Merge tag 'for-linville-20130318' of git://github.com/kvalo/ath6kl
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / pci / au88x0 / au88x0_pcm.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU Library General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 */
16
17 /*
18 * Vortex PCM ALSA driver.
19 *
20 * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet.
21 * It remains stuck,and DMA transfers do not happen.
22 */
23 #include <sound/asoundef.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include "au88x0.h"
29
30 #define VORTEX_PCM_TYPE(x) (x->name[40])
31
32 /* hardware definition */
33 static struct snd_pcm_hardware snd_vortex_playback_hw_adb = {
34 .info =
35 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
36 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
37 SNDRV_PCM_INFO_MMAP_VALID),
38 .formats =
39 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
40 SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
41 .rates = SNDRV_PCM_RATE_CONTINUOUS,
42 .rate_min = 5000,
43 .rate_max = 48000,
44 .channels_min = 1,
45 .channels_max = 2,
46 .buffer_bytes_max = 0x10000,
47 .period_bytes_min = 0x20,
48 .period_bytes_max = 0x1000,
49 .periods_min = 2,
50 .periods_max = 1024,
51 };
52
53 #ifndef CHIP_AU8820
54 static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = {
55 .info =
56 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
57 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
58 SNDRV_PCM_INFO_MMAP_VALID),
59 .formats =
60 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
61 SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
62 .rates = SNDRV_PCM_RATE_CONTINUOUS,
63 .rate_min = 5000,
64 .rate_max = 48000,
65 .channels_min = 1,
66 .channels_max = 1,
67 .buffer_bytes_max = 0x10000,
68 .period_bytes_min = 0x100,
69 .period_bytes_max = 0x1000,
70 .periods_min = 2,
71 .periods_max = 64,
72 };
73 #endif
74 static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = {
75 .info =
76 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
77 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
78 SNDRV_PCM_INFO_MMAP_VALID),
79 .formats =
80 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
81 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW |
82 SNDRV_PCM_FMTBIT_A_LAW,
83 .rates =
84 SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
85 .rate_min = 32000,
86 .rate_max = 48000,
87 .channels_min = 1,
88 .channels_max = 2,
89 .buffer_bytes_max = 0x10000,
90 .period_bytes_min = 0x100,
91 .period_bytes_max = 0x1000,
92 .periods_min = 2,
93 .periods_max = 64,
94 };
95
96 #ifndef CHIP_AU8810
97 static struct snd_pcm_hardware snd_vortex_playback_hw_wt = {
98 .info = (SNDRV_PCM_INFO_MMAP |
99 SNDRV_PCM_INFO_INTERLEAVED |
100 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID),
101 .formats = SNDRV_PCM_FMTBIT_S16_LE,
102 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, // SNDRV_PCM_RATE_48000,
103 .rate_min = 8000,
104 .rate_max = 48000,
105 .channels_min = 1,
106 .channels_max = 2,
107 .buffer_bytes_max = 0x10000,
108 .period_bytes_min = 0x0400,
109 .period_bytes_max = 0x1000,
110 .periods_min = 2,
111 .periods_max = 64,
112 };
113 #endif
114 #ifdef CHIP_AU8830
115 static unsigned int au8830_channels[3] = {
116 1, 2, 4,
117 };
118
119 static struct snd_pcm_hw_constraint_list hw_constraints_au8830_channels = {
120 .count = ARRAY_SIZE(au8830_channels),
121 .list = au8830_channels,
122 .mask = 0,
123 };
124 #endif
125
126 static void vortex_notify_pcm_vol_change(struct snd_card *card,
127 struct snd_kcontrol *kctl, int activate)
128 {
129 if (activate)
130 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
131 else
132 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
133 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE |
134 SNDRV_CTL_EVENT_MASK_INFO, &(kctl->id));
135 }
136
137 /* open callback */
138 static int snd_vortex_pcm_open(struct snd_pcm_substream *substream)
139 {
140 vortex_t *vortex = snd_pcm_substream_chip(substream);
141 struct snd_pcm_runtime *runtime = substream->runtime;
142 int err;
143
144 /* Force equal size periods */
145 if ((err =
146 snd_pcm_hw_constraint_integer(runtime,
147 SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
148 return err;
149 /* Avoid PAGE_SIZE boundary to fall inside of a period. */
150 if ((err =
151 snd_pcm_hw_constraint_pow2(runtime, 0,
152 SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0)
153 return err;
154
155 snd_pcm_hw_constraint_step(runtime, 0,
156 SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 64);
157
158 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
159 #ifndef CHIP_AU8820
160 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) {
161 runtime->hw = snd_vortex_playback_hw_a3d;
162 }
163 #endif
164 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) {
165 runtime->hw = snd_vortex_playback_hw_spdif;
166 switch (vortex->spdif_sr) {
167 case 32000:
168 runtime->hw.rates = SNDRV_PCM_RATE_32000;
169 break;
170 case 44100:
171 runtime->hw.rates = SNDRV_PCM_RATE_44100;
172 break;
173 case 48000:
174 runtime->hw.rates = SNDRV_PCM_RATE_48000;
175 break;
176 }
177 }
178 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB
179 || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S)
180 runtime->hw = snd_vortex_playback_hw_adb;
181 #ifdef CHIP_AU8830
182 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
183 VORTEX_IS_QUAD(vortex) &&
184 VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
185 runtime->hw.channels_max = 4;
186 snd_pcm_hw_constraint_list(runtime, 0,
187 SNDRV_PCM_HW_PARAM_CHANNELS,
188 &hw_constraints_au8830_channels);
189 }
190 #endif
191 substream->runtime->private_data = NULL;
192 }
193 #ifndef CHIP_AU8810
194 else {
195 runtime->hw = snd_vortex_playback_hw_wt;
196 substream->runtime->private_data = NULL;
197 }
198 #endif
199 return 0;
200 }
201
202 /* close callback */
203 static int snd_vortex_pcm_close(struct snd_pcm_substream *substream)
204 {
205 //vortex_t *chip = snd_pcm_substream_chip(substream);
206 stream_t *stream = (stream_t *) substream->runtime->private_data;
207
208 // the hardware-specific codes will be here
209 if (stream != NULL) {
210 stream->substream = NULL;
211 stream->nr_ch = 0;
212 }
213 substream->runtime->private_data = NULL;
214 return 0;
215 }
216
217 /* hw_params callback */
218 static int
219 snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream,
220 struct snd_pcm_hw_params *hw_params)
221 {
222 vortex_t *chip = snd_pcm_substream_chip(substream);
223 stream_t *stream = (stream_t *) (substream->runtime->private_data);
224 int err;
225
226 // Alloc buffer memory.
227 err =
228 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
229 if (err < 0) {
230 printk(KERN_ERR "Vortex: pcm page alloc failed!\n");
231 return err;
232 }
233 /*
234 printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params),
235 params_period_bytes(hw_params), params_channels(hw_params));
236 */
237 spin_lock_irq(&chip->lock);
238 // Make audio routes and config buffer DMA.
239 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
240 int dma, type = VORTEX_PCM_TYPE(substream->pcm);
241 /* Dealloc any routes. */
242 if (stream != NULL)
243 vortex_adb_allocroute(chip, stream->dma,
244 stream->nr_ch, stream->dir,
245 stream->type,
246 substream->number);
247 /* Alloc routes. */
248 dma =
249 vortex_adb_allocroute(chip, -1,
250 params_channels(hw_params),
251 substream->stream, type,
252 substream->number);
253 if (dma < 0) {
254 spin_unlock_irq(&chip->lock);
255 return dma;
256 }
257 stream = substream->runtime->private_data = &chip->dma_adb[dma];
258 stream->substream = substream;
259 /* Setup Buffers. */
260 vortex_adbdma_setbuffers(chip, dma,
261 params_period_bytes(hw_params),
262 params_periods(hw_params));
263 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
264 chip->pcm_vol[substream->number].active = 1;
265 vortex_notify_pcm_vol_change(chip->card,
266 chip->pcm_vol[substream->number].kctl, 1);
267 }
268 }
269 #ifndef CHIP_AU8810
270 else {
271 /* if (stream != NULL)
272 vortex_wt_allocroute(chip, substream->number, 0); */
273 vortex_wt_allocroute(chip, substream->number,
274 params_channels(hw_params));
275 stream = substream->runtime->private_data =
276 &chip->dma_wt[substream->number];
277 stream->dma = substream->number;
278 stream->substream = substream;
279 vortex_wtdma_setbuffers(chip, substream->number,
280 params_period_bytes(hw_params),
281 params_periods(hw_params));
282 }
283 #endif
284 spin_unlock_irq(&chip->lock);
285 return 0;
286 }
287
288 /* hw_free callback */
289 static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream)
290 {
291 vortex_t *chip = snd_pcm_substream_chip(substream);
292 stream_t *stream = (stream_t *) (substream->runtime->private_data);
293
294 spin_lock_irq(&chip->lock);
295 // Delete audio routes.
296 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
297 if (stream != NULL) {
298 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
299 chip->pcm_vol[substream->number].active = 0;
300 vortex_notify_pcm_vol_change(chip->card,
301 chip->pcm_vol[substream->number].kctl,
302 0);
303 }
304 vortex_adb_allocroute(chip, stream->dma,
305 stream->nr_ch, stream->dir,
306 stream->type,
307 substream->number);
308 }
309 }
310 #ifndef CHIP_AU8810
311 else {
312 if (stream != NULL)
313 vortex_wt_allocroute(chip, stream->dma, 0);
314 }
315 #endif
316 substream->runtime->private_data = NULL;
317 spin_unlock_irq(&chip->lock);
318
319 return snd_pcm_lib_free_pages(substream);
320 }
321
322 /* prepare callback */
323 static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream)
324 {
325 vortex_t *chip = snd_pcm_substream_chip(substream);
326 struct snd_pcm_runtime *runtime = substream->runtime;
327 stream_t *stream = (stream_t *) substream->runtime->private_data;
328 int dma = stream->dma, fmt, dir;
329
330 // set up the hardware with the current configuration.
331 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
332 dir = 1;
333 else
334 dir = 0;
335 fmt = vortex_alsafmt_aspfmt(runtime->format);
336 spin_lock_irq(&chip->lock);
337 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
338 vortex_adbdma_setmode(chip, dma, 1, dir, fmt,
339 runtime->channels == 1 ? 0 : 1, 0);
340 vortex_adbdma_setstartbuffer(chip, dma, 0);
341 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF)
342 vortex_adb_setsrc(chip, dma, runtime->rate, dir);
343 }
344 #ifndef CHIP_AU8810
345 else {
346 vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0);
347 // FIXME: Set rate (i guess using vortex_wt_writereg() somehow).
348 vortex_wtdma_setstartbuffer(chip, dma, 0);
349 }
350 #endif
351 spin_unlock_irq(&chip->lock);
352 return 0;
353 }
354
355 /* trigger callback */
356 static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
357 {
358 vortex_t *chip = snd_pcm_substream_chip(substream);
359 stream_t *stream = (stream_t *) substream->runtime->private_data;
360 int dma = stream->dma;
361
362 spin_lock(&chip->lock);
363 switch (cmd) {
364 case SNDRV_PCM_TRIGGER_START:
365 // do something to start the PCM engine
366 //printk(KERN_INFO "vortex: start %d\n", dma);
367 stream->fifo_enabled = 1;
368 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
369 vortex_adbdma_resetup(chip, dma);
370 vortex_adbdma_startfifo(chip, dma);
371 }
372 #ifndef CHIP_AU8810
373 else {
374 printk(KERN_INFO "vortex: wt start %d\n", dma);
375 vortex_wtdma_startfifo(chip, dma);
376 }
377 #endif
378 break;
379 case SNDRV_PCM_TRIGGER_STOP:
380 // do something to stop the PCM engine
381 //printk(KERN_INFO "vortex: stop %d\n", dma);
382 stream->fifo_enabled = 0;
383 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
384 vortex_adbdma_stopfifo(chip, dma);
385 #ifndef CHIP_AU8810
386 else {
387 printk(KERN_INFO "vortex: wt stop %d\n", dma);
388 vortex_wtdma_stopfifo(chip, dma);
389 }
390 #endif
391 break;
392 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
393 //printk(KERN_INFO "vortex: pause %d\n", dma);
394 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
395 vortex_adbdma_pausefifo(chip, dma);
396 #ifndef CHIP_AU8810
397 else
398 vortex_wtdma_pausefifo(chip, dma);
399 #endif
400 break;
401 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
402 //printk(KERN_INFO "vortex: resume %d\n", dma);
403 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
404 vortex_adbdma_resumefifo(chip, dma);
405 #ifndef CHIP_AU8810
406 else
407 vortex_wtdma_resumefifo(chip, dma);
408 #endif
409 break;
410 default:
411 spin_unlock(&chip->lock);
412 return -EINVAL;
413 }
414 spin_unlock(&chip->lock);
415 return 0;
416 }
417
418 /* pointer callback */
419 static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream)
420 {
421 vortex_t *chip = snd_pcm_substream_chip(substream);
422 stream_t *stream = (stream_t *) substream->runtime->private_data;
423 int dma = stream->dma;
424 snd_pcm_uframes_t current_ptr = 0;
425
426 spin_lock(&chip->lock);
427 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
428 current_ptr = vortex_adbdma_getlinearpos(chip, dma);
429 #ifndef CHIP_AU8810
430 else
431 current_ptr = vortex_wtdma_getlinearpos(chip, dma);
432 #endif
433 //printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr);
434 spin_unlock(&chip->lock);
435 return (bytes_to_frames(substream->runtime, current_ptr));
436 }
437
438 /* operators */
439 static struct snd_pcm_ops snd_vortex_playback_ops = {
440 .open = snd_vortex_pcm_open,
441 .close = snd_vortex_pcm_close,
442 .ioctl = snd_pcm_lib_ioctl,
443 .hw_params = snd_vortex_pcm_hw_params,
444 .hw_free = snd_vortex_pcm_hw_free,
445 .prepare = snd_vortex_pcm_prepare,
446 .trigger = snd_vortex_pcm_trigger,
447 .pointer = snd_vortex_pcm_pointer,
448 .page = snd_pcm_sgbuf_ops_page,
449 };
450
451 /*
452 * definitions of capture are omitted here...
453 */
454
455 static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = {
456 CARD_NAME " ADB",
457 CARD_NAME " SPDIF",
458 CARD_NAME " A3D",
459 CARD_NAME " WT",
460 CARD_NAME " I2S",
461 };
462 static char *vortex_pcm_name[VORTEX_PCM_LAST] = {
463 "adb",
464 "spdif",
465 "a3d",
466 "wt",
467 "i2s",
468 };
469
470 /* SPDIF kcontrol */
471
472 static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
473 {
474 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
475 uinfo->count = 1;
476 return 0;
477 }
478
479 static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
480 {
481 ucontrol->value.iec958.status[0] = 0xff;
482 ucontrol->value.iec958.status[1] = 0xff;
483 ucontrol->value.iec958.status[2] = 0xff;
484 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
485 return 0;
486 }
487
488 static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
489 {
490 vortex_t *vortex = snd_kcontrol_chip(kcontrol);
491 ucontrol->value.iec958.status[0] = 0x00;
492 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID;
493 ucontrol->value.iec958.status[2] = 0x00;
494 switch (vortex->spdif_sr) {
495 case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break;
496 case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break;
497 case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break;
498 }
499 return 0;
500 }
501
502 static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
503 {
504 vortex_t *vortex = snd_kcontrol_chip(kcontrol);
505 int spdif_sr = 48000;
506 switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) {
507 case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break;
508 case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break;
509 case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break;
510 }
511 if (spdif_sr == vortex->spdif_sr)
512 return 0;
513 vortex->spdif_sr = spdif_sr;
514 vortex_spdif_init(vortex, vortex->spdif_sr, 1);
515 return 1;
516 }
517
518 /* spdif controls */
519 static struct snd_kcontrol_new snd_vortex_mixer_spdif[] = {
520 {
521 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
522 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
523 .info = snd_vortex_spdif_info,
524 .get = snd_vortex_spdif_get,
525 .put = snd_vortex_spdif_put,
526 },
527 {
528 .access = SNDRV_CTL_ELEM_ACCESS_READ,
529 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
530 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
531 .info = snd_vortex_spdif_info,
532 .get = snd_vortex_spdif_mask_get
533 },
534 };
535
536 /* subdevice PCM Volume control */
537
538 static int snd_vortex_pcm_vol_info(struct snd_kcontrol *kcontrol,
539 struct snd_ctl_elem_info *uinfo)
540 {
541 vortex_t *vortex = snd_kcontrol_chip(kcontrol);
542 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
543 uinfo->count = (VORTEX_IS_QUAD(vortex) ? 4 : 2);
544 uinfo->value.integer.min = -128;
545 uinfo->value.integer.max = 32;
546 return 0;
547 }
548
549 static int snd_vortex_pcm_vol_get(struct snd_kcontrol *kcontrol,
550 struct snd_ctl_elem_value *ucontrol)
551 {
552 int i;
553 vortex_t *vortex = snd_kcontrol_chip(kcontrol);
554 int subdev = kcontrol->id.subdevice;
555 struct pcm_vol *p = &vortex->pcm_vol[subdev];
556 int max_chn = (VORTEX_IS_QUAD(vortex) ? 4 : 2);
557 for (i = 0; i < max_chn; i++)
558 ucontrol->value.integer.value[i] = p->vol[i];
559 return 0;
560 }
561
562 static int snd_vortex_pcm_vol_put(struct snd_kcontrol *kcontrol,
563 struct snd_ctl_elem_value *ucontrol)
564 {
565 int i;
566 int changed = 0;
567 int mixin;
568 unsigned char vol;
569 vortex_t *vortex = snd_kcontrol_chip(kcontrol);
570 int subdev = kcontrol->id.subdevice;
571 struct pcm_vol *p = &vortex->pcm_vol[subdev];
572 int max_chn = (VORTEX_IS_QUAD(vortex) ? 4 : 2);
573 for (i = 0; i < max_chn; i++) {
574 if (p->vol[i] != ucontrol->value.integer.value[i]) {
575 p->vol[i] = ucontrol->value.integer.value[i];
576 if (p->active) {
577 switch (vortex->dma_adb[p->dma].nr_ch) {
578 case 1:
579 mixin = p->mixin[0];
580 break;
581 case 2:
582 default:
583 mixin = p->mixin[(i < 2) ? i : (i - 2)];
584 break;
585 case 4:
586 mixin = p->mixin[i];
587 break;
588 }
589 vol = p->vol[i];
590 vortex_mix_setinputvolumebyte(vortex,
591 vortex->mixplayb[i], mixin, vol);
592 }
593 changed = 1;
594 }
595 }
596 return changed;
597 }
598
599 static const DECLARE_TLV_DB_MINMAX(vortex_pcm_vol_db_scale, -9600, 2400);
600
601 static struct snd_kcontrol_new snd_vortex_pcm_vol = {
602 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
603 .name = "PCM Playback Volume",
604 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
605 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
606 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
607 .info = snd_vortex_pcm_vol_info,
608 .get = snd_vortex_pcm_vol_get,
609 .put = snd_vortex_pcm_vol_put,
610 .tlv = { .p = vortex_pcm_vol_db_scale },
611 };
612
613 /* create a pcm device */
614 static int snd_vortex_new_pcm(vortex_t *chip, int idx, int nr)
615 {
616 struct snd_pcm *pcm;
617 struct snd_kcontrol *kctl;
618 int i;
619 int err, nr_capt;
620
621 if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST)
622 return -ENODEV;
623
624 /* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the
625 * same dma engine. WT uses it own separate dma engine which can't capture. */
626 if (idx == VORTEX_PCM_ADB)
627 nr_capt = nr;
628 else
629 nr_capt = 0;
630 err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr,
631 nr_capt, &pcm);
632 if (err < 0)
633 return err;
634 snprintf(pcm->name, sizeof(pcm->name),
635 "%s %s", CARD_NAME_SHORT, vortex_pcm_name[idx]);
636 chip->pcm[idx] = pcm;
637 // This is an evil hack, but it saves a lot of duplicated code.
638 VORTEX_PCM_TYPE(pcm) = idx;
639 pcm->private_data = chip;
640 /* set operators */
641 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
642 &snd_vortex_playback_ops);
643 if (idx == VORTEX_PCM_ADB)
644 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
645 &snd_vortex_playback_ops);
646
647 /* pre-allocation of Scatter-Gather buffers */
648
649 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
650 snd_dma_pci_data(chip->pci_dev),
651 0x10000, 0x10000);
652
653 switch (VORTEX_PCM_TYPE(pcm)) {
654 case VORTEX_PCM_ADB:
655 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
656 snd_pcm_std_chmaps,
657 VORTEX_IS_QUAD(chip) ? 4 : 2,
658 0, NULL);
659 if (err < 0)
660 return err;
661 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_CAPTURE,
662 snd_pcm_std_chmaps, 2, 0, NULL);
663 if (err < 0)
664 return err;
665 break;
666 #ifdef CHIP_AU8830
667 case VORTEX_PCM_A3D:
668 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
669 snd_pcm_std_chmaps, 1, 0, NULL);
670 if (err < 0)
671 return err;
672 break;
673 #endif
674 };
675
676 if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) {
677 for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) {
678 kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip);
679 if (!kctl)
680 return -ENOMEM;
681 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
682 return err;
683 }
684 }
685 if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_ADB) {
686 for (i = 0; i < NR_PCM; i++) {
687 chip->pcm_vol[i].active = 0;
688 chip->pcm_vol[i].dma = -1;
689 kctl = snd_ctl_new1(&snd_vortex_pcm_vol, chip);
690 if (!kctl)
691 return -ENOMEM;
692 chip->pcm_vol[i].kctl = kctl;
693 kctl->id.device = 0;
694 kctl->id.subdevice = i;
695 err = snd_ctl_add(chip->card, kctl);
696 if (err < 0)
697 return err;
698 }
699 }
700 return 0;
701 }