[ALSA] oxygen: add monitor controls
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / pci / oxygen / oxygen_mixer.c
1 /*
2 * C-Media CMI8788 driver - mixer code
3 *
4 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License, version 2.
9 *
10 * This driver is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this driver; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/mutex.h>
21 #include <sound/ac97_codec.h>
22 #include <sound/asoundef.h>
23 #include <sound/control.h>
24 #include <sound/tlv.h>
25 #include "oxygen.h"
26 #include "cm9780.h"
27
28 static int dac_volume_info(struct snd_kcontrol *ctl,
29 struct snd_ctl_elem_info *info)
30 {
31 struct oxygen *chip = ctl->private_data;
32
33 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
34 info->count = chip->model->dac_channels;
35 info->value.integer.min = 0;
36 info->value.integer.max = 0xff;
37 return 0;
38 }
39
40 static int dac_volume_get(struct snd_kcontrol *ctl,
41 struct snd_ctl_elem_value *value)
42 {
43 struct oxygen *chip = ctl->private_data;
44 unsigned int i;
45
46 mutex_lock(&chip->mutex);
47 for (i = 0; i < chip->model->dac_channels; ++i)
48 value->value.integer.value[i] = chip->dac_volume[i];
49 mutex_unlock(&chip->mutex);
50 return 0;
51 }
52
53 static int dac_volume_put(struct snd_kcontrol *ctl,
54 struct snd_ctl_elem_value *value)
55 {
56 struct oxygen *chip = ctl->private_data;
57 unsigned int i;
58 int changed;
59
60 changed = 0;
61 mutex_lock(&chip->mutex);
62 for (i = 0; i < chip->model->dac_channels; ++i)
63 if (value->value.integer.value[i] != chip->dac_volume[i]) {
64 chip->dac_volume[i] = value->value.integer.value[i];
65 changed = 1;
66 }
67 if (changed)
68 chip->model->update_dac_volume(chip);
69 mutex_unlock(&chip->mutex);
70 return changed;
71 }
72
73 static int dac_mute_get(struct snd_kcontrol *ctl,
74 struct snd_ctl_elem_value *value)
75 {
76 struct oxygen *chip = ctl->private_data;
77
78 mutex_lock(&chip->mutex);
79 value->value.integer.value[0] = !chip->dac_mute;
80 mutex_unlock(&chip->mutex);
81 return 0;
82 }
83
84 static int dac_mute_put(struct snd_kcontrol *ctl,
85 struct snd_ctl_elem_value *value)
86 {
87 struct oxygen *chip = ctl->private_data;
88 int changed;
89
90 mutex_lock(&chip->mutex);
91 changed = !value->value.integer.value[0] != chip->dac_mute;
92 if (changed) {
93 chip->dac_mute = !value->value.integer.value[0];
94 chip->model->update_dac_mute(chip);
95 }
96 mutex_unlock(&chip->mutex);
97 return changed;
98 }
99
100 static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
101 {
102 static const char *const names[3] = {
103 "Front", "Front+Surround", "Front+Surround+Back"
104 };
105 struct oxygen *chip = ctl->private_data;
106 unsigned int count = 2 + (chip->model->dac_channels == 8);
107
108 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
109 info->count = 1;
110 info->value.enumerated.items = count;
111 if (info->value.enumerated.item >= count)
112 info->value.enumerated.item = count - 1;
113 strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
114 return 0;
115 }
116
117 static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
118 {
119 struct oxygen *chip = ctl->private_data;
120
121 mutex_lock(&chip->mutex);
122 value->value.enumerated.item[0] = chip->dac_routing;
123 mutex_unlock(&chip->mutex);
124 return 0;
125 }
126
127 void oxygen_update_dac_routing(struct oxygen *chip)
128 {
129 /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
130 static const unsigned int reg_values[3] = {
131 /* stereo -> front */
132 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
133 (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
134 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
135 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
136 /* stereo -> front+surround */
137 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
138 (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
139 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
140 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
141 /* stereo -> front+surround+back */
142 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
143 (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
144 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
145 (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
146 };
147 u8 channels;
148 unsigned int reg_value;
149
150 channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
151 OXYGEN_PLAY_CHANNELS_MASK;
152 if (channels == OXYGEN_PLAY_CHANNELS_2)
153 reg_value = reg_values[chip->dac_routing];
154 else if (channels == OXYGEN_PLAY_CHANNELS_8)
155 /* in 7.1 mode, "rear" channels go to the "back" jack */
156 reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
157 (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
158 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
159 (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
160 else
161 reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
162 (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
163 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
164 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
165 oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
166 OXYGEN_PLAY_DAC0_SOURCE_MASK |
167 OXYGEN_PLAY_DAC1_SOURCE_MASK |
168 OXYGEN_PLAY_DAC2_SOURCE_MASK |
169 OXYGEN_PLAY_DAC3_SOURCE_MASK);
170 }
171
172 static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
173 {
174 struct oxygen *chip = ctl->private_data;
175 unsigned int count = 2 + (chip->model->dac_channels == 8);
176 int changed;
177
178 mutex_lock(&chip->mutex);
179 changed = value->value.enumerated.item[0] != chip->dac_routing;
180 if (changed) {
181 chip->dac_routing = min(value->value.enumerated.item[0],
182 count - 1);
183 spin_lock_irq(&chip->reg_lock);
184 oxygen_update_dac_routing(chip);
185 spin_unlock_irq(&chip->reg_lock);
186 }
187 mutex_unlock(&chip->mutex);
188 return changed;
189 }
190
191 static int spdif_switch_get(struct snd_kcontrol *ctl,
192 struct snd_ctl_elem_value *value)
193 {
194 struct oxygen *chip = ctl->private_data;
195
196 mutex_lock(&chip->mutex);
197 value->value.integer.value[0] = chip->spdif_playback_enable;
198 mutex_unlock(&chip->mutex);
199 return 0;
200 }
201
202 static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
203 {
204 switch (oxygen_rate) {
205 case OXYGEN_RATE_32000:
206 return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
207 case OXYGEN_RATE_44100:
208 return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
209 default: /* OXYGEN_RATE_48000 */
210 return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
211 case OXYGEN_RATE_64000:
212 return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
213 case OXYGEN_RATE_88200:
214 return 0x8 << OXYGEN_SPDIF_CS_RATE_SHIFT;
215 case OXYGEN_RATE_96000:
216 return 0xa << OXYGEN_SPDIF_CS_RATE_SHIFT;
217 case OXYGEN_RATE_176400:
218 return 0xc << OXYGEN_SPDIF_CS_RATE_SHIFT;
219 case OXYGEN_RATE_192000:
220 return 0xe << OXYGEN_SPDIF_CS_RATE_SHIFT;
221 }
222 }
223
224 void oxygen_update_spdif_source(struct oxygen *chip)
225 {
226 u32 old_control, new_control;
227 u16 old_routing, new_routing;
228 unsigned int oxygen_rate;
229
230 old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
231 old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
232 if (chip->pcm_active & (1 << PCM_SPDIF)) {
233 new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
234 new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
235 | OXYGEN_PLAY_SPDIF_SPDIF;
236 oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
237 & OXYGEN_I2S_RATE_MASK;
238 /* S/PDIF rate was already set by the caller */
239 } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
240 chip->spdif_playback_enable) {
241 new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
242 | OXYGEN_PLAY_SPDIF_MULTICH_01;
243 oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
244 & OXYGEN_I2S_RATE_MASK;
245 new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
246 (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
247 OXYGEN_SPDIF_OUT_ENABLE;
248 } else {
249 new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
250 new_routing = old_routing;
251 oxygen_rate = OXYGEN_RATE_44100;
252 }
253 if (old_routing != new_routing) {
254 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
255 new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
256 oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
257 }
258 if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
259 oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
260 oxygen_spdif_rate(oxygen_rate) |
261 ((chip->pcm_active & (1 << PCM_SPDIF)) ?
262 chip->spdif_pcm_bits : chip->spdif_bits));
263 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
264 }
265
266 static int spdif_switch_put(struct snd_kcontrol *ctl,
267 struct snd_ctl_elem_value *value)
268 {
269 struct oxygen *chip = ctl->private_data;
270 int changed;
271
272 mutex_lock(&chip->mutex);
273 changed = value->value.integer.value[0] != chip->spdif_playback_enable;
274 if (changed) {
275 chip->spdif_playback_enable = !!value->value.integer.value[0];
276 spin_lock_irq(&chip->reg_lock);
277 oxygen_update_spdif_source(chip);
278 spin_unlock_irq(&chip->reg_lock);
279 }
280 mutex_unlock(&chip->mutex);
281 return changed;
282 }
283
284 static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
285 {
286 info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
287 info->count = 1;
288 return 0;
289 }
290
291 static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
292 {
293 value->value.iec958.status[0] =
294 bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
295 OXYGEN_SPDIF_PREEMPHASIS);
296 value->value.iec958.status[1] = /* category and original */
297 bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
298 }
299
300 static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
301 {
302 u32 bits;
303
304 bits = value->value.iec958.status[0] &
305 (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
306 OXYGEN_SPDIF_PREEMPHASIS);
307 bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
308 if (bits & OXYGEN_SPDIF_NONAUDIO)
309 bits |= OXYGEN_SPDIF_V;
310 return bits;
311 }
312
313 static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
314 {
315 oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
316 OXYGEN_SPDIF_NONAUDIO |
317 OXYGEN_SPDIF_C |
318 OXYGEN_SPDIF_PREEMPHASIS |
319 OXYGEN_SPDIF_CATEGORY_MASK |
320 OXYGEN_SPDIF_ORIGINAL |
321 OXYGEN_SPDIF_V);
322 }
323
324 static int spdif_default_get(struct snd_kcontrol *ctl,
325 struct snd_ctl_elem_value *value)
326 {
327 struct oxygen *chip = ctl->private_data;
328
329 mutex_lock(&chip->mutex);
330 oxygen_to_iec958(chip->spdif_bits, value);
331 mutex_unlock(&chip->mutex);
332 return 0;
333 }
334
335 static int spdif_default_put(struct snd_kcontrol *ctl,
336 struct snd_ctl_elem_value *value)
337 {
338 struct oxygen *chip = ctl->private_data;
339 u32 new_bits;
340 int changed;
341
342 new_bits = iec958_to_oxygen(value);
343 mutex_lock(&chip->mutex);
344 changed = new_bits != chip->spdif_bits;
345 if (changed) {
346 chip->spdif_bits = new_bits;
347 if (!(chip->pcm_active & (1 << PCM_SPDIF)))
348 write_spdif_bits(chip, new_bits);
349 }
350 mutex_unlock(&chip->mutex);
351 return changed;
352 }
353
354 static int spdif_mask_get(struct snd_kcontrol *ctl,
355 struct snd_ctl_elem_value *value)
356 {
357 value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
358 IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
359 value->value.iec958.status[1] =
360 IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
361 return 0;
362 }
363
364 static int spdif_pcm_get(struct snd_kcontrol *ctl,
365 struct snd_ctl_elem_value *value)
366 {
367 struct oxygen *chip = ctl->private_data;
368
369 mutex_lock(&chip->mutex);
370 oxygen_to_iec958(chip->spdif_pcm_bits, value);
371 mutex_unlock(&chip->mutex);
372 return 0;
373 }
374
375 static int spdif_pcm_put(struct snd_kcontrol *ctl,
376 struct snd_ctl_elem_value *value)
377 {
378 struct oxygen *chip = ctl->private_data;
379 u32 new_bits;
380 int changed;
381
382 new_bits = iec958_to_oxygen(value);
383 mutex_lock(&chip->mutex);
384 changed = new_bits != chip->spdif_pcm_bits;
385 if (changed) {
386 chip->spdif_pcm_bits = new_bits;
387 if (chip->pcm_active & (1 << PCM_SPDIF))
388 write_spdif_bits(chip, new_bits);
389 }
390 mutex_unlock(&chip->mutex);
391 return changed;
392 }
393
394 static int spdif_input_mask_get(struct snd_kcontrol *ctl,
395 struct snd_ctl_elem_value *value)
396 {
397 value->value.iec958.status[0] = 0xff;
398 value->value.iec958.status[1] = 0xff;
399 value->value.iec958.status[2] = 0xff;
400 value->value.iec958.status[3] = 0xff;
401 return 0;
402 }
403
404 static int spdif_input_default_get(struct snd_kcontrol *ctl,
405 struct snd_ctl_elem_value *value)
406 {
407 struct oxygen *chip = ctl->private_data;
408 u32 bits;
409
410 bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
411 value->value.iec958.status[0] = bits;
412 value->value.iec958.status[1] = bits >> 8;
413 value->value.iec958.status[2] = bits >> 16;
414 value->value.iec958.status[3] = bits >> 24;
415 return 0;
416 }
417
418 static int spdif_loopback_get(struct snd_kcontrol *ctl,
419 struct snd_ctl_elem_value *value)
420 {
421 struct oxygen *chip = ctl->private_data;
422
423 value->value.integer.value[0] =
424 !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
425 & OXYGEN_SPDIF_LOOPBACK);
426 return 0;
427 }
428
429 static int spdif_loopback_put(struct snd_kcontrol *ctl,
430 struct snd_ctl_elem_value *value)
431 {
432 struct oxygen *chip = ctl->private_data;
433 u32 oldreg, newreg;
434 int changed;
435
436 spin_lock_irq(&chip->reg_lock);
437 oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
438 if (value->value.integer.value[0])
439 newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
440 else
441 newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
442 changed = newreg != oldreg;
443 if (changed)
444 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
445 spin_unlock_irq(&chip->reg_lock);
446 return changed;
447 }
448
449 static int monitor_volume_info(struct snd_kcontrol *ctl,
450 struct snd_ctl_elem_info *info)
451 {
452 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
453 info->count = 1;
454 info->value.integer.min = 0;
455 info->value.integer.max = 1;
456 return 0;
457 }
458
459 static int monitor_get(struct snd_kcontrol *ctl,
460 struct snd_ctl_elem_value *value)
461 {
462 struct oxygen *chip = ctl->private_data;
463 u8 bit = ctl->private_value;
464 int invert = ctl->private_value & (1 << 8);
465
466 value->value.integer.value[0] =
467 !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
468 return 0;
469 }
470
471 static int monitor_put(struct snd_kcontrol *ctl,
472 struct snd_ctl_elem_value *value)
473 {
474 struct oxygen *chip = ctl->private_data;
475 u8 bit = ctl->private_value;
476 int invert = ctl->private_value & (1 << 8);
477 u8 oldreg, newreg;
478 int changed;
479
480 spin_lock_irq(&chip->reg_lock);
481 oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
482 if ((!!value->value.integer.value[0] ^ !!invert) != 0)
483 newreg = oldreg | bit;
484 else
485 newreg = oldreg & ~bit;
486 changed = newreg != oldreg;
487 if (changed)
488 oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
489 spin_unlock_irq(&chip->reg_lock);
490 return changed;
491 }
492
493 static int ac97_switch_get(struct snd_kcontrol *ctl,
494 struct snd_ctl_elem_value *value)
495 {
496 struct oxygen *chip = ctl->private_data;
497 unsigned int codec = (ctl->private_value >> 24) & 1;
498 unsigned int index = ctl->private_value & 0xff;
499 unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
500 int invert = ctl->private_value & (1 << 16);
501 u16 reg;
502
503 mutex_lock(&chip->mutex);
504 reg = oxygen_read_ac97(chip, codec, index);
505 mutex_unlock(&chip->mutex);
506 if (!(reg & (1 << bitnr)) ^ !invert)
507 value->value.integer.value[0] = 1;
508 else
509 value->value.integer.value[0] = 0;
510 return 0;
511 }
512
513 static int ac97_switch_put(struct snd_kcontrol *ctl,
514 struct snd_ctl_elem_value *value)
515 {
516 struct oxygen *chip = ctl->private_data;
517 unsigned int codec = (ctl->private_value >> 24) & 1;
518 unsigned int index = ctl->private_value & 0xff;
519 unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
520 int invert = ctl->private_value & (1 << 16);
521 u16 oldreg, newreg;
522 int change;
523
524 mutex_lock(&chip->mutex);
525 oldreg = oxygen_read_ac97(chip, codec, index);
526 newreg = oldreg;
527 if (!value->value.integer.value[0] ^ !invert)
528 newreg |= 1 << bitnr;
529 else
530 newreg &= ~(1 << bitnr);
531 change = newreg != oldreg;
532 if (change) {
533 oxygen_write_ac97(chip, codec, index, newreg);
534 if (bitnr == 15 && chip->model->ac97_switch_hook)
535 chip->model->ac97_switch_hook(chip, codec, index,
536 newreg & 0x8000);
537 }
538 mutex_unlock(&chip->mutex);
539 return change;
540 }
541
542 static int ac97_volume_info(struct snd_kcontrol *ctl,
543 struct snd_ctl_elem_info *info)
544 {
545 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
546 info->count = 2;
547 info->value.integer.min = 0;
548 info->value.integer.max = 0x1f;
549 return 0;
550 }
551
552 static int ac97_volume_get(struct snd_kcontrol *ctl,
553 struct snd_ctl_elem_value *value)
554 {
555 struct oxygen *chip = ctl->private_data;
556 unsigned int codec = (ctl->private_value >> 24) & 1;
557 unsigned int index = ctl->private_value & 0xff;
558 u16 reg;
559
560 mutex_lock(&chip->mutex);
561 reg = oxygen_read_ac97(chip, codec, index);
562 mutex_unlock(&chip->mutex);
563 value->value.integer.value[0] = 31 - (reg & 0x1f);
564 value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
565 return 0;
566 }
567
568 static int ac97_volume_put(struct snd_kcontrol *ctl,
569 struct snd_ctl_elem_value *value)
570 {
571 struct oxygen *chip = ctl->private_data;
572 unsigned int codec = (ctl->private_value >> 24) & 1;
573 unsigned int index = ctl->private_value & 0xff;
574 u16 oldreg, newreg;
575 int change;
576
577 mutex_lock(&chip->mutex);
578 oldreg = oxygen_read_ac97(chip, codec, index);
579 newreg = oldreg;
580 newreg = (newreg & ~0x1f) |
581 (31 - (value->value.integer.value[0] & 0x1f));
582 newreg = (newreg & ~0x1f00) |
583 ((31 - (value->value.integer.value[0] & 0x1f)) << 8);
584 change = newreg != oldreg;
585 if (change)
586 oxygen_write_ac97(chip, codec, index, newreg);
587 mutex_unlock(&chip->mutex);
588 return change;
589 }
590
591 static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
592 struct snd_ctl_elem_info *info)
593 {
594 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
595 info->count = 2;
596 info->value.integer.min = 0;
597 info->value.integer.max = 7;
598 return 0;
599 }
600
601 static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
602 struct snd_ctl_elem_value *value)
603 {
604 struct oxygen *chip = ctl->private_data;
605 u16 reg;
606
607 mutex_lock(&chip->mutex);
608 reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
609 mutex_unlock(&chip->mutex);
610 value->value.integer.value[0] = reg & 7;
611 value->value.integer.value[1] = (reg >> 8) & 7;
612 return 0;
613 }
614
615 static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
616 struct snd_ctl_elem_value *value)
617 {
618 struct oxygen *chip = ctl->private_data;
619 u16 oldreg, newreg;
620 int change;
621
622 mutex_lock(&chip->mutex);
623 oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
624 newreg = oldreg & ~0x0707;
625 newreg = newreg | (value->value.integer.value[0] & 7);
626 newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
627 change = newreg != oldreg;
628 if (change)
629 oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
630 mutex_unlock(&chip->mutex);
631 return change;
632 }
633
634 #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
635 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
636 .name = xname, \
637 .info = snd_ctl_boolean_mono_info, \
638 .get = ac97_switch_get, \
639 .put = ac97_switch_put, \
640 .private_value = ((codec) << 24) | ((invert) << 16) | \
641 ((bitnr) << 8) | (index), \
642 }
643 #define AC97_VOLUME(xname, codec, index) { \
644 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
645 .name = xname, \
646 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
647 SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
648 .info = ac97_volume_info, \
649 .get = ac97_volume_get, \
650 .put = ac97_volume_put, \
651 .tlv = { .p = ac97_db_scale, }, \
652 .private_value = ((codec) << 24) | (index), \
653 }
654
655 static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0);
656 static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
657 static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
658
659 static const struct snd_kcontrol_new controls[] = {
660 {
661 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
662 .name = "Master Playback Volume",
663 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
664 .info = dac_volume_info,
665 .get = dac_volume_get,
666 .put = dac_volume_put,
667 },
668 {
669 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
670 .name = "Master Playback Switch",
671 .info = snd_ctl_boolean_mono_info,
672 .get = dac_mute_get,
673 .put = dac_mute_put,
674 },
675 {
676 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
677 .name = "Stereo Upmixing",
678 .info = upmix_info,
679 .get = upmix_get,
680 .put = upmix_put,
681 },
682 {
683 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
684 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
685 .info = snd_ctl_boolean_mono_info,
686 .get = spdif_switch_get,
687 .put = spdif_switch_put,
688 },
689 {
690 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
691 .device = 1,
692 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
693 .info = spdif_info,
694 .get = spdif_default_get,
695 .put = spdif_default_put,
696 },
697 {
698 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
699 .device = 1,
700 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
701 .access = SNDRV_CTL_ELEM_ACCESS_READ,
702 .info = spdif_info,
703 .get = spdif_mask_get,
704 },
705 {
706 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
707 .device = 1,
708 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
709 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
710 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
711 .info = spdif_info,
712 .get = spdif_pcm_get,
713 .put = spdif_pcm_put,
714 },
715 {
716 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
717 .device = 1,
718 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
719 .access = SNDRV_CTL_ELEM_ACCESS_READ,
720 .info = spdif_info,
721 .get = spdif_input_mask_get,
722 },
723 {
724 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
725 .device = 1,
726 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
727 .access = SNDRV_CTL_ELEM_ACCESS_READ,
728 .info = spdif_info,
729 .get = spdif_input_default_get,
730 },
731 {
732 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
733 .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
734 .info = snd_ctl_boolean_mono_info,
735 .get = spdif_loopback_get,
736 .put = spdif_loopback_put,
737 },
738 };
739
740 static const struct snd_kcontrol_new monitor_a_controls[] = {
741 {
742 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
743 .name = "Analog Input Monitor Switch",
744 .info = snd_ctl_boolean_mono_info,
745 .get = monitor_get,
746 .put = monitor_put,
747 .private_value = OXYGEN_ADC_MONITOR_A,
748 },
749 {
750 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
751 .name = "Analog Input Monitor Volume",
752 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
753 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
754 .info = monitor_volume_info,
755 .get = monitor_get,
756 .put = monitor_put,
757 .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL | (1 << 8),
758 .tlv = { .p = monitor_db_scale, },
759 },
760 };
761 static const struct snd_kcontrol_new monitor_b_controls[] = {
762 {
763 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
764 .name = "Analog Input Monitor Switch",
765 .info = snd_ctl_boolean_mono_info,
766 .get = monitor_get,
767 .put = monitor_put,
768 .private_value = OXYGEN_ADC_MONITOR_B,
769 },
770 {
771 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
772 .name = "Analog Input Monitor Volume",
773 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
774 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
775 .info = monitor_volume_info,
776 .get = monitor_get,
777 .put = monitor_put,
778 .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL | (1 << 8),
779 .tlv = { .p = monitor_db_scale, },
780 },
781 };
782 static const struct snd_kcontrol_new monitor_2nd_b_controls[] = {
783 {
784 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
785 .name = "Analog Input Monitor Switch",
786 .index = 1,
787 .info = snd_ctl_boolean_mono_info,
788 .get = monitor_get,
789 .put = monitor_put,
790 .private_value = OXYGEN_ADC_MONITOR_B,
791 },
792 {
793 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
794 .name = "Analog Input Monitor Volume",
795 .index = 1,
796 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
797 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
798 .info = monitor_volume_info,
799 .get = monitor_get,
800 .put = monitor_put,
801 .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL | (1 << 8),
802 .tlv = { .p = monitor_db_scale, },
803 },
804 };
805 static const struct snd_kcontrol_new monitor_c_controls[] = {
806 {
807 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
808 .name = "Digital Input Monitor Switch",
809 .info = snd_ctl_boolean_mono_info,
810 .get = monitor_get,
811 .put = monitor_put,
812 .private_value = OXYGEN_ADC_MONITOR_C,
813 },
814 {
815 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
816 .name = "Digital Input Monitor Volume",
817 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
818 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
819 .info = monitor_volume_info,
820 .get = monitor_get,
821 .put = monitor_put,
822 .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL | (1 << 8),
823 .tlv = { .p = monitor_db_scale, },
824 },
825 };
826
827 static const struct snd_kcontrol_new ac97_controls[] = {
828 AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC),
829 AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
830 AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
831 AC97_VOLUME("Line Capture Volume", 0, AC97_LINE),
832 AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
833 AC97_VOLUME("CD Capture Volume", 0, AC97_CD),
834 AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
835 AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX),
836 AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
837 };
838
839 static const struct snd_kcontrol_new ac97_fp_controls[] = {
840 AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE),
841 AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
842 {
843 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
844 .name = "Front Panel Capture Volume",
845 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
846 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
847 .info = ac97_fp_rec_volume_info,
848 .get = ac97_fp_rec_volume_get,
849 .put = ac97_fp_rec_volume_put,
850 .tlv = { .p = ac97_rec_db_scale, },
851 },
852 AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
853 };
854
855 static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
856 {
857 struct oxygen *chip = ctl->private_data;
858 unsigned int i;
859
860 /* I'm too lazy to write a function for each control :-) */
861 for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
862 chip->controls[i] = NULL;
863 }
864
865 static int add_controls(struct oxygen *chip,
866 const struct snd_kcontrol_new controls[],
867 unsigned int count)
868 {
869 static const char *const known_ctl_names[CONTROL_COUNT] = {
870 [CONTROL_SPDIF_PCM] =
871 SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
872 [CONTROL_SPDIF_INPUT_BITS] =
873 SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
874 [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
875 [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
876 [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
877 [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
878 };
879 unsigned int i, j;
880 struct snd_kcontrol_new template;
881 struct snd_kcontrol *ctl;
882 int err;
883
884 for (i = 0; i < count; ++i) {
885 template = controls[i];
886 err = chip->model->control_filter(&template);
887 if (err < 0)
888 return err;
889 if (err == 1)
890 continue;
891 ctl = snd_ctl_new1(&template, chip);
892 if (!ctl)
893 return -ENOMEM;
894 err = snd_ctl_add(chip->card, ctl);
895 if (err < 0)
896 return err;
897 for (j = 0; j < CONTROL_COUNT; ++j)
898 if (!strcmp(ctl->id.name, known_ctl_names[j])) {
899 chip->controls[j] = ctl;
900 ctl->private_free = oxygen_any_ctl_free;
901 }
902 }
903 return 0;
904 }
905
906 int oxygen_mixer_init(struct oxygen *chip)
907 {
908 int err;
909
910 err = add_controls(chip, controls, ARRAY_SIZE(controls));
911 if (err < 0)
912 return err;
913 if (chip->model->used_channels & OXYGEN_CHANNEL_A) {
914 err = add_controls(chip, monitor_a_controls,
915 ARRAY_SIZE(monitor_a_controls));
916 if (err < 0)
917 return err;
918 } else if (chip->model->used_channels & OXYGEN_CHANNEL_B) {
919 err = add_controls(chip, monitor_b_controls,
920 ARRAY_SIZE(monitor_b_controls));
921 if (err < 0)
922 return err;
923 }
924 if ((chip->model->used_channels & (OXYGEN_CHANNEL_A | OXYGEN_CHANNEL_B))
925 == (OXYGEN_CHANNEL_A | OXYGEN_CHANNEL_B)) {
926 err = add_controls(chip, monitor_2nd_b_controls,
927 ARRAY_SIZE(monitor_2nd_b_controls));
928 if (err < 0)
929 return err;
930 }
931 if (chip->model->used_channels & OXYGEN_CHANNEL_C) {
932 err = add_controls(chip, monitor_c_controls,
933 ARRAY_SIZE(monitor_c_controls));
934 if (err < 0)
935 return err;
936 }
937 if (chip->has_ac97_0) {
938 err = add_controls(chip, ac97_controls,
939 ARRAY_SIZE(ac97_controls));
940 if (err < 0)
941 return err;
942 }
943 if (chip->has_ac97_1) {
944 err = add_controls(chip, ac97_fp_controls,
945 ARRAY_SIZE(ac97_fp_controls));
946 if (err < 0)
947 return err;
948 }
949 return chip->model->mixer_init ? chip->model->mixer_init(chip) : 0;
950 }