8e40262d4117cf923c9972711177ab5b8b445dcd
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / pci / ctxfi / ctatc.c
1 /**
2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3 *
4 * This source file is released under GPL v2 license (no other versions).
5 * See the COPYING file included in the main directory of this source
6 * distribution for the license terms and conditions.
7 *
8 * @File ctatc.c
9 *
10 * @Brief
11 * This file contains the implementation of the device resource management
12 * object.
13 *
14 * @Author Liu Chun
15 * @Date Mar 28 2008
16 */
17
18 #include "ctatc.h"
19 #include "ctpcm.h"
20 #include "ctmixer.h"
21 #include "ctsrc.h"
22 #include "ctamixer.h"
23 #include "ctdaio.h"
24 #include "cttimer.h"
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <sound/pcm.h>
28 #include <sound/control.h>
29 #include <sound/asoundef.h>
30
31 #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
32 #define MAX_MULTI_CHN 8
33
34 #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
35 | IEC958_AES0_CON_NOT_COPYRIGHT) \
36 | ((IEC958_AES1_CON_MIXER \
37 | IEC958_AES1_CON_ORIGINAL) << 8) \
38 | (0x10 << 16) \
39 | ((IEC958_AES3_CON_FS_48000) << 24))
40
41 static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
42 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
43 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
44 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
45 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
46 SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
47 "UAA", CTUAA),
48 { } /* terminator */
49 };
50
51 static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
52 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
53 "SB0760", CTSB0760),
54 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB1270,
55 "SB1270", CTSB1270),
56 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
57 "SB0880", CTSB0880),
58 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
59 "SB0880", CTSB0880),
60 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
61 "SB0880", CTSB0880),
62 SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
63 PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
64 CTHENDRIX),
65 { } /* terminator */
66 };
67
68 static const char *ct_subsys_name[NUM_CTCARDS] = {
69 /* 20k1 models */
70 [CTSB055X] = "SB055x",
71 [CTSB073X] = "SB073x",
72 [CTUAA] = "UAA",
73 [CT20K1_UNKNOWN] = "Unknown",
74 /* 20k2 models */
75 [CTSB0760] = "SB076x",
76 [CTHENDRIX] = "Hendrix",
77 [CTSB0880] = "SB0880",
78 [CTSB1270] = "SB1270",
79 [CT20K2_UNKNOWN] = "Unknown",
80 };
81
82 static struct {
83 int (*create)(struct ct_atc *atc,
84 enum CTALSADEVS device, const char *device_name);
85 int (*destroy)(void *alsa_dev);
86 const char *public_name;
87 } alsa_dev_funcs[NUM_CTALSADEVS] = {
88 [FRONT] = { .create = ct_alsa_pcm_create,
89 .destroy = NULL,
90 .public_name = "Front/WaveIn"},
91 [SURROUND] = { .create = ct_alsa_pcm_create,
92 .destroy = NULL,
93 .public_name = "Surround"},
94 [CLFE] = { .create = ct_alsa_pcm_create,
95 .destroy = NULL,
96 .public_name = "Center/LFE"},
97 [SIDE] = { .create = ct_alsa_pcm_create,
98 .destroy = NULL,
99 .public_name = "Side"},
100 [IEC958] = { .create = ct_alsa_pcm_create,
101 .destroy = NULL,
102 .public_name = "IEC958 Non-audio"},
103
104 [MIXER] = { .create = ct_alsa_mix_create,
105 .destroy = NULL,
106 .public_name = "Mixer"}
107 };
108
109 typedef int (*create_t)(void *, void **);
110 typedef int (*destroy_t)(void *);
111
112 static struct {
113 int (*create)(void *hw, void **rmgr);
114 int (*destroy)(void *mgr);
115 } rsc_mgr_funcs[NUM_RSCTYP] = {
116 [SRC] = { .create = (create_t)src_mgr_create,
117 .destroy = (destroy_t)src_mgr_destroy },
118 [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
119 .destroy = (destroy_t)srcimp_mgr_destroy },
120 [AMIXER] = { .create = (create_t)amixer_mgr_create,
121 .destroy = (destroy_t)amixer_mgr_destroy },
122 [SUM] = { .create = (create_t)sum_mgr_create,
123 .destroy = (destroy_t)sum_mgr_destroy },
124 [DAIO] = { .create = (create_t)daio_mgr_create,
125 .destroy = (destroy_t)daio_mgr_destroy }
126 };
127
128 static int
129 atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
130
131 /* *
132 * Only mono and interleaved modes are supported now.
133 * Always allocates a contiguous channel block.
134 * */
135
136 static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
137 {
138 struct snd_pcm_runtime *runtime;
139 struct ct_vm *vm;
140
141 if (!apcm->substream)
142 return 0;
143
144 runtime = apcm->substream->runtime;
145 vm = atc->vm;
146
147 apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
148
149 if (!apcm->vm_block)
150 return -ENOENT;
151
152 return 0;
153 }
154
155 static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
156 {
157 struct ct_vm *vm;
158
159 if (!apcm->vm_block)
160 return;
161
162 vm = atc->vm;
163
164 vm->unmap(vm, apcm->vm_block);
165
166 apcm->vm_block = NULL;
167 }
168
169 static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
170 {
171 return atc->vm->get_ptp_phys(atc->vm, index);
172 }
173
174 static unsigned int convert_format(snd_pcm_format_t snd_format)
175 {
176 switch (snd_format) {
177 case SNDRV_PCM_FORMAT_U8:
178 return SRC_SF_U8;
179 case SNDRV_PCM_FORMAT_S16_LE:
180 return SRC_SF_S16;
181 case SNDRV_PCM_FORMAT_S24_3LE:
182 return SRC_SF_S24;
183 case SNDRV_PCM_FORMAT_S32_LE:
184 return SRC_SF_S32;
185 case SNDRV_PCM_FORMAT_FLOAT_LE:
186 return SRC_SF_F32;
187 default:
188 printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
189 snd_format);
190 return SRC_SF_S16;
191 }
192 }
193
194 static unsigned int
195 atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
196 {
197 unsigned int pitch;
198 int b;
199
200 /* get pitch and convert to fixed-point 8.24 format. */
201 pitch = (input_rate / output_rate) << 24;
202 input_rate %= output_rate;
203 input_rate /= 100;
204 output_rate /= 100;
205 for (b = 31; ((b >= 0) && !(input_rate >> b)); )
206 b--;
207
208 if (b >= 0) {
209 input_rate <<= (31 - b);
210 input_rate /= output_rate;
211 b = 24 - (31 - b);
212 if (b >= 0)
213 input_rate <<= b;
214 else
215 input_rate >>= -b;
216
217 pitch |= input_rate;
218 }
219
220 return pitch;
221 }
222
223 static int select_rom(unsigned int pitch)
224 {
225 if (pitch > 0x00428f5c && pitch < 0x01b851ec) {
226 /* 0.26 <= pitch <= 1.72 */
227 return 1;
228 } else if (pitch == 0x01d66666 || pitch == 0x01d66667) {
229 /* pitch == 1.8375 */
230 return 2;
231 } else if (pitch == 0x02000000) {
232 /* pitch == 2 */
233 return 3;
234 } else if (pitch <= 0x08000000) {
235 /* 0 <= pitch <= 8 */
236 return 0;
237 } else {
238 return -ENOENT;
239 }
240 }
241
242 static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
243 {
244 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
245 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
246 struct src_desc desc = {0};
247 struct amixer_desc mix_dsc = {0};
248 struct src *src;
249 struct amixer *amixer;
250 int err;
251 int n_amixer = apcm->substream->runtime->channels, i = 0;
252 int device = apcm->substream->pcm->device;
253 unsigned int pitch;
254
255 /* first release old resources */
256 atc_pcm_release_resources(atc, apcm);
257
258 /* Get SRC resource */
259 desc.multi = apcm->substream->runtime->channels;
260 desc.msr = atc->msr;
261 desc.mode = MEMRD;
262 err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
263 if (err)
264 goto error1;
265
266 pitch = atc_get_pitch(apcm->substream->runtime->rate,
267 (atc->rsr * atc->msr));
268 src = apcm->src;
269 src->ops->set_pitch(src, pitch);
270 src->ops->set_rom(src, select_rom(pitch));
271 src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
272 src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
273
274 /* Get AMIXER resource */
275 n_amixer = (n_amixer < 2) ? 2 : n_amixer;
276 apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
277 if (!apcm->amixers) {
278 err = -ENOMEM;
279 goto error1;
280 }
281 mix_dsc.msr = atc->msr;
282 for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
283 err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
284 (struct amixer **)&apcm->amixers[i]);
285 if (err)
286 goto error1;
287
288 apcm->n_amixer++;
289 }
290
291 /* Set up device virtual mem map */
292 err = ct_map_audio_buffer(atc, apcm);
293 if (err < 0)
294 goto error1;
295
296 /* Connect resources */
297 src = apcm->src;
298 for (i = 0; i < n_amixer; i++) {
299 amixer = apcm->amixers[i];
300 mutex_lock(&atc->atc_mutex);
301 amixer->ops->setup(amixer, &src->rsc,
302 INIT_VOL, atc->pcm[i+device*2]);
303 mutex_unlock(&atc->atc_mutex);
304 src = src->ops->next_interleave(src);
305 if (!src)
306 src = apcm->src;
307 }
308
309 ct_timer_prepare(apcm->timer);
310
311 return 0;
312
313 error1:
314 atc_pcm_release_resources(atc, apcm);
315 return err;
316 }
317
318 static int
319 atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
320 {
321 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
322 struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
323 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
324 struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
325 struct srcimp *srcimp;
326 int i;
327
328 if (apcm->srcimps) {
329 for (i = 0; i < apcm->n_srcimp; i++) {
330 srcimp = apcm->srcimps[i];
331 srcimp->ops->unmap(srcimp);
332 srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
333 apcm->srcimps[i] = NULL;
334 }
335 kfree(apcm->srcimps);
336 apcm->srcimps = NULL;
337 }
338
339 if (apcm->srccs) {
340 for (i = 0; i < apcm->n_srcc; i++) {
341 src_mgr->put_src(src_mgr, apcm->srccs[i]);
342 apcm->srccs[i] = NULL;
343 }
344 kfree(apcm->srccs);
345 apcm->srccs = NULL;
346 }
347
348 if (apcm->amixers) {
349 for (i = 0; i < apcm->n_amixer; i++) {
350 amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
351 apcm->amixers[i] = NULL;
352 }
353 kfree(apcm->amixers);
354 apcm->amixers = NULL;
355 }
356
357 if (apcm->mono) {
358 sum_mgr->put_sum(sum_mgr, apcm->mono);
359 apcm->mono = NULL;
360 }
361
362 if (apcm->src) {
363 src_mgr->put_src(src_mgr, apcm->src);
364 apcm->src = NULL;
365 }
366
367 if (apcm->vm_block) {
368 /* Undo device virtual mem map */
369 ct_unmap_audio_buffer(atc, apcm);
370 apcm->vm_block = NULL;
371 }
372
373 return 0;
374 }
375
376 static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
377 {
378 unsigned int max_cisz;
379 struct src *src = apcm->src;
380
381 if (apcm->started)
382 return 0;
383 apcm->started = 1;
384
385 max_cisz = src->multi * src->rsc.msr;
386 max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
387
388 src->ops->set_sa(src, apcm->vm_block->addr);
389 src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
390 src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
391 src->ops->set_cisz(src, max_cisz);
392
393 src->ops->set_bm(src, 1);
394 src->ops->set_state(src, SRC_STATE_INIT);
395 src->ops->commit_write(src);
396
397 ct_timer_start(apcm->timer);
398 return 0;
399 }
400
401 static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
402 {
403 struct src *src;
404 int i;
405
406 ct_timer_stop(apcm->timer);
407
408 src = apcm->src;
409 src->ops->set_bm(src, 0);
410 src->ops->set_state(src, SRC_STATE_OFF);
411 src->ops->commit_write(src);
412
413 if (apcm->srccs) {
414 for (i = 0; i < apcm->n_srcc; i++) {
415 src = apcm->srccs[i];
416 src->ops->set_bm(src, 0);
417 src->ops->set_state(src, SRC_STATE_OFF);
418 src->ops->commit_write(src);
419 }
420 }
421
422 apcm->started = 0;
423
424 return 0;
425 }
426
427 static int
428 atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
429 {
430 struct src *src = apcm->src;
431 u32 size, max_cisz;
432 int position;
433
434 if (!src)
435 return 0;
436 position = src->ops->get_ca(src);
437
438 size = apcm->vm_block->size;
439 max_cisz = src->multi * src->rsc.msr;
440 max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
441
442 return (position + size - max_cisz - apcm->vm_block->addr) % size;
443 }
444
445 struct src_node_conf_t {
446 unsigned int pitch;
447 unsigned int msr:8;
448 unsigned int mix_msr:8;
449 unsigned int imp_msr:8;
450 unsigned int vo:1;
451 };
452
453 static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
454 struct src_node_conf_t *conf, int *n_srcc)
455 {
456 unsigned int pitch;
457
458 /* get pitch and convert to fixed-point 8.24 format. */
459 pitch = atc_get_pitch((atc->rsr * atc->msr),
460 apcm->substream->runtime->rate);
461 *n_srcc = 0;
462
463 if (1 == atc->msr) { /* FIXME: do we really need SRC here if pitch==1 */
464 *n_srcc = apcm->substream->runtime->channels;
465 conf[0].pitch = pitch;
466 conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
467 conf[0].vo = 1;
468 } else if (2 <= atc->msr) {
469 if (0x8000000 < pitch) {
470 /* Need two-stage SRCs, SRCIMPs and
471 * AMIXERs for converting format */
472 conf[0].pitch = (atc->msr << 24);
473 conf[0].msr = conf[0].mix_msr = 1;
474 conf[0].imp_msr = atc->msr;
475 conf[0].vo = 0;
476 conf[1].pitch = atc_get_pitch(atc->rsr,
477 apcm->substream->runtime->rate);
478 conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
479 conf[1].vo = 1;
480 *n_srcc = apcm->substream->runtime->channels * 2;
481 } else if (0x1000000 < pitch) {
482 /* Need one-stage SRCs, SRCIMPs and
483 * AMIXERs for converting format */
484 conf[0].pitch = pitch;
485 conf[0].msr = conf[0].mix_msr
486 = conf[0].imp_msr = atc->msr;
487 conf[0].vo = 1;
488 *n_srcc = apcm->substream->runtime->channels;
489 }
490 }
491 }
492
493 static int
494 atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
495 {
496 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
497 struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
498 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
499 struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
500 struct src_desc src_dsc = {0};
501 struct src *src;
502 struct srcimp_desc srcimp_dsc = {0};
503 struct srcimp *srcimp;
504 struct amixer_desc mix_dsc = {0};
505 struct sum_desc sum_dsc = {0};
506 unsigned int pitch;
507 int multi, err, i;
508 int n_srcimp, n_amixer, n_srcc, n_sum;
509 struct src_node_conf_t src_node_conf[2] = {{0} };
510
511 /* first release old resources */
512 atc_pcm_release_resources(atc, apcm);
513
514 /* The numbers of converting SRCs and SRCIMPs should be determined
515 * by pitch value. */
516
517 multi = apcm->substream->runtime->channels;
518
519 /* get pitch and convert to fixed-point 8.24 format. */
520 pitch = atc_get_pitch((atc->rsr * atc->msr),
521 apcm->substream->runtime->rate);
522
523 setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
524 n_sum = (1 == multi) ? 1 : 0;
525 n_amixer = n_sum * 2 + n_srcc;
526 n_srcimp = n_srcc;
527 if ((multi > 1) && (0x8000000 >= pitch)) {
528 /* Need extra AMIXERs and SRCIMPs for special treatment
529 * of interleaved recording of conjugate channels */
530 n_amixer += multi * atc->msr;
531 n_srcimp += multi * atc->msr;
532 } else {
533 n_srcimp += multi;
534 }
535
536 if (n_srcc) {
537 apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
538 if (!apcm->srccs)
539 return -ENOMEM;
540 }
541 if (n_amixer) {
542 apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
543 if (!apcm->amixers) {
544 err = -ENOMEM;
545 goto error1;
546 }
547 }
548 apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
549 if (!apcm->srcimps) {
550 err = -ENOMEM;
551 goto error1;
552 }
553
554 /* Allocate SRCs for sample rate conversion if needed */
555 src_dsc.multi = 1;
556 src_dsc.mode = ARCRW;
557 for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
558 src_dsc.msr = src_node_conf[i/multi].msr;
559 err = src_mgr->get_src(src_mgr, &src_dsc,
560 (struct src **)&apcm->srccs[i]);
561 if (err)
562 goto error1;
563
564 src = apcm->srccs[i];
565 pitch = src_node_conf[i/multi].pitch;
566 src->ops->set_pitch(src, pitch);
567 src->ops->set_rom(src, select_rom(pitch));
568 src->ops->set_vo(src, src_node_conf[i/multi].vo);
569
570 apcm->n_srcc++;
571 }
572
573 /* Allocate AMIXERs for routing SRCs of conversion if needed */
574 for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
575 if (i < (n_sum*2))
576 mix_dsc.msr = atc->msr;
577 else if (i < (n_sum*2+n_srcc))
578 mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
579 else
580 mix_dsc.msr = 1;
581
582 err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
583 (struct amixer **)&apcm->amixers[i]);
584 if (err)
585 goto error1;
586
587 apcm->n_amixer++;
588 }
589
590 /* Allocate a SUM resource to mix all input channels together */
591 sum_dsc.msr = atc->msr;
592 err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
593 if (err)
594 goto error1;
595
596 pitch = atc_get_pitch((atc->rsr * atc->msr),
597 apcm->substream->runtime->rate);
598 /* Allocate SRCIMP resources */
599 for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
600 if (i < (n_srcc))
601 srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
602 else if (1 == multi)
603 srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
604 else
605 srcimp_dsc.msr = 1;
606
607 err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
608 if (err)
609 goto error1;
610
611 apcm->srcimps[i] = srcimp;
612 apcm->n_srcimp++;
613 }
614
615 /* Allocate a SRC for writing data to host memory */
616 src_dsc.multi = apcm->substream->runtime->channels;
617 src_dsc.msr = 1;
618 src_dsc.mode = MEMWR;
619 err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
620 if (err)
621 goto error1;
622
623 src = apcm->src;
624 src->ops->set_pitch(src, pitch);
625
626 /* Set up device virtual mem map */
627 err = ct_map_audio_buffer(atc, apcm);
628 if (err < 0)
629 goto error1;
630
631 return 0;
632
633 error1:
634 atc_pcm_release_resources(atc, apcm);
635 return err;
636 }
637
638 static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
639 {
640 struct src *src;
641 struct amixer *amixer;
642 struct srcimp *srcimp;
643 struct ct_mixer *mixer = atc->mixer;
644 struct sum *mono;
645 struct rsc *out_ports[8] = {NULL};
646 int err, i, j, n_sum, multi;
647 unsigned int pitch;
648 int mix_base = 0, imp_base = 0;
649
650 atc_pcm_release_resources(atc, apcm);
651
652 /* Get needed resources. */
653 err = atc_pcm_capture_get_resources(atc, apcm);
654 if (err)
655 return err;
656
657 /* Connect resources */
658 mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
659 &out_ports[0], &out_ports[1]);
660
661 multi = apcm->substream->runtime->channels;
662 if (1 == multi) {
663 mono = apcm->mono;
664 for (i = 0; i < 2; i++) {
665 amixer = apcm->amixers[i];
666 amixer->ops->setup(amixer, out_ports[i],
667 MONO_SUM_SCALE, mono);
668 }
669 out_ports[0] = &mono->rsc;
670 n_sum = 1;
671 mix_base = n_sum * 2;
672 }
673
674 for (i = 0; i < apcm->n_srcc; i++) {
675 src = apcm->srccs[i];
676 srcimp = apcm->srcimps[imp_base+i];
677 amixer = apcm->amixers[mix_base+i];
678 srcimp->ops->map(srcimp, src, out_ports[i%multi]);
679 amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
680 out_ports[i%multi] = &amixer->rsc;
681 }
682
683 pitch = atc_get_pitch((atc->rsr * atc->msr),
684 apcm->substream->runtime->rate);
685
686 if ((multi > 1) && (pitch <= 0x8000000)) {
687 /* Special connection for interleaved
688 * recording with conjugate channels */
689 for (i = 0; i < multi; i++) {
690 out_ports[i]->ops->master(out_ports[i]);
691 for (j = 0; j < atc->msr; j++) {
692 amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
693 amixer->ops->set_input(amixer, out_ports[i]);
694 amixer->ops->set_scale(amixer, INIT_VOL);
695 amixer->ops->set_sum(amixer, NULL);
696 amixer->ops->commit_raw_write(amixer);
697 out_ports[i]->ops->next_conj(out_ports[i]);
698
699 srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
700 srcimp->ops->map(srcimp, apcm->src,
701 &amixer->rsc);
702 }
703 }
704 } else {
705 for (i = 0; i < multi; i++) {
706 srcimp = apcm->srcimps[apcm->n_srcc+i];
707 srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
708 }
709 }
710
711 ct_timer_prepare(apcm->timer);
712
713 return 0;
714 }
715
716 static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
717 {
718 struct src *src;
719 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
720 int i, multi;
721
722 if (apcm->started)
723 return 0;
724
725 apcm->started = 1;
726 multi = apcm->substream->runtime->channels;
727 /* Set up converting SRCs */
728 for (i = 0; i < apcm->n_srcc; i++) {
729 src = apcm->srccs[i];
730 src->ops->set_pm(src, ((i%multi) != (multi-1)));
731 src_mgr->src_disable(src_mgr, src);
732 }
733
734 /* Set up recording SRC */
735 src = apcm->src;
736 src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
737 src->ops->set_sa(src, apcm->vm_block->addr);
738 src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
739 src->ops->set_ca(src, apcm->vm_block->addr);
740 src_mgr->src_disable(src_mgr, src);
741
742 /* Disable relevant SRCs firstly */
743 src_mgr->commit_write(src_mgr);
744
745 /* Enable SRCs respectively */
746 for (i = 0; i < apcm->n_srcc; i++) {
747 src = apcm->srccs[i];
748 src->ops->set_state(src, SRC_STATE_RUN);
749 src->ops->commit_write(src);
750 src_mgr->src_enable_s(src_mgr, src);
751 }
752 src = apcm->src;
753 src->ops->set_bm(src, 1);
754 src->ops->set_state(src, SRC_STATE_RUN);
755 src->ops->commit_write(src);
756 src_mgr->src_enable_s(src_mgr, src);
757
758 /* Enable relevant SRCs synchronously */
759 src_mgr->commit_write(src_mgr);
760
761 ct_timer_start(apcm->timer);
762 return 0;
763 }
764
765 static int
766 atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
767 {
768 struct src *src = apcm->src;
769
770 if (!src)
771 return 0;
772 return src->ops->get_ca(src) - apcm->vm_block->addr;
773 }
774
775 static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
776 struct ct_atc_pcm *apcm)
777 {
778 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
779 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
780 struct src_desc desc = {0};
781 struct amixer_desc mix_dsc = {0};
782 struct src *src;
783 int err;
784 int n_amixer = apcm->substream->runtime->channels, i;
785 unsigned int pitch, rsr = atc->pll_rate;
786
787 /* first release old resources */
788 atc_pcm_release_resources(atc, apcm);
789
790 /* Get SRC resource */
791 desc.multi = apcm->substream->runtime->channels;
792 desc.msr = 1;
793 while (apcm->substream->runtime->rate > (rsr * desc.msr))
794 desc.msr <<= 1;
795
796 desc.mode = MEMRD;
797 err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
798 if (err)
799 goto error1;
800
801 pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
802 src = apcm->src;
803 src->ops->set_pitch(src, pitch);
804 src->ops->set_rom(src, select_rom(pitch));
805 src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
806 src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
807 src->ops->set_bp(src, 1);
808
809 /* Get AMIXER resource */
810 n_amixer = (n_amixer < 2) ? 2 : n_amixer;
811 apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
812 if (!apcm->amixers) {
813 err = -ENOMEM;
814 goto error1;
815 }
816 mix_dsc.msr = desc.msr;
817 for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
818 err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
819 (struct amixer **)&apcm->amixers[i]);
820 if (err)
821 goto error1;
822
823 apcm->n_amixer++;
824 }
825
826 /* Set up device virtual mem map */
827 err = ct_map_audio_buffer(atc, apcm);
828 if (err < 0)
829 goto error1;
830
831 return 0;
832
833 error1:
834 atc_pcm_release_resources(atc, apcm);
835 return err;
836 }
837
838 static int atc_pll_init(struct ct_atc *atc, int rate)
839 {
840 struct hw *hw = atc->hw;
841 int err;
842 err = hw->pll_init(hw, rate);
843 atc->pll_rate = err ? 0 : rate;
844 return err;
845 }
846
847 static int
848 spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
849 {
850 struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
851 unsigned int rate = apcm->substream->runtime->rate;
852 unsigned int status;
853 int err = 0;
854 unsigned char iec958_con_fs;
855
856 switch (rate) {
857 case 48000:
858 iec958_con_fs = IEC958_AES3_CON_FS_48000;
859 break;
860 case 44100:
861 iec958_con_fs = IEC958_AES3_CON_FS_44100;
862 break;
863 case 32000:
864 iec958_con_fs = IEC958_AES3_CON_FS_32000;
865 break;
866 default:
867 return -ENOENT;
868 }
869
870 mutex_lock(&atc->atc_mutex);
871 dao->ops->get_spos(dao, &status);
872 if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
873 status &= ~(IEC958_AES3_CON_FS << 24);
874 status |= (iec958_con_fs << 24);
875 dao->ops->set_spos(dao, status);
876 dao->ops->commit_write(dao);
877 }
878 if ((rate != atc->pll_rate) && (32000 != rate))
879 err = atc_pll_init(atc, rate);
880 mutex_unlock(&atc->atc_mutex);
881
882 return err;
883 }
884
885 static int
886 spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
887 {
888 struct src *src;
889 struct amixer *amixer;
890 struct dao *dao;
891 int err;
892 int i;
893
894 atc_pcm_release_resources(atc, apcm);
895
896 /* Configure SPDIFOO and PLL to passthrough mode;
897 * determine pll_rate. */
898 err = spdif_passthru_playback_setup(atc, apcm);
899 if (err)
900 return err;
901
902 /* Get needed resources. */
903 err = spdif_passthru_playback_get_resources(atc, apcm);
904 if (err)
905 return err;
906
907 /* Connect resources */
908 src = apcm->src;
909 for (i = 0; i < apcm->n_amixer; i++) {
910 amixer = apcm->amixers[i];
911 amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
912 src = src->ops->next_interleave(src);
913 if (!src)
914 src = apcm->src;
915 }
916 /* Connect to SPDIFOO */
917 mutex_lock(&atc->atc_mutex);
918 dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
919 amixer = apcm->amixers[0];
920 dao->ops->set_left_input(dao, &amixer->rsc);
921 amixer = apcm->amixers[1];
922 dao->ops->set_right_input(dao, &amixer->rsc);
923 mutex_unlock(&atc->atc_mutex);
924
925 ct_timer_prepare(apcm->timer);
926
927 return 0;
928 }
929
930 static int atc_select_line_in(struct ct_atc *atc)
931 {
932 struct hw *hw = atc->hw;
933 struct ct_mixer *mixer = atc->mixer;
934 struct src *src;
935
936 if (hw->is_adc_source_selected(hw, ADC_LINEIN))
937 return 0;
938
939 mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
940 mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
941
942 hw->select_adc_source(hw, ADC_LINEIN);
943
944 src = atc->srcs[2];
945 mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
946 src = atc->srcs[3];
947 mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
948
949 return 0;
950 }
951
952 static int atc_select_mic_in(struct ct_atc *atc)
953 {
954 struct hw *hw = atc->hw;
955 struct ct_mixer *mixer = atc->mixer;
956 struct src *src;
957
958 if (hw->is_adc_source_selected(hw, ADC_MICIN))
959 return 0;
960
961 mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
962 mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
963
964 hw->select_adc_source(hw, ADC_MICIN);
965
966 src = atc->srcs[2];
967 mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
968 src = atc->srcs[3];
969 mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
970
971 return 0;
972 }
973
974 static struct capabilities atc_capabilities(struct ct_atc *atc)
975 {
976 struct hw *hw = atc->hw;
977
978 return hw->capabilities(hw);
979 }
980
981 static int atc_output_switch_get(struct ct_atc *atc)
982 {
983 struct hw *hw = atc->hw;
984
985 return hw->output_switch_get(hw);
986 }
987
988 static int atc_output_switch_put(struct ct_atc *atc, int position)
989 {
990 struct hw *hw = atc->hw;
991
992 return hw->output_switch_put(hw, position);
993 }
994
995 static int atc_mic_source_switch_get(struct ct_atc *atc)
996 {
997 struct hw *hw = atc->hw;
998
999 return hw->mic_source_switch_get(hw);
1000 }
1001
1002 static int atc_mic_source_switch_put(struct ct_atc *atc, int position)
1003 {
1004 struct hw *hw = atc->hw;
1005
1006 return hw->mic_source_switch_put(hw, position);
1007 }
1008
1009 static int atc_select_digit_io(struct ct_atc *atc)
1010 {
1011 struct hw *hw = atc->hw;
1012
1013 if (hw->is_adc_source_selected(hw, ADC_NONE))
1014 return 0;
1015
1016 hw->select_adc_source(hw, ADC_NONE);
1017
1018 return 0;
1019 }
1020
1021 static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
1022 {
1023 struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
1024
1025 if (state)
1026 daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
1027 else
1028 daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
1029
1030 daio_mgr->commit_write(daio_mgr);
1031
1032 return 0;
1033 }
1034
1035 static int
1036 atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
1037 {
1038 struct dao *dao = container_of(atc->daios[type], struct dao, daio);
1039 return dao->ops->get_spos(dao, status);
1040 }
1041
1042 static int
1043 atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
1044 {
1045 struct dao *dao = container_of(atc->daios[type], struct dao, daio);
1046
1047 dao->ops->set_spos(dao, status);
1048 dao->ops->commit_write(dao);
1049 return 0;
1050 }
1051
1052 static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
1053 {
1054 return atc_daio_unmute(atc, state, LINEO1);
1055 }
1056
1057 static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
1058 {
1059 return atc_daio_unmute(atc, state, LINEO2);
1060 }
1061
1062 static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
1063 {
1064 return atc_daio_unmute(atc, state, LINEO3);
1065 }
1066
1067 static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
1068 {
1069 return atc_daio_unmute(atc, state, LINEO4);
1070 }
1071
1072 static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
1073 {
1074 return atc_daio_unmute(atc, state, LINEIM);
1075 }
1076
1077 static int atc_mic_unmute(struct ct_atc *atc, unsigned char state)
1078 {
1079 return atc_daio_unmute(atc, state, MIC);
1080 }
1081
1082 static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
1083 {
1084 return atc_daio_unmute(atc, state, SPDIFOO);
1085 }
1086
1087 static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
1088 {
1089 return atc_daio_unmute(atc, state, SPDIFIO);
1090 }
1091
1092 static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
1093 {
1094 return atc_dao_get_status(atc, status, SPDIFOO);
1095 }
1096
1097 static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
1098 {
1099 return atc_dao_set_status(atc, status, SPDIFOO);
1100 }
1101
1102 static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
1103 {
1104 struct dao_desc da_dsc = {0};
1105 struct dao *dao;
1106 int err;
1107 struct ct_mixer *mixer = atc->mixer;
1108 struct rsc *rscs[2] = {NULL};
1109 unsigned int spos = 0;
1110
1111 mutex_lock(&atc->atc_mutex);
1112 dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
1113 da_dsc.msr = state ? 1 : atc->msr;
1114 da_dsc.passthru = state ? 1 : 0;
1115 err = dao->ops->reinit(dao, &da_dsc);
1116 if (state) {
1117 spos = IEC958_DEFAULT_CON;
1118 } else {
1119 mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
1120 &rscs[0], &rscs[1]);
1121 dao->ops->set_left_input(dao, rscs[0]);
1122 dao->ops->set_right_input(dao, rscs[1]);
1123 /* Restore PLL to atc->rsr if needed. */
1124 if (atc->pll_rate != atc->rsr)
1125 err = atc_pll_init(atc, atc->rsr);
1126 }
1127 dao->ops->set_spos(dao, spos);
1128 dao->ops->commit_write(dao);
1129 mutex_unlock(&atc->atc_mutex);
1130
1131 return err;
1132 }
1133
1134 static int atc_release_resources(struct ct_atc *atc)
1135 {
1136 int i;
1137 struct daio_mgr *daio_mgr = NULL;
1138 struct dao *dao = NULL;
1139 struct dai *dai = NULL;
1140 struct daio *daio = NULL;
1141 struct sum_mgr *sum_mgr = NULL;
1142 struct src_mgr *src_mgr = NULL;
1143 struct srcimp_mgr *srcimp_mgr = NULL;
1144 struct srcimp *srcimp = NULL;
1145 struct ct_mixer *mixer = NULL;
1146
1147 /* disconnect internal mixer objects */
1148 if (atc->mixer) {
1149 mixer = atc->mixer;
1150 mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
1151 mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
1152 mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
1153 mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
1154 mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
1155 mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
1156 }
1157
1158 if (atc->daios) {
1159 daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
1160 for (i = 0; i < atc->n_daio; i++) {
1161 daio = atc->daios[i];
1162 if (daio->type < LINEIM) {
1163 dao = container_of(daio, struct dao, daio);
1164 dao->ops->clear_left_input(dao);
1165 dao->ops->clear_right_input(dao);
1166 } else {
1167 dai = container_of(daio, struct dai, daio);
1168 /* some thing to do for dai ... */
1169 }
1170 daio_mgr->put_daio(daio_mgr, daio);
1171 }
1172 kfree(atc->daios);
1173 atc->daios = NULL;
1174 }
1175
1176 if (atc->pcm) {
1177 sum_mgr = atc->rsc_mgrs[SUM];
1178 for (i = 0; i < atc->n_pcm; i++)
1179 sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
1180
1181 kfree(atc->pcm);
1182 atc->pcm = NULL;
1183 }
1184
1185 if (atc->srcs) {
1186 src_mgr = atc->rsc_mgrs[SRC];
1187 for (i = 0; i < atc->n_src; i++)
1188 src_mgr->put_src(src_mgr, atc->srcs[i]);
1189
1190 kfree(atc->srcs);
1191 atc->srcs = NULL;
1192 }
1193
1194 if (atc->srcimps) {
1195 srcimp_mgr = atc->rsc_mgrs[SRCIMP];
1196 for (i = 0; i < atc->n_srcimp; i++) {
1197 srcimp = atc->srcimps[i];
1198 srcimp->ops->unmap(srcimp);
1199 srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
1200 }
1201 kfree(atc->srcimps);
1202 atc->srcimps = NULL;
1203 }
1204
1205 return 0;
1206 }
1207
1208 static int ct_atc_destroy(struct ct_atc *atc)
1209 {
1210 int i = 0;
1211
1212 if (!atc)
1213 return 0;
1214
1215 if (atc->timer) {
1216 ct_timer_free(atc->timer);
1217 atc->timer = NULL;
1218 }
1219
1220 atc_release_resources(atc);
1221
1222 /* Destroy internal mixer objects */
1223 if (atc->mixer)
1224 ct_mixer_destroy(atc->mixer);
1225
1226 for (i = 0; i < NUM_RSCTYP; i++) {
1227 if (rsc_mgr_funcs[i].destroy && atc->rsc_mgrs[i])
1228 rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
1229
1230 }
1231
1232 if (atc->hw)
1233 destroy_hw_obj((struct hw *)atc->hw);
1234
1235 /* Destroy device virtual memory manager object */
1236 if (atc->vm) {
1237 ct_vm_destroy(atc->vm);
1238 atc->vm = NULL;
1239 }
1240
1241 kfree(atc);
1242
1243 return 0;
1244 }
1245
1246 static int atc_dev_free(struct snd_device *dev)
1247 {
1248 struct ct_atc *atc = dev->device_data;
1249 return ct_atc_destroy(atc);
1250 }
1251
1252 static int __devinit atc_identify_card(struct ct_atc *atc, unsigned int ssid)
1253 {
1254 const struct snd_pci_quirk *p;
1255 const struct snd_pci_quirk *list;
1256 u16 vendor_id, device_id;
1257
1258 switch (atc->chip_type) {
1259 case ATC20K1:
1260 atc->chip_name = "20K1";
1261 list = subsys_20k1_list;
1262 break;
1263 case ATC20K2:
1264 atc->chip_name = "20K2";
1265 list = subsys_20k2_list;
1266 break;
1267 default:
1268 return -ENOENT;
1269 }
1270 if (ssid) {
1271 vendor_id = ssid >> 16;
1272 device_id = ssid & 0xffff;
1273 } else {
1274 vendor_id = atc->pci->subsystem_vendor;
1275 device_id = atc->pci->subsystem_device;
1276 }
1277 p = snd_pci_quirk_lookup_id(vendor_id, device_id, list);
1278 if (p) {
1279 if (p->value < 0) {
1280 printk(KERN_ERR "ctxfi: "
1281 "Device %04x:%04x is black-listed\n",
1282 vendor_id, device_id);
1283 return -ENOENT;
1284 }
1285 atc->model = p->value;
1286 } else {
1287 if (atc->chip_type == ATC20K1)
1288 atc->model = CT20K1_UNKNOWN;
1289 else
1290 atc->model = CT20K2_UNKNOWN;
1291 }
1292 atc->model_name = ct_subsys_name[atc->model];
1293 snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
1294 atc->chip_name, atc->model_name,
1295 vendor_id, device_id);
1296 return 0;
1297 }
1298
1299 int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
1300 {
1301 enum CTALSADEVS i;
1302 int err;
1303
1304 alsa_dev_funcs[MIXER].public_name = atc->chip_name;
1305
1306 for (i = 0; i < NUM_CTALSADEVS; i++) {
1307 if (!alsa_dev_funcs[i].create)
1308 continue;
1309
1310 err = alsa_dev_funcs[i].create(atc, i,
1311 alsa_dev_funcs[i].public_name);
1312 if (err) {
1313 printk(KERN_ERR "ctxfi: "
1314 "Creating alsa device %d failed!\n", i);
1315 return err;
1316 }
1317 }
1318
1319 return 0;
1320 }
1321
1322 static int __devinit atc_create_hw_devs(struct ct_atc *atc)
1323 {
1324 struct hw *hw;
1325 struct card_conf info = {0};
1326 int i, err;
1327
1328 err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
1329 if (err) {
1330 printk(KERN_ERR "Failed to create hw obj!!!\n");
1331 return err;
1332 }
1333 atc->hw = hw;
1334
1335 /* Initialize card hardware. */
1336 info.rsr = atc->rsr;
1337 info.msr = atc->msr;
1338 info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
1339 err = hw->card_init(hw, &info);
1340 if (err < 0)
1341 return err;
1342
1343 for (i = 0; i < NUM_RSCTYP; i++) {
1344 if (!rsc_mgr_funcs[i].create)
1345 continue;
1346
1347 err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
1348 if (err) {
1349 printk(KERN_ERR "ctxfi: "
1350 "Failed to create rsc_mgr %d!!!\n", i);
1351 return err;
1352 }
1353 }
1354
1355 return 0;
1356 }
1357
1358 static int atc_get_resources(struct ct_atc *atc)
1359 {
1360 struct daio_desc da_desc = {0};
1361 struct daio_mgr *daio_mgr;
1362 struct src_desc src_dsc = {0};
1363 struct src_mgr *src_mgr;
1364 struct srcimp_desc srcimp_dsc = {0};
1365 struct srcimp_mgr *srcimp_mgr;
1366 struct sum_desc sum_dsc = {0};
1367 struct sum_mgr *sum_mgr;
1368 int err, i, num_srcs, num_daios;
1369
1370 num_daios = ((atc->model == CTSB1270) ? 8 : 7);
1371 num_srcs = ((atc->model == CTSB1270) ? 6 : 4);
1372
1373 atc->daios = kzalloc(sizeof(void *)*num_daios, GFP_KERNEL);
1374 if (!atc->daios)
1375 return -ENOMEM;
1376
1377 atc->srcs = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL);
1378 if (!atc->srcs)
1379 return -ENOMEM;
1380
1381 atc->srcimps = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL);
1382 if (!atc->srcimps)
1383 return -ENOMEM;
1384
1385 atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
1386 if (!atc->pcm)
1387 return -ENOMEM;
1388
1389 daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
1390 da_desc.msr = atc->msr;
1391 for (i = 0, atc->n_daio = 0; i < num_daios; i++) {
1392 da_desc.type = (atc->model != CTSB073X) ? i :
1393 ((i == SPDIFIO) ? SPDIFI1 : i);
1394 err = daio_mgr->get_daio(daio_mgr, &da_desc,
1395 (struct daio **)&atc->daios[i]);
1396 if (err) {
1397 printk(KERN_ERR "ctxfi: Failed to get DAIO "
1398 "resource %d!!!\n", i);
1399 return err;
1400 }
1401 atc->n_daio++;
1402 }
1403
1404 src_mgr = atc->rsc_mgrs[SRC];
1405 src_dsc.multi = 1;
1406 src_dsc.msr = atc->msr;
1407 src_dsc.mode = ARCRW;
1408 for (i = 0, atc->n_src = 0; i < num_srcs; i++) {
1409 err = src_mgr->get_src(src_mgr, &src_dsc,
1410 (struct src **)&atc->srcs[i]);
1411 if (err)
1412 return err;
1413
1414 atc->n_src++;
1415 }
1416
1417 srcimp_mgr = atc->rsc_mgrs[SRCIMP];
1418 srcimp_dsc.msr = 8;
1419 for (i = 0, atc->n_srcimp = 0; i < num_srcs; i++) {
1420 err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
1421 (struct srcimp **)&atc->srcimps[i]);
1422 if (err)
1423 return err;
1424
1425 atc->n_srcimp++;
1426 }
1427
1428 sum_mgr = atc->rsc_mgrs[SUM];
1429 sum_dsc.msr = atc->msr;
1430 for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
1431 err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
1432 (struct sum **)&atc->pcm[i]);
1433 if (err)
1434 return err;
1435
1436 atc->n_pcm++;
1437 }
1438
1439 return 0;
1440 }
1441
1442 static void
1443 atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
1444 struct src **srcs, struct srcimp **srcimps)
1445 {
1446 struct rsc *rscs[2] = {NULL};
1447 struct src *src;
1448 struct srcimp *srcimp;
1449 int i = 0;
1450
1451 rscs[0] = &dai->daio.rscl;
1452 rscs[1] = &dai->daio.rscr;
1453 for (i = 0; i < 2; i++) {
1454 src = srcs[i];
1455 srcimp = srcimps[i];
1456 srcimp->ops->map(srcimp, src, rscs[i]);
1457 src_mgr->src_disable(src_mgr, src);
1458 }
1459
1460 src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
1461
1462 src = srcs[0];
1463 src->ops->set_pm(src, 1);
1464 for (i = 0; i < 2; i++) {
1465 src = srcs[i];
1466 src->ops->set_state(src, SRC_STATE_RUN);
1467 src->ops->commit_write(src);
1468 src_mgr->src_enable_s(src_mgr, src);
1469 }
1470
1471 dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
1472 dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
1473
1474 dai->ops->set_enb_src(dai, 1);
1475 dai->ops->set_enb_srt(dai, 1);
1476 dai->ops->commit_write(dai);
1477
1478 src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
1479 }
1480
1481 static void atc_connect_resources(struct ct_atc *atc)
1482 {
1483 struct dai *dai;
1484 struct dao *dao;
1485 struct src *src;
1486 struct sum *sum;
1487 struct ct_mixer *mixer;
1488 struct rsc *rscs[2] = {NULL};
1489 int i, j;
1490
1491 mixer = atc->mixer;
1492
1493 for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
1494 mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
1495 dao = container_of(atc->daios[j], struct dao, daio);
1496 dao->ops->set_left_input(dao, rscs[0]);
1497 dao->ops->set_right_input(dao, rscs[1]);
1498 }
1499
1500 dai = container_of(atc->daios[LINEIM], struct dai, daio);
1501 atc_connect_dai(atc->rsc_mgrs[SRC], dai,
1502 (struct src **)&atc->srcs[2],
1503 (struct srcimp **)&atc->srcimps[2]);
1504 src = atc->srcs[2];
1505 mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
1506 src = atc->srcs[3];
1507 mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
1508
1509 if (atc->model == CTSB1270) {
1510 /* Titanium HD has a dedicated ADC for the Mic. */
1511 dai = container_of(atc->daios[MIC], struct dai, daio);
1512 atc_connect_dai(atc->rsc_mgrs[SRC], dai,
1513 (struct src **)&atc->srcs[4],
1514 (struct srcimp **)&atc->srcimps[4]);
1515 src = atc->srcs[4];
1516 mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
1517 src = atc->srcs[5];
1518 mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
1519 }
1520
1521 dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
1522 atc_connect_dai(atc->rsc_mgrs[SRC], dai,
1523 (struct src **)&atc->srcs[0],
1524 (struct srcimp **)&atc->srcimps[0]);
1525
1526 src = atc->srcs[0];
1527 mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
1528 src = atc->srcs[1];
1529 mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
1530
1531 for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
1532 sum = atc->pcm[j];
1533 mixer->set_input_left(mixer, i, &sum->rsc);
1534 sum = atc->pcm[j+1];
1535 mixer->set_input_right(mixer, i, &sum->rsc);
1536 }
1537 }
1538
1539 #ifdef CONFIG_PM
1540 static int atc_suspend(struct ct_atc *atc)
1541 {
1542 int i;
1543 struct hw *hw = atc->hw;
1544
1545 snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot);
1546
1547 for (i = FRONT; i < NUM_PCMS; i++) {
1548 if (!atc->pcms[i])
1549 continue;
1550
1551 snd_pcm_suspend_all(atc->pcms[i]);
1552 }
1553
1554 atc_release_resources(atc);
1555
1556 hw->suspend(hw);
1557
1558 return 0;
1559 }
1560
1561 static int atc_hw_resume(struct ct_atc *atc)
1562 {
1563 struct hw *hw = atc->hw;
1564 struct card_conf info = {0};
1565
1566 /* Re-initialize card hardware. */
1567 info.rsr = atc->rsr;
1568 info.msr = atc->msr;
1569 info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
1570 return hw->resume(hw, &info);
1571 }
1572
1573 static int atc_resources_resume(struct ct_atc *atc)
1574 {
1575 struct ct_mixer *mixer;
1576 int err = 0;
1577
1578 /* Get resources */
1579 err = atc_get_resources(atc);
1580 if (err < 0) {
1581 atc_release_resources(atc);
1582 return err;
1583 }
1584
1585 /* Build topology */
1586 atc_connect_resources(atc);
1587
1588 mixer = atc->mixer;
1589 mixer->resume(mixer);
1590
1591 return 0;
1592 }
1593
1594 static int atc_resume(struct ct_atc *atc)
1595 {
1596 int err = 0;
1597
1598 /* Do hardware resume. */
1599 err = atc_hw_resume(atc);
1600 if (err < 0) {
1601 printk(KERN_ERR "ctxfi: pci_enable_device failed, "
1602 "disabling device\n");
1603 snd_card_disconnect(atc->card);
1604 return err;
1605 }
1606
1607 err = atc_resources_resume(atc);
1608 if (err < 0)
1609 return err;
1610
1611 snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0);
1612
1613 return 0;
1614 }
1615 #endif
1616
1617 static struct ct_atc atc_preset __devinitdata = {
1618 .map_audio_buffer = ct_map_audio_buffer,
1619 .unmap_audio_buffer = ct_unmap_audio_buffer,
1620 .pcm_playback_prepare = atc_pcm_playback_prepare,
1621 .pcm_release_resources = atc_pcm_release_resources,
1622 .pcm_playback_start = atc_pcm_playback_start,
1623 .pcm_playback_stop = atc_pcm_stop,
1624 .pcm_playback_position = atc_pcm_playback_position,
1625 .pcm_capture_prepare = atc_pcm_capture_prepare,
1626 .pcm_capture_start = atc_pcm_capture_start,
1627 .pcm_capture_stop = atc_pcm_stop,
1628 .pcm_capture_position = atc_pcm_capture_position,
1629 .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
1630 .get_ptp_phys = atc_get_ptp_phys,
1631 .select_line_in = atc_select_line_in,
1632 .select_mic_in = atc_select_mic_in,
1633 .select_digit_io = atc_select_digit_io,
1634 .line_front_unmute = atc_line_front_unmute,
1635 .line_surround_unmute = atc_line_surround_unmute,
1636 .line_clfe_unmute = atc_line_clfe_unmute,
1637 .line_rear_unmute = atc_line_rear_unmute,
1638 .line_in_unmute = atc_line_in_unmute,
1639 .mic_unmute = atc_mic_unmute,
1640 .spdif_out_unmute = atc_spdif_out_unmute,
1641 .spdif_in_unmute = atc_spdif_in_unmute,
1642 .spdif_out_get_status = atc_spdif_out_get_status,
1643 .spdif_out_set_status = atc_spdif_out_set_status,
1644 .spdif_out_passthru = atc_spdif_out_passthru,
1645 .capabilities = atc_capabilities,
1646 .output_switch_get = atc_output_switch_get,
1647 .output_switch_put = atc_output_switch_put,
1648 .mic_source_switch_get = atc_mic_source_switch_get,
1649 .mic_source_switch_put = atc_mic_source_switch_put,
1650 #ifdef CONFIG_PM
1651 .suspend = atc_suspend,
1652 .resume = atc_resume,
1653 #endif
1654 };
1655
1656 /**
1657 * ct_atc_create - create and initialize a hardware manager
1658 * @card: corresponding alsa card object
1659 * @pci: corresponding kernel pci device object
1660 * @ratc: return created object address in it
1661 *
1662 * Creates and initializes a hardware manager.
1663 *
1664 * Creates kmallocated ct_atc structure. Initializes hardware.
1665 * Returns 0 if succeeds, or negative error code if fails.
1666 */
1667
1668 int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
1669 unsigned int rsr, unsigned int msr,
1670 int chip_type, unsigned int ssid,
1671 struct ct_atc **ratc)
1672 {
1673 struct ct_atc *atc;
1674 static struct snd_device_ops ops = {
1675 .dev_free = atc_dev_free,
1676 };
1677 int err;
1678
1679 *ratc = NULL;
1680
1681 atc = kzalloc(sizeof(*atc), GFP_KERNEL);
1682 if (!atc)
1683 return -ENOMEM;
1684
1685 /* Set operations */
1686 *atc = atc_preset;
1687
1688 atc->card = card;
1689 atc->pci = pci;
1690 atc->rsr = rsr;
1691 atc->msr = msr;
1692 atc->chip_type = chip_type;
1693
1694 mutex_init(&atc->atc_mutex);
1695
1696 /* Find card model */
1697 err = atc_identify_card(atc, ssid);
1698 if (err < 0) {
1699 printk(KERN_ERR "ctatc: Card not recognised\n");
1700 goto error1;
1701 }
1702
1703 /* Set up device virtual memory management object */
1704 err = ct_vm_create(&atc->vm, pci);
1705 if (err < 0)
1706 goto error1;
1707
1708 /* Create all atc hw devices */
1709 err = atc_create_hw_devs(atc);
1710 if (err < 0)
1711 goto error1;
1712
1713 err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
1714 if (err) {
1715 printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
1716 goto error1;
1717 }
1718
1719 /* Get resources */
1720 err = atc_get_resources(atc);
1721 if (err < 0)
1722 goto error1;
1723
1724 /* Build topology */
1725 atc_connect_resources(atc);
1726
1727 atc->timer = ct_timer_new(atc);
1728 if (!atc->timer)
1729 goto error1;
1730
1731 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
1732 if (err < 0)
1733 goto error1;
1734
1735 snd_card_set_dev(card, &pci->dev);
1736
1737 *ratc = atc;
1738 return 0;
1739
1740 error1:
1741 ct_atc_destroy(atc);
1742 printk(KERN_ERR "ctxfi: Something wrong!!!\n");
1743 return err;
1744 }