *rchip = NULL;
2275
2276 /* enable PCI device */
2277 if ((err = pci_enable_device(pci)) < 0)
2278 return err;
2279
2280 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2281 if (chip == NULL) {
2282 pci_disable_device(pci);
2283 return -ENOMEM;
2284 }
2285 chip->old_legacy_ctrl = old_legacy_ctrl;
2286 spin_lock_init(&chip->reg_lock);
2287 spin_lock_init(&chip->voice_lock);
2288 init_waitqueue_head(&chip->interrupt_sleep);
2289 atomic_set(&chip->interrupt_sleep_count, 0);
2290 chip->card = card;
2291 chip->pci = pci;
2292 chip->irq = -1;
2293 chip->device_id = pci->device;
2294 pci_read_config_byte(pci, PCI_REVISION_ID, &chip->rev);
2295 chip->reg_area_phys = pci_resource_start(pci, 0);
2296 chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2297 pci_set_master(pci);
2298
2299 if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2300 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2301 snd_ymfpci_free(chip);
2302 return -EBUSY;
2303 }
2304 if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2305 "YMFPCI", chip)) {
2306 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2307 snd_ymfpci_free(chip);
2308 return -EBUSY;
2309 }
2310 chip->irq = pci->irq;
2311
2312 snd_ymfpci_aclink_reset(pci);
2313 if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2314 snd_ymfpci_free(chip);
2315 return -EIO;
2316 }
2317
2318 snd_ymfpci_download_image(chip);
2319
2320 udelay(100); /* seems we need a delay after downloading image.. */
2321
2322 if (snd_ymfpci_memalloc(chip) < 0) {
2323 snd_ymfpci_free(chip);
2324 return -EIO;
2325 }
2326
2327 if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2328 snd_ymfpci_free(chip);
2329 return err;
2330 }
2331
2332 #ifdef CONFIG_PM
2333 chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2334 if (chip->saved_regs == NULL) {
2335 snd_ymfpci_free(chip);
2336 return -ENOMEM;
2337 }
2338 #endif
2339
2340 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2341 snd_ymfpci_free(chip);
2342 return err;
2343 }
2344
2345 snd_ymfpci_proc_init(card, chip);
2346
2347 snd_card_set_dev(card, &pci->dev);
2348
2349 *rchip = chip;
2350 return 0;
2351 }