Merge tag 'arc-v3.9-rc1-late' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / pci / pcxhr / pcxhr.c
1 /*
2 * Driver for Digigram pcxhr compatible soundcards
3 *
4 * main file with alsa callbacks
5 *
6 * Copyright (c) 2004 by Digigram <alsa@digigram.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/slab.h>
27 #include <linux/pci.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32
33 #include <sound/core.h>
34 #include <sound/initval.h>
35 #include <sound/info.h>
36 #include <sound/control.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include "pcxhr.h"
40 #include "pcxhr_mixer.h"
41 #include "pcxhr_hwdep.h"
42 #include "pcxhr_core.h"
43 #include "pcxhr_mix22.h"
44
45 #define DRIVER_NAME "pcxhr"
46
47 MODULE_AUTHOR("Markus Bollinger <bollinger@digigram.com>, "
48 "Marc Titinger <titinger@digigram.com>");
49 MODULE_DESCRIPTION("Digigram " DRIVER_NAME " " PCXHR_DRIVER_VERSION_STRING);
50 MODULE_LICENSE("GPL");
51 MODULE_SUPPORTED_DEVICE("{{Digigram," DRIVER_NAME "}}");
52
53 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
54 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
55 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
56 static bool mono[SNDRV_CARDS]; /* capture mono only */
57
58 module_param_array(index, int, NULL, 0444);
59 MODULE_PARM_DESC(index, "Index value for Digigram " DRIVER_NAME " soundcard");
60 module_param_array(id, charp, NULL, 0444);
61 MODULE_PARM_DESC(id, "ID string for Digigram " DRIVER_NAME " soundcard");
62 module_param_array(enable, bool, NULL, 0444);
63 MODULE_PARM_DESC(enable, "Enable Digigram " DRIVER_NAME " soundcard");
64 module_param_array(mono, bool, NULL, 0444);
65 MODULE_PARM_DESC(mono, "Mono capture mode (default is stereo)");
66
67 enum {
68 PCI_ID_VX882HR,
69 PCI_ID_PCX882HR,
70 PCI_ID_VX881HR,
71 PCI_ID_PCX881HR,
72 PCI_ID_VX882E,
73 PCI_ID_PCX882E,
74 PCI_ID_VX881E,
75 PCI_ID_PCX881E,
76 PCI_ID_VX1222HR,
77 PCI_ID_PCX1222HR,
78 PCI_ID_VX1221HR,
79 PCI_ID_PCX1221HR,
80 PCI_ID_VX1222E,
81 PCI_ID_PCX1222E,
82 PCI_ID_VX1221E,
83 PCI_ID_PCX1221E,
84 PCI_ID_VX222HR,
85 PCI_ID_VX222E,
86 PCI_ID_PCX22HR,
87 PCI_ID_PCX22E,
88 PCI_ID_VX222HRMIC,
89 PCI_ID_VX222E_MIC,
90 PCI_ID_PCX924HR,
91 PCI_ID_PCX924E,
92 PCI_ID_PCX924HRMIC,
93 PCI_ID_PCX924E_MIC,
94 PCI_ID_VX442HR,
95 PCI_ID_PCX442HR,
96 PCI_ID_VX442E,
97 PCI_ID_PCX442E,
98 PCI_ID_VX822HR,
99 PCI_ID_PCX822HR,
100 PCI_ID_VX822E,
101 PCI_ID_PCX822E,
102 PCI_ID_LAST
103 };
104
105 static DEFINE_PCI_DEVICE_TABLE(pcxhr_ids) = {
106 { 0x10b5, 0x9656, 0x1369, 0xb001, 0, 0, PCI_ID_VX882HR, },
107 { 0x10b5, 0x9656, 0x1369, 0xb101, 0, 0, PCI_ID_PCX882HR, },
108 { 0x10b5, 0x9656, 0x1369, 0xb201, 0, 0, PCI_ID_VX881HR, },
109 { 0x10b5, 0x9656, 0x1369, 0xb301, 0, 0, PCI_ID_PCX881HR, },
110 { 0x10b5, 0x9056, 0x1369, 0xb021, 0, 0, PCI_ID_VX882E, },
111 { 0x10b5, 0x9056, 0x1369, 0xb121, 0, 0, PCI_ID_PCX882E, },
112 { 0x10b5, 0x9056, 0x1369, 0xb221, 0, 0, PCI_ID_VX881E, },
113 { 0x10b5, 0x9056, 0x1369, 0xb321, 0, 0, PCI_ID_PCX881E, },
114 { 0x10b5, 0x9656, 0x1369, 0xb401, 0, 0, PCI_ID_VX1222HR, },
115 { 0x10b5, 0x9656, 0x1369, 0xb501, 0, 0, PCI_ID_PCX1222HR, },
116 { 0x10b5, 0x9656, 0x1369, 0xb601, 0, 0, PCI_ID_VX1221HR, },
117 { 0x10b5, 0x9656, 0x1369, 0xb701, 0, 0, PCI_ID_PCX1221HR, },
118 { 0x10b5, 0x9056, 0x1369, 0xb421, 0, 0, PCI_ID_VX1222E, },
119 { 0x10b5, 0x9056, 0x1369, 0xb521, 0, 0, PCI_ID_PCX1222E, },
120 { 0x10b5, 0x9056, 0x1369, 0xb621, 0, 0, PCI_ID_VX1221E, },
121 { 0x10b5, 0x9056, 0x1369, 0xb721, 0, 0, PCI_ID_PCX1221E, },
122 { 0x10b5, 0x9056, 0x1369, 0xba01, 0, 0, PCI_ID_VX222HR, },
123 { 0x10b5, 0x9056, 0x1369, 0xba21, 0, 0, PCI_ID_VX222E, },
124 { 0x10b5, 0x9056, 0x1369, 0xbd01, 0, 0, PCI_ID_PCX22HR, },
125 { 0x10b5, 0x9056, 0x1369, 0xbd21, 0, 0, PCI_ID_PCX22E, },
126 { 0x10b5, 0x9056, 0x1369, 0xbc01, 0, 0, PCI_ID_VX222HRMIC, },
127 { 0x10b5, 0x9056, 0x1369, 0xbc21, 0, 0, PCI_ID_VX222E_MIC, },
128 { 0x10b5, 0x9056, 0x1369, 0xbb01, 0, 0, PCI_ID_PCX924HR, },
129 { 0x10b5, 0x9056, 0x1369, 0xbb21, 0, 0, PCI_ID_PCX924E, },
130 { 0x10b5, 0x9056, 0x1369, 0xbf01, 0, 0, PCI_ID_PCX924HRMIC, },
131 { 0x10b5, 0x9056, 0x1369, 0xbf21, 0, 0, PCI_ID_PCX924E_MIC, },
132 { 0x10b5, 0x9656, 0x1369, 0xd001, 0, 0, PCI_ID_VX442HR, },
133 { 0x10b5, 0x9656, 0x1369, 0xd101, 0, 0, PCI_ID_PCX442HR, },
134 { 0x10b5, 0x9056, 0x1369, 0xd021, 0, 0, PCI_ID_VX442E, },
135 { 0x10b5, 0x9056, 0x1369, 0xd121, 0, 0, PCI_ID_PCX442E, },
136 { 0x10b5, 0x9656, 0x1369, 0xd201, 0, 0, PCI_ID_VX822HR, },
137 { 0x10b5, 0x9656, 0x1369, 0xd301, 0, 0, PCI_ID_PCX822HR, },
138 { 0x10b5, 0x9056, 0x1369, 0xd221, 0, 0, PCI_ID_VX822E, },
139 { 0x10b5, 0x9056, 0x1369, 0xd321, 0, 0, PCI_ID_PCX822E, },
140 { 0, }
141 };
142
143 MODULE_DEVICE_TABLE(pci, pcxhr_ids);
144
145 struct board_parameters {
146 char* board_name;
147 short playback_chips;
148 short capture_chips;
149 short fw_file_set;
150 short firmware_num;
151 };
152 static struct board_parameters pcxhr_board_params[] = {
153 [PCI_ID_VX882HR] = { "VX882HR", 4, 4, 0, 41 },
154 [PCI_ID_PCX882HR] = { "PCX882HR", 4, 4, 0, 41 },
155 [PCI_ID_VX881HR] = { "VX881HR", 4, 4, 0, 41 },
156 [PCI_ID_PCX881HR] = { "PCX881HR", 4, 4, 0, 41 },
157 [PCI_ID_VX882E] = { "VX882e", 4, 4, 1, 41 },
158 [PCI_ID_PCX882E] = { "PCX882e", 4, 4, 1, 41 },
159 [PCI_ID_VX881E] = { "VX881e", 4, 4, 1, 41 },
160 [PCI_ID_PCX881E] = { "PCX881e", 4, 4, 1, 41 },
161 [PCI_ID_VX1222HR] = { "VX1222HR", 6, 1, 2, 42 },
162 [PCI_ID_PCX1222HR] = { "PCX1222HR", 6, 1, 2, 42 },
163 [PCI_ID_VX1221HR] = { "VX1221HR", 6, 1, 2, 42 },
164 [PCI_ID_PCX1221HR] = { "PCX1221HR", 6, 1, 2, 42 },
165 [PCI_ID_VX1222E] = { "VX1222e", 6, 1, 3, 42 },
166 [PCI_ID_PCX1222E] = { "PCX1222e", 6, 1, 3, 42 },
167 [PCI_ID_VX1221E] = { "VX1221e", 6, 1, 3, 42 },
168 [PCI_ID_PCX1221E] = { "PCX1221e", 6, 1, 3, 42 },
169 [PCI_ID_VX222HR] = { "VX222HR", 1, 1, 4, 44 },
170 [PCI_ID_VX222E] = { "VX222e", 1, 1, 4, 44 },
171 [PCI_ID_PCX22HR] = { "PCX22HR", 1, 0, 4, 44 },
172 [PCI_ID_PCX22E] = { "PCX22e", 1, 0, 4, 44 },
173 [PCI_ID_VX222HRMIC] = { "VX222HR-Mic", 1, 1, 5, 44 },
174 [PCI_ID_VX222E_MIC] = { "VX222e-Mic", 1, 1, 5, 44 },
175 [PCI_ID_PCX924HR] = { "PCX924HR", 1, 1, 5, 44 },
176 [PCI_ID_PCX924E] = { "PCX924e", 1, 1, 5, 44 },
177 [PCI_ID_PCX924HRMIC] = { "PCX924HR-Mic", 1, 1, 5, 44 },
178 [PCI_ID_PCX924E_MIC] = { "PCX924e-Mic", 1, 1, 5, 44 },
179 [PCI_ID_VX442HR] = { "VX442HR", 2, 2, 0, 41 },
180 [PCI_ID_PCX442HR] = { "PCX442HR", 2, 2, 0, 41 },
181 [PCI_ID_VX442E] = { "VX442e", 2, 2, 1, 41 },
182 [PCI_ID_PCX442E] = { "PCX442e", 2, 2, 1, 41 },
183 [PCI_ID_VX822HR] = { "VX822HR", 4, 1, 2, 42 },
184 [PCI_ID_PCX822HR] = { "PCX822HR", 4, 1, 2, 42 },
185 [PCI_ID_VX822E] = { "VX822e", 4, 1, 3, 42 },
186 [PCI_ID_PCX822E] = { "PCX822e", 4, 1, 3, 42 },
187 };
188
189 /* boards without hw AES1 and SRC onboard are all using fw_file_set==4 */
190 /* VX222HR, VX222e, PCX22HR and PCX22e */
191 #define PCXHR_BOARD_HAS_AES1(x) (x->fw_file_set != 4)
192 /* some boards do not support 192kHz on digital AES input plugs */
193 #define PCXHR_BOARD_AESIN_NO_192K(x) ((x->capture_chips == 0) || \
194 (x->fw_file_set == 0) || \
195 (x->fw_file_set == 2))
196
197 static int pcxhr_pll_freq_register(unsigned int freq, unsigned int* pllreg,
198 unsigned int* realfreq)
199 {
200 unsigned int reg;
201
202 if (freq < 6900 || freq > 110000)
203 return -EINVAL;
204 reg = (28224000 * 2) / freq;
205 reg = (reg - 1) / 2;
206 if (reg < 0x200)
207 *pllreg = reg + 0x800;
208 else if (reg < 0x400)
209 *pllreg = reg & 0x1ff;
210 else if (reg < 0x800) {
211 *pllreg = ((reg >> 1) & 0x1ff) + 0x200;
212 reg &= ~1;
213 } else {
214 *pllreg = ((reg >> 2) & 0x1ff) + 0x400;
215 reg &= ~3;
216 }
217 if (realfreq)
218 *realfreq = (28224000 / (reg + 1));
219 return 0;
220 }
221
222
223 #define PCXHR_FREQ_REG_MASK 0x1f
224 #define PCXHR_FREQ_QUARTZ_48000 0x00
225 #define PCXHR_FREQ_QUARTZ_24000 0x01
226 #define PCXHR_FREQ_QUARTZ_12000 0x09
227 #define PCXHR_FREQ_QUARTZ_32000 0x08
228 #define PCXHR_FREQ_QUARTZ_16000 0x04
229 #define PCXHR_FREQ_QUARTZ_8000 0x0c
230 #define PCXHR_FREQ_QUARTZ_44100 0x02
231 #define PCXHR_FREQ_QUARTZ_22050 0x0a
232 #define PCXHR_FREQ_QUARTZ_11025 0x06
233 #define PCXHR_FREQ_PLL 0x05
234 #define PCXHR_FREQ_QUARTZ_192000 0x10
235 #define PCXHR_FREQ_QUARTZ_96000 0x18
236 #define PCXHR_FREQ_QUARTZ_176400 0x14
237 #define PCXHR_FREQ_QUARTZ_88200 0x1c
238 #define PCXHR_FREQ_QUARTZ_128000 0x12
239 #define PCXHR_FREQ_QUARTZ_64000 0x1a
240
241 #define PCXHR_FREQ_WORD_CLOCK 0x0f
242 #define PCXHR_FREQ_SYNC_AES 0x0e
243 #define PCXHR_FREQ_AES_1 0x07
244 #define PCXHR_FREQ_AES_2 0x0b
245 #define PCXHR_FREQ_AES_3 0x03
246 #define PCXHR_FREQ_AES_4 0x0d
247
248 static int pcxhr_get_clock_reg(struct pcxhr_mgr *mgr, unsigned int rate,
249 unsigned int *reg, unsigned int *freq)
250 {
251 unsigned int val, realfreq, pllreg;
252 struct pcxhr_rmh rmh;
253 int err;
254
255 realfreq = rate;
256 switch (mgr->use_clock_type) {
257 case PCXHR_CLOCK_TYPE_INTERNAL : /* clock by quartz or pll */
258 switch (rate) {
259 case 48000 : val = PCXHR_FREQ_QUARTZ_48000; break;
260 case 24000 : val = PCXHR_FREQ_QUARTZ_24000; break;
261 case 12000 : val = PCXHR_FREQ_QUARTZ_12000; break;
262 case 32000 : val = PCXHR_FREQ_QUARTZ_32000; break;
263 case 16000 : val = PCXHR_FREQ_QUARTZ_16000; break;
264 case 8000 : val = PCXHR_FREQ_QUARTZ_8000; break;
265 case 44100 : val = PCXHR_FREQ_QUARTZ_44100; break;
266 case 22050 : val = PCXHR_FREQ_QUARTZ_22050; break;
267 case 11025 : val = PCXHR_FREQ_QUARTZ_11025; break;
268 case 192000 : val = PCXHR_FREQ_QUARTZ_192000; break;
269 case 96000 : val = PCXHR_FREQ_QUARTZ_96000; break;
270 case 176400 : val = PCXHR_FREQ_QUARTZ_176400; break;
271 case 88200 : val = PCXHR_FREQ_QUARTZ_88200; break;
272 case 128000 : val = PCXHR_FREQ_QUARTZ_128000; break;
273 case 64000 : val = PCXHR_FREQ_QUARTZ_64000; break;
274 default :
275 val = PCXHR_FREQ_PLL;
276 /* get the value for the pll register */
277 err = pcxhr_pll_freq_register(rate, &pllreg, &realfreq);
278 if (err)
279 return err;
280 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
281 rmh.cmd[0] |= IO_NUM_REG_GENCLK;
282 rmh.cmd[1] = pllreg & MASK_DSP_WORD;
283 rmh.cmd[2] = pllreg >> 24;
284 rmh.cmd_len = 3;
285 err = pcxhr_send_msg(mgr, &rmh);
286 if (err < 0) {
287 snd_printk(KERN_ERR
288 "error CMD_ACCESS_IO_WRITE "
289 "for PLL register : %x!\n", err);
290 return err;
291 }
292 }
293 break;
294 case PCXHR_CLOCK_TYPE_WORD_CLOCK:
295 val = PCXHR_FREQ_WORD_CLOCK;
296 break;
297 case PCXHR_CLOCK_TYPE_AES_SYNC:
298 val = PCXHR_FREQ_SYNC_AES;
299 break;
300 case PCXHR_CLOCK_TYPE_AES_1:
301 val = PCXHR_FREQ_AES_1;
302 break;
303 case PCXHR_CLOCK_TYPE_AES_2:
304 val = PCXHR_FREQ_AES_2;
305 break;
306 case PCXHR_CLOCK_TYPE_AES_3:
307 val = PCXHR_FREQ_AES_3;
308 break;
309 case PCXHR_CLOCK_TYPE_AES_4:
310 val = PCXHR_FREQ_AES_4;
311 break;
312 default:
313 return -EINVAL;
314 }
315 *reg = val;
316 *freq = realfreq;
317 return 0;
318 }
319
320
321 static int pcxhr_sub_set_clock(struct pcxhr_mgr *mgr,
322 unsigned int rate,
323 int *changed)
324 {
325 unsigned int val, realfreq, speed;
326 struct pcxhr_rmh rmh;
327 int err;
328
329 err = pcxhr_get_clock_reg(mgr, rate, &val, &realfreq);
330 if (err)
331 return err;
332
333 /* codec speed modes */
334 if (rate < 55000)
335 speed = 0; /* single speed */
336 else if (rate < 100000)
337 speed = 1; /* dual speed */
338 else
339 speed = 2; /* quad speed */
340 if (mgr->codec_speed != speed) {
341 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* mute outputs */
342 rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
343 if (DSP_EXT_CMD_SET(mgr)) {
344 rmh.cmd[1] = 1;
345 rmh.cmd_len = 2;
346 }
347 err = pcxhr_send_msg(mgr, &rmh);
348 if (err)
349 return err;
350
351 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* set speed ratio */
352 rmh.cmd[0] |= IO_NUM_SPEED_RATIO;
353 rmh.cmd[1] = speed;
354 rmh.cmd_len = 2;
355 err = pcxhr_send_msg(mgr, &rmh);
356 if (err)
357 return err;
358 }
359 /* set the new frequency */
360 snd_printdd("clock register : set %x\n", val);
361 err = pcxhr_write_io_num_reg_cont(mgr, PCXHR_FREQ_REG_MASK,
362 val, changed);
363 if (err)
364 return err;
365
366 mgr->sample_rate_real = realfreq;
367 mgr->cur_clock_type = mgr->use_clock_type;
368
369 /* unmute after codec speed modes */
370 if (mgr->codec_speed != speed) {
371 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); /* unmute outputs */
372 rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
373 if (DSP_EXT_CMD_SET(mgr)) {
374 rmh.cmd[1] = 1;
375 rmh.cmd_len = 2;
376 }
377 err = pcxhr_send_msg(mgr, &rmh);
378 if (err)
379 return err;
380 mgr->codec_speed = speed; /* save new codec speed */
381 }
382
383 snd_printdd("pcxhr_sub_set_clock to %dHz (realfreq=%d)\n",
384 rate, realfreq);
385 return 0;
386 }
387
388 #define PCXHR_MODIFY_CLOCK_S_BIT 0x04
389
390 #define PCXHR_IRQ_TIMER_FREQ 92000
391 #define PCXHR_IRQ_TIMER_PERIOD 48
392
393 int pcxhr_set_clock(struct pcxhr_mgr *mgr, unsigned int rate)
394 {
395 struct pcxhr_rmh rmh;
396 int err, changed;
397
398 if (rate == 0)
399 return 0; /* nothing to do */
400
401 if (mgr->is_hr_stereo)
402 err = hr222_sub_set_clock(mgr, rate, &changed);
403 else
404 err = pcxhr_sub_set_clock(mgr, rate, &changed);
405
406 if (err)
407 return err;
408
409 if (changed) {
410 pcxhr_init_rmh(&rmh, CMD_MODIFY_CLOCK);
411 rmh.cmd[0] |= PCXHR_MODIFY_CLOCK_S_BIT; /* resync fifos */
412 if (rate < PCXHR_IRQ_TIMER_FREQ)
413 rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD;
414 else
415 rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD * 2;
416 rmh.cmd[2] = rate;
417 rmh.cmd_len = 3;
418 err = pcxhr_send_msg(mgr, &rmh);
419 if (err)
420 return err;
421 }
422 return 0;
423 }
424
425
426 static int pcxhr_sub_get_external_clock(struct pcxhr_mgr *mgr,
427 enum pcxhr_clock_type clock_type,
428 int *sample_rate)
429 {
430 struct pcxhr_rmh rmh;
431 unsigned char reg;
432 int err, rate;
433
434 switch (clock_type) {
435 case PCXHR_CLOCK_TYPE_WORD_CLOCK:
436 reg = REG_STATUS_WORD_CLOCK;
437 break;
438 case PCXHR_CLOCK_TYPE_AES_SYNC:
439 reg = REG_STATUS_AES_SYNC;
440 break;
441 case PCXHR_CLOCK_TYPE_AES_1:
442 reg = REG_STATUS_AES_1;
443 break;
444 case PCXHR_CLOCK_TYPE_AES_2:
445 reg = REG_STATUS_AES_2;
446 break;
447 case PCXHR_CLOCK_TYPE_AES_3:
448 reg = REG_STATUS_AES_3;
449 break;
450 case PCXHR_CLOCK_TYPE_AES_4:
451 reg = REG_STATUS_AES_4;
452 break;
453 default:
454 return -EINVAL;
455 }
456 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);
457 rmh.cmd_len = 2;
458 rmh.cmd[0] |= IO_NUM_REG_STATUS;
459 if (mgr->last_reg_stat != reg) {
460 rmh.cmd[1] = reg;
461 err = pcxhr_send_msg(mgr, &rmh);
462 if (err)
463 return err;
464 udelay(100); /* wait minimum 2 sample_frames at 32kHz ! */
465 mgr->last_reg_stat = reg;
466 }
467 rmh.cmd[1] = REG_STATUS_CURRENT;
468 err = pcxhr_send_msg(mgr, &rmh);
469 if (err)
470 return err;
471 switch (rmh.stat[1] & 0x0f) {
472 case REG_STATUS_SYNC_32000 : rate = 32000; break;
473 case REG_STATUS_SYNC_44100 : rate = 44100; break;
474 case REG_STATUS_SYNC_48000 : rate = 48000; break;
475 case REG_STATUS_SYNC_64000 : rate = 64000; break;
476 case REG_STATUS_SYNC_88200 : rate = 88200; break;
477 case REG_STATUS_SYNC_96000 : rate = 96000; break;
478 case REG_STATUS_SYNC_128000 : rate = 128000; break;
479 case REG_STATUS_SYNC_176400 : rate = 176400; break;
480 case REG_STATUS_SYNC_192000 : rate = 192000; break;
481 default: rate = 0;
482 }
483 snd_printdd("External clock is at %d Hz\n", rate);
484 *sample_rate = rate;
485 return 0;
486 }
487
488
489 int pcxhr_get_external_clock(struct pcxhr_mgr *mgr,
490 enum pcxhr_clock_type clock_type,
491 int *sample_rate)
492 {
493 if (mgr->is_hr_stereo)
494 return hr222_get_external_clock(mgr, clock_type,
495 sample_rate);
496 else
497 return pcxhr_sub_get_external_clock(mgr, clock_type,
498 sample_rate);
499 }
500
501 /*
502 * start or stop playback/capture substream
503 */
504 static int pcxhr_set_stream_state(struct pcxhr_stream *stream)
505 {
506 int err;
507 struct snd_pcxhr *chip;
508 struct pcxhr_rmh rmh;
509 int stream_mask, start;
510
511 if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN)
512 start = 1;
513 else {
514 if (stream->status != PCXHR_STREAM_STATUS_SCHEDULE_STOP) {
515 snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state "
516 "CANNOT be stopped\n");
517 return -EINVAL;
518 }
519 start = 0;
520 }
521 if (!stream->substream)
522 return -EINVAL;
523
524 stream->timer_abs_periods = 0;
525 stream->timer_period_frag = 0; /* reset theoretical stream pos */
526 stream->timer_buf_periods = 0;
527 stream->timer_is_synced = 0;
528
529 stream_mask =
530 stream->pipe->is_capture ? 1 : 1<<stream->substream->number;
531
532 pcxhr_init_rmh(&rmh, start ? CMD_START_STREAM : CMD_STOP_STREAM);
533 pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture,
534 stream->pipe->first_audio, 0, stream_mask);
535
536 chip = snd_pcm_substream_chip(stream->substream);
537
538 err = pcxhr_send_msg(chip->mgr, &rmh);
539 if (err)
540 snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state err=%x;\n",
541 err);
542 stream->status =
543 start ? PCXHR_STREAM_STATUS_STARTED : PCXHR_STREAM_STATUS_STOPPED;
544 return err;
545 }
546
547 #define HEADER_FMT_BASE_LIN 0xfed00000
548 #define HEADER_FMT_BASE_FLOAT 0xfad00000
549 #define HEADER_FMT_INTEL 0x00008000
550 #define HEADER_FMT_24BITS 0x00004000
551 #define HEADER_FMT_16BITS 0x00002000
552 #define HEADER_FMT_UPTO11 0x00000200
553 #define HEADER_FMT_UPTO32 0x00000100
554 #define HEADER_FMT_MONO 0x00000080
555
556 static int pcxhr_set_format(struct pcxhr_stream *stream)
557 {
558 int err, is_capture, sample_rate, stream_num;
559 struct snd_pcxhr *chip;
560 struct pcxhr_rmh rmh;
561 unsigned int header;
562
563 switch (stream->format) {
564 case SNDRV_PCM_FORMAT_U8:
565 header = HEADER_FMT_BASE_LIN;
566 break;
567 case SNDRV_PCM_FORMAT_S16_LE:
568 header = HEADER_FMT_BASE_LIN |
569 HEADER_FMT_16BITS | HEADER_FMT_INTEL;
570 break;
571 case SNDRV_PCM_FORMAT_S16_BE:
572 header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS;
573 break;
574 case SNDRV_PCM_FORMAT_S24_3LE:
575 header = HEADER_FMT_BASE_LIN |
576 HEADER_FMT_24BITS | HEADER_FMT_INTEL;
577 break;
578 case SNDRV_PCM_FORMAT_S24_3BE:
579 header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS;
580 break;
581 case SNDRV_PCM_FORMAT_FLOAT_LE:
582 header = HEADER_FMT_BASE_FLOAT | HEADER_FMT_INTEL;
583 break;
584 default:
585 snd_printk(KERN_ERR
586 "error pcxhr_set_format() : unknown format\n");
587 return -EINVAL;
588 }
589 chip = snd_pcm_substream_chip(stream->substream);
590
591 sample_rate = chip->mgr->sample_rate;
592 if (sample_rate <= 32000 && sample_rate !=0) {
593 if (sample_rate <= 11025)
594 header |= HEADER_FMT_UPTO11;
595 else
596 header |= HEADER_FMT_UPTO32;
597 }
598 if (stream->channels == 1)
599 header |= HEADER_FMT_MONO;
600
601 is_capture = stream->pipe->is_capture;
602 stream_num = is_capture ? 0 : stream->substream->number;
603
604 pcxhr_init_rmh(&rmh, is_capture ?
605 CMD_FORMAT_STREAM_IN : CMD_FORMAT_STREAM_OUT);
606 pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio,
607 stream_num, 0);
608 if (is_capture) {
609 /* bug with old dsp versions: */
610 /* bit 12 also sets the format of the playback stream */
611 if (DSP_EXT_CMD_SET(chip->mgr))
612 rmh.cmd[0] |= 1<<10;
613 else
614 rmh.cmd[0] |= 1<<12;
615 }
616 rmh.cmd[1] = 0;
617 rmh.cmd_len = 2;
618 if (DSP_EXT_CMD_SET(chip->mgr)) {
619 /* add channels and set bit 19 if channels>2 */
620 rmh.cmd[1] = stream->channels;
621 if (!is_capture) {
622 /* playback : add channel mask to command */
623 rmh.cmd[2] = (stream->channels == 1) ? 0x01 : 0x03;
624 rmh.cmd_len = 3;
625 }
626 }
627 rmh.cmd[rmh.cmd_len++] = header >> 8;
628 rmh.cmd[rmh.cmd_len++] = (header & 0xff) << 16;
629 err = pcxhr_send_msg(chip->mgr, &rmh);
630 if (err)
631 snd_printk(KERN_ERR "ERROR pcxhr_set_format err=%x;\n", err);
632 return err;
633 }
634
635 static int pcxhr_update_r_buffer(struct pcxhr_stream *stream)
636 {
637 int err, is_capture, stream_num;
638 struct pcxhr_rmh rmh;
639 struct snd_pcm_substream *subs = stream->substream;
640 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
641
642 is_capture = (subs->stream == SNDRV_PCM_STREAM_CAPTURE);
643 stream_num = is_capture ? 0 : subs->number;
644
645 snd_printdd("pcxhr_update_r_buffer(pcm%c%d) : "
646 "addr(%p) bytes(%zx) subs(%d)\n",
647 is_capture ? 'c' : 'p',
648 chip->chip_idx, (void *)(long)subs->runtime->dma_addr,
649 subs->runtime->dma_bytes, subs->number);
650
651 pcxhr_init_rmh(&rmh, CMD_UPDATE_R_BUFFERS);
652 pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio,
653 stream_num, 0);
654
655 /* max buffer size is 2 MByte */
656 snd_BUG_ON(subs->runtime->dma_bytes >= 0x200000);
657 /* size in bits */
658 rmh.cmd[1] = subs->runtime->dma_bytes * 8;
659 /* most significant byte */
660 rmh.cmd[2] = subs->runtime->dma_addr >> 24;
661 /* this is a circular buffer */
662 rmh.cmd[2] |= 1<<19;
663 /* least 3 significant bytes */
664 rmh.cmd[3] = subs->runtime->dma_addr & MASK_DSP_WORD;
665 rmh.cmd_len = 4;
666 err = pcxhr_send_msg(chip->mgr, &rmh);
667 if (err)
668 snd_printk(KERN_ERR
669 "ERROR CMD_UPDATE_R_BUFFERS err=%x;\n", err);
670 return err;
671 }
672
673
674 #if 0
675 static int pcxhr_pipe_sample_count(struct pcxhr_stream *stream,
676 snd_pcm_uframes_t *sample_count)
677 {
678 struct pcxhr_rmh rmh;
679 int err;
680 pcxhr_t *chip = snd_pcm_substream_chip(stream->substream);
681 pcxhr_init_rmh(&rmh, CMD_PIPE_SAMPLE_COUNT);
682 pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 0, 0,
683 1<<stream->pipe->first_audio);
684 err = pcxhr_send_msg(chip->mgr, &rmh);
685 if (err == 0) {
686 *sample_count = ((snd_pcm_uframes_t)rmh.stat[0]) << 24;
687 *sample_count += (snd_pcm_uframes_t)rmh.stat[1];
688 }
689 snd_printdd("PIPE_SAMPLE_COUNT = %lx\n", *sample_count);
690 return err;
691 }
692 #endif
693
694 static inline int pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream *stream,
695 struct pcxhr_pipe **pipe)
696 {
697 if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) {
698 *pipe = stream->pipe;
699 return 1;
700 }
701 return 0;
702 }
703
704 static void pcxhr_trigger_tasklet(unsigned long arg)
705 {
706 unsigned long flags;
707 int i, j, err;
708 struct pcxhr_pipe *pipe;
709 struct snd_pcxhr *chip;
710 struct pcxhr_mgr *mgr = (struct pcxhr_mgr*)(arg);
711 int capture_mask = 0;
712 int playback_mask = 0;
713
714 #ifdef CONFIG_SND_DEBUG_VERBOSE
715 struct timeval my_tv1, my_tv2;
716 do_gettimeofday(&my_tv1);
717 #endif
718 mutex_lock(&mgr->setup_mutex);
719
720 /* check the pipes concerned and build pipe_array */
721 for (i = 0; i < mgr->num_cards; i++) {
722 chip = mgr->chip[i];
723 for (j = 0; j < chip->nb_streams_capt; j++) {
724 if (pcxhr_stream_scheduled_get_pipe(&chip->capture_stream[j], &pipe))
725 capture_mask |= (1 << pipe->first_audio);
726 }
727 for (j = 0; j < chip->nb_streams_play; j++) {
728 if (pcxhr_stream_scheduled_get_pipe(&chip->playback_stream[j], &pipe)) {
729 playback_mask |= (1 << pipe->first_audio);
730 break; /* add only once, as all playback
731 * streams of one chip use the same pipe
732 */
733 }
734 }
735 }
736 if (capture_mask == 0 && playback_mask == 0) {
737 mutex_unlock(&mgr->setup_mutex);
738 snd_printk(KERN_ERR "pcxhr_trigger_tasklet : no pipes\n");
739 return;
740 }
741
742 snd_printdd("pcxhr_trigger_tasklet : "
743 "playback_mask=%x capture_mask=%x\n",
744 playback_mask, capture_mask);
745
746 /* synchronous stop of all the pipes concerned */
747 err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 0);
748 if (err) {
749 mutex_unlock(&mgr->setup_mutex);
750 snd_printk(KERN_ERR "pcxhr_trigger_tasklet : "
751 "error stop pipes (P%x C%x)\n",
752 playback_mask, capture_mask);
753 return;
754 }
755
756 /* the dsp lost format and buffer info with the stop pipe */
757 for (i = 0; i < mgr->num_cards; i++) {
758 struct pcxhr_stream *stream;
759 chip = mgr->chip[i];
760 for (j = 0; j < chip->nb_streams_capt; j++) {
761 stream = &chip->capture_stream[j];
762 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
763 err = pcxhr_set_format(stream);
764 err = pcxhr_update_r_buffer(stream);
765 }
766 }
767 for (j = 0; j < chip->nb_streams_play; j++) {
768 stream = &chip->playback_stream[j];
769 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
770 err = pcxhr_set_format(stream);
771 err = pcxhr_update_r_buffer(stream);
772 }
773 }
774 }
775 /* start all the streams */
776 for (i = 0; i < mgr->num_cards; i++) {
777 struct pcxhr_stream *stream;
778 chip = mgr->chip[i];
779 for (j = 0; j < chip->nb_streams_capt; j++) {
780 stream = &chip->capture_stream[j];
781 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
782 err = pcxhr_set_stream_state(stream);
783 }
784 for (j = 0; j < chip->nb_streams_play; j++) {
785 stream = &chip->playback_stream[j];
786 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
787 err = pcxhr_set_stream_state(stream);
788 }
789 }
790
791 /* synchronous start of all the pipes concerned */
792 err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 1);
793 if (err) {
794 mutex_unlock(&mgr->setup_mutex);
795 snd_printk(KERN_ERR "pcxhr_trigger_tasklet : "
796 "error start pipes (P%x C%x)\n",
797 playback_mask, capture_mask);
798 return;
799 }
800
801 /* put the streams into the running state now
802 * (increment pointer by interrupt)
803 */
804 spin_lock_irqsave(&mgr->lock, flags);
805 for ( i =0; i < mgr->num_cards; i++) {
806 struct pcxhr_stream *stream;
807 chip = mgr->chip[i];
808 for(j = 0; j < chip->nb_streams_capt; j++) {
809 stream = &chip->capture_stream[j];
810 if(stream->status == PCXHR_STREAM_STATUS_STARTED)
811 stream->status = PCXHR_STREAM_STATUS_RUNNING;
812 }
813 for (j = 0; j < chip->nb_streams_play; j++) {
814 stream = &chip->playback_stream[j];
815 if (stream->status == PCXHR_STREAM_STATUS_STARTED) {
816 /* playback will already have advanced ! */
817 stream->timer_period_frag += mgr->granularity;
818 stream->status = PCXHR_STREAM_STATUS_RUNNING;
819 }
820 }
821 }
822 spin_unlock_irqrestore(&mgr->lock, flags);
823
824 mutex_unlock(&mgr->setup_mutex);
825
826 #ifdef CONFIG_SND_DEBUG_VERBOSE
827 do_gettimeofday(&my_tv2);
828 snd_printdd("***TRIGGER TASKLET*** TIME = %ld (err = %x)\n",
829 (long)(my_tv2.tv_usec - my_tv1.tv_usec), err);
830 #endif
831 }
832
833
834 /*
835 * trigger callback
836 */
837 static int pcxhr_trigger(struct snd_pcm_substream *subs, int cmd)
838 {
839 struct pcxhr_stream *stream;
840 struct snd_pcm_substream *s;
841
842 switch (cmd) {
843 case SNDRV_PCM_TRIGGER_START:
844 snd_printdd("SNDRV_PCM_TRIGGER_START\n");
845 if (snd_pcm_stream_linked(subs)) {
846 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
847 snd_pcm_group_for_each_entry(s, subs) {
848 if (snd_pcm_substream_chip(s) != chip)
849 continue;
850 stream = s->runtime->private_data;
851 stream->status =
852 PCXHR_STREAM_STATUS_SCHEDULE_RUN;
853 snd_pcm_trigger_done(s, subs);
854 }
855 tasklet_schedule(&chip->mgr->trigger_taskq);
856 } else {
857 stream = subs->runtime->private_data;
858 snd_printdd("Only one Substream %c %d\n",
859 stream->pipe->is_capture ? 'C' : 'P',
860 stream->pipe->first_audio);
861 if (pcxhr_set_format(stream))
862 return -EINVAL;
863 if (pcxhr_update_r_buffer(stream))
864 return -EINVAL;
865
866 stream->status = PCXHR_STREAM_STATUS_SCHEDULE_RUN;
867 if (pcxhr_set_stream_state(stream))
868 return -EINVAL;
869 stream->status = PCXHR_STREAM_STATUS_RUNNING;
870 }
871 break;
872 case SNDRV_PCM_TRIGGER_STOP:
873 snd_printdd("SNDRV_PCM_TRIGGER_STOP\n");
874 snd_pcm_group_for_each_entry(s, subs) {
875 stream = s->runtime->private_data;
876 stream->status = PCXHR_STREAM_STATUS_SCHEDULE_STOP;
877 if (pcxhr_set_stream_state(stream))
878 return -EINVAL;
879 snd_pcm_trigger_done(s, subs);
880 }
881 break;
882 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
883 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
884 /* TODO */
885 default:
886 return -EINVAL;
887 }
888 return 0;
889 }
890
891
892 static int pcxhr_hardware_timer(struct pcxhr_mgr *mgr, int start)
893 {
894 struct pcxhr_rmh rmh;
895 int err;
896
897 pcxhr_init_rmh(&rmh, CMD_SET_TIMER_INTERRUPT);
898 if (start) {
899 /* last dsp time invalid */
900 mgr->dsp_time_last = PCXHR_DSP_TIME_INVALID;
901 rmh.cmd[0] |= mgr->granularity;
902 }
903 err = pcxhr_send_msg(mgr, &rmh);
904 if (err < 0)
905 snd_printk(KERN_ERR "error pcxhr_hardware_timer err(%x)\n",
906 err);
907 return err;
908 }
909
910 /*
911 * prepare callback for all pcms
912 */
913 static int pcxhr_prepare(struct snd_pcm_substream *subs)
914 {
915 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
916 struct pcxhr_mgr *mgr = chip->mgr;
917 int err = 0;
918
919 snd_printdd("pcxhr_prepare : period_size(%lx) periods(%x) buffer_size(%lx)\n",
920 subs->runtime->period_size, subs->runtime->periods,
921 subs->runtime->buffer_size);
922
923 mutex_lock(&mgr->setup_mutex);
924
925 do {
926 /* only the first stream can choose the sample rate */
927 /* set the clock only once (first stream) */
928 if (mgr->sample_rate != subs->runtime->rate) {
929 err = pcxhr_set_clock(mgr, subs->runtime->rate);
930 if (err)
931 break;
932 if (mgr->sample_rate == 0)
933 /* start the DSP-timer */
934 err = pcxhr_hardware_timer(mgr, 1);
935 mgr->sample_rate = subs->runtime->rate;
936 }
937 } while(0); /* do only once (so we can use break instead of goto) */
938
939 mutex_unlock(&mgr->setup_mutex);
940
941 return err;
942 }
943
944
945 /*
946 * HW_PARAMS callback for all pcms
947 */
948 static int pcxhr_hw_params(struct snd_pcm_substream *subs,
949 struct snd_pcm_hw_params *hw)
950 {
951 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
952 struct pcxhr_mgr *mgr = chip->mgr;
953 struct pcxhr_stream *stream = subs->runtime->private_data;
954 snd_pcm_format_t format;
955 int err;
956 int channels;
957
958 /* set up channels */
959 channels = params_channels(hw);
960
961 /* set up format for the stream */
962 format = params_format(hw);
963
964 mutex_lock(&mgr->setup_mutex);
965
966 stream->channels = channels;
967 stream->format = format;
968
969 /* allocate buffer */
970 err = snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw));
971
972 mutex_unlock(&mgr->setup_mutex);
973
974 return err;
975 }
976
977 static int pcxhr_hw_free(struct snd_pcm_substream *subs)
978 {
979 snd_pcm_lib_free_pages(subs);
980 return 0;
981 }
982
983
984 /*
985 * CONFIGURATION SPACE for all pcms, mono pcm must update channels_max
986 */
987 static struct snd_pcm_hardware pcxhr_caps =
988 {
989 .info = (SNDRV_PCM_INFO_MMAP |
990 SNDRV_PCM_INFO_INTERLEAVED |
991 SNDRV_PCM_INFO_MMAP_VALID |
992 SNDRV_PCM_INFO_SYNC_START),
993 .formats = (SNDRV_PCM_FMTBIT_U8 |
994 SNDRV_PCM_FMTBIT_S16_LE |
995 SNDRV_PCM_FMTBIT_S16_BE |
996 SNDRV_PCM_FMTBIT_S24_3LE |
997 SNDRV_PCM_FMTBIT_S24_3BE |
998 SNDRV_PCM_FMTBIT_FLOAT_LE),
999 .rates = (SNDRV_PCM_RATE_CONTINUOUS |
1000 SNDRV_PCM_RATE_8000_192000),
1001 .rate_min = 8000,
1002 .rate_max = 192000,
1003 .channels_min = 1,
1004 .channels_max = 2,
1005 .buffer_bytes_max = (32*1024),
1006 /* 1 byte == 1 frame U8 mono (PCXHR_GRANULARITY is frames!) */
1007 .period_bytes_min = (2*PCXHR_GRANULARITY),
1008 .period_bytes_max = (16*1024),
1009 .periods_min = 2,
1010 .periods_max = (32*1024/PCXHR_GRANULARITY),
1011 };
1012
1013
1014 static int pcxhr_open(struct snd_pcm_substream *subs)
1015 {
1016 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
1017 struct pcxhr_mgr *mgr = chip->mgr;
1018 struct snd_pcm_runtime *runtime = subs->runtime;
1019 struct pcxhr_stream *stream;
1020 int err;
1021
1022 mutex_lock(&mgr->setup_mutex);
1023
1024 /* copy the struct snd_pcm_hardware struct */
1025 runtime->hw = pcxhr_caps;
1026
1027 if( subs->stream == SNDRV_PCM_STREAM_PLAYBACK ) {
1028 snd_printdd("pcxhr_open playback chip%d subs%d\n",
1029 chip->chip_idx, subs->number);
1030 stream = &chip->playback_stream[subs->number];
1031 } else {
1032 snd_printdd("pcxhr_open capture chip%d subs%d\n",
1033 chip->chip_idx, subs->number);
1034 if (mgr->mono_capture)
1035 runtime->hw.channels_max = 1;
1036 else
1037 runtime->hw.channels_min = 2;
1038 stream = &chip->capture_stream[subs->number];
1039 }
1040 if (stream->status != PCXHR_STREAM_STATUS_FREE){
1041 /* streams in use */
1042 snd_printk(KERN_ERR "pcxhr_open chip%d subs%d in use\n",
1043 chip->chip_idx, subs->number);
1044 mutex_unlock(&mgr->setup_mutex);
1045 return -EBUSY;
1046 }
1047
1048 /* float format support is in some cases buggy on stereo cards */
1049 if (mgr->is_hr_stereo)
1050 runtime->hw.formats &= ~SNDRV_PCM_FMTBIT_FLOAT_LE;
1051
1052 /* buffer-size should better be multiple of period-size */
1053 err = snd_pcm_hw_constraint_integer(runtime,
1054 SNDRV_PCM_HW_PARAM_PERIODS);
1055 if (err < 0) {
1056 mutex_unlock(&mgr->setup_mutex);
1057 return err;
1058 }
1059
1060 /* if a sample rate is already used or fixed by external clock,
1061 * the stream cannot change
1062 */
1063 if (mgr->sample_rate)
1064 runtime->hw.rate_min = runtime->hw.rate_max = mgr->sample_rate;
1065 else {
1066 if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) {
1067 int external_rate;
1068 if (pcxhr_get_external_clock(mgr, mgr->use_clock_type,
1069 &external_rate) ||
1070 external_rate == 0) {
1071 /* cannot detect the external clock rate */
1072 mutex_unlock(&mgr->setup_mutex);
1073 return -EBUSY;
1074 }
1075 runtime->hw.rate_min = external_rate;
1076 runtime->hw.rate_max = external_rate;
1077 }
1078 }
1079
1080 stream->status = PCXHR_STREAM_STATUS_OPEN;
1081 stream->substream = subs;
1082 stream->channels = 0; /* not configured yet */
1083
1084 runtime->private_data = stream;
1085
1086 /* better get a divisor of granularity values (96 or 192) */
1087 snd_pcm_hw_constraint_step(runtime, 0,
1088 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
1089 snd_pcm_hw_constraint_step(runtime, 0,
1090 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
1091 snd_pcm_set_sync(subs);
1092
1093 mgr->ref_count_rate++;
1094
1095 mutex_unlock(&mgr->setup_mutex);
1096 return 0;
1097 }
1098
1099
1100 static int pcxhr_close(struct snd_pcm_substream *subs)
1101 {
1102 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
1103 struct pcxhr_mgr *mgr = chip->mgr;
1104 struct pcxhr_stream *stream = subs->runtime->private_data;
1105
1106 mutex_lock(&mgr->setup_mutex);
1107
1108 snd_printdd("pcxhr_close chip%d subs%d\n",
1109 chip->chip_idx, subs->number);
1110
1111 /* sample rate released */
1112 if (--mgr->ref_count_rate == 0) {
1113 mgr->sample_rate = 0; /* the sample rate is no more locked */
1114 pcxhr_hardware_timer(mgr, 0); /* stop the DSP-timer */
1115 }
1116
1117 stream->status = PCXHR_STREAM_STATUS_FREE;
1118 stream->substream = NULL;
1119
1120 mutex_unlock(&mgr->setup_mutex);
1121
1122 return 0;
1123 }
1124
1125
1126 static snd_pcm_uframes_t pcxhr_stream_pointer(struct snd_pcm_substream *subs)
1127 {
1128 unsigned long flags;
1129 u_int32_t timer_period_frag;
1130 int timer_buf_periods;
1131 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
1132 struct snd_pcm_runtime *runtime = subs->runtime;
1133 struct pcxhr_stream *stream = runtime->private_data;
1134
1135 spin_lock_irqsave(&chip->mgr->lock, flags);
1136
1137 /* get the period fragment and the nb of periods in the buffer */
1138 timer_period_frag = stream->timer_period_frag;
1139 timer_buf_periods = stream->timer_buf_periods;
1140
1141 spin_unlock_irqrestore(&chip->mgr->lock, flags);
1142
1143 return (snd_pcm_uframes_t)((timer_buf_periods * runtime->period_size) +
1144 timer_period_frag);
1145 }
1146
1147
1148 static struct snd_pcm_ops pcxhr_ops = {
1149 .open = pcxhr_open,
1150 .close = pcxhr_close,
1151 .ioctl = snd_pcm_lib_ioctl,
1152 .prepare = pcxhr_prepare,
1153 .hw_params = pcxhr_hw_params,
1154 .hw_free = pcxhr_hw_free,
1155 .trigger = pcxhr_trigger,
1156 .pointer = pcxhr_stream_pointer,
1157 };
1158
1159 /*
1160 */
1161 int pcxhr_create_pcm(struct snd_pcxhr *chip)
1162 {
1163 int err;
1164 struct snd_pcm *pcm;
1165 char name[32];
1166
1167 sprintf(name, "pcxhr %d", chip->chip_idx);
1168 if ((err = snd_pcm_new(chip->card, name, 0,
1169 chip->nb_streams_play,
1170 chip->nb_streams_capt, &pcm)) < 0) {
1171 snd_printk(KERN_ERR "cannot create pcm %s\n", name);
1172 return err;
1173 }
1174 pcm->private_data = chip;
1175
1176 if (chip->nb_streams_play)
1177 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcxhr_ops);
1178 if (chip->nb_streams_capt)
1179 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcxhr_ops);
1180
1181 pcm->info_flags = 0;
1182 strcpy(pcm->name, name);
1183
1184 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1185 snd_dma_pci_data(chip->mgr->pci),
1186 32*1024, 32*1024);
1187 chip->pcm = pcm;
1188 return 0;
1189 }
1190
1191 static int pcxhr_chip_free(struct snd_pcxhr *chip)
1192 {
1193 kfree(chip);
1194 return 0;
1195 }
1196
1197 static int pcxhr_chip_dev_free(struct snd_device *device)
1198 {
1199 struct snd_pcxhr *chip = device->device_data;
1200 return pcxhr_chip_free(chip);
1201 }
1202
1203
1204 /*
1205 */
1206 static int pcxhr_create(struct pcxhr_mgr *mgr,
1207 struct snd_card *card, int idx)
1208 {
1209 int err;
1210 struct snd_pcxhr *chip;
1211 static struct snd_device_ops ops = {
1212 .dev_free = pcxhr_chip_dev_free,
1213 };
1214
1215 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1216 if (! chip) {
1217 snd_printk(KERN_ERR "cannot allocate chip\n");
1218 return -ENOMEM;
1219 }
1220
1221 chip->card = card;
1222 chip->chip_idx = idx;
1223 chip->mgr = mgr;
1224
1225 if (idx < mgr->playback_chips)
1226 /* stereo or mono streams */
1227 chip->nb_streams_play = PCXHR_PLAYBACK_STREAMS;
1228
1229 if (idx < mgr->capture_chips) {
1230 if (mgr->mono_capture)
1231 chip->nb_streams_capt = 2; /* 2 mono streams */
1232 else
1233 chip->nb_streams_capt = 1; /* or 1 stereo stream */
1234 }
1235
1236 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1237 pcxhr_chip_free(chip);
1238 return err;
1239 }
1240
1241 mgr->chip[idx] = chip;
1242 snd_card_set_dev(card, &mgr->pci->dev);
1243
1244 return 0;
1245 }
1246
1247 /* proc interface */
1248 static void pcxhr_proc_info(struct snd_info_entry *entry,
1249 struct snd_info_buffer *buffer)
1250 {
1251 struct snd_pcxhr *chip = entry->private_data;
1252 struct pcxhr_mgr *mgr = chip->mgr;
1253
1254 snd_iprintf(buffer, "\n%s\n", mgr->longname);
1255
1256 /* stats available when embedded DSP is running */
1257 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1258 struct pcxhr_rmh rmh;
1259 short ver_maj = (mgr->dsp_version >> 16) & 0xff;
1260 short ver_min = (mgr->dsp_version >> 8) & 0xff;
1261 short ver_build = mgr->dsp_version & 0xff;
1262 snd_iprintf(buffer, "module version %s\n",
1263 PCXHR_DRIVER_VERSION_STRING);
1264 snd_iprintf(buffer, "dsp version %d.%d.%d\n",
1265 ver_maj, ver_min, ver_build);
1266 if (mgr->board_has_analog)
1267 snd_iprintf(buffer, "analog io available\n");
1268 else
1269 snd_iprintf(buffer, "digital only board\n");
1270
1271 /* calc cpu load of the dsp */
1272 pcxhr_init_rmh(&rmh, CMD_GET_DSP_RESOURCES);
1273 if( ! pcxhr_send_msg(mgr, &rmh) ) {
1274 int cur = rmh.stat[0];
1275 int ref = rmh.stat[1];
1276 if (ref > 0) {
1277 if (mgr->sample_rate_real != 0 &&
1278 mgr->sample_rate_real != 48000) {
1279 ref = (ref * 48000) /
1280 mgr->sample_rate_real;
1281 if (mgr->sample_rate_real >=
1282 PCXHR_IRQ_TIMER_FREQ)
1283 ref *= 2;
1284 }
1285 cur = 100 - (100 * cur) / ref;
1286 snd_iprintf(buffer, "cpu load %d%%\n", cur);
1287 snd_iprintf(buffer, "buffer pool %d/%d\n",
1288 rmh.stat[2], rmh.stat[3]);
1289 }
1290 }
1291 snd_iprintf(buffer, "dma granularity : %d\n",
1292 mgr->granularity);
1293 snd_iprintf(buffer, "dsp time errors : %d\n",
1294 mgr->dsp_time_err);
1295 snd_iprintf(buffer, "dsp async pipe xrun errors : %d\n",
1296 mgr->async_err_pipe_xrun);
1297 snd_iprintf(buffer, "dsp async stream xrun errors : %d\n",
1298 mgr->async_err_stream_xrun);
1299 snd_iprintf(buffer, "dsp async last other error : %x\n",
1300 mgr->async_err_other_last);
1301 /* debug zone dsp */
1302 rmh.cmd[0] = 0x4200 + PCXHR_SIZE_MAX_STATUS;
1303 rmh.cmd_len = 1;
1304 rmh.stat_len = PCXHR_SIZE_MAX_STATUS;
1305 rmh.dsp_stat = 0;
1306 rmh.cmd_idx = CMD_LAST_INDEX;
1307 if( ! pcxhr_send_msg(mgr, &rmh) ) {
1308 int i;
1309 if (rmh.stat_len > 8)
1310 rmh.stat_len = 8;
1311 for (i = 0; i < rmh.stat_len; i++)
1312 snd_iprintf(buffer, "debug[%02d] = %06x\n",
1313 i, rmh.stat[i]);
1314 }
1315 } else
1316 snd_iprintf(buffer, "no firmware loaded\n");
1317 snd_iprintf(buffer, "\n");
1318 }
1319 static void pcxhr_proc_sync(struct snd_info_entry *entry,
1320 struct snd_info_buffer *buffer)
1321 {
1322 struct snd_pcxhr *chip = entry->private_data;
1323 struct pcxhr_mgr *mgr = chip->mgr;
1324 static const char *textsHR22[3] = {
1325 "Internal", "AES Sync", "AES 1"
1326 };
1327 static const char *textsPCXHR[7] = {
1328 "Internal", "Word", "AES Sync",
1329 "AES 1", "AES 2", "AES 3", "AES 4"
1330 };
1331 const char **texts;
1332 int max_clock;
1333 if (mgr->is_hr_stereo) {
1334 texts = textsHR22;
1335 max_clock = HR22_CLOCK_TYPE_MAX;
1336 } else {
1337 texts = textsPCXHR;
1338 max_clock = PCXHR_CLOCK_TYPE_MAX;
1339 }
1340
1341 snd_iprintf(buffer, "\n%s\n", mgr->longname);
1342 snd_iprintf(buffer, "Current Sample Clock\t: %s\n",
1343 texts[mgr->cur_clock_type]);
1344 snd_iprintf(buffer, "Current Sample Rate\t= %d\n",
1345 mgr->sample_rate_real);
1346 /* commands available when embedded DSP is running */
1347 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1348 int i, err, sample_rate;
1349 for (i = 1; i <= max_clock; i++) {
1350 err = pcxhr_get_external_clock(mgr, i, &sample_rate);
1351 if (err)
1352 break;
1353 snd_iprintf(buffer, "%s Clock\t\t= %d\n",
1354 texts[i], sample_rate);
1355 }
1356 } else
1357 snd_iprintf(buffer, "no firmware loaded\n");
1358 snd_iprintf(buffer, "\n");
1359 }
1360
1361 static void pcxhr_proc_gpio_read(struct snd_info_entry *entry,
1362 struct snd_info_buffer *buffer)
1363 {
1364 struct snd_pcxhr *chip = entry->private_data;
1365 struct pcxhr_mgr *mgr = chip->mgr;
1366 /* commands available when embedded DSP is running */
1367 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1368 /* gpio ports on stereo boards only available */
1369 int value = 0;
1370 hr222_read_gpio(mgr, 1, &value); /* GPI */
1371 snd_iprintf(buffer, "GPI: 0x%x\n", value);
1372 hr222_read_gpio(mgr, 0, &value); /* GP0 */
1373 snd_iprintf(buffer, "GPO: 0x%x\n", value);
1374 } else
1375 snd_iprintf(buffer, "no firmware loaded\n");
1376 snd_iprintf(buffer, "\n");
1377 }
1378 static void pcxhr_proc_gpo_write(struct snd_info_entry *entry,
1379 struct snd_info_buffer *buffer)
1380 {
1381 struct snd_pcxhr *chip = entry->private_data;
1382 struct pcxhr_mgr *mgr = chip->mgr;
1383 char line[64];
1384 int value;
1385 /* commands available when embedded DSP is running */
1386 if (!(mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)))
1387 return;
1388 while (!snd_info_get_line(buffer, line, sizeof(line))) {
1389 if (sscanf(line, "GPO: 0x%x", &value) != 1)
1390 continue;
1391 hr222_write_gpo(mgr, value); /* GP0 */
1392 }
1393 }
1394
1395 /* Access to the results of the CMD_GET_TIME_CODE RMH */
1396 #define TIME_CODE_VALID_MASK 0x00800000
1397 #define TIME_CODE_NEW_MASK 0x00400000
1398 #define TIME_CODE_BACK_MASK 0x00200000
1399 #define TIME_CODE_WAIT_MASK 0x00100000
1400
1401 /* Values for the CMD_MANAGE_SIGNAL RMH */
1402 #define MANAGE_SIGNAL_TIME_CODE 0x01
1403 #define MANAGE_SIGNAL_MIDI 0x02
1404
1405 /* linear time code read proc*/
1406 static void pcxhr_proc_ltc(struct snd_info_entry *entry,
1407 struct snd_info_buffer *buffer)
1408 {
1409 struct snd_pcxhr *chip = entry->private_data;
1410 struct pcxhr_mgr *mgr = chip->mgr;
1411 struct pcxhr_rmh rmh;
1412 unsigned int ltcHrs, ltcMin, ltcSec, ltcFrm;
1413 int err;
1414 /* commands available when embedded DSP is running */
1415 if (!(mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX))) {
1416 snd_iprintf(buffer, "no firmware loaded\n");
1417 return;
1418 }
1419 if (!mgr->capture_ltc) {
1420 pcxhr_init_rmh(&rmh, CMD_MANAGE_SIGNAL);
1421 rmh.cmd[0] |= MANAGE_SIGNAL_TIME_CODE;
1422 err = pcxhr_send_msg(mgr, &rmh);
1423 if (err) {
1424 snd_iprintf(buffer, "ltc not activated (%d)\n", err);
1425 return;
1426 }
1427 if (mgr->is_hr_stereo)
1428 hr222_manage_timecode(mgr, 1);
1429 else
1430 pcxhr_write_io_num_reg_cont(mgr, REG_CONT_VALSMPTE,
1431 REG_CONT_VALSMPTE, NULL);
1432 mgr->capture_ltc = 1;
1433 }
1434 pcxhr_init_rmh(&rmh, CMD_GET_TIME_CODE);
1435 err = pcxhr_send_msg(mgr, &rmh);
1436 if (err) {
1437 snd_iprintf(buffer, "ltc read error (err=%d)\n", err);
1438 return ;
1439 }
1440 ltcHrs = 10*((rmh.stat[0] >> 8) & 0x3) + (rmh.stat[0] & 0xf);
1441 ltcMin = 10*((rmh.stat[1] >> 16) & 0x7) + ((rmh.stat[1] >> 8) & 0xf);
1442 ltcSec = 10*(rmh.stat[1] & 0x7) + ((rmh.stat[2] >> 16) & 0xf);
1443 ltcFrm = 10*((rmh.stat[2] >> 8) & 0x3) + (rmh.stat[2] & 0xf);
1444
1445 snd_iprintf(buffer, "timecode: %02u:%02u:%02u-%02u\n",
1446 ltcHrs, ltcMin, ltcSec, ltcFrm);
1447 snd_iprintf(buffer, "raw: 0x%04x%06x%06x\n", rmh.stat[0] & 0x00ffff,
1448 rmh.stat[1] & 0xffffff, rmh.stat[2] & 0xffffff);
1449 /*snd_iprintf(buffer, "dsp ref time: 0x%06x%06x\n",
1450 rmh.stat[3] & 0xffffff, rmh.stat[4] & 0xffffff);*/
1451 if (!(rmh.stat[0] & TIME_CODE_VALID_MASK)) {
1452 snd_iprintf(buffer, "warning: linear timecode not valid\n");
1453 }
1454 }
1455
1456 static void pcxhr_proc_init(struct snd_pcxhr *chip)
1457 {
1458 struct snd_info_entry *entry;
1459
1460 if (! snd_card_proc_new(chip->card, "info", &entry))
1461 snd_info_set_text_ops(entry, chip, pcxhr_proc_info);
1462 if (! snd_card_proc_new(chip->card, "sync", &entry))
1463 snd_info_set_text_ops(entry, chip, pcxhr_proc_sync);
1464 /* gpio available on stereo sound cards only */
1465 if (chip->mgr->is_hr_stereo &&
1466 !snd_card_proc_new(chip->card, "gpio", &entry)) {
1467 snd_info_set_text_ops(entry, chip, pcxhr_proc_gpio_read);
1468 entry->c.text.write = pcxhr_proc_gpo_write;
1469 entry->mode |= S_IWUSR;
1470 }
1471 if (!snd_card_proc_new(chip->card, "ltc", &entry))
1472 snd_info_set_text_ops(entry, chip, pcxhr_proc_ltc);
1473 }
1474 /* end of proc interface */
1475
1476 /*
1477 * release all the cards assigned to a manager instance
1478 */
1479 static int pcxhr_free(struct pcxhr_mgr *mgr)
1480 {
1481 unsigned int i;
1482
1483 for (i = 0; i < mgr->num_cards; i++) {
1484 if (mgr->chip[i])
1485 snd_card_free(mgr->chip[i]->card);
1486 }
1487
1488 /* reset board if some firmware was loaded */
1489 if(mgr->dsp_loaded) {
1490 pcxhr_reset_board(mgr);
1491 snd_printdd("reset pcxhr !\n");
1492 }
1493
1494 /* release irq */
1495 if (mgr->irq >= 0)
1496 free_irq(mgr->irq, mgr);
1497
1498 pci_release_regions(mgr->pci);
1499
1500 /* free hostport purgebuffer */
1501 if (mgr->hostport.area) {
1502 snd_dma_free_pages(&mgr->hostport);
1503 mgr->hostport.area = NULL;
1504 }
1505
1506 kfree(mgr->prmh);
1507
1508 pci_disable_device(mgr->pci);
1509 kfree(mgr);
1510 return 0;
1511 }
1512
1513 /*
1514 * probe function - creates the card manager
1515 */
1516 static int pcxhr_probe(struct pci_dev *pci,
1517 const struct pci_device_id *pci_id)
1518 {
1519 static int dev;
1520 struct pcxhr_mgr *mgr;
1521 unsigned int i;
1522 int err;
1523 size_t size;
1524 char *card_name;
1525
1526 if (dev >= SNDRV_CARDS)
1527 return -ENODEV;
1528 if (! enable[dev]) {
1529 dev++;
1530 return -ENOENT;
1531 }
1532
1533 /* enable PCI device */
1534 if ((err = pci_enable_device(pci)) < 0)
1535 return err;
1536 pci_set_master(pci);
1537
1538 /* check if we can restrict PCI DMA transfers to 32 bits */
1539 if (pci_set_dma_mask(pci, DMA_BIT_MASK(32)) < 0) {
1540 snd_printk(KERN_ERR "architecture does not support "
1541 "32bit PCI busmaster DMA\n");
1542 pci_disable_device(pci);
1543 return -ENXIO;
1544 }
1545
1546 /* alloc card manager */
1547 mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
1548 if (! mgr) {
1549 pci_disable_device(pci);
1550 return -ENOMEM;
1551 }
1552
1553 if (snd_BUG_ON(pci_id->driver_data >= PCI_ID_LAST)) {
1554 kfree(mgr);
1555 pci_disable_device(pci);
1556 return -ENODEV;
1557 }
1558 card_name =
1559 pcxhr_board_params[pci_id->driver_data].board_name;
1560 mgr->playback_chips =
1561 pcxhr_board_params[pci_id->driver_data].playback_chips;
1562 mgr->capture_chips =
1563 pcxhr_board_params[pci_id->driver_data].capture_chips;
1564 mgr->fw_file_set =
1565 pcxhr_board_params[pci_id->driver_data].fw_file_set;
1566 mgr->firmware_num =
1567 pcxhr_board_params[pci_id->driver_data].firmware_num;
1568 mgr->mono_capture = mono[dev];
1569 mgr->is_hr_stereo = (mgr->playback_chips == 1);
1570 mgr->board_has_aes1 = PCXHR_BOARD_HAS_AES1(mgr);
1571 mgr->board_aes_in_192k = !PCXHR_BOARD_AESIN_NO_192K(mgr);
1572
1573 if (mgr->is_hr_stereo)
1574 mgr->granularity = PCXHR_GRANULARITY_HR22;
1575 else
1576 mgr->granularity = PCXHR_GRANULARITY;
1577
1578 /* resource assignment */
1579 if ((err = pci_request_regions(pci, card_name)) < 0) {
1580 kfree(mgr);
1581 pci_disable_device(pci);
1582 return err;
1583 }
1584 for (i = 0; i < 3; i++)
1585 mgr->port[i] = pci_resource_start(pci, i);
1586
1587 mgr->pci = pci;
1588 mgr->irq = -1;
1589
1590 if (request_irq(pci->irq, pcxhr_interrupt, IRQF_SHARED,
1591 KBUILD_MODNAME, mgr)) {
1592 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
1593 pcxhr_free(mgr);
1594 return -EBUSY;
1595 }
1596 mgr->irq = pci->irq;
1597
1598 sprintf(mgr->shortname, "Digigram %s", card_name);
1599 sprintf(mgr->longname, "%s at 0x%lx & 0x%lx, 0x%lx irq %i",
1600 mgr->shortname,
1601 mgr->port[0], mgr->port[1], mgr->port[2], mgr->irq);
1602
1603 /* ISR spinlock */
1604 spin_lock_init(&mgr->lock);
1605 spin_lock_init(&mgr->msg_lock);
1606
1607 /* init setup mutex*/
1608 mutex_init(&mgr->setup_mutex);
1609
1610 /* init taslket */
1611 tasklet_init(&mgr->msg_taskq, pcxhr_msg_tasklet,
1612 (unsigned long) mgr);
1613 tasklet_init(&mgr->trigger_taskq, pcxhr_trigger_tasklet,
1614 (unsigned long) mgr);
1615
1616 mgr->prmh = kmalloc(sizeof(*mgr->prmh) +
1617 sizeof(u32) * (PCXHR_SIZE_MAX_LONG_STATUS -
1618 PCXHR_SIZE_MAX_STATUS),
1619 GFP_KERNEL);
1620 if (! mgr->prmh) {
1621 pcxhr_free(mgr);
1622 return -ENOMEM;
1623 }
1624
1625 for (i=0; i < PCXHR_MAX_CARDS; i++) {
1626 struct snd_card *card;
1627 char tmpid[16];
1628 int idx;
1629
1630 if (i >= max(mgr->playback_chips, mgr->capture_chips))
1631 break;
1632 mgr->num_cards++;
1633
1634 if (index[dev] < 0)
1635 idx = index[dev];
1636 else
1637 idx = index[dev] + i;
1638
1639 snprintf(tmpid, sizeof(tmpid), "%s-%d",
1640 id[dev] ? id[dev] : card_name, i);
1641 err = snd_card_create(idx, tmpid, THIS_MODULE, 0, &card);
1642
1643 if (err < 0) {
1644 snd_printk(KERN_ERR "cannot allocate the card %d\n", i);
1645 pcxhr_free(mgr);
1646 return err;
1647 }
1648
1649 strcpy(card->driver, DRIVER_NAME);
1650 sprintf(card->shortname, "%s [PCM #%d]", mgr->shortname, i);
1651 sprintf(card->longname, "%s [PCM #%d]", mgr->longname, i);
1652
1653 if ((err = pcxhr_create(mgr, card, i)) < 0) {
1654 snd_card_free(card);
1655 pcxhr_free(mgr);
1656 return err;
1657 }
1658
1659 if (i == 0)
1660 /* init proc interface only for chip0 */
1661 pcxhr_proc_init(mgr->chip[i]);
1662
1663 if ((err = snd_card_register(card)) < 0) {
1664 pcxhr_free(mgr);
1665 return err;
1666 }
1667 }
1668
1669 /* create hostport purgebuffer */
1670 size = PAGE_ALIGN(sizeof(struct pcxhr_hostport));
1671 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
1672 size, &mgr->hostport) < 0) {
1673 pcxhr_free(mgr);
1674 return -ENOMEM;
1675 }
1676 /* init purgebuffer */
1677 memset(mgr->hostport.area, 0, size);
1678
1679 /* create a DSP loader */
1680 err = pcxhr_setup_firmware(mgr);
1681 if (err < 0) {
1682 pcxhr_free(mgr);
1683 return err;
1684 }
1685
1686 pci_set_drvdata(pci, mgr);
1687 dev++;
1688 return 0;
1689 }
1690
1691 static void pcxhr_remove(struct pci_dev *pci)
1692 {
1693 pcxhr_free(pci_get_drvdata(pci));
1694 pci_set_drvdata(pci, NULL);
1695 }
1696
1697 static struct pci_driver pcxhr_driver = {
1698 .name = KBUILD_MODNAME,
1699 .id_table = pcxhr_ids,
1700 .probe = pcxhr_probe,
1701 .remove = pcxhr_remove,
1702 };
1703
1704 module_pci_driver(pcxhr_driver);