Merge branch 'iommu/fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / pci / hda / patch_cirrus.c
1 /*
2 * HD audio interface patch for Cirrus Logic CS420x chip
3 *
4 * Copyright (c) 2009 Takashi Iwai <tiwai@suse.de>
5 *
6 * This driver is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This driver is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/pci.h>
25 #include <linux/module.h>
26 #include <sound/core.h>
27 #include "hda_codec.h"
28 #include "hda_local.h"
29 #include <sound/tlv.h>
30
31 /*
32 */
33
34 struct cs_spec {
35 int board_config;
36 struct auto_pin_cfg autocfg;
37 struct hda_multi_out multiout;
38 struct snd_kcontrol *vmaster_sw;
39 struct snd_kcontrol *vmaster_vol;
40
41 hda_nid_t dac_nid[AUTO_CFG_MAX_OUTS];
42 hda_nid_t slave_dig_outs[2];
43
44 unsigned int input_idx[AUTO_PIN_LAST];
45 unsigned int capsrc_idx[AUTO_PIN_LAST];
46 hda_nid_t adc_nid[AUTO_PIN_LAST];
47 unsigned int adc_idx[AUTO_PIN_LAST];
48 unsigned int num_inputs;
49 unsigned int cur_input;
50 unsigned int automic_idx;
51 hda_nid_t cur_adc;
52 unsigned int cur_adc_stream_tag;
53 unsigned int cur_adc_format;
54 hda_nid_t dig_in;
55
56 const struct hda_bind_ctls *capture_bind[2];
57
58 unsigned int gpio_mask;
59 unsigned int gpio_dir;
60 unsigned int gpio_data;
61 unsigned int gpio_eapd_hp; /* EAPD GPIO bit for headphones */
62 unsigned int gpio_eapd_speaker; /* EAPD GPIO bit for speakers */
63
64 struct hda_pcm pcm_rec[2]; /* PCM information */
65
66 unsigned int hp_detect:1;
67 unsigned int mic_detect:1;
68 /* CS421x */
69 unsigned int spdif_detect:1;
70 unsigned int sense_b:1;
71 hda_nid_t vendor_nid;
72 struct hda_input_mux input_mux;
73 unsigned int last_input;
74 };
75
76 /* available models with CS420x */
77 enum {
78 CS420X_MBP53,
79 CS420X_MBP55,
80 CS420X_IMAC27,
81 CS420X_APPLE,
82 CS420X_AUTO,
83 CS420X_MODELS
84 };
85
86 /* CS421x boards */
87 enum {
88 CS421X_CDB4210,
89 CS421X_MODELS
90 };
91
92 /* Vendor-specific processing widget */
93 #define CS420X_VENDOR_NID 0x11
94 #define CS_DIG_OUT1_PIN_NID 0x10
95 #define CS_DIG_OUT2_PIN_NID 0x15
96 #define CS_DMIC1_PIN_NID 0x12
97 #define CS_DMIC2_PIN_NID 0x0e
98
99 /* coef indices */
100 #define IDX_SPDIF_STAT 0x0000
101 #define IDX_SPDIF_CTL 0x0001
102 #define IDX_ADC_CFG 0x0002
103 /* SZC bitmask, 4 modes below:
104 * 0 = immediate,
105 * 1 = digital immediate, analog zero-cross
106 * 2 = digtail & analog soft-ramp
107 * 3 = digital soft-ramp, analog zero-cross
108 */
109 #define CS_COEF_ADC_SZC_MASK (3 << 0)
110 #define CS_COEF_ADC_MIC_SZC_MODE (3 << 0) /* SZC setup for mic */
111 #define CS_COEF_ADC_LI_SZC_MODE (3 << 0) /* SZC setup for line-in */
112 /* PGA mode: 0 = differential, 1 = signle-ended */
113 #define CS_COEF_ADC_MIC_PGA_MODE (1 << 5) /* PGA setup for mic */
114 #define CS_COEF_ADC_LI_PGA_MODE (1 << 6) /* PGA setup for line-in */
115 #define IDX_DAC_CFG 0x0003
116 /* SZC bitmask, 4 modes below:
117 * 0 = Immediate
118 * 1 = zero-cross
119 * 2 = soft-ramp
120 * 3 = soft-ramp on zero-cross
121 */
122 #define CS_COEF_DAC_HP_SZC_MODE (3 << 0) /* nid 0x02 */
123 #define CS_COEF_DAC_LO_SZC_MODE (3 << 2) /* nid 0x03 */
124 #define CS_COEF_DAC_SPK_SZC_MODE (3 << 4) /* nid 0x04 */
125
126 #define IDX_BEEP_CFG 0x0004
127 /* 0x0008 - test reg key */
128 /* 0x0009 - 0x0014 -> 12 test regs */
129 /* 0x0015 - visibility reg */
130
131 /*
132 * Cirrus Logic CS4210
133 *
134 * 1 DAC => HP(sense) / Speakers,
135 * 1 ADC <= LineIn(sense) / MicIn / DMicIn,
136 * 1 SPDIF OUT => SPDIF Trasmitter(sense)
137 */
138 #define CS4210_DAC_NID 0x02
139 #define CS4210_ADC_NID 0x03
140 #define CS421X_VENDOR_NID 0x0B
141 #define CS421X_DMIC_PIN_NID 0x09 /* Port E */
142 #define CS421X_SPDIF_PIN_NID 0x0A /* Port H */
143
144 #define CS421X_IDX_DEV_CFG 0x01
145 #define CS421X_IDX_ADC_CFG 0x02
146 #define CS421X_IDX_DAC_CFG 0x03
147 #define CS421X_IDX_SPK_CTL 0x04
148
149 #define SPDIF_EVENT 0x04
150
151 static inline int cs_vendor_coef_get(struct hda_codec *codec, unsigned int idx)
152 {
153 struct cs_spec *spec = codec->spec;
154 snd_hda_codec_write(codec, spec->vendor_nid, 0,
155 AC_VERB_SET_COEF_INDEX, idx);
156 return snd_hda_codec_read(codec, spec->vendor_nid, 0,
157 AC_VERB_GET_PROC_COEF, 0);
158 }
159
160 static inline void cs_vendor_coef_set(struct hda_codec *codec, unsigned int idx,
161 unsigned int coef)
162 {
163 struct cs_spec *spec = codec->spec;
164 snd_hda_codec_write(codec, spec->vendor_nid, 0,
165 AC_VERB_SET_COEF_INDEX, idx);
166 snd_hda_codec_write(codec, spec->vendor_nid, 0,
167 AC_VERB_SET_PROC_COEF, coef);
168 }
169
170
171 #define HP_EVENT 1
172 #define MIC_EVENT 2
173
174 /*
175 * PCM callbacks
176 */
177 static int cs_playback_pcm_open(struct hda_pcm_stream *hinfo,
178 struct hda_codec *codec,
179 struct snd_pcm_substream *substream)
180 {
181 struct cs_spec *spec = codec->spec;
182 return snd_hda_multi_out_analog_open(codec, &spec->multiout, substream,
183 hinfo);
184 }
185
186 static int cs_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
187 struct hda_codec *codec,
188 unsigned int stream_tag,
189 unsigned int format,
190 struct snd_pcm_substream *substream)
191 {
192 struct cs_spec *spec = codec->spec;
193 return snd_hda_multi_out_analog_prepare(codec, &spec->multiout,
194 stream_tag, format, substream);
195 }
196
197 static int cs_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
198 struct hda_codec *codec,
199 struct snd_pcm_substream *substream)
200 {
201 struct cs_spec *spec = codec->spec;
202 return snd_hda_multi_out_analog_cleanup(codec, &spec->multiout);
203 }
204
205 /*
206 * Digital out
207 */
208 static int cs_dig_playback_pcm_open(struct hda_pcm_stream *hinfo,
209 struct hda_codec *codec,
210 struct snd_pcm_substream *substream)
211 {
212 struct cs_spec *spec = codec->spec;
213 return snd_hda_multi_out_dig_open(codec, &spec->multiout);
214 }
215
216 static int cs_dig_playback_pcm_close(struct hda_pcm_stream *hinfo,
217 struct hda_codec *codec,
218 struct snd_pcm_substream *substream)
219 {
220 struct cs_spec *spec = codec->spec;
221 return snd_hda_multi_out_dig_close(codec, &spec->multiout);
222 }
223
224 static int cs_dig_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
225 struct hda_codec *codec,
226 unsigned int stream_tag,
227 unsigned int format,
228 struct snd_pcm_substream *substream)
229 {
230 struct cs_spec *spec = codec->spec;
231 return snd_hda_multi_out_dig_prepare(codec, &spec->multiout, stream_tag,
232 format, substream);
233 }
234
235 static int cs_dig_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
236 struct hda_codec *codec,
237 struct snd_pcm_substream *substream)
238 {
239 struct cs_spec *spec = codec->spec;
240 return snd_hda_multi_out_dig_cleanup(codec, &spec->multiout);
241 }
242
243 static void cs_update_input_select(struct hda_codec *codec)
244 {
245 struct cs_spec *spec = codec->spec;
246 if (spec->cur_adc)
247 snd_hda_codec_write(codec, spec->cur_adc, 0,
248 AC_VERB_SET_CONNECT_SEL,
249 spec->adc_idx[spec->cur_input]);
250 }
251
252 /*
253 * Analog capture
254 */
255 static int cs_capture_pcm_prepare(struct hda_pcm_stream *hinfo,
256 struct hda_codec *codec,
257 unsigned int stream_tag,
258 unsigned int format,
259 struct snd_pcm_substream *substream)
260 {
261 struct cs_spec *spec = codec->spec;
262 spec->cur_adc = spec->adc_nid[spec->cur_input];
263 spec->cur_adc_stream_tag = stream_tag;
264 spec->cur_adc_format = format;
265 cs_update_input_select(codec);
266 snd_hda_codec_setup_stream(codec, spec->cur_adc, stream_tag, 0, format);
267 return 0;
268 }
269
270 static int cs_capture_pcm_cleanup(struct hda_pcm_stream *hinfo,
271 struct hda_codec *codec,
272 struct snd_pcm_substream *substream)
273 {
274 struct cs_spec *spec = codec->spec;
275 snd_hda_codec_cleanup_stream(codec, spec->cur_adc);
276 spec->cur_adc = 0;
277 return 0;
278 }
279
280 /*
281 */
282 static const struct hda_pcm_stream cs_pcm_analog_playback = {
283 .substreams = 1,
284 .channels_min = 2,
285 .channels_max = 2,
286 .ops = {
287 .open = cs_playback_pcm_open,
288 .prepare = cs_playback_pcm_prepare,
289 .cleanup = cs_playback_pcm_cleanup
290 },
291 };
292
293 static const struct hda_pcm_stream cs_pcm_analog_capture = {
294 .substreams = 1,
295 .channels_min = 2,
296 .channels_max = 2,
297 .ops = {
298 .prepare = cs_capture_pcm_prepare,
299 .cleanup = cs_capture_pcm_cleanup
300 },
301 };
302
303 static const struct hda_pcm_stream cs_pcm_digital_playback = {
304 .substreams = 1,
305 .channels_min = 2,
306 .channels_max = 2,
307 .ops = {
308 .open = cs_dig_playback_pcm_open,
309 .close = cs_dig_playback_pcm_close,
310 .prepare = cs_dig_playback_pcm_prepare,
311 .cleanup = cs_dig_playback_pcm_cleanup
312 },
313 };
314
315 static const struct hda_pcm_stream cs_pcm_digital_capture = {
316 .substreams = 1,
317 .channels_min = 2,
318 .channels_max = 2,
319 };
320
321 static int cs_build_pcms(struct hda_codec *codec)
322 {
323 struct cs_spec *spec = codec->spec;
324 struct hda_pcm *info = spec->pcm_rec;
325
326 codec->pcm_info = info;
327 codec->num_pcms = 0;
328
329 info->name = "Cirrus Analog";
330 info->stream[SNDRV_PCM_STREAM_PLAYBACK] = cs_pcm_analog_playback;
331 info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->dac_nid[0];
332 info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max =
333 spec->multiout.max_channels;
334 info->stream[SNDRV_PCM_STREAM_CAPTURE] = cs_pcm_analog_capture;
335 info->stream[SNDRV_PCM_STREAM_CAPTURE].nid =
336 spec->adc_nid[spec->cur_input];
337 codec->num_pcms++;
338
339 if (!spec->multiout.dig_out_nid && !spec->dig_in)
340 return 0;
341
342 info++;
343 info->name = "Cirrus Digital";
344 info->pcm_type = spec->autocfg.dig_out_type[0];
345 if (!info->pcm_type)
346 info->pcm_type = HDA_PCM_TYPE_SPDIF;
347 if (spec->multiout.dig_out_nid) {
348 info->stream[SNDRV_PCM_STREAM_PLAYBACK] =
349 cs_pcm_digital_playback;
350 info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid =
351 spec->multiout.dig_out_nid;
352 }
353 if (spec->dig_in) {
354 info->stream[SNDRV_PCM_STREAM_CAPTURE] =
355 cs_pcm_digital_capture;
356 info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->dig_in;
357 }
358 codec->num_pcms++;
359
360 return 0;
361 }
362
363 /*
364 * parse codec topology
365 */
366
367 static hda_nid_t get_dac(struct hda_codec *codec, hda_nid_t pin)
368 {
369 hda_nid_t dac;
370 if (!pin)
371 return 0;
372 if (snd_hda_get_connections(codec, pin, &dac, 1) != 1)
373 return 0;
374 return dac;
375 }
376
377 static int is_ext_mic(struct hda_codec *codec, unsigned int idx)
378 {
379 struct cs_spec *spec = codec->spec;
380 struct auto_pin_cfg *cfg = &spec->autocfg;
381 hda_nid_t pin = cfg->inputs[idx].pin;
382 unsigned int val;
383 if (!is_jack_detectable(codec, pin))
384 return 0;
385 val = snd_hda_codec_get_pincfg(codec, pin);
386 return (snd_hda_get_input_pin_attr(val) != INPUT_PIN_ATTR_INT);
387 }
388
389 static hda_nid_t get_adc(struct hda_codec *codec, hda_nid_t pin,
390 unsigned int *idxp)
391 {
392 int i, idx;
393 hda_nid_t nid;
394
395 nid = codec->start_nid;
396 for (i = 0; i < codec->num_nodes; i++, nid++) {
397 unsigned int type;
398 type = get_wcaps_type(get_wcaps(codec, nid));
399 if (type != AC_WID_AUD_IN)
400 continue;
401 idx = snd_hda_get_conn_index(codec, nid, pin, false);
402 if (idx >= 0) {
403 *idxp = idx;
404 return nid;
405 }
406 }
407 return 0;
408 }
409
410 static int is_active_pin(struct hda_codec *codec, hda_nid_t nid)
411 {
412 unsigned int val;
413 val = snd_hda_codec_get_pincfg(codec, nid);
414 return (get_defcfg_connect(val) != AC_JACK_PORT_NONE);
415 }
416
417 static int parse_output(struct hda_codec *codec)
418 {
419 struct cs_spec *spec = codec->spec;
420 struct auto_pin_cfg *cfg = &spec->autocfg;
421 int i, extra_nids;
422 hda_nid_t dac;
423
424 for (i = 0; i < cfg->line_outs; i++) {
425 dac = get_dac(codec, cfg->line_out_pins[i]);
426 if (!dac)
427 break;
428 spec->dac_nid[i] = dac;
429 }
430 spec->multiout.num_dacs = i;
431 spec->multiout.dac_nids = spec->dac_nid;
432 spec->multiout.max_channels = i * 2;
433
434 /* add HP and speakers */
435 extra_nids = 0;
436 for (i = 0; i < cfg->hp_outs; i++) {
437 dac = get_dac(codec, cfg->hp_pins[i]);
438 if (!dac)
439 break;
440 if (!i)
441 spec->multiout.hp_nid = dac;
442 else
443 spec->multiout.extra_out_nid[extra_nids++] = dac;
444 }
445 for (i = 0; i < cfg->speaker_outs; i++) {
446 dac = get_dac(codec, cfg->speaker_pins[i]);
447 if (!dac)
448 break;
449 spec->multiout.extra_out_nid[extra_nids++] = dac;
450 }
451
452 if (cfg->line_out_type == AUTO_PIN_SPEAKER_OUT) {
453 cfg->speaker_outs = cfg->line_outs;
454 memcpy(cfg->speaker_pins, cfg->line_out_pins,
455 sizeof(cfg->speaker_pins));
456 cfg->line_outs = 0;
457 }
458
459 return 0;
460 }
461
462 static int parse_input(struct hda_codec *codec)
463 {
464 struct cs_spec *spec = codec->spec;
465 struct auto_pin_cfg *cfg = &spec->autocfg;
466 int i;
467
468 for (i = 0; i < cfg->num_inputs; i++) {
469 hda_nid_t pin = cfg->inputs[i].pin;
470 spec->input_idx[spec->num_inputs] = i;
471 spec->capsrc_idx[i] = spec->num_inputs++;
472 spec->cur_input = i;
473 spec->adc_nid[i] = get_adc(codec, pin, &spec->adc_idx[i]);
474 }
475 if (!spec->num_inputs)
476 return 0;
477
478 /* check whether the automatic mic switch is available */
479 if (spec->num_inputs == 2 &&
480 cfg->inputs[0].type == AUTO_PIN_MIC &&
481 cfg->inputs[1].type == AUTO_PIN_MIC) {
482 if (is_ext_mic(codec, cfg->inputs[0].pin)) {
483 if (!is_ext_mic(codec, cfg->inputs[1].pin)) {
484 spec->mic_detect = 1;
485 spec->automic_idx = 0;
486 }
487 } else {
488 if (is_ext_mic(codec, cfg->inputs[1].pin)) {
489 spec->mic_detect = 1;
490 spec->automic_idx = 1;
491 }
492 }
493 }
494 return 0;
495 }
496
497
498 static int parse_digital_output(struct hda_codec *codec)
499 {
500 struct cs_spec *spec = codec->spec;
501 struct auto_pin_cfg *cfg = &spec->autocfg;
502 hda_nid_t nid;
503
504 if (!cfg->dig_outs)
505 return 0;
506 if (snd_hda_get_connections(codec, cfg->dig_out_pins[0], &nid, 1) < 1)
507 return 0;
508 spec->multiout.dig_out_nid = nid;
509 spec->multiout.share_spdif = 1;
510 if (cfg->dig_outs > 1 &&
511 snd_hda_get_connections(codec, cfg->dig_out_pins[1], &nid, 1) > 0) {
512 spec->slave_dig_outs[0] = nid;
513 codec->slave_dig_outs = spec->slave_dig_outs;
514 }
515 return 0;
516 }
517
518 static int parse_digital_input(struct hda_codec *codec)
519 {
520 struct cs_spec *spec = codec->spec;
521 struct auto_pin_cfg *cfg = &spec->autocfg;
522 int idx;
523
524 if (cfg->dig_in_pin)
525 spec->dig_in = get_adc(codec, cfg->dig_in_pin, &idx);
526 return 0;
527 }
528
529 /*
530 * create mixer controls
531 */
532
533 static const char * const dir_sfx[2] = { "Playback", "Capture" };
534
535 static int add_mute(struct hda_codec *codec, const char *name, int index,
536 unsigned int pval, int dir, struct snd_kcontrol **kctlp)
537 {
538 char tmp[44];
539 struct snd_kcontrol_new knew =
540 HDA_CODEC_MUTE_IDX(tmp, index, 0, 0, HDA_OUTPUT);
541 knew.private_value = pval;
542 snprintf(tmp, sizeof(tmp), "%s %s Switch", name, dir_sfx[dir]);
543 *kctlp = snd_ctl_new1(&knew, codec);
544 (*kctlp)->id.subdevice = HDA_SUBDEV_AMP_FLAG;
545 return snd_hda_ctl_add(codec, 0, *kctlp);
546 }
547
548 static int add_volume(struct hda_codec *codec, const char *name,
549 int index, unsigned int pval, int dir,
550 struct snd_kcontrol **kctlp)
551 {
552 char tmp[44];
553 struct snd_kcontrol_new knew =
554 HDA_CODEC_VOLUME_IDX(tmp, index, 0, 0, HDA_OUTPUT);
555 knew.private_value = pval;
556 snprintf(tmp, sizeof(tmp), "%s %s Volume", name, dir_sfx[dir]);
557 *kctlp = snd_ctl_new1(&knew, codec);
558 (*kctlp)->id.subdevice = HDA_SUBDEV_AMP_FLAG;
559 return snd_hda_ctl_add(codec, 0, *kctlp);
560 }
561
562 static void fix_volume_caps(struct hda_codec *codec, hda_nid_t dac)
563 {
564 unsigned int caps;
565
566 /* set the upper-limit for mixer amp to 0dB */
567 caps = query_amp_caps(codec, dac, HDA_OUTPUT);
568 caps &= ~(0x7f << AC_AMPCAP_NUM_STEPS_SHIFT);
569 caps |= ((caps >> AC_AMPCAP_OFFSET_SHIFT) & 0x7f)
570 << AC_AMPCAP_NUM_STEPS_SHIFT;
571 snd_hda_override_amp_caps(codec, dac, HDA_OUTPUT, caps);
572 }
573
574 static int add_vmaster(struct hda_codec *codec, hda_nid_t dac)
575 {
576 struct cs_spec *spec = codec->spec;
577 unsigned int tlv[4];
578 int err;
579
580 spec->vmaster_sw =
581 snd_ctl_make_virtual_master("Master Playback Switch", NULL);
582 err = snd_hda_ctl_add(codec, dac, spec->vmaster_sw);
583 if (err < 0)
584 return err;
585
586 snd_hda_set_vmaster_tlv(codec, dac, HDA_OUTPUT, tlv);
587 spec->vmaster_vol =
588 snd_ctl_make_virtual_master("Master Playback Volume", tlv);
589 err = snd_hda_ctl_add(codec, dac, spec->vmaster_vol);
590 if (err < 0)
591 return err;
592 return 0;
593 }
594
595 static int add_output(struct hda_codec *codec, hda_nid_t dac, int idx,
596 int num_ctls, int type)
597 {
598 struct cs_spec *spec = codec->spec;
599 const char *name;
600 int err, index;
601 struct snd_kcontrol *kctl;
602 static const char * const speakers[] = {
603 "Front Speaker", "Surround Speaker", "Bass Speaker"
604 };
605 static const char * const line_outs[] = {
606 "Front Line-Out", "Surround Line-Out", "Bass Line-Out"
607 };
608
609 fix_volume_caps(codec, dac);
610 if (!spec->vmaster_sw) {
611 err = add_vmaster(codec, dac);
612 if (err < 0)
613 return err;
614 }
615
616 index = 0;
617 switch (type) {
618 case AUTO_PIN_HP_OUT:
619 name = "Headphone";
620 index = idx;
621 break;
622 case AUTO_PIN_SPEAKER_OUT:
623 if (num_ctls > 1)
624 name = speakers[idx];
625 else
626 name = "Speaker";
627 break;
628 default:
629 if (num_ctls > 1)
630 name = line_outs[idx];
631 else
632 name = "Line-Out";
633 break;
634 }
635
636 err = add_mute(codec, name, index,
637 HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl);
638 if (err < 0)
639 return err;
640 err = snd_ctl_add_slave(spec->vmaster_sw, kctl);
641 if (err < 0)
642 return err;
643
644 err = add_volume(codec, name, index,
645 HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl);
646 if (err < 0)
647 return err;
648 err = snd_ctl_add_slave(spec->vmaster_vol, kctl);
649 if (err < 0)
650 return err;
651
652 return 0;
653 }
654
655 static int build_output(struct hda_codec *codec)
656 {
657 struct cs_spec *spec = codec->spec;
658 struct auto_pin_cfg *cfg = &spec->autocfg;
659 int i, err;
660
661 for (i = 0; i < cfg->line_outs; i++) {
662 err = add_output(codec, get_dac(codec, cfg->line_out_pins[i]),
663 i, cfg->line_outs, cfg->line_out_type);
664 if (err < 0)
665 return err;
666 }
667 for (i = 0; i < cfg->hp_outs; i++) {
668 err = add_output(codec, get_dac(codec, cfg->hp_pins[i]),
669 i, cfg->hp_outs, AUTO_PIN_HP_OUT);
670 if (err < 0)
671 return err;
672 }
673 for (i = 0; i < cfg->speaker_outs; i++) {
674 err = add_output(codec, get_dac(codec, cfg->speaker_pins[i]),
675 i, cfg->speaker_outs, AUTO_PIN_SPEAKER_OUT);
676 if (err < 0)
677 return err;
678 }
679 return 0;
680 }
681
682 /*
683 */
684
685 static const struct snd_kcontrol_new cs_capture_ctls[] = {
686 HDA_BIND_SW("Capture Switch", 0),
687 HDA_BIND_VOL("Capture Volume", 0),
688 };
689
690 static int change_cur_input(struct hda_codec *codec, unsigned int idx,
691 int force)
692 {
693 struct cs_spec *spec = codec->spec;
694
695 if (spec->cur_input == idx && !force)
696 return 0;
697 if (spec->cur_adc && spec->cur_adc != spec->adc_nid[idx]) {
698 /* stream is running, let's swap the current ADC */
699 __snd_hda_codec_cleanup_stream(codec, spec->cur_adc, 1);
700 spec->cur_adc = spec->adc_nid[idx];
701 snd_hda_codec_setup_stream(codec, spec->cur_adc,
702 spec->cur_adc_stream_tag, 0,
703 spec->cur_adc_format);
704 }
705 spec->cur_input = idx;
706 cs_update_input_select(codec);
707 return 1;
708 }
709
710 static int cs_capture_source_info(struct snd_kcontrol *kcontrol,
711 struct snd_ctl_elem_info *uinfo)
712 {
713 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
714 struct cs_spec *spec = codec->spec;
715 struct auto_pin_cfg *cfg = &spec->autocfg;
716 unsigned int idx;
717
718 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
719 uinfo->count = 1;
720 uinfo->value.enumerated.items = spec->num_inputs;
721 if (uinfo->value.enumerated.item >= spec->num_inputs)
722 uinfo->value.enumerated.item = spec->num_inputs - 1;
723 idx = spec->input_idx[uinfo->value.enumerated.item];
724 strcpy(uinfo->value.enumerated.name,
725 hda_get_input_pin_label(codec, cfg->inputs[idx].pin, 1));
726 return 0;
727 }
728
729 static int cs_capture_source_get(struct snd_kcontrol *kcontrol,
730 struct snd_ctl_elem_value *ucontrol)
731 {
732 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
733 struct cs_spec *spec = codec->spec;
734 ucontrol->value.enumerated.item[0] = spec->capsrc_idx[spec->cur_input];
735 return 0;
736 }
737
738 static int cs_capture_source_put(struct snd_kcontrol *kcontrol,
739 struct snd_ctl_elem_value *ucontrol)
740 {
741 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
742 struct cs_spec *spec = codec->spec;
743 unsigned int idx = ucontrol->value.enumerated.item[0];
744
745 if (idx >= spec->num_inputs)
746 return -EINVAL;
747 idx = spec->input_idx[idx];
748 return change_cur_input(codec, idx, 0);
749 }
750
751 static const struct snd_kcontrol_new cs_capture_source = {
752 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
753 .name = "Capture Source",
754 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
755 .info = cs_capture_source_info,
756 .get = cs_capture_source_get,
757 .put = cs_capture_source_put,
758 };
759
760 static const struct hda_bind_ctls *make_bind_capture(struct hda_codec *codec,
761 struct hda_ctl_ops *ops)
762 {
763 struct cs_spec *spec = codec->spec;
764 struct hda_bind_ctls *bind;
765 int i, n;
766
767 bind = kzalloc(sizeof(*bind) + sizeof(long) * (spec->num_inputs + 1),
768 GFP_KERNEL);
769 if (!bind)
770 return NULL;
771 bind->ops = ops;
772 n = 0;
773 for (i = 0; i < AUTO_PIN_LAST; i++) {
774 if (!spec->adc_nid[i])
775 continue;
776 bind->values[n++] =
777 HDA_COMPOSE_AMP_VAL(spec->adc_nid[i], 3,
778 spec->adc_idx[i], HDA_INPUT);
779 }
780 return bind;
781 }
782
783 /* add a (input-boost) volume control to the given input pin */
784 static int add_input_volume_control(struct hda_codec *codec,
785 struct auto_pin_cfg *cfg,
786 int item)
787 {
788 hda_nid_t pin = cfg->inputs[item].pin;
789 u32 caps;
790 const char *label;
791 struct snd_kcontrol *kctl;
792
793 if (!(get_wcaps(codec, pin) & AC_WCAP_IN_AMP))
794 return 0;
795 caps = query_amp_caps(codec, pin, HDA_INPUT);
796 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
797 if (caps <= 1)
798 return 0;
799 label = hda_get_autocfg_input_label(codec, cfg, item);
800 return add_volume(codec, label, 0,
801 HDA_COMPOSE_AMP_VAL(pin, 3, 0, HDA_INPUT), 1, &kctl);
802 }
803
804 static int build_input(struct hda_codec *codec)
805 {
806 struct cs_spec *spec = codec->spec;
807 int i, err;
808
809 if (!spec->num_inputs)
810 return 0;
811
812 /* make bind-capture */
813 spec->capture_bind[0] = make_bind_capture(codec, &snd_hda_bind_sw);
814 spec->capture_bind[1] = make_bind_capture(codec, &snd_hda_bind_vol);
815 for (i = 0; i < 2; i++) {
816 struct snd_kcontrol *kctl;
817 int n;
818 if (!spec->capture_bind[i])
819 return -ENOMEM;
820 kctl = snd_ctl_new1(&cs_capture_ctls[i], codec);
821 if (!kctl)
822 return -ENOMEM;
823 kctl->private_value = (long)spec->capture_bind[i];
824 err = snd_hda_ctl_add(codec, 0, kctl);
825 if (err < 0)
826 return err;
827 for (n = 0; n < AUTO_PIN_LAST; n++) {
828 if (!spec->adc_nid[n])
829 continue;
830 err = snd_hda_add_nid(codec, kctl, 0, spec->adc_nid[n]);
831 if (err < 0)
832 return err;
833 }
834 }
835
836 if (spec->num_inputs > 1 && !spec->mic_detect) {
837 err = snd_hda_ctl_add(codec, 0,
838 snd_ctl_new1(&cs_capture_source, codec));
839 if (err < 0)
840 return err;
841 }
842
843 for (i = 0; i < spec->num_inputs; i++) {
844 err = add_input_volume_control(codec, &spec->autocfg, i);
845 if (err < 0)
846 return err;
847 }
848
849 return 0;
850 }
851
852 /*
853 */
854
855 static int build_digital_output(struct hda_codec *codec)
856 {
857 struct cs_spec *spec = codec->spec;
858 int err;
859
860 if (!spec->multiout.dig_out_nid)
861 return 0;
862
863 err = snd_hda_create_spdif_out_ctls(codec, spec->multiout.dig_out_nid,
864 spec->multiout.dig_out_nid);
865 if (err < 0)
866 return err;
867 err = snd_hda_create_spdif_share_sw(codec, &spec->multiout);
868 if (err < 0)
869 return err;
870 return 0;
871 }
872
873 static int build_digital_input(struct hda_codec *codec)
874 {
875 struct cs_spec *spec = codec->spec;
876 if (spec->dig_in)
877 return snd_hda_create_spdif_in_ctls(codec, spec->dig_in);
878 return 0;
879 }
880
881 /*
882 * auto-mute and auto-mic switching
883 * CS421x auto-output redirecting
884 * HP/SPK/SPDIF
885 */
886
887 static void cs_automute(struct hda_codec *codec)
888 {
889 struct cs_spec *spec = codec->spec;
890 struct auto_pin_cfg *cfg = &spec->autocfg;
891 unsigned int hp_present;
892 unsigned int spdif_present;
893 hda_nid_t nid;
894 int i;
895
896 spdif_present = 0;
897 if (cfg->dig_outs) {
898 nid = cfg->dig_out_pins[0];
899 if (is_jack_detectable(codec, nid)) {
900 /*
901 TODO: SPDIF output redirect when SENSE_B is enabled.
902 Shared (SENSE_A) jack (e.g HP/mini-TOSLINK)
903 assumed.
904 */
905 if (snd_hda_jack_detect(codec, nid)
906 /* && spec->sense_b */)
907 spdif_present = 1;
908 }
909 }
910
911 hp_present = 0;
912 for (i = 0; i < cfg->hp_outs; i++) {
913 nid = cfg->hp_pins[i];
914 if (!is_jack_detectable(codec, nid))
915 continue;
916 hp_present = snd_hda_jack_detect(codec, nid);
917 if (hp_present)
918 break;
919 }
920
921 /* mute speakers if spdif or hp jack is plugged in */
922 for (i = 0; i < cfg->speaker_outs; i++) {
923 nid = cfg->speaker_pins[i];
924 snd_hda_codec_write(codec, nid, 0,
925 AC_VERB_SET_PIN_WIDGET_CONTROL,
926 hp_present ? 0 : PIN_OUT);
927 /* detect on spdif is specific to CS421x */
928 if (spec->vendor_nid == CS421X_VENDOR_NID) {
929 snd_hda_codec_write(codec, nid, 0,
930 AC_VERB_SET_PIN_WIDGET_CONTROL,
931 spdif_present ? 0 : PIN_OUT);
932 }
933 }
934 if (spec->gpio_eapd_hp) {
935 unsigned int gpio = hp_present ?
936 spec->gpio_eapd_hp : spec->gpio_eapd_speaker;
937 snd_hda_codec_write(codec, 0x01, 0,
938 AC_VERB_SET_GPIO_DATA, gpio);
939 }
940
941 /* specific to CS421x */
942 if (spec->vendor_nid == CS421X_VENDOR_NID) {
943 /* mute HPs if spdif jack (SENSE_B) is present */
944 for (i = 0; i < cfg->hp_outs; i++) {
945 nid = cfg->hp_pins[i];
946 snd_hda_codec_write(codec, nid, 0,
947 AC_VERB_SET_PIN_WIDGET_CONTROL,
948 (spdif_present && spec->sense_b) ? 0 : PIN_HP);
949 }
950
951 /* SPDIF TX on/off */
952 if (cfg->dig_outs) {
953 nid = cfg->dig_out_pins[0];
954 snd_hda_codec_write(codec, nid, 0,
955 AC_VERB_SET_PIN_WIDGET_CONTROL,
956 spdif_present ? PIN_OUT : 0);
957
958 }
959 /* Update board GPIOs if neccessary ... */
960 }
961 }
962
963 /*
964 * Auto-input redirect for CS421x
965 * Switch max 3 inputs of a single ADC (nid 3)
966 */
967
968 static void cs_automic(struct hda_codec *codec)
969 {
970 struct cs_spec *spec = codec->spec;
971 struct auto_pin_cfg *cfg = &spec->autocfg;
972 hda_nid_t nid;
973 unsigned int present;
974
975 nid = cfg->inputs[spec->automic_idx].pin;
976 present = snd_hda_jack_detect(codec, nid);
977
978 /* specific to CS421x, single ADC */
979 if (spec->vendor_nid == CS421X_VENDOR_NID) {
980 if (present) {
981 spec->last_input = spec->cur_input;
982 spec->cur_input = spec->automic_idx;
983 } else {
984 spec->cur_input = spec->last_input;
985 }
986 cs_update_input_select(codec);
987 } else {
988 if (present)
989 change_cur_input(codec, spec->automic_idx, 0);
990 else
991 change_cur_input(codec, !spec->automic_idx, 0);
992 }
993 }
994
995 /*
996 */
997
998 static void init_output(struct hda_codec *codec)
999 {
1000 struct cs_spec *spec = codec->spec;
1001 struct auto_pin_cfg *cfg = &spec->autocfg;
1002 int i;
1003
1004 /* mute first */
1005 for (i = 0; i < spec->multiout.num_dacs; i++)
1006 snd_hda_codec_write(codec, spec->multiout.dac_nids[i], 0,
1007 AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_MUTE);
1008 if (spec->multiout.hp_nid)
1009 snd_hda_codec_write(codec, spec->multiout.hp_nid, 0,
1010 AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_MUTE);
1011 for (i = 0; i < ARRAY_SIZE(spec->multiout.extra_out_nid); i++) {
1012 if (!spec->multiout.extra_out_nid[i])
1013 break;
1014 snd_hda_codec_write(codec, spec->multiout.extra_out_nid[i], 0,
1015 AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_MUTE);
1016 }
1017
1018 /* set appropriate pin controls */
1019 for (i = 0; i < cfg->line_outs; i++)
1020 snd_hda_codec_write(codec, cfg->line_out_pins[i], 0,
1021 AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_OUT);
1022 /* HP */
1023 for (i = 0; i < cfg->hp_outs; i++) {
1024 hda_nid_t nid = cfg->hp_pins[i];
1025 snd_hda_codec_write(codec, nid, 0,
1026 AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_HP);
1027 if (!cfg->speaker_outs)
1028 continue;
1029 if (get_wcaps(codec, nid) & AC_WCAP_UNSOL_CAP) {
1030 snd_hda_codec_write(codec, nid, 0,
1031 AC_VERB_SET_UNSOLICITED_ENABLE,
1032 AC_USRSP_EN | HP_EVENT);
1033 spec->hp_detect = 1;
1034 }
1035 }
1036
1037 /* Speaker */
1038 for (i = 0; i < cfg->speaker_outs; i++)
1039 snd_hda_codec_write(codec, cfg->speaker_pins[i], 0,
1040 AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_OUT);
1041
1042 /* SPDIF is enabled on presence detect for CS421x */
1043 if (spec->hp_detect || spec->spdif_detect)
1044 cs_automute(codec);
1045 }
1046
1047 static void init_input(struct hda_codec *codec)
1048 {
1049 struct cs_spec *spec = codec->spec;
1050 struct auto_pin_cfg *cfg = &spec->autocfg;
1051 unsigned int coef;
1052 int i;
1053
1054 for (i = 0; i < cfg->num_inputs; i++) {
1055 unsigned int ctl;
1056 hda_nid_t pin = cfg->inputs[i].pin;
1057 if (!spec->adc_nid[i])
1058 continue;
1059 /* set appropriate pin control and mute first */
1060 ctl = PIN_IN;
1061 if (cfg->inputs[i].type == AUTO_PIN_MIC) {
1062 unsigned int caps = snd_hda_query_pin_caps(codec, pin);
1063 caps >>= AC_PINCAP_VREF_SHIFT;
1064 if (caps & AC_PINCAP_VREF_80)
1065 ctl = PIN_VREF80;
1066 }
1067 snd_hda_codec_write(codec, pin, 0,
1068 AC_VERB_SET_PIN_WIDGET_CONTROL, ctl);
1069 snd_hda_codec_write(codec, spec->adc_nid[i], 0,
1070 AC_VERB_SET_AMP_GAIN_MUTE,
1071 AMP_IN_MUTE(spec->adc_idx[i]));
1072 if (spec->mic_detect && spec->automic_idx == i)
1073 snd_hda_codec_write(codec, pin, 0,
1074 AC_VERB_SET_UNSOLICITED_ENABLE,
1075 AC_USRSP_EN | MIC_EVENT);
1076 }
1077 /* specific to CS421x */
1078 if (spec->vendor_nid == CS421X_VENDOR_NID) {
1079 if (spec->mic_detect)
1080 cs_automic(codec);
1081 else {
1082 spec->cur_adc = spec->adc_nid[spec->cur_input];
1083 cs_update_input_select(codec);
1084 }
1085 } else {
1086 change_cur_input(codec, spec->cur_input, 1);
1087 if (spec->mic_detect)
1088 cs_automic(codec);
1089
1090 coef = 0x000a; /* ADC1/2 - Digital and Analog Soft Ramp */
1091 if (is_active_pin(codec, CS_DMIC2_PIN_NID))
1092 coef |= 0x0500; /* DMIC2 2 chan on, GPIO1 off */
1093 if (is_active_pin(codec, CS_DMIC1_PIN_NID))
1094 coef |= 0x1800; /* DMIC1 2 chan on, GPIO0 off
1095 * No effect if SPDIF_OUT2 is
1096 * selected in IDX_SPDIF_CTL.
1097 */
1098 cs_vendor_coef_set(codec, IDX_ADC_CFG, coef);
1099 }
1100 }
1101
1102 static const struct hda_verb cs_coef_init_verbs[] = {
1103 {0x11, AC_VERB_SET_PROC_STATE, 1},
1104 {0x11, AC_VERB_SET_COEF_INDEX, IDX_DAC_CFG},
1105 {0x11, AC_VERB_SET_PROC_COEF,
1106 (0x002a /* DAC1/2/3 SZCMode Soft Ramp */
1107 | 0x0040 /* Mute DACs on FIFO error */
1108 | 0x1000 /* Enable DACs High Pass Filter */
1109 | 0x0400 /* Disable Coefficient Auto increment */
1110 )},
1111 /* Beep */
1112 {0x11, AC_VERB_SET_COEF_INDEX, IDX_DAC_CFG},
1113 {0x11, AC_VERB_SET_PROC_COEF, 0x0007}, /* Enable Beep thru DAC1/2/3 */
1114
1115 {} /* terminator */
1116 };
1117
1118 /* Errata: CS4207 rev C0/C1/C2 Silicon
1119 *
1120 * http://www.cirrus.com/en/pubs/errata/ER880C3.pdf
1121 *
1122 * 6. At high temperature (TA > +85°C), the digital supply current (IVD)
1123 * may be excessive (up to an additional 200 μA), which is most easily
1124 * observed while the part is being held in reset (RESET# active low).
1125 *
1126 * Root Cause: At initial powerup of the device, the logic that drives
1127 * the clock and write enable to the S/PDIF SRC RAMs is not properly
1128 * initialized.
1129 * Certain random patterns will cause a steady leakage current in those
1130 * RAM cells. The issue will resolve once the SRCs are used (turned on).
1131 *
1132 * Workaround: The following verb sequence briefly turns on the S/PDIF SRC
1133 * blocks, which will alleviate the issue.
1134 */
1135
1136 static const struct hda_verb cs_errata_init_verbs[] = {
1137 {0x01, AC_VERB_SET_POWER_STATE, 0x00}, /* AFG: D0 */
1138 {0x11, AC_VERB_SET_PROC_STATE, 0x01}, /* VPW: processing on */
1139
1140 {0x11, AC_VERB_SET_COEF_INDEX, 0x0008},
1141 {0x11, AC_VERB_SET_PROC_COEF, 0x9999},
1142 {0x11, AC_VERB_SET_COEF_INDEX, 0x0017},
1143 {0x11, AC_VERB_SET_PROC_COEF, 0xa412},
1144 {0x11, AC_VERB_SET_COEF_INDEX, 0x0001},
1145 {0x11, AC_VERB_SET_PROC_COEF, 0x0009},
1146
1147 {0x07, AC_VERB_SET_POWER_STATE, 0x00}, /* S/PDIF Rx: D0 */
1148 {0x08, AC_VERB_SET_POWER_STATE, 0x00}, /* S/PDIF Tx: D0 */
1149
1150 {0x11, AC_VERB_SET_COEF_INDEX, 0x0017},
1151 {0x11, AC_VERB_SET_PROC_COEF, 0x2412},
1152 {0x11, AC_VERB_SET_COEF_INDEX, 0x0008},
1153 {0x11, AC_VERB_SET_PROC_COEF, 0x0000},
1154 {0x11, AC_VERB_SET_COEF_INDEX, 0x0001},
1155 {0x11, AC_VERB_SET_PROC_COEF, 0x0008},
1156 {0x11, AC_VERB_SET_PROC_STATE, 0x00},
1157
1158 #if 0 /* Don't to set to D3 as we are in power-up sequence */
1159 {0x07, AC_VERB_SET_POWER_STATE, 0x03}, /* S/PDIF Rx: D3 */
1160 {0x08, AC_VERB_SET_POWER_STATE, 0x03}, /* S/PDIF Tx: D3 */
1161 /*{0x01, AC_VERB_SET_POWER_STATE, 0x03},*/ /* AFG: D3 This is already handled */
1162 #endif
1163
1164 {} /* terminator */
1165 };
1166
1167 /* SPDIF setup */
1168 static void init_digital(struct hda_codec *codec)
1169 {
1170 unsigned int coef;
1171
1172 coef = 0x0002; /* SRC_MUTE soft-mute on SPDIF (if no lock) */
1173 coef |= 0x0008; /* Replace with mute on error */
1174 if (is_active_pin(codec, CS_DIG_OUT2_PIN_NID))
1175 coef |= 0x4000; /* RX to TX1 or TX2 Loopthru / SPDIF2
1176 * SPDIF_OUT2 is shared with GPIO1 and
1177 * DMIC_SDA2.
1178 */
1179 cs_vendor_coef_set(codec, IDX_SPDIF_CTL, coef);
1180 }
1181
1182 static int cs_init(struct hda_codec *codec)
1183 {
1184 struct cs_spec *spec = codec->spec;
1185
1186 /* init_verb sequence for C0/C1/C2 errata*/
1187 snd_hda_sequence_write(codec, cs_errata_init_verbs);
1188
1189 snd_hda_sequence_write(codec, cs_coef_init_verbs);
1190
1191 if (spec->gpio_mask) {
1192 snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_MASK,
1193 spec->gpio_mask);
1194 snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DIRECTION,
1195 spec->gpio_dir);
1196 snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA,
1197 spec->gpio_data);
1198 }
1199
1200 init_output(codec);
1201 init_input(codec);
1202 init_digital(codec);
1203 return 0;
1204 }
1205
1206 static int cs_build_controls(struct hda_codec *codec)
1207 {
1208 int err;
1209
1210 err = build_output(codec);
1211 if (err < 0)
1212 return err;
1213 err = build_input(codec);
1214 if (err < 0)
1215 return err;
1216 err = build_digital_output(codec);
1217 if (err < 0)
1218 return err;
1219 err = build_digital_input(codec);
1220 if (err < 0)
1221 return err;
1222 return cs_init(codec);
1223 }
1224
1225 static void cs_free(struct hda_codec *codec)
1226 {
1227 struct cs_spec *spec = codec->spec;
1228 kfree(spec->capture_bind[0]);
1229 kfree(spec->capture_bind[1]);
1230 kfree(codec->spec);
1231 }
1232
1233 static void cs_unsol_event(struct hda_codec *codec, unsigned int res)
1234 {
1235 switch ((res >> 26) & 0x7f) {
1236 case HP_EVENT:
1237 cs_automute(codec);
1238 break;
1239 case MIC_EVENT:
1240 cs_automic(codec);
1241 break;
1242 }
1243 }
1244
1245 static const struct hda_codec_ops cs_patch_ops = {
1246 .build_controls = cs_build_controls,
1247 .build_pcms = cs_build_pcms,
1248 .init = cs_init,
1249 .free = cs_free,
1250 .unsol_event = cs_unsol_event,
1251 };
1252
1253 static int cs_parse_auto_config(struct hda_codec *codec)
1254 {
1255 struct cs_spec *spec = codec->spec;
1256 int err;
1257
1258 err = snd_hda_parse_pin_def_config(codec, &spec->autocfg, NULL);
1259 if (err < 0)
1260 return err;
1261
1262 err = parse_output(codec);
1263 if (err < 0)
1264 return err;
1265 err = parse_input(codec);
1266 if (err < 0)
1267 return err;
1268 err = parse_digital_output(codec);
1269 if (err < 0)
1270 return err;
1271 err = parse_digital_input(codec);
1272 if (err < 0)
1273 return err;
1274 return 0;
1275 }
1276
1277 static const char * const cs420x_models[CS420X_MODELS] = {
1278 [CS420X_MBP53] = "mbp53",
1279 [CS420X_MBP55] = "mbp55",
1280 [CS420X_IMAC27] = "imac27",
1281 [CS420X_APPLE] = "apple",
1282 [CS420X_AUTO] = "auto",
1283 };
1284
1285
1286 static const struct snd_pci_quirk cs420x_cfg_tbl[] = {
1287 SND_PCI_QUIRK(0x10de, 0x0ac0, "MacBookPro 5,3", CS420X_MBP53),
1288 SND_PCI_QUIRK(0x10de, 0x0d94, "MacBookAir 3,1(2)", CS420X_MBP55),
1289 SND_PCI_QUIRK(0x10de, 0xcb79, "MacBookPro 5,5", CS420X_MBP55),
1290 SND_PCI_QUIRK(0x10de, 0xcb89, "MacBookPro 7,1", CS420X_MBP55),
1291 /* this conflicts with too many other models */
1292 /*SND_PCI_QUIRK(0x8086, 0x7270, "IMac 27 Inch", CS420X_IMAC27),*/
1293 {} /* terminator */
1294 };
1295
1296 static const struct snd_pci_quirk cs420x_codec_cfg_tbl[] = {
1297 SND_PCI_QUIRK_VENDOR(0x106b, "Apple", CS420X_APPLE),
1298 {} /* terminator */
1299 };
1300
1301 struct cs_pincfg {
1302 hda_nid_t nid;
1303 u32 val;
1304 };
1305
1306 static const struct cs_pincfg mbp53_pincfgs[] = {
1307 { 0x09, 0x012b4050 },
1308 { 0x0a, 0x90100141 },
1309 { 0x0b, 0x90100140 },
1310 { 0x0c, 0x018b3020 },
1311 { 0x0d, 0x90a00110 },
1312 { 0x0e, 0x400000f0 },
1313 { 0x0f, 0x01cbe030 },
1314 { 0x10, 0x014be060 },
1315 { 0x12, 0x400000f0 },
1316 { 0x15, 0x400000f0 },
1317 {} /* terminator */
1318 };
1319
1320 static const struct cs_pincfg mbp55_pincfgs[] = {
1321 { 0x09, 0x012b4030 },
1322 { 0x0a, 0x90100121 },
1323 { 0x0b, 0x90100120 },
1324 { 0x0c, 0x400000f0 },
1325 { 0x0d, 0x90a00110 },
1326 { 0x0e, 0x400000f0 },
1327 { 0x0f, 0x400000f0 },
1328 { 0x10, 0x014be040 },
1329 { 0x12, 0x400000f0 },
1330 { 0x15, 0x400000f0 },
1331 {} /* terminator */
1332 };
1333
1334 static const struct cs_pincfg imac27_pincfgs[] = {
1335 { 0x09, 0x012b4050 },
1336 { 0x0a, 0x90100140 },
1337 { 0x0b, 0x90100142 },
1338 { 0x0c, 0x018b3020 },
1339 { 0x0d, 0x90a00110 },
1340 { 0x0e, 0x400000f0 },
1341 { 0x0f, 0x01cbe030 },
1342 { 0x10, 0x014be060 },
1343 { 0x12, 0x01ab9070 },
1344 { 0x15, 0x400000f0 },
1345 {} /* terminator */
1346 };
1347
1348 static const struct cs_pincfg *cs_pincfgs[CS420X_MODELS] = {
1349 [CS420X_MBP53] = mbp53_pincfgs,
1350 [CS420X_MBP55] = mbp55_pincfgs,
1351 [CS420X_IMAC27] = imac27_pincfgs,
1352 };
1353
1354 static void fix_pincfg(struct hda_codec *codec, int model,
1355 const struct cs_pincfg **pin_configs)
1356 {
1357 const struct cs_pincfg *cfg = pin_configs[model];
1358 if (!cfg)
1359 return;
1360 for (; cfg->nid; cfg++)
1361 snd_hda_codec_set_pincfg(codec, cfg->nid, cfg->val);
1362 }
1363
1364 static int patch_cs420x(struct hda_codec *codec)
1365 {
1366 struct cs_spec *spec;
1367 int err;
1368
1369 spec = kzalloc(sizeof(*spec), GFP_KERNEL);
1370 if (!spec)
1371 return -ENOMEM;
1372 codec->spec = spec;
1373
1374 spec->vendor_nid = CS420X_VENDOR_NID;
1375
1376 spec->board_config =
1377 snd_hda_check_board_config(codec, CS420X_MODELS,
1378 cs420x_models, cs420x_cfg_tbl);
1379 if (spec->board_config < 0)
1380 spec->board_config =
1381 snd_hda_check_board_codec_sid_config(codec,
1382 CS420X_MODELS, NULL, cs420x_codec_cfg_tbl);
1383 if (spec->board_config >= 0)
1384 fix_pincfg(codec, spec->board_config, cs_pincfgs);
1385
1386 switch (spec->board_config) {
1387 case CS420X_IMAC27:
1388 case CS420X_MBP53:
1389 case CS420X_MBP55:
1390 case CS420X_APPLE:
1391 spec->gpio_eapd_hp = 2; /* GPIO1 = headphones */
1392 spec->gpio_eapd_speaker = 8; /* GPIO3 = speakers */
1393 spec->gpio_mask = spec->gpio_dir =
1394 spec->gpio_eapd_hp | spec->gpio_eapd_speaker;
1395 break;
1396 }
1397
1398 err = cs_parse_auto_config(codec);
1399 if (err < 0)
1400 goto error;
1401
1402 codec->patch_ops = cs_patch_ops;
1403
1404 return 0;
1405
1406 error:
1407 kfree(codec->spec);
1408 codec->spec = NULL;
1409 return err;
1410 }
1411
1412 /*
1413 * Cirrus Logic CS4210
1414 *
1415 * 1 DAC => HP(sense) / Speakers,
1416 * 1 ADC <= LineIn(sense) / MicIn / DMicIn,
1417 * 1 SPDIF OUT => SPDIF Trasmitter(sense)
1418 */
1419
1420 /* CS4210 board names */
1421 static const char *cs421x_models[CS421X_MODELS] = {
1422 [CS421X_CDB4210] = "cdb4210",
1423 };
1424
1425 static const struct snd_pci_quirk cs421x_cfg_tbl[] = {
1426 /* Test Intel board + CDB2410 */
1427 SND_PCI_QUIRK(0x8086, 0x5001, "DP45SG/CDB4210", CS421X_CDB4210),
1428 {} /* terminator */
1429 };
1430
1431 /* CS4210 board pinconfigs */
1432 /* Default CS4210 (CDB4210)*/
1433 static const struct cs_pincfg cdb4210_pincfgs[] = {
1434 { 0x05, 0x0321401f },
1435 { 0x06, 0x90170010 },
1436 { 0x07, 0x03813031 },
1437 { 0x08, 0xb7a70037 },
1438 { 0x09, 0xb7a6003e },
1439 { 0x0a, 0x034510f0 },
1440 {} /* terminator */
1441 };
1442
1443 static const struct cs_pincfg *cs421x_pincfgs[CS421X_MODELS] = {
1444 [CS421X_CDB4210] = cdb4210_pincfgs,
1445 };
1446
1447 static const struct hda_verb cs421x_coef_init_verbs[] = {
1448 {0x0B, AC_VERB_SET_PROC_STATE, 1},
1449 {0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_DEV_CFG},
1450 /*
1451 Disable Coefficient Index Auto-Increment(DAI)=1,
1452 PDREF=0
1453 */
1454 {0x0B, AC_VERB_SET_PROC_COEF, 0x0001 },
1455
1456 {0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_ADC_CFG},
1457 /* ADC SZCMode = Digital Soft Ramp */
1458 {0x0B, AC_VERB_SET_PROC_COEF, 0x0002 },
1459
1460 {0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_DAC_CFG},
1461 {0x0B, AC_VERB_SET_PROC_COEF,
1462 (0x0002 /* DAC SZCMode = Digital Soft Ramp */
1463 | 0x0004 /* Mute DAC on FIFO error */
1464 | 0x0008 /* Enable DAC High Pass Filter */
1465 )},
1466 {} /* terminator */
1467 };
1468
1469 /* Errata: CS4210 rev A1 Silicon
1470 *
1471 * http://www.cirrus.com/en/pubs/errata/
1472 *
1473 * Description:
1474 * 1. Performance degredation is present in the ADC.
1475 * 2. Speaker output is not completely muted upon HP detect.
1476 * 3. Noise is present when clipping occurs on the amplified
1477 * speaker outputs.
1478 *
1479 * Workaround:
1480 * The following verb sequence written to the registers during
1481 * initialization will correct the issues listed above.
1482 */
1483
1484 static const struct hda_verb cs421x_coef_init_verbs_A1_silicon_fixes[] = {
1485 {0x0B, AC_VERB_SET_PROC_STATE, 0x01}, /* VPW: processing on */
1486
1487 {0x0B, AC_VERB_SET_COEF_INDEX, 0x0006},
1488 {0x0B, AC_VERB_SET_PROC_COEF, 0x9999}, /* Test mode: on */
1489
1490 {0x0B, AC_VERB_SET_COEF_INDEX, 0x000A},
1491 {0x0B, AC_VERB_SET_PROC_COEF, 0x14CB}, /* Chop double */
1492
1493 {0x0B, AC_VERB_SET_COEF_INDEX, 0x0011},
1494 {0x0B, AC_VERB_SET_PROC_COEF, 0xA2D0}, /* Increase ADC current */
1495
1496 {0x0B, AC_VERB_SET_COEF_INDEX, 0x001A},
1497 {0x0B, AC_VERB_SET_PROC_COEF, 0x02A9}, /* Mute speaker */
1498
1499 {0x0B, AC_VERB_SET_COEF_INDEX, 0x001B},
1500 {0x0B, AC_VERB_SET_PROC_COEF, 0X1006}, /* Remove noise */
1501
1502 {} /* terminator */
1503 };
1504
1505 /* Speaker Amp Gain is controlled by the vendor widget's coef 4 */
1506 static const DECLARE_TLV_DB_SCALE(cs421x_speaker_boost_db_scale, 900, 300, 0);
1507
1508 static int cs421x_boost_vol_info(struct snd_kcontrol *kcontrol,
1509 struct snd_ctl_elem_info *uinfo)
1510 {
1511 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1512 uinfo->count = 1;
1513 uinfo->value.integer.min = 0;
1514 uinfo->value.integer.max = 3;
1515 return 0;
1516 }
1517
1518 static int cs421x_boost_vol_get(struct snd_kcontrol *kcontrol,
1519 struct snd_ctl_elem_value *ucontrol)
1520 {
1521 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1522
1523 ucontrol->value.integer.value[0] =
1524 cs_vendor_coef_get(codec, CS421X_IDX_SPK_CTL) & 0x0003;
1525 return 0;
1526 }
1527
1528 static int cs421x_boost_vol_put(struct snd_kcontrol *kcontrol,
1529 struct snd_ctl_elem_value *ucontrol)
1530 {
1531 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1532
1533 unsigned int vol = ucontrol->value.integer.value[0];
1534 unsigned int coef =
1535 cs_vendor_coef_get(codec, CS421X_IDX_SPK_CTL);
1536 unsigned int original_coef = coef;
1537
1538 coef &= ~0x0003;
1539 coef |= (vol & 0x0003);
1540 if (original_coef == coef)
1541 return 0;
1542 else {
1543 cs_vendor_coef_set(codec, CS421X_IDX_SPK_CTL, coef);
1544 return 1;
1545 }
1546 }
1547
1548 static const struct snd_kcontrol_new cs421x_speaker_bost_ctl = {
1549
1550 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1551 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
1552 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
1553 .name = "Speaker Boost Playback Volume",
1554 .info = cs421x_boost_vol_info,
1555 .get = cs421x_boost_vol_get,
1556 .put = cs421x_boost_vol_put,
1557 .tlv = { .p = cs421x_speaker_boost_db_scale },
1558 };
1559
1560 static void cs421x_pinmux_init(struct hda_codec *codec)
1561 {
1562 struct cs_spec *spec = codec->spec;
1563 unsigned int def_conf, coef;
1564
1565 /* GPIO, DMIC_SCL, DMIC_SDA and SENSE_B are multiplexed */
1566 coef = cs_vendor_coef_get(codec, CS421X_IDX_DEV_CFG);
1567
1568 if (spec->gpio_mask)
1569 coef |= 0x0008; /* B1,B2 are GPIOs */
1570 else
1571 coef &= ~0x0008;
1572
1573 if (spec->sense_b)
1574 coef |= 0x0010; /* B2 is SENSE_B, not inverted */
1575 else
1576 coef &= ~0x0010;
1577
1578 cs_vendor_coef_set(codec, CS421X_IDX_DEV_CFG, coef);
1579
1580 if ((spec->gpio_mask || spec->sense_b) &&
1581 is_active_pin(codec, CS421X_DMIC_PIN_NID)) {
1582
1583 /*
1584 GPIO or SENSE_B forced - disconnect the DMIC pin.
1585 */
1586 def_conf = snd_hda_codec_get_pincfg(codec, CS421X_DMIC_PIN_NID);
1587 def_conf &= ~AC_DEFCFG_PORT_CONN;
1588 def_conf |= (AC_JACK_PORT_NONE << AC_DEFCFG_PORT_CONN_SHIFT);
1589 snd_hda_codec_set_pincfg(codec, CS421X_DMIC_PIN_NID, def_conf);
1590 }
1591 }
1592
1593 static void init_cs421x_digital(struct hda_codec *codec)
1594 {
1595 struct cs_spec *spec = codec->spec;
1596 struct auto_pin_cfg *cfg = &spec->autocfg;
1597 int i;
1598
1599
1600 for (i = 0; i < cfg->dig_outs; i++) {
1601 hda_nid_t nid = cfg->dig_out_pins[i];
1602 if (!cfg->speaker_outs)
1603 continue;
1604 if (get_wcaps(codec, nid) & AC_WCAP_UNSOL_CAP) {
1605
1606 snd_hda_codec_write(codec, nid, 0,
1607 AC_VERB_SET_UNSOLICITED_ENABLE,
1608 AC_USRSP_EN | SPDIF_EVENT);
1609 spec->spdif_detect = 1;
1610 }
1611 }
1612 }
1613
1614 static int cs421x_init(struct hda_codec *codec)
1615 {
1616 struct cs_spec *spec = codec->spec;
1617
1618 snd_hda_sequence_write(codec, cs421x_coef_init_verbs);
1619 snd_hda_sequence_write(codec, cs421x_coef_init_verbs_A1_silicon_fixes);
1620
1621 cs421x_pinmux_init(codec);
1622
1623 if (spec->gpio_mask) {
1624 snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_MASK,
1625 spec->gpio_mask);
1626 snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DIRECTION,
1627 spec->gpio_dir);
1628 snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA,
1629 spec->gpio_data);
1630 }
1631
1632 init_output(codec);
1633 init_input(codec);
1634 init_cs421x_digital(codec);
1635
1636 return 0;
1637 }
1638
1639 /*
1640 * CS4210 Input MUX (1 ADC)
1641 */
1642 static int cs421x_mux_enum_info(struct snd_kcontrol *kcontrol,
1643 struct snd_ctl_elem_info *uinfo)
1644 {
1645 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1646 struct cs_spec *spec = codec->spec;
1647
1648 return snd_hda_input_mux_info(&spec->input_mux, uinfo);
1649 }
1650
1651 static int cs421x_mux_enum_get(struct snd_kcontrol *kcontrol,
1652 struct snd_ctl_elem_value *ucontrol)
1653 {
1654 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1655 struct cs_spec *spec = codec->spec;
1656
1657 ucontrol->value.enumerated.item[0] = spec->cur_input;
1658 return 0;
1659 }
1660
1661 static int cs421x_mux_enum_put(struct snd_kcontrol *kcontrol,
1662 struct snd_ctl_elem_value *ucontrol)
1663 {
1664 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1665 struct cs_spec *spec = codec->spec;
1666
1667 return snd_hda_input_mux_put(codec, &spec->input_mux, ucontrol,
1668 spec->adc_nid[0], &spec->cur_input);
1669
1670 }
1671
1672 static struct snd_kcontrol_new cs421x_capture_source = {
1673
1674 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1675 .name = "Capture Source",
1676 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1677 .info = cs421x_mux_enum_info,
1678 .get = cs421x_mux_enum_get,
1679 .put = cs421x_mux_enum_put,
1680 };
1681
1682 static int cs421x_add_input_volume_control(struct hda_codec *codec, int item)
1683 {
1684 struct cs_spec *spec = codec->spec;
1685 struct auto_pin_cfg *cfg = &spec->autocfg;
1686 const struct hda_input_mux *imux = &spec->input_mux;
1687 hda_nid_t pin = cfg->inputs[item].pin;
1688 struct snd_kcontrol *kctl;
1689 u32 caps;
1690
1691 if (!(get_wcaps(codec, pin) & AC_WCAP_IN_AMP))
1692 return 0;
1693
1694 caps = query_amp_caps(codec, pin, HDA_INPUT);
1695 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
1696 if (caps <= 1)
1697 return 0;
1698
1699 return add_volume(codec, imux->items[item].label, 0,
1700 HDA_COMPOSE_AMP_VAL(pin, 3, 0, HDA_INPUT), 1, &kctl);
1701 }
1702
1703 /* add a (input-boost) volume control to the given input pin */
1704 static int build_cs421x_input(struct hda_codec *codec)
1705 {
1706 struct cs_spec *spec = codec->spec;
1707 struct auto_pin_cfg *cfg = &spec->autocfg;
1708 struct hda_input_mux *imux = &spec->input_mux;
1709 int i, err, type_idx;
1710 const char *label;
1711
1712 if (!spec->num_inputs)
1713 return 0;
1714
1715 /* make bind-capture */
1716 spec->capture_bind[0] = make_bind_capture(codec, &snd_hda_bind_sw);
1717 spec->capture_bind[1] = make_bind_capture(codec, &snd_hda_bind_vol);
1718 for (i = 0; i < 2; i++) {
1719 struct snd_kcontrol *kctl;
1720 int n;
1721 if (!spec->capture_bind[i])
1722 return -ENOMEM;
1723 kctl = snd_ctl_new1(&cs_capture_ctls[i], codec);
1724 if (!kctl)
1725 return -ENOMEM;
1726 kctl->private_value = (long)spec->capture_bind[i];
1727 err = snd_hda_ctl_add(codec, 0, kctl);
1728 if (err < 0)
1729 return err;
1730 for (n = 0; n < AUTO_PIN_LAST; n++) {
1731 if (!spec->adc_nid[n])
1732 continue;
1733 err = snd_hda_add_nid(codec, kctl, 0, spec->adc_nid[n]);
1734 if (err < 0)
1735 return err;
1736 }
1737 }
1738
1739 /* Add Input MUX Items + Capture Volume/Switch */
1740 for (i = 0; i < spec->num_inputs; i++) {
1741 label = hda_get_autocfg_input_label(codec, cfg, i);
1742 snd_hda_add_imux_item(imux, label, spec->adc_idx[i], &type_idx);
1743
1744 err = cs421x_add_input_volume_control(codec, i);
1745 if (err < 0)
1746 return err;
1747 }
1748
1749 /*
1750 Add 'Capture Source' Switch if
1751 * 2 inputs and no mic detec
1752 * 3 inputs
1753 */
1754 if ((spec->num_inputs == 2 && !spec->mic_detect) ||
1755 (spec->num_inputs == 3)) {
1756
1757 err = snd_hda_ctl_add(codec, spec->adc_nid[0],
1758 snd_ctl_new1(&cs421x_capture_source, codec));
1759 if (err < 0)
1760 return err;
1761 }
1762
1763 return 0;
1764 }
1765
1766 /* Single DAC (Mute/Gain) */
1767 static int build_cs421x_output(struct hda_codec *codec)
1768 {
1769 hda_nid_t dac = CS4210_DAC_NID;
1770 struct cs_spec *spec = codec->spec;
1771 struct auto_pin_cfg *cfg = &spec->autocfg;
1772 struct snd_kcontrol *kctl;
1773 int err;
1774 char *name = "HP/Speakers";
1775
1776 fix_volume_caps(codec, dac);
1777 if (!spec->vmaster_sw) {
1778 err = add_vmaster(codec, dac);
1779 if (err < 0)
1780 return err;
1781 }
1782
1783 err = add_mute(codec, name, 0,
1784 HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl);
1785 if (err < 0)
1786 return err;
1787 err = snd_ctl_add_slave(spec->vmaster_sw, kctl);
1788 if (err < 0)
1789 return err;
1790
1791 err = add_volume(codec, name, 0,
1792 HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl);
1793 if (err < 0)
1794 return err;
1795 err = snd_ctl_add_slave(spec->vmaster_vol, kctl);
1796 if (err < 0)
1797 return err;
1798
1799 if (cfg->speaker_outs) {
1800 err = snd_hda_ctl_add(codec, 0,
1801 snd_ctl_new1(&cs421x_speaker_bost_ctl, codec));
1802 if (err < 0)
1803 return err;
1804 }
1805 return err;
1806 }
1807
1808 static int cs421x_build_controls(struct hda_codec *codec)
1809 {
1810 int err;
1811
1812 err = build_cs421x_output(codec);
1813 if (err < 0)
1814 return err;
1815 err = build_cs421x_input(codec);
1816 if (err < 0)
1817 return err;
1818 err = build_digital_output(codec);
1819 if (err < 0)
1820 return err;
1821 return cs421x_init(codec);
1822 }
1823
1824 static void cs421x_unsol_event(struct hda_codec *codec, unsigned int res)
1825 {
1826 switch ((res >> 26) & 0x3f) {
1827 case HP_EVENT:
1828 case SPDIF_EVENT:
1829 cs_automute(codec);
1830 break;
1831
1832 case MIC_EVENT:
1833 cs_automic(codec);
1834 break;
1835 }
1836 }
1837
1838 static int parse_cs421x_input(struct hda_codec *codec)
1839 {
1840 struct cs_spec *spec = codec->spec;
1841 struct auto_pin_cfg *cfg = &spec->autocfg;
1842 int i;
1843
1844 for (i = 0; i < cfg->num_inputs; i++) {
1845 hda_nid_t pin = cfg->inputs[i].pin;
1846 spec->adc_nid[i] = get_adc(codec, pin, &spec->adc_idx[i]);
1847 spec->cur_input = spec->last_input = i;
1848 spec->num_inputs++;
1849
1850 /* check whether the automatic mic switch is available */
1851 if (is_ext_mic(codec, i) && cfg->num_inputs >= 2) {
1852 spec->mic_detect = 1;
1853 spec->automic_idx = i;
1854 }
1855 }
1856 return 0;
1857 }
1858
1859 static int cs421x_parse_auto_config(struct hda_codec *codec)
1860 {
1861 struct cs_spec *spec = codec->spec;
1862 int err;
1863
1864 err = snd_hda_parse_pin_def_config(codec, &spec->autocfg, NULL);
1865 if (err < 0)
1866 return err;
1867 err = parse_output(codec);
1868 if (err < 0)
1869 return err;
1870 err = parse_cs421x_input(codec);
1871 if (err < 0)
1872 return err;
1873 err = parse_digital_output(codec);
1874 if (err < 0)
1875 return err;
1876 return 0;
1877 }
1878
1879 #ifdef CONFIG_PM
1880 /*
1881 Manage PDREF, when transitioning to D3hot
1882 (DAC,ADC) -> D3, PDREF=1, AFG->D3
1883 */
1884 static int cs421x_suspend(struct hda_codec *codec, pm_message_t state)
1885 {
1886 unsigned int coef;
1887
1888 snd_hda_shutup_pins(codec);
1889
1890 snd_hda_codec_write(codec, CS4210_DAC_NID, 0,
1891 AC_VERB_SET_POWER_STATE, AC_PWRST_D3);
1892 snd_hda_codec_write(codec, CS4210_ADC_NID, 0,
1893 AC_VERB_SET_POWER_STATE, AC_PWRST_D3);
1894
1895 coef = cs_vendor_coef_get(codec, CS421X_IDX_DEV_CFG);
1896 coef |= 0x0004; /* PDREF */
1897 cs_vendor_coef_set(codec, CS421X_IDX_DEV_CFG, coef);
1898
1899 return 0;
1900 }
1901 #endif
1902
1903 static struct hda_codec_ops cs4210_patch_ops = {
1904 .build_controls = cs421x_build_controls,
1905 .build_pcms = cs_build_pcms,
1906 .init = cs421x_init,
1907 .free = cs_free,
1908 .unsol_event = cs421x_unsol_event,
1909 #ifdef CONFIG_PM
1910 .suspend = cs421x_suspend,
1911 #endif
1912 };
1913
1914 static int patch_cs421x(struct hda_codec *codec)
1915 {
1916 struct cs_spec *spec;
1917 int err;
1918
1919 spec = kzalloc(sizeof(*spec), GFP_KERNEL);
1920 if (!spec)
1921 return -ENOMEM;
1922 codec->spec = spec;
1923
1924 spec->vendor_nid = CS421X_VENDOR_NID;
1925
1926 spec->board_config =
1927 snd_hda_check_board_config(codec, CS421X_MODELS,
1928 cs421x_models, cs421x_cfg_tbl);
1929 if (spec->board_config >= 0)
1930 fix_pincfg(codec, spec->board_config, cs421x_pincfgs);
1931 /*
1932 Setup GPIO/SENSE for each board (if used)
1933 */
1934 switch (spec->board_config) {
1935 case CS421X_CDB4210:
1936 snd_printd("CS4210 board: %s\n",
1937 cs421x_models[spec->board_config]);
1938 /* spec->gpio_mask = 3;
1939 spec->gpio_dir = 3;
1940 spec->gpio_data = 3;
1941 */
1942 spec->sense_b = 1;
1943
1944 break;
1945 }
1946
1947 /*
1948 Update the GPIO/DMIC/SENSE_B pinmux before the configuration
1949 is auto-parsed. If GPIO or SENSE_B is forced, DMIC input
1950 is disabled.
1951 */
1952 cs421x_pinmux_init(codec);
1953
1954 err = cs421x_parse_auto_config(codec);
1955 if (err < 0)
1956 goto error;
1957
1958 codec->patch_ops = cs4210_patch_ops;
1959
1960 return 0;
1961
1962 error:
1963 kfree(codec->spec);
1964 codec->spec = NULL;
1965 return err;
1966 }
1967
1968
1969 /*
1970 * patch entries
1971 */
1972 static const struct hda_codec_preset snd_hda_preset_cirrus[] = {
1973 { .id = 0x10134206, .name = "CS4206", .patch = patch_cs420x },
1974 { .id = 0x10134207, .name = "CS4207", .patch = patch_cs420x },
1975 { .id = 0x10134210, .name = "CS4210", .patch = patch_cs421x },
1976 {} /* terminator */
1977 };
1978
1979 MODULE_ALIAS("snd-hda-codec-id:10134206");
1980 MODULE_ALIAS("snd-hda-codec-id:10134207");
1981 MODULE_ALIAS("snd-hda-codec-id:10134210");
1982
1983 MODULE_LICENSE("GPL");
1984 MODULE_DESCRIPTION("Cirrus Logic HD-audio codec");
1985
1986 static struct hda_codec_preset_list cirrus_list = {
1987 .preset = snd_hda_preset_cirrus,
1988 .owner = THIS_MODULE,
1989 };
1990
1991 static int __init patch_cirrus_init(void)
1992 {
1993 return snd_hda_add_codec_preset(&cirrus_list);
1994 }
1995
1996 static void __exit patch_cirrus_exit(void)
1997 {
1998 snd_hda_delete_codec_preset(&cirrus_list);
1999 }
2000
2001 module_init(patch_cirrus_init)
2002 module_exit(patch_cirrus_exit)