[ALSA] virtuoso: correctly switch input jack on Xonar DX
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / pci / oxygen / oxygen_mixer.c
1 /*
2 * C-Media CMI8788 driver - mixer code
3 *
4 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License, version 2.
9 *
10 * This driver is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this driver; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/mutex.h>
21 #include <sound/ac97_codec.h>
22 #include <sound/asoundef.h>
23 #include <sound/control.h>
24 #include <sound/tlv.h>
25 #include "oxygen.h"
26 #include "cm9780.h"
27
28 static int dac_volume_info(struct snd_kcontrol *ctl,
29 struct snd_ctl_elem_info *info)
30 {
31 struct oxygen *chip = ctl->private_data;
32
33 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
34 info->count = chip->model->dac_channels;
35 info->value.integer.min = 0;
36 info->value.integer.max = 0xff;
37 return 0;
38 }
39
40 static int dac_volume_get(struct snd_kcontrol *ctl,
41 struct snd_ctl_elem_value *value)
42 {
43 struct oxygen *chip = ctl->private_data;
44 unsigned int i;
45
46 mutex_lock(&chip->mutex);
47 for (i = 0; i < chip->model->dac_channels; ++i)
48 value->value.integer.value[i] = chip->dac_volume[i];
49 mutex_unlock(&chip->mutex);
50 return 0;
51 }
52
53 static int dac_volume_put(struct snd_kcontrol *ctl,
54 struct snd_ctl_elem_value *value)
55 {
56 struct oxygen *chip = ctl->private_data;
57 unsigned int i;
58 int changed;
59
60 changed = 0;
61 mutex_lock(&chip->mutex);
62 for (i = 0; i < chip->model->dac_channels; ++i)
63 if (value->value.integer.value[i] != chip->dac_volume[i]) {
64 chip->dac_volume[i] = value->value.integer.value[i];
65 changed = 1;
66 }
67 if (changed)
68 chip->model->update_dac_volume(chip);
69 mutex_unlock(&chip->mutex);
70 return changed;
71 }
72
73 static int dac_mute_get(struct snd_kcontrol *ctl,
74 struct snd_ctl_elem_value *value)
75 {
76 struct oxygen *chip = ctl->private_data;
77
78 mutex_lock(&chip->mutex);
79 value->value.integer.value[0] = !chip->dac_mute;
80 mutex_unlock(&chip->mutex);
81 return 0;
82 }
83
84 static int dac_mute_put(struct snd_kcontrol *ctl,
85 struct snd_ctl_elem_value *value)
86 {
87 struct oxygen *chip = ctl->private_data;
88 int changed;
89
90 mutex_lock(&chip->mutex);
91 changed = !value->value.integer.value[0] != chip->dac_mute;
92 if (changed) {
93 chip->dac_mute = !value->value.integer.value[0];
94 chip->model->update_dac_mute(chip);
95 }
96 mutex_unlock(&chip->mutex);
97 return changed;
98 }
99
100 static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
101 {
102 static const char *const names[3] = {
103 "Front", "Front+Surround", "Front+Surround+Back"
104 };
105 struct oxygen *chip = ctl->private_data;
106 unsigned int count = 2 + (chip->model->dac_channels == 8);
107
108 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
109 info->count = 1;
110 info->value.enumerated.items = count;
111 if (info->value.enumerated.item >= count)
112 info->value.enumerated.item = count - 1;
113 strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
114 return 0;
115 }
116
117 static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
118 {
119 struct oxygen *chip = ctl->private_data;
120
121 mutex_lock(&chip->mutex);
122 value->value.enumerated.item[0] = chip->dac_routing;
123 mutex_unlock(&chip->mutex);
124 return 0;
125 }
126
127 void oxygen_update_dac_routing(struct oxygen *chip)
128 {
129 /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
130 static const unsigned int reg_values[3] = {
131 /* stereo -> front */
132 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
133 (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
134 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
135 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
136 /* stereo -> front+surround */
137 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
138 (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
139 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
140 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
141 /* stereo -> front+surround+back */
142 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
143 (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
144 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
145 (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
146 };
147 u8 channels;
148 unsigned int reg_value;
149
150 channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
151 OXYGEN_PLAY_CHANNELS_MASK;
152 if (channels == OXYGEN_PLAY_CHANNELS_2)
153 reg_value = reg_values[chip->dac_routing];
154 else if (channels == OXYGEN_PLAY_CHANNELS_8)
155 /* in 7.1 mode, "rear" channels go to the "back" jack */
156 reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
157 (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
158 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
159 (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
160 else
161 reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
162 (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
163 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
164 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
165 oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
166 OXYGEN_PLAY_DAC0_SOURCE_MASK |
167 OXYGEN_PLAY_DAC1_SOURCE_MASK |
168 OXYGEN_PLAY_DAC2_SOURCE_MASK |
169 OXYGEN_PLAY_DAC3_SOURCE_MASK);
170 }
171
172 static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
173 {
174 struct oxygen *chip = ctl->private_data;
175 unsigned int count = 2 + (chip->model->dac_channels == 8);
176 int changed;
177
178 mutex_lock(&chip->mutex);
179 changed = value->value.enumerated.item[0] != chip->dac_routing;
180 if (changed) {
181 chip->dac_routing = min(value->value.enumerated.item[0],
182 count - 1);
183 spin_lock_irq(&chip->reg_lock);
184 oxygen_update_dac_routing(chip);
185 spin_unlock_irq(&chip->reg_lock);
186 }
187 mutex_unlock(&chip->mutex);
188 return changed;
189 }
190
191 static int spdif_switch_get(struct snd_kcontrol *ctl,
192 struct snd_ctl_elem_value *value)
193 {
194 struct oxygen *chip = ctl->private_data;
195
196 mutex_lock(&chip->mutex);
197 value->value.integer.value[0] = chip->spdif_playback_enable;
198 mutex_unlock(&chip->mutex);
199 return 0;
200 }
201
202 static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
203 {
204 switch (oxygen_rate) {
205 case OXYGEN_RATE_32000:
206 return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
207 case OXYGEN_RATE_44100:
208 return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
209 default: /* OXYGEN_RATE_48000 */
210 return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
211 case OXYGEN_RATE_64000:
212 return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
213 case OXYGEN_RATE_88200:
214 return 0x8 << OXYGEN_SPDIF_CS_RATE_SHIFT;
215 case OXYGEN_RATE_96000:
216 return 0xa << OXYGEN_SPDIF_CS_RATE_SHIFT;
217 case OXYGEN_RATE_176400:
218 return 0xc << OXYGEN_SPDIF_CS_RATE_SHIFT;
219 case OXYGEN_RATE_192000:
220 return 0xe << OXYGEN_SPDIF_CS_RATE_SHIFT;
221 }
222 }
223
224 void oxygen_update_spdif_source(struct oxygen *chip)
225 {
226 u32 old_control, new_control;
227 u16 old_routing, new_routing;
228 unsigned int oxygen_rate;
229
230 old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
231 old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
232 if (chip->pcm_active & (1 << PCM_SPDIF)) {
233 new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
234 new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
235 | OXYGEN_PLAY_SPDIF_SPDIF;
236 oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
237 & OXYGEN_I2S_RATE_MASK;
238 /* S/PDIF rate was already set by the caller */
239 } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
240 chip->spdif_playback_enable) {
241 new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
242 | OXYGEN_PLAY_SPDIF_MULTICH_01;
243 oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
244 & OXYGEN_I2S_RATE_MASK;
245 new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
246 (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
247 OXYGEN_SPDIF_OUT_ENABLE;
248 } else {
249 new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
250 new_routing = old_routing;
251 oxygen_rate = OXYGEN_RATE_44100;
252 }
253 if (old_routing != new_routing) {
254 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
255 new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
256 oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
257 }
258 if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
259 oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
260 oxygen_spdif_rate(oxygen_rate) |
261 ((chip->pcm_active & (1 << PCM_SPDIF)) ?
262 chip->spdif_pcm_bits : chip->spdif_bits));
263 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
264 }
265
266 static int spdif_switch_put(struct snd_kcontrol *ctl,
267 struct snd_ctl_elem_value *value)
268 {
269 struct oxygen *chip = ctl->private_data;
270 int changed;
271
272 mutex_lock(&chip->mutex);
273 changed = value->value.integer.value[0] != chip->spdif_playback_enable;
274 if (changed) {
275 chip->spdif_playback_enable = !!value->value.integer.value[0];
276 spin_lock_irq(&chip->reg_lock);
277 oxygen_update_spdif_source(chip);
278 spin_unlock_irq(&chip->reg_lock);
279 }
280 mutex_unlock(&chip->mutex);
281 return changed;
282 }
283
284 static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
285 {
286 info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
287 info->count = 1;
288 return 0;
289 }
290
291 static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
292 {
293 value->value.iec958.status[0] =
294 bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
295 OXYGEN_SPDIF_PREEMPHASIS);
296 value->value.iec958.status[1] = /* category and original */
297 bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
298 }
299
300 static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
301 {
302 u32 bits;
303
304 bits = value->value.iec958.status[0] &
305 (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
306 OXYGEN_SPDIF_PREEMPHASIS);
307 bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
308 if (bits & OXYGEN_SPDIF_NONAUDIO)
309 bits |= OXYGEN_SPDIF_V;
310 return bits;
311 }
312
313 static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
314 {
315 oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
316 OXYGEN_SPDIF_NONAUDIO |
317 OXYGEN_SPDIF_C |
318 OXYGEN_SPDIF_PREEMPHASIS |
319 OXYGEN_SPDIF_CATEGORY_MASK |
320 OXYGEN_SPDIF_ORIGINAL |
321 OXYGEN_SPDIF_V);
322 }
323
324 static int spdif_default_get(struct snd_kcontrol *ctl,
325 struct snd_ctl_elem_value *value)
326 {
327 struct oxygen *chip = ctl->private_data;
328
329 mutex_lock(&chip->mutex);
330 oxygen_to_iec958(chip->spdif_bits, value);
331 mutex_unlock(&chip->mutex);
332 return 0;
333 }
334
335 static int spdif_default_put(struct snd_kcontrol *ctl,
336 struct snd_ctl_elem_value *value)
337 {
338 struct oxygen *chip = ctl->private_data;
339 u32 new_bits;
340 int changed;
341
342 new_bits = iec958_to_oxygen(value);
343 mutex_lock(&chip->mutex);
344 changed = new_bits != chip->spdif_bits;
345 if (changed) {
346 chip->spdif_bits = new_bits;
347 if (!(chip->pcm_active & (1 << PCM_SPDIF)))
348 write_spdif_bits(chip, new_bits);
349 }
350 mutex_unlock(&chip->mutex);
351 return changed;
352 }
353
354 static int spdif_mask_get(struct snd_kcontrol *ctl,
355 struct snd_ctl_elem_value *value)
356 {
357 value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
358 IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
359 value->value.iec958.status[1] =
360 IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
361 return 0;
362 }
363
364 static int spdif_pcm_get(struct snd_kcontrol *ctl,
365 struct snd_ctl_elem_value *value)
366 {
367 struct oxygen *chip = ctl->private_data;
368
369 mutex_lock(&chip->mutex);
370 oxygen_to_iec958(chip->spdif_pcm_bits, value);
371 mutex_unlock(&chip->mutex);
372 return 0;
373 }
374
375 static int spdif_pcm_put(struct snd_kcontrol *ctl,
376 struct snd_ctl_elem_value *value)
377 {
378 struct oxygen *chip = ctl->private_data;
379 u32 new_bits;
380 int changed;
381
382 new_bits = iec958_to_oxygen(value);
383 mutex_lock(&chip->mutex);
384 changed = new_bits != chip->spdif_pcm_bits;
385 if (changed) {
386 chip->spdif_pcm_bits = new_bits;
387 if (chip->pcm_active & (1 << PCM_SPDIF))
388 write_spdif_bits(chip, new_bits);
389 }
390 mutex_unlock(&chip->mutex);
391 return changed;
392 }
393
394 static int spdif_input_mask_get(struct snd_kcontrol *ctl,
395 struct snd_ctl_elem_value *value)
396 {
397 value->value.iec958.status[0] = 0xff;
398 value->value.iec958.status[1] = 0xff;
399 value->value.iec958.status[2] = 0xff;
400 value->value.iec958.status[3] = 0xff;
401 return 0;
402 }
403
404 static int spdif_input_default_get(struct snd_kcontrol *ctl,
405 struct snd_ctl_elem_value *value)
406 {
407 struct oxygen *chip = ctl->private_data;
408 u32 bits;
409
410 bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
411 value->value.iec958.status[0] = bits;
412 value->value.iec958.status[1] = bits >> 8;
413 value->value.iec958.status[2] = bits >> 16;
414 value->value.iec958.status[3] = bits >> 24;
415 return 0;
416 }
417
418 static int spdif_loopback_get(struct snd_kcontrol *ctl,
419 struct snd_ctl_elem_value *value)
420 {
421 struct oxygen *chip = ctl->private_data;
422
423 value->value.integer.value[0] =
424 !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
425 & OXYGEN_SPDIF_LOOPBACK);
426 return 0;
427 }
428
429 static int spdif_loopback_put(struct snd_kcontrol *ctl,
430 struct snd_ctl_elem_value *value)
431 {
432 struct oxygen *chip = ctl->private_data;
433 u32 oldreg, newreg;
434 int changed;
435
436 spin_lock_irq(&chip->reg_lock);
437 oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
438 if (value->value.integer.value[0])
439 newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
440 else
441 newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
442 changed = newreg != oldreg;
443 if (changed)
444 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
445 spin_unlock_irq(&chip->reg_lock);
446 return changed;
447 }
448
449 static int monitor_volume_info(struct snd_kcontrol *ctl,
450 struct snd_ctl_elem_info *info)
451 {
452 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
453 info->count = 1;
454 info->value.integer.min = 0;
455 info->value.integer.max = 1;
456 return 0;
457 }
458
459 static int monitor_get(struct snd_kcontrol *ctl,
460 struct snd_ctl_elem_value *value)
461 {
462 struct oxygen *chip = ctl->private_data;
463 u8 bit = ctl->private_value;
464 int invert = ctl->private_value & (1 << 8);
465
466 value->value.integer.value[0] =
467 !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
468 return 0;
469 }
470
471 static int monitor_put(struct snd_kcontrol *ctl,
472 struct snd_ctl_elem_value *value)
473 {
474 struct oxygen *chip = ctl->private_data;
475 u8 bit = ctl->private_value;
476 int invert = ctl->private_value & (1 << 8);
477 u8 oldreg, newreg;
478 int changed;
479
480 spin_lock_irq(&chip->reg_lock);
481 oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
482 if ((!!value->value.integer.value[0] ^ !!invert) != 0)
483 newreg = oldreg | bit;
484 else
485 newreg = oldreg & ~bit;
486 changed = newreg != oldreg;
487 if (changed)
488 oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
489 spin_unlock_irq(&chip->reg_lock);
490 return changed;
491 }
492
493 static int ac97_switch_get(struct snd_kcontrol *ctl,
494 struct snd_ctl_elem_value *value)
495 {
496 struct oxygen *chip = ctl->private_data;
497 unsigned int codec = (ctl->private_value >> 24) & 1;
498 unsigned int index = ctl->private_value & 0xff;
499 unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
500 int invert = ctl->private_value & (1 << 16);
501 u16 reg;
502
503 mutex_lock(&chip->mutex);
504 reg = oxygen_read_ac97(chip, codec, index);
505 mutex_unlock(&chip->mutex);
506 if (!(reg & (1 << bitnr)) ^ !invert)
507 value->value.integer.value[0] = 1;
508 else
509 value->value.integer.value[0] = 0;
510 return 0;
511 }
512
513 static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
514 {
515 unsigned int priv_idx = chip->controls[control]->private_value & 0xff;
516 u16 value;
517
518 value = oxygen_read_ac97(chip, 0, priv_idx);
519 if (!(value & 0x8000)) {
520 oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
521 if (chip->model->ac97_switch)
522 chip->model->ac97_switch(chip, priv_idx, 0x8000);
523 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
524 &chip->controls[control]->id);
525 }
526 }
527
528 static int ac97_switch_put(struct snd_kcontrol *ctl,
529 struct snd_ctl_elem_value *value)
530 {
531 struct oxygen *chip = ctl->private_data;
532 unsigned int codec = (ctl->private_value >> 24) & 1;
533 unsigned int index = ctl->private_value & 0xff;
534 unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
535 int invert = ctl->private_value & (1 << 16);
536 u16 oldreg, newreg;
537 int change;
538
539 mutex_lock(&chip->mutex);
540 oldreg = oxygen_read_ac97(chip, codec, index);
541 newreg = oldreg;
542 if (!value->value.integer.value[0] ^ !invert)
543 newreg |= 1 << bitnr;
544 else
545 newreg &= ~(1 << bitnr);
546 change = newreg != oldreg;
547 if (change) {
548 oxygen_write_ac97(chip, codec, index, newreg);
549 if (codec == 0 && chip->model->ac97_switch)
550 chip->model->ac97_switch(chip, index, newreg & 0x8000);
551 if (index == AC97_LINE) {
552 oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
553 newreg & 0x8000 ?
554 CM9780_GPO0 : 0, CM9780_GPO0);
555 if (!(newreg & 0x8000)) {
556 mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
557 mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
558 mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
559 }
560 } else if ((index == AC97_MIC || index == AC97_CD ||
561 index == AC97_VIDEO || index == AC97_AUX) &&
562 bitnr == 15 && !(newreg & 0x8000)) {
563 mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
564 oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
565 CM9780_GPO0, CM9780_GPO0);
566 }
567 }
568 mutex_unlock(&chip->mutex);
569 return change;
570 }
571
572 static int ac97_volume_info(struct snd_kcontrol *ctl,
573 struct snd_ctl_elem_info *info)
574 {
575 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
576 info->count = 2;
577 info->value.integer.min = 0;
578 info->value.integer.max = 0x1f;
579 return 0;
580 }
581
582 static int ac97_volume_get(struct snd_kcontrol *ctl,
583 struct snd_ctl_elem_value *value)
584 {
585 struct oxygen *chip = ctl->private_data;
586 unsigned int codec = (ctl->private_value >> 24) & 1;
587 unsigned int index = ctl->private_value & 0xff;
588 u16 reg;
589
590 mutex_lock(&chip->mutex);
591 reg = oxygen_read_ac97(chip, codec, index);
592 mutex_unlock(&chip->mutex);
593 value->value.integer.value[0] = 31 - (reg & 0x1f);
594 value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
595 return 0;
596 }
597
598 static int ac97_volume_put(struct snd_kcontrol *ctl,
599 struct snd_ctl_elem_value *value)
600 {
601 struct oxygen *chip = ctl->private_data;
602 unsigned int codec = (ctl->private_value >> 24) & 1;
603 unsigned int index = ctl->private_value & 0xff;
604 u16 oldreg, newreg;
605 int change;
606
607 mutex_lock(&chip->mutex);
608 oldreg = oxygen_read_ac97(chip, codec, index);
609 newreg = oldreg;
610 newreg = (newreg & ~0x1f) |
611 (31 - (value->value.integer.value[0] & 0x1f));
612 newreg = (newreg & ~0x1f00) |
613 ((31 - (value->value.integer.value[0] & 0x1f)) << 8);
614 change = newreg != oldreg;
615 if (change)
616 oxygen_write_ac97(chip, codec, index, newreg);
617 mutex_unlock(&chip->mutex);
618 return change;
619 }
620
621 static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
622 struct snd_ctl_elem_info *info)
623 {
624 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
625 info->count = 2;
626 info->value.integer.min = 0;
627 info->value.integer.max = 7;
628 return 0;
629 }
630
631 static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
632 struct snd_ctl_elem_value *value)
633 {
634 struct oxygen *chip = ctl->private_data;
635 u16 reg;
636
637 mutex_lock(&chip->mutex);
638 reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
639 mutex_unlock(&chip->mutex);
640 value->value.integer.value[0] = reg & 7;
641 value->value.integer.value[1] = (reg >> 8) & 7;
642 return 0;
643 }
644
645 static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
646 struct snd_ctl_elem_value *value)
647 {
648 struct oxygen *chip = ctl->private_data;
649 u16 oldreg, newreg;
650 int change;
651
652 mutex_lock(&chip->mutex);
653 oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
654 newreg = oldreg & ~0x0707;
655 newreg = newreg | (value->value.integer.value[0] & 7);
656 newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
657 change = newreg != oldreg;
658 if (change)
659 oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
660 mutex_unlock(&chip->mutex);
661 return change;
662 }
663
664 #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
665 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
666 .name = xname, \
667 .info = snd_ctl_boolean_mono_info, \
668 .get = ac97_switch_get, \
669 .put = ac97_switch_put, \
670 .private_value = ((codec) << 24) | ((invert) << 16) | \
671 ((bitnr) << 8) | (index), \
672 }
673 #define AC97_VOLUME(xname, codec, index) { \
674 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
675 .name = xname, \
676 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
677 SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
678 .info = ac97_volume_info, \
679 .get = ac97_volume_get, \
680 .put = ac97_volume_put, \
681 .tlv = { .p = ac97_db_scale, }, \
682 .private_value = ((codec) << 24) | (index), \
683 }
684
685 static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0);
686 static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
687 static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
688
689 static const struct snd_kcontrol_new controls[] = {
690 {
691 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
692 .name = "Master Playback Volume",
693 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
694 .info = dac_volume_info,
695 .get = dac_volume_get,
696 .put = dac_volume_put,
697 },
698 {
699 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
700 .name = "Master Playback Switch",
701 .info = snd_ctl_boolean_mono_info,
702 .get = dac_mute_get,
703 .put = dac_mute_put,
704 },
705 {
706 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
707 .name = "Stereo Upmixing",
708 .info = upmix_info,
709 .get = upmix_get,
710 .put = upmix_put,
711 },
712 {
713 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
714 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
715 .info = snd_ctl_boolean_mono_info,
716 .get = spdif_switch_get,
717 .put = spdif_switch_put,
718 },
719 {
720 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
721 .device = 1,
722 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
723 .info = spdif_info,
724 .get = spdif_default_get,
725 .put = spdif_default_put,
726 },
727 {
728 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
729 .device = 1,
730 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
731 .access = SNDRV_CTL_ELEM_ACCESS_READ,
732 .info = spdif_info,
733 .get = spdif_mask_get,
734 },
735 {
736 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
737 .device = 1,
738 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
739 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
740 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
741 .info = spdif_info,
742 .get = spdif_pcm_get,
743 .put = spdif_pcm_put,
744 },
745 {
746 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
747 .device = 1,
748 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
749 .access = SNDRV_CTL_ELEM_ACCESS_READ,
750 .info = spdif_info,
751 .get = spdif_input_mask_get,
752 },
753 {
754 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
755 .device = 1,
756 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
757 .access = SNDRV_CTL_ELEM_ACCESS_READ,
758 .info = spdif_info,
759 .get = spdif_input_default_get,
760 },
761 {
762 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
763 .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
764 .info = snd_ctl_boolean_mono_info,
765 .get = spdif_loopback_get,
766 .put = spdif_loopback_put,
767 },
768 };
769
770 static const struct {
771 unsigned int pcm_dev;
772 struct snd_kcontrol_new controls[2];
773 } monitor_controls[] = {
774 {
775 .pcm_dev = CAPTURE_0_FROM_I2S_1,
776 .controls = {
777 {
778 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
779 .name = "Analog Input Monitor Switch",
780 .info = snd_ctl_boolean_mono_info,
781 .get = monitor_get,
782 .put = monitor_put,
783 .private_value = OXYGEN_ADC_MONITOR_A,
784 },
785 {
786 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
787 .name = "Analog Input Monitor Volume",
788 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
789 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
790 .info = monitor_volume_info,
791 .get = monitor_get,
792 .put = monitor_put,
793 .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
794 | (1 << 8),
795 .tlv = { .p = monitor_db_scale, },
796 },
797 },
798 },
799 {
800 .pcm_dev = CAPTURE_0_FROM_I2S_2,
801 .controls = {
802 {
803 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
804 .name = "Analog Input Monitor Switch",
805 .info = snd_ctl_boolean_mono_info,
806 .get = monitor_get,
807 .put = monitor_put,
808 .private_value = OXYGEN_ADC_MONITOR_B,
809 },
810 {
811 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
812 .name = "Analog Input Monitor Volume",
813 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
814 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
815 .info = monitor_volume_info,
816 .get = monitor_get,
817 .put = monitor_put,
818 .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
819 | (1 << 8),
820 .tlv = { .p = monitor_db_scale, },
821 },
822 },
823 },
824 {
825 .pcm_dev = CAPTURE_2_FROM_I2S_2,
826 .controls = {
827 {
828 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
829 .name = "Analog Input Monitor Switch",
830 .index = 1,
831 .info = snd_ctl_boolean_mono_info,
832 .get = monitor_get,
833 .put = monitor_put,
834 .private_value = OXYGEN_ADC_MONITOR_B,
835 },
836 {
837 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
838 .name = "Analog Input Monitor Volume",
839 .index = 1,
840 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
841 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
842 .info = monitor_volume_info,
843 .get = monitor_get,
844 .put = monitor_put,
845 .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
846 | (1 << 8),
847 .tlv = { .p = monitor_db_scale, },
848 },
849 },
850 },
851 {
852 .pcm_dev = CAPTURE_1_FROM_SPDIF,
853 .controls = {
854 {
855 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
856 .name = "Digital Input Monitor Switch",
857 .info = snd_ctl_boolean_mono_info,
858 .get = monitor_get,
859 .put = monitor_put,
860 .private_value = OXYGEN_ADC_MONITOR_C,
861 },
862 {
863 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
864 .name = "Digital Input Monitor Volume",
865 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
866 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
867 .info = monitor_volume_info,
868 .get = monitor_get,
869 .put = monitor_put,
870 .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
871 | (1 << 8),
872 .tlv = { .p = monitor_db_scale, },
873 },
874 },
875 },
876 };
877
878 static const struct snd_kcontrol_new ac97_controls[] = {
879 AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC),
880 AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
881 AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
882 AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
883 AC97_VOLUME("CD Capture Volume", 0, AC97_CD),
884 AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
885 AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX),
886 AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
887 };
888
889 static const struct snd_kcontrol_new ac97_fp_controls[] = {
890 AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE),
891 AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
892 {
893 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
894 .name = "Front Panel Capture Volume",
895 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
896 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
897 .info = ac97_fp_rec_volume_info,
898 .get = ac97_fp_rec_volume_get,
899 .put = ac97_fp_rec_volume_put,
900 .tlv = { .p = ac97_rec_db_scale, },
901 },
902 AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
903 };
904
905 static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
906 {
907 struct oxygen *chip = ctl->private_data;
908 unsigned int i;
909
910 /* I'm too lazy to write a function for each control :-) */
911 for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
912 chip->controls[i] = NULL;
913 }
914
915 static int add_controls(struct oxygen *chip,
916 const struct snd_kcontrol_new controls[],
917 unsigned int count)
918 {
919 static const char *const known_ctl_names[CONTROL_COUNT] = {
920 [CONTROL_SPDIF_PCM] =
921 SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
922 [CONTROL_SPDIF_INPUT_BITS] =
923 SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
924 [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
925 [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
926 [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
927 [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
928 };
929 unsigned int i, j;
930 struct snd_kcontrol_new template;
931 struct snd_kcontrol *ctl;
932 int err;
933
934 for (i = 0; i < count; ++i) {
935 template = controls[i];
936 err = chip->model->control_filter(&template);
937 if (err < 0)
938 return err;
939 if (err == 1)
940 continue;
941 ctl = snd_ctl_new1(&template, chip);
942 if (!ctl)
943 return -ENOMEM;
944 err = snd_ctl_add(chip->card, ctl);
945 if (err < 0)
946 return err;
947 for (j = 0; j < CONTROL_COUNT; ++j)
948 if (!strcmp(ctl->id.name, known_ctl_names[j])) {
949 chip->controls[j] = ctl;
950 ctl->private_free = oxygen_any_ctl_free;
951 }
952 }
953 return 0;
954 }
955
956 int oxygen_mixer_init(struct oxygen *chip)
957 {
958 unsigned int i;
959 int err;
960
961 err = add_controls(chip, controls, ARRAY_SIZE(controls));
962 if (err < 0)
963 return err;
964 for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
965 if (!(chip->model->pcm_dev_cfg & monitor_controls[i].pcm_dev))
966 continue;
967 err = add_controls(chip, monitor_controls[i].controls,
968 ARRAY_SIZE(monitor_controls[i].controls));
969 if (err < 0)
970 return err;
971 }
972 if (chip->has_ac97_0) {
973 err = add_controls(chip, ac97_controls,
974 ARRAY_SIZE(ac97_controls));
975 if (err < 0)
976 return err;
977 }
978 if (chip->has_ac97_1) {
979 err = add_controls(chip, ac97_fp_controls,
980 ARRAY_SIZE(ac97_fp_controls));
981 if (err < 0)
982 return err;
983 }
984 return chip->model->mixer_init ? chip->model->mixer_init(chip) : 0;
985 }