Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / oss / vwsnd.c
1 /*
2 * Sound driver for Silicon Graphics 320 and 540 Visual Workstations'
3 * onboard audio. See notes in Documentation/sound/oss/vwsnd .
4 *
5 * Copyright 1999 Silicon Graphics, Inc. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #undef VWSND_DEBUG /* define for debugging */
23
24 /*
25 * XXX to do -
26 *
27 * External sync.
28 * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational.
29 * Bug - if select() called before read(), pcm_setup() not called.
30 * Bug - output doesn't stop soon enough if process killed.
31 */
32
33 /*
34 * Things to test -
35 *
36 * Will readv/writev work? Write a test.
37 *
38 * insmod/rmmod 100 million times.
39 *
40 * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT
41 * rate).
42 *
43 * Concurrent threads banging on mixer simultaneously, both UP
44 * and SMP kernels. Especially, watch for thread A changing
45 * OUTSRC while thread B changes gain -- both write to the same
46 * ad1843 register.
47 *
48 * What happens if a client opens /dev/audio then forks?
49 * Do two procs have /dev/audio open? Test.
50 *
51 * Pump audio through the CD, MIC and line inputs and verify that
52 * they mix/mute into the output.
53 *
54 * Apps:
55 * amp
56 * mpg123
57 * x11amp
58 * mxv
59 * kmedia
60 * esound
61 * need more input apps
62 *
63 * Run tests while bombarding with signals. setitimer(2) will do it... */
64
65 /*
66 * This driver is organized in nine sections.
67 * The nine sections are:
68 *
69 * debug stuff
70 * low level lithium access
71 * high level lithium access
72 * AD1843 access
73 * PCM I/O
74 * audio driver
75 * mixer driver
76 * probe/attach/unload
77 * initialization and loadable kernel module interface
78 *
79 * That is roughly the order of increasing abstraction, so forward
80 * dependencies are minimal.
81 */
82
83 /*
84 * Locking Notes
85 *
86 * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of
87 * open descriptors to this driver. They store it in vwsnd_use_count.
88 * The global device list, vwsnd_dev_list, is immutable when the IN_USE
89 * is true.
90 *
91 * devc->open_lock is a semaphore that is used to enforce the
92 * single reader/single writer rule for /dev/audio. The rule is
93 * that each device may have at most one reader and one writer.
94 * Open will block until the previous client has closed the
95 * device, unless O_NONBLOCK is specified.
96 *
97 * The semaphore devc->io_sema serializes PCM I/O syscalls. This
98 * is unnecessary in Linux 2.2, because the kernel lock
99 * serializes read, write, and ioctl globally, but it's there,
100 * ready for the brave, new post-kernel-lock world.
101 *
102 * Locking between interrupt and baselevel is handled by the
103 * "lock" spinlock in vwsnd_port (one lock each for read and
104 * write). Each half holds the lock just long enough to see what
105 * area it owns and update its pointers. See pcm_output() and
106 * pcm_input() for most of the gory stuff.
107 *
108 * devc->mix_sema serializes all mixer ioctls. This is also
109 * redundant because of the kernel lock.
110 *
111 * The lowest level lock is lith->lithium_lock. It is a
112 * spinlock which is held during the two-register tango of
113 * reading/writing an AD1843 register. See
114 * li_{read,write}_ad1843_reg().
115 */
116
117 /*
118 * Sample Format Notes
119 *
120 * Lithium's DMA engine has two formats: 16-bit 2's complement
121 * and 8-bit unsigned . 16-bit transfers the data unmodified, 2
122 * bytes per sample. 8-bit unsigned transfers 1 byte per sample
123 * and XORs each byte with 0x80. Lithium can input or output
124 * either mono or stereo in either format.
125 *
126 * The AD1843 has four formats: 16-bit 2's complement, 8-bit
127 * unsigned, 8-bit mu-Law and 8-bit A-Law.
128 *
129 * This driver supports five formats: AFMT_S8, AFMT_U8,
130 * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE.
131 *
132 * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and
133 * rely on Lithium's XOR to translate between U8 and S8.
134 *
135 * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR
136 * the 0x80 bit in software to compensate for Lithium's XOR.
137 * This happens in pcm_copy_{in,out}().
138 *
139 * Changes:
140 * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
141 * Added some __init/__exit
142 */
143
144 #include <linux/module.h>
145 #include <linux/init.h>
146
147 #include <linux/spinlock.h>
148 #include <linux/smp_lock.h>
149 #include <linux/wait.h>
150 #include <linux/interrupt.h>
151 #include <asm/semaphore.h>
152 #include <asm/mach-visws/cobalt.h>
153
154 #include "sound_config.h"
155
156 /*****************************************************************************/
157 /* debug stuff */
158
159 #ifdef VWSND_DEBUG
160
161 static int shut_up = 1;
162
163 /*
164 * dbgassert - called when an assertion fails.
165 */
166
167 static void dbgassert(const char *fcn, int line, const char *expr)
168 {
169 if (in_interrupt())
170 panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n",
171 __FILE__, fcn, line, expr);
172 else {
173 int x;
174 printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n",
175 __FILE__, fcn, line, expr);
176 x = * (volatile int *) 0; /* force proc to exit */
177 }
178 }
179
180 /*
181 * Bunch of useful debug macros:
182 *
183 * ASSERT - print unless e nonzero (panic if in interrupt)
184 * DBGDO - include arbitrary code if debugging
185 * DBGX - debug print raw (w/o function name)
186 * DBGP - debug print w/ function name
187 * DBGE - debug print function entry
188 * DBGC - debug print function call
189 * DBGR - debug print function return
190 * DBGXV - debug print raw when verbose
191 * DBGPV - debug print when verbose
192 * DBGEV - debug print function entry when verbose
193 * DBGRV - debug print function return when verbose
194 */
195
196 #define ASSERT(e) ((e) ? (void) 0 : dbgassert(__FUNCTION__, __LINE__, #e))
197 #define DBGDO(x) x
198 #define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args))
199 #define DBGP(fmt, args...) (DBGX("%s: " fmt, __FUNCTION__ , ##args))
200 #define DBGE(fmt, args...) (DBGX("%s" fmt, __FUNCTION__ , ##args))
201 #define DBGC(rtn) (DBGP("calling %s\n", rtn))
202 #define DBGR() (DBGP("returning\n"))
203 #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args))
204 #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args))
205 #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args))
206 #define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn))
207 #define DBGRV() (shut_up ? 0 : DBGR())
208
209 #else /* !VWSND_DEBUG */
210
211 #define ASSERT(e) ((void) 0)
212 #define DBGDO(x) /* don't */
213 #define DBGX(fmt, args...) ((void) 0)
214 #define DBGP(fmt, args...) ((void) 0)
215 #define DBGE(fmt, args...) ((void) 0)
216 #define DBGC(rtn) ((void) 0)
217 #define DBGR() ((void) 0)
218 #define DBGPV(fmt, args...) ((void) 0)
219 #define DBGXV(fmt, args...) ((void) 0)
220 #define DBGEV(fmt, args...) ((void) 0)
221 #define DBGCV(rtn) ((void) 0)
222 #define DBGRV() ((void) 0)
223
224 #endif /* !VWSND_DEBUG */
225
226 /*****************************************************************************/
227 /* low level lithium access */
228
229 /*
230 * We need to talk to Lithium registers on three pages. Here are
231 * the pages' offsets from the base address (0xFF001000).
232 */
233
234 enum {
235 LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */
236 LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */
237 LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */
238 };
239
240 /* low-level lithium data */
241
242 typedef struct lithium {
243 void * page0; /* virtual addresses */
244 void * page1;
245 void * page2;
246 spinlock_t lock; /* protects codec and UST/MSC access */
247 } lithium_t;
248
249 /*
250 * li_create initializes the lithium_t structure and sets up vm mappings
251 * to access the registers.
252 * Returns 0 on success, -errno on failure.
253 */
254
255 static int __init li_create(lithium_t *lith, unsigned long baseaddr)
256 {
257 static void li_destroy(lithium_t *);
258
259 spin_lock_init(&lith->lock);
260 lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE);
261 lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE);
262 lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE);
263 if (!lith->page0 || !lith->page1 || !lith->page2) {
264 li_destroy(lith);
265 return -ENOMEM;
266 }
267 return 0;
268 }
269
270 /*
271 * li_destroy destroys the lithium_t structure and vm mappings.
272 */
273
274 static void li_destroy(lithium_t *lith)
275 {
276 if (lith->page0) {
277 iounmap(lith->page0);
278 lith->page0 = NULL;
279 }
280 if (lith->page1) {
281 iounmap(lith->page1);
282 lith->page1 = NULL;
283 }
284 if (lith->page2) {
285 iounmap(lith->page2);
286 lith->page2 = NULL;
287 }
288 }
289
290 /*
291 * basic register accessors - read/write long/byte
292 */
293
294 static __inline__ unsigned long li_readl(lithium_t *lith, int off)
295 {
296 return * (volatile unsigned long *) (lith->page0 + off);
297 }
298
299 static __inline__ unsigned char li_readb(lithium_t *lith, int off)
300 {
301 return * (volatile unsigned char *) (lith->page0 + off);
302 }
303
304 static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val)
305 {
306 * (volatile unsigned long *) (lith->page0 + off) = val;
307 }
308
309 static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val)
310 {
311 * (volatile unsigned char *) (lith->page0 + off) = val;
312 }
313
314 /*****************************************************************************/
315 /* High Level Lithium Access */
316
317 /*
318 * Lithium DMA Notes
319 *
320 * Lithium has two dedicated DMA channels for audio. They are known
321 * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for
322 * input, and comm2 is for output. Each is controlled by three
323 * registers: BASE (base address), CFG (config) and CCTL
324 * (config/control).
325 *
326 * Each DMA channel points to a physically contiguous ring buffer in
327 * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.)
328 * There are three pointers into the ring buffer: read, write, and
329 * trigger. The pointers are 8 bits each. Each pointer points to
330 * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time,
331 * so there is no finer-granularity control.
332 *
333 * In comm1, the hardware updates the write ptr, and software updates
334 * the read ptr. In comm2, it's the opposite: hardware updates the
335 * read ptr, and software updates the write ptr. I designate the
336 * hardware-updated ptr as the hwptr, and the software-updated ptr as
337 * the swptr.
338 *
339 * The trigger ptr and trigger mask are used to trigger interrupts.
340 * From the Lithium spec, section 5.6.8, revision of 12/15/1998:
341 *
342 * Trigger Mask Value
343 *
344 * A three bit wide field that represents a power of two mask
345 * that is used whenever the trigger pointer is compared to its
346 * respective read or write pointer. A value of zero here
347 * implies a mask of 0xFF and a value of seven implies a mask
348 * 0x01. This value can be used to sub-divide the ring buffer
349 * into pie sections so that interrupts monitor the progress of
350 * hardware from section to section.
351 *
352 * My interpretation of that is, whenever the hw ptr is updated, it is
353 * compared with the trigger ptr, and the result is masked by the
354 * trigger mask. (Actually, by the complement of the trigger mask.)
355 * If the result is zero, an interrupt is triggered. I.e., interrupt
356 * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from
357 * the trigger register value as mask = (1 << (8 - tmreg)) - 1.
358 *
359 * In yet different words, setting tmreg to 0 causes an interrupt after
360 * every 256 DMA chunks (8192 bytes) or once per traversal of the
361 * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks
362 * (64 bytes) or 128 times per traversal of the ring buffer.
363 */
364
365 /* Lithium register offsets and bit definitions */
366
367 #define LI_HOST_CONTROLLER 0x000
368 # define LI_HC_RESET 0x00008000
369 # define LI_HC_LINK_ENABLE 0x00004000
370 # define LI_HC_LINK_FAILURE 0x00000004
371 # define LI_HC_LINK_CODEC 0x00000002
372 # define LI_HC_LINK_READY 0x00000001
373
374 #define LI_INTR_STATUS 0x010
375 #define LI_INTR_MASK 0x014
376 # define LI_INTR_LINK_ERR 0x00008000
377 # define LI_INTR_COMM2_TRIG 0x00000008
378 # define LI_INTR_COMM2_UNDERFLOW 0x00000004
379 # define LI_INTR_COMM1_TRIG 0x00000002
380 # define LI_INTR_COMM1_OVERFLOW 0x00000001
381
382 #define LI_CODEC_COMMAND 0x018
383 # define LI_CC_BUSY 0x00008000
384 # define LI_CC_DIR 0x00000080
385 # define LI_CC_DIR_RD LI_CC_DIR
386 # define LI_CC_DIR_WR (!LI_CC_DIR)
387 # define LI_CC_ADDR_MASK 0x0000007F
388
389 #define LI_CODEC_DATA 0x01C
390
391 #define LI_COMM1_BASE 0x100
392 #define LI_COMM1_CTL 0x104
393 # define LI_CCTL_RESET 0x80000000
394 # define LI_CCTL_SIZE 0x70000000
395 # define LI_CCTL_DMA_ENABLE 0x08000000
396 # define LI_CCTL_TMASK 0x07000000 /* trigger mask */
397 # define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */
398 # define LI_CCTL_RPTR 0x0000FF00
399 # define LI_CCTL_WPTR 0x000000FF
400 #define LI_COMM1_CFG 0x108
401 # define LI_CCFG_LOCK 0x00008000
402 # define LI_CCFG_SLOT 0x00000070
403 # define LI_CCFG_DIRECTION 0x00000008
404 # define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION)
405 # define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION
406 # define LI_CCFG_MODE 0x00000004
407 # define LI_CCFG_MODE_MONO (!LI_CCFG_MODE)
408 # define LI_CCFG_MODE_STEREO LI_CCFG_MODE
409 # define LI_CCFG_FORMAT 0x00000003
410 # define LI_CCFG_FMT_8BIT 0x00000000
411 # define LI_CCFG_FMT_16BIT 0x00000001
412 #define LI_COMM2_BASE 0x10C
413 #define LI_COMM2_CTL 0x110
414 /* bit definitions are the same as LI_COMM1_CTL */
415 #define LI_COMM2_CFG 0x114
416 /* bit definitions are the same as LI_COMM1_CFG */
417
418 #define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */
419 #define LI_UST_HIGH 0x204 /* microseconds since boot */
420
421 #define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */
422 #define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */
423 #define LI_AUDIO2_UST 0x308 /* counts samples actually */
424 #define LI_AUDIO2_MSC 0x30C /* processed as of time UST */
425
426 /*
427 * Lithium's DMA engine operates on chunks of 32 bytes. We call that
428 * a DMACHUNK.
429 */
430
431 #define DMACHUNK_SHIFT 5
432 #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT)
433 #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT)
434 #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT)
435
436 /*
437 * Two convenient macros to shift bitfields into/out of position.
438 *
439 * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)).
440 * As long as mask is constant, we trust the compiler will change the
441 * multipy and divide into shifts.
442 */
443
444 #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask))
445 #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask)))
446
447 /*
448 * dma_chan_desc is invariant information about a Lithium
449 * DMA channel. There are two instances, li_comm1 and li_comm2.
450 *
451 * Note that the CCTL register fields are write ptr and read ptr, but what
452 * we care about are which pointer is updated by software and which by
453 * hardware.
454 */
455
456 typedef struct dma_chan_desc {
457 int basereg;
458 int cfgreg;
459 int ctlreg;
460 int hwptrreg;
461 int swptrreg;
462 int ustreg;
463 int mscreg;
464 unsigned long swptrmask;
465 int ad1843_slot;
466 int direction; /* LI_CCTL_DIR_IN/OUT */
467 } dma_chan_desc_t;
468
469 static const dma_chan_desc_t li_comm1 = {
470 LI_COMM1_BASE, /* base register offset */
471 LI_COMM1_CFG, /* config register offset */
472 LI_COMM1_CTL, /* control register offset */
473 LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */
474 LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */
475 LI_AUDIO1_UST, /* ust reg offset */
476 LI_AUDIO1_MSC, /* msc reg offset */
477 LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */
478 2, /* ad1843 serial slot */
479 LI_CCFG_DIR_IN /* direction */
480 };
481
482 static const dma_chan_desc_t li_comm2 = {
483 LI_COMM2_BASE, /* base register offset */
484 LI_COMM2_CFG, /* config register offset */
485 LI_COMM2_CTL, /* control register offset */
486 LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */
487 LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */
488 LI_AUDIO2_UST, /* ust reg offset */
489 LI_AUDIO2_MSC, /* msc reg offset */
490 LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */
491 2, /* ad1843 serial slot */
492 LI_CCFG_DIR_OUT /* direction */
493 };
494
495 /*
496 * dma_chan is variable information about a Lithium DMA channel.
497 *
498 * The desc field points to invariant information.
499 * The lith field points to a lithium_t which is passed
500 * to li_read* and li_write* to access the registers.
501 * The *val fields shadow the lithium registers' contents.
502 */
503
504 typedef struct dma_chan {
505 const dma_chan_desc_t *desc;
506 lithium_t *lith;
507 unsigned long baseval;
508 unsigned long cfgval;
509 unsigned long ctlval;
510 } dma_chan_t;
511
512 /*
513 * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter).
514 * UST is time in microseconds since the system booted, and MSC is a
515 * counter that increments with every audio sample.
516 */
517
518 typedef struct ustmsc {
519 unsigned long long ust;
520 unsigned long msc;
521 } ustmsc_t;
522
523 /*
524 * li_ad1843_wait waits until lithium says the AD1843 register
525 * exchange is not busy. Returns 0 on success, -EBUSY on timeout.
526 *
527 * Locking: must be called with lithium_lock held.
528 */
529
530 static int li_ad1843_wait(lithium_t *lith)
531 {
532 unsigned long later = jiffies + 2;
533 while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY)
534 if (time_after_eq(jiffies, later))
535 return -EBUSY;
536 return 0;
537 }
538
539 /*
540 * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register.
541 *
542 * Returns unsigned register value on success, -errno on failure.
543 */
544
545 static int li_read_ad1843_reg(lithium_t *lith, int reg)
546 {
547 int val;
548
549 ASSERT(!in_interrupt());
550 spin_lock(&lith->lock);
551 {
552 val = li_ad1843_wait(lith);
553 if (val == 0) {
554 li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg);
555 val = li_ad1843_wait(lith);
556 }
557 if (val == 0)
558 val = li_readl(lith, LI_CODEC_DATA);
559 }
560 spin_unlock(&lith->lock);
561
562 DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n",
563 lith, reg, val);
564
565 return val;
566 }
567
568 /*
569 * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register.
570 */
571
572 static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval)
573 {
574 spin_lock(&lith->lock);
575 {
576 if (li_ad1843_wait(lith) == 0) {
577 li_writel(lith, LI_CODEC_DATA, newval);
578 li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg);
579 }
580 }
581 spin_unlock(&lith->lock);
582 }
583
584 /*
585 * li_setup_dma calculates all the register settings for DMA in a particular
586 * mode. It takes too many arguments.
587 */
588
589 static void li_setup_dma(dma_chan_t *chan,
590 const dma_chan_desc_t *desc,
591 lithium_t *lith,
592 unsigned long buffer_paddr,
593 int bufshift,
594 int fragshift,
595 int channels,
596 int sampsize)
597 {
598 unsigned long mode, format;
599 unsigned long size, tmask;
600
601 DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, "
602 "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n",
603 chan, desc, lith, buffer_paddr,
604 bufshift, fragshift, channels, sampsize);
605
606 /* Reset the channel first. */
607
608 li_writel(lith, desc->ctlreg, LI_CCTL_RESET);
609
610 ASSERT(channels == 1 || channels == 2);
611 if (channels == 2)
612 mode = LI_CCFG_MODE_STEREO;
613 else
614 mode = LI_CCFG_MODE_MONO;
615 ASSERT(sampsize == 1 || sampsize == 2);
616 if (sampsize == 2)
617 format = LI_CCFG_FMT_16BIT;
618 else
619 format = LI_CCFG_FMT_8BIT;
620 chan->desc = desc;
621 chan->lith = lith;
622
623 /*
624 * Lithium DMA address register takes a 40-bit physical
625 * address, right-shifted by 8 so it fits in 32 bits. Bit 37
626 * must be set -- it enables cache coherence.
627 */
628
629 ASSERT(!(buffer_paddr & 0xFF));
630 chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8);
631
632 chan->cfgval = (!LI_CCFG_LOCK |
633 SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) |
634 desc->direction |
635 mode |
636 format);
637
638 size = bufshift - 6;
639 tmask = 13 - fragshift; /* See Lithium DMA Notes above. */
640 ASSERT(size >= 2 && size <= 7);
641 ASSERT(tmask >= 1 && tmask <= 7);
642 chan->ctlval = (!LI_CCTL_RESET |
643 SHIFT_FIELD(size, LI_CCTL_SIZE) |
644 !LI_CCTL_DMA_ENABLE |
645 SHIFT_FIELD(tmask, LI_CCTL_TMASK) |
646 SHIFT_FIELD(0, LI_CCTL_TPTR));
647
648 DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval);
649 DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval);
650 DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval);
651
652 li_writel(lith, desc->basereg, chan->baseval);
653 li_writel(lith, desc->cfgreg, chan->cfgval);
654 li_writel(lith, desc->ctlreg, chan->ctlval);
655
656 DBGRV();
657 }
658
659 static void li_shutdown_dma(dma_chan_t *chan)
660 {
661 lithium_t *lith = chan->lith;
662 void * lith1 = lith->page1;
663
664 DBGEV("(chan=0x%p)\n", chan);
665
666 chan->ctlval &= ~LI_CCTL_DMA_ENABLE;
667 DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
668 li_writel(lith, chan->desc->ctlreg, chan->ctlval);
669
670 /*
671 * Offset 0x500 on Lithium page 1 is an undocumented,
672 * unsupported register that holds the zero sample value.
673 * Lithium is supposed to output zero samples when DMA is
674 * inactive, and repeat the last sample when DMA underflows.
675 * But it has a bug, where, after underflow occurs, the zero
676 * sample is not reset.
677 *
678 * I expect this to break in a future rev of Lithium.
679 */
680
681 if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT)
682 * (volatile unsigned long *) (lith1 + 0x500) = 0;
683 }
684
685 /*
686 * li_activate_dma always starts dma at the beginning of the buffer.
687 *
688 * N.B., these may be called from interrupt.
689 */
690
691 static __inline__ void li_activate_dma(dma_chan_t *chan)
692 {
693 chan->ctlval |= LI_CCTL_DMA_ENABLE;
694 DBGPV("ctlval = 0x%lx\n", chan->ctlval);
695 li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval);
696 }
697
698 static void li_deactivate_dma(dma_chan_t *chan)
699 {
700 lithium_t *lith = chan->lith;
701 void * lith2 = lith->page2;
702
703 chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR);
704 DBGPV("ctlval = 0x%lx\n", chan->ctlval);
705 DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
706 li_writel(lith, chan->desc->ctlreg, chan->ctlval);
707
708 /*
709 * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented,
710 * unsupported registers that are internal copies of the DMA
711 * read and write pointers. Because of a Lithium bug, these
712 * registers aren't zeroed correctly when DMA is shut off. So
713 * we whack them directly.
714 *
715 * I expect this to break in a future rev of Lithium.
716 */
717
718 if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) {
719 * (volatile unsigned long *) (lith2 + 0x98) = 0;
720 * (volatile unsigned long *) (lith2 + 0x9C) = 0;
721 }
722 }
723
724 /*
725 * read/write the ring buffer pointers. These routines' arguments and results
726 * are byte offsets from the beginning of the ring buffer.
727 */
728
729 static __inline__ int li_read_swptr(dma_chan_t *chan)
730 {
731 const unsigned long mask = chan->desc->swptrmask;
732
733 return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask));
734 }
735
736 static __inline__ int li_read_hwptr(dma_chan_t *chan)
737 {
738 return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg));
739 }
740
741 static __inline__ void li_write_swptr(dma_chan_t *chan, int val)
742 {
743 const unsigned long mask = chan->desc->swptrmask;
744
745 ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF)));
746 val = BYTES_TO_CHUNKS(val);
747 chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask);
748 li_writeb(chan->lith, chan->desc->swptrreg, val);
749 }
750
751 /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */
752
753 static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc)
754 {
755 lithium_t *lith = chan->lith;
756 const dma_chan_desc_t *desc = chan->desc;
757 unsigned long now_low, now_high0, now_high1, chan_ust;
758
759 spin_lock(&lith->lock);
760 {
761 /*
762 * retry until we do all five reads without the
763 * high word changing. (High word increments
764 * every 2^32 microseconds, i.e., not often)
765 */
766 do {
767 now_high0 = li_readl(lith, LI_UST_HIGH);
768 now_low = li_readl(lith, LI_UST_LOW);
769
770 /*
771 * Lithium guarantees these two reads will be
772 * atomic -- ust will not increment after msc
773 * is read.
774 */
775
776 ustmsc->msc = li_readl(lith, desc->mscreg);
777 chan_ust = li_readl(lith, desc->ustreg);
778
779 now_high1 = li_readl(lith, LI_UST_HIGH);
780 } while (now_high0 != now_high1);
781 }
782 spin_unlock(&lith->lock);
783 ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust);
784 }
785
786 static void li_enable_interrupts(lithium_t *lith, unsigned int mask)
787 {
788 DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
789
790 /* clear any already-pending interrupts. */
791
792 li_writel(lith, LI_INTR_STATUS, mask);
793
794 /* enable the interrupts. */
795
796 mask |= li_readl(lith, LI_INTR_MASK);
797 li_writel(lith, LI_INTR_MASK, mask);
798 }
799
800 static void li_disable_interrupts(lithium_t *lith, unsigned int mask)
801 {
802 unsigned int keepmask;
803
804 DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
805
806 /* disable the interrupts */
807
808 keepmask = li_readl(lith, LI_INTR_MASK) & ~mask;
809 li_writel(lith, LI_INTR_MASK, keepmask);
810
811 /* clear any pending interrupts. */
812
813 li_writel(lith, LI_INTR_STATUS, mask);
814 }
815
816 /* Get the interrupt status and clear all pending interrupts. */
817
818 static unsigned int li_get_clear_intr_status(lithium_t *lith)
819 {
820 unsigned int status;
821
822 status = li_readl(lith, LI_INTR_STATUS);
823 li_writel(lith, LI_INTR_STATUS, ~0);
824 return status & li_readl(lith, LI_INTR_MASK);
825 }
826
827 static int li_init(lithium_t *lith)
828 {
829 /* 1. System power supplies stabilize. */
830
831 /* 2. Assert the ~RESET signal. */
832
833 li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET);
834 udelay(1);
835
836 /* 3. Deassert the ~RESET signal and enter a wait period to allow
837 the AD1843 internal clocks and the external crystal oscillator
838 to stabilize. */
839
840 li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
841 udelay(1);
842
843 return 0;
844 }
845
846 /*****************************************************************************/
847 /* AD1843 access */
848
849 /*
850 * AD1843 bitfield definitions. All are named as in the AD1843 data
851 * sheet, with ad1843_ prepended and individual bit numbers removed.
852 *
853 * E.g., bits LSS0 through LSS2 become ad1843_LSS.
854 *
855 * Only the bitfields we need are defined.
856 */
857
858 typedef struct ad1843_bitfield {
859 char reg;
860 char lo_bit;
861 char nbits;
862 } ad1843_bitfield_t;
863
864 static const ad1843_bitfield_t
865 ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */
866 ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */
867 ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */
868 ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */
869 ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */
870 ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */
871 ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */
872 ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */
873 ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */
874 ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */
875 ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */
876 ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */
877 ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */
878 ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */
879 ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */
880 ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */
881 ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */
882 ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */
883 ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */
884 ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */
885 ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */
886 ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */
887 ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */
888 ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */
889 ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */
890 ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */
891 ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */
892 ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */
893 ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */
894 ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */
895 ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */
896 ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */
897 ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */
898 ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */
899 ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */
900 ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */
901 ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */
902 ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */
903 ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */
904 ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */
905 ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */
906 ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */
907 ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */
908 ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */
909 ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */
910 ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */
911 ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */
912 ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */
913 ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */
914 ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */
915 ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */
916
917 /*
918 * The various registers of the AD1843 use three different formats for
919 * specifying gain. The ad1843_gain structure parameterizes the
920 * formats.
921 */
922
923 typedef struct ad1843_gain {
924
925 int negative; /* nonzero if gain is negative. */
926 const ad1843_bitfield_t *lfield;
927 const ad1843_bitfield_t *rfield;
928
929 } ad1843_gain_t;
930
931 static const ad1843_gain_t ad1843_gain_RECLEV
932 = { 0, &ad1843_LIG, &ad1843_RIG };
933 static const ad1843_gain_t ad1843_gain_LINE
934 = { 1, &ad1843_LX1M, &ad1843_RX1M };
935 static const ad1843_gain_t ad1843_gain_CD
936 = { 1, &ad1843_LX2M, &ad1843_RX2M };
937 static const ad1843_gain_t ad1843_gain_MIC
938 = { 1, &ad1843_LMCM, &ad1843_RMCM };
939 static const ad1843_gain_t ad1843_gain_PCM
940 = { 1, &ad1843_LDA1G, &ad1843_RDA1G };
941
942 /* read the current value of an AD1843 bitfield. */
943
944 static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field)
945 {
946 int w = li_read_ad1843_reg(lith, field->reg);
947 int val = w >> field->lo_bit & ((1 << field->nbits) - 1);
948
949 DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n",
950 lith, field->reg, field->lo_bit, field->nbits, val);
951
952 return val;
953 }
954
955 /*
956 * write a new value to an AD1843 bitfield and return the old value.
957 */
958
959 static int ad1843_write_bits(lithium_t *lith,
960 const ad1843_bitfield_t *field,
961 int newval)
962 {
963 int w = li_read_ad1843_reg(lith, field->reg);
964 int mask = ((1 << field->nbits) - 1) << field->lo_bit;
965 int oldval = (w & mask) >> field->lo_bit;
966 int newbits = (newval << field->lo_bit) & mask;
967 w = (w & ~mask) | newbits;
968 (void) li_write_ad1843_reg(lith, field->reg, w);
969
970 DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) "
971 "returns 0x%x\n",
972 lith, field->reg, field->lo_bit, field->nbits, newval,
973 oldval);
974
975 return oldval;
976 }
977
978 /*
979 * ad1843_read_multi reads multiple bitfields from the same AD1843
980 * register. It uses a single read cycle to do it. (Reading the
981 * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
982 * microseconds.)
983 *
984 * Called ike this.
985 *
986 * ad1843_read_multi(lith, nfields,
987 * &ad1843_FIELD1, &val1,
988 * &ad1843_FIELD2, &val2, ...);
989 */
990
991 static void ad1843_read_multi(lithium_t *lith, int argcount, ...)
992 {
993 va_list ap;
994 const ad1843_bitfield_t *fp;
995 int w = 0, mask, *value, reg = -1;
996
997 va_start(ap, argcount);
998 while (--argcount >= 0) {
999 fp = va_arg(ap, const ad1843_bitfield_t *);
1000 value = va_arg(ap, int *);
1001 if (reg == -1) {
1002 reg = fp->reg;
1003 w = li_read_ad1843_reg(lith, reg);
1004 }
1005 ASSERT(reg == fp->reg);
1006 mask = (1 << fp->nbits) - 1;
1007 *value = w >> fp->lo_bit & mask;
1008 }
1009 va_end(ap);
1010 }
1011
1012 /*
1013 * ad1843_write_multi stores multiple bitfields into the same AD1843
1014 * register. It uses one read and one write cycle to do it.
1015 *
1016 * Called like this.
1017 *
1018 * ad1843_write_multi(lith, nfields,
1019 * &ad1843_FIELD1, val1,
1020 * &ad1843_FIELF2, val2, ...);
1021 */
1022
1023 static void ad1843_write_multi(lithium_t *lith, int argcount, ...)
1024 {
1025 va_list ap;
1026 int reg;
1027 const ad1843_bitfield_t *fp;
1028 int value;
1029 int w, m, mask, bits;
1030
1031 mask = 0;
1032 bits = 0;
1033 reg = -1;
1034
1035 va_start(ap, argcount);
1036 while (--argcount >= 0) {
1037 fp = va_arg(ap, const ad1843_bitfield_t *);
1038 value = va_arg(ap, int);
1039 if (reg == -1)
1040 reg = fp->reg;
1041 ASSERT(fp->reg == reg);
1042 m = ((1 << fp->nbits) - 1) << fp->lo_bit;
1043 mask |= m;
1044 bits |= (value << fp->lo_bit) & m;
1045 }
1046 va_end(ap);
1047 ASSERT(!(bits & ~mask));
1048 if (~mask & 0xFFFF)
1049 w = li_read_ad1843_reg(lith, reg);
1050 else
1051 w = 0;
1052 w = (w & ~mask) | bits;
1053 (void) li_write_ad1843_reg(lith, reg, w);
1054 }
1055
1056 /*
1057 * ad1843_get_gain reads the specified register and extracts the gain value
1058 * using the supplied gain type. It returns the gain in OSS format.
1059 */
1060
1061 static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp)
1062 {
1063 int lg, rg;
1064 unsigned short mask = (1 << gp->lfield->nbits) - 1;
1065
1066 ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg);
1067 if (gp->negative) {
1068 lg = mask - lg;
1069 rg = mask - rg;
1070 }
1071 lg = (lg * 100 + (mask >> 1)) / mask;
1072 rg = (rg * 100 + (mask >> 1)) / mask;
1073 return lg << 0 | rg << 8;
1074 }
1075
1076 /*
1077 * Set an audio channel's gain. Converts from OSS format to AD1843's
1078 * format.
1079 *
1080 * Returns the new gain, which may be lower than the old gain.
1081 */
1082
1083 static int ad1843_set_gain(lithium_t *lith,
1084 const ad1843_gain_t *gp,
1085 int newval)
1086 {
1087 unsigned short mask = (1 << gp->lfield->nbits) - 1;
1088
1089 int lg = newval >> 0 & 0xFF;
1090 int rg = newval >> 8;
1091 if (lg < 0 || lg > 100 || rg < 0 || rg > 100)
1092 return -EINVAL;
1093 lg = (lg * mask + (mask >> 1)) / 100;
1094 rg = (rg * mask + (mask >> 1)) / 100;
1095 if (gp->negative) {
1096 lg = mask - lg;
1097 rg = mask - rg;
1098 }
1099 ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg);
1100 return ad1843_get_gain(lith, gp);
1101 }
1102
1103 /* Returns the current recording source, in OSS format. */
1104
1105 static int ad1843_get_recsrc(lithium_t *lith)
1106 {
1107 int ls = ad1843_read_bits(lith, &ad1843_LSS);
1108
1109 switch (ls) {
1110 case 1:
1111 return SOUND_MASK_MIC;
1112 case 2:
1113 return SOUND_MASK_LINE;
1114 case 3:
1115 return SOUND_MASK_CD;
1116 case 6:
1117 return SOUND_MASK_PCM;
1118 default:
1119 ASSERT(0);
1120 return -1;
1121 }
1122 }
1123
1124 /*
1125 * Enable/disable digital resample mode in the AD1843.
1126 *
1127 * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down
1128 * while switching modes. So we save DA1's state (DA2's state is not
1129 * interesting), power them down, switch into/out of resample mode,
1130 * power them up, and restore state.
1131 *
1132 * This will cause audible glitches if D/A or A/D is going on, so the
1133 * driver disallows that (in mixer_write_ioctl()).
1134 *
1135 * The open question is, is this worth doing? I'm leaving it in,
1136 * because it's written, but...
1137 */
1138
1139 static void ad1843_set_resample_mode(lithium_t *lith, int onoff)
1140 {
1141 /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */
1142 int save_da1 = li_read_ad1843_reg(lith, 9);
1143
1144 /* Power down A/D and D/A. */
1145 ad1843_write_multi(lith, 4,
1146 &ad1843_DA1EN, 0,
1147 &ad1843_DA2EN, 0,
1148 &ad1843_ADLEN, 0,
1149 &ad1843_ADREN, 0);
1150
1151 /* Switch mode */
1152 ASSERT(onoff == 0 || onoff == 1);
1153 ad1843_write_bits(lith, &ad1843_DRSFLT, onoff);
1154
1155 /* Power up A/D and D/A. */
1156 ad1843_write_multi(lith, 3,
1157 &ad1843_DA1EN, 1,
1158 &ad1843_ADLEN, 1,
1159 &ad1843_ADREN, 1);
1160
1161 /* Restore DA1 mute and gain. */
1162 li_write_ad1843_reg(lith, 9, save_da1);
1163 }
1164
1165 /*
1166 * Set recording source. Arg newsrc specifies an OSS channel mask.
1167 *
1168 * The complication is that when we switch into/out of loopback mode
1169 * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of
1170 * digital resampling mode.
1171 *
1172 * Returns newsrc on success, -errno on failure.
1173 */
1174
1175 static int ad1843_set_recsrc(lithium_t *lith, int newsrc)
1176 {
1177 int bits;
1178 int oldbits;
1179
1180 switch (newsrc) {
1181 case SOUND_MASK_PCM:
1182 bits = 6;
1183 break;
1184
1185 case SOUND_MASK_MIC:
1186 bits = 1;
1187 break;
1188
1189 case SOUND_MASK_LINE:
1190 bits = 2;
1191 break;
1192
1193 case SOUND_MASK_CD:
1194 bits = 3;
1195 break;
1196
1197 default:
1198 return -EINVAL;
1199 }
1200 oldbits = ad1843_read_bits(lith, &ad1843_LSS);
1201 if (newsrc == SOUND_MASK_PCM && oldbits != 6) {
1202 DBGP("enabling digital resample mode\n");
1203 ad1843_set_resample_mode(lith, 1);
1204 ad1843_write_multi(lith, 2,
1205 &ad1843_DAADL, 2,
1206 &ad1843_DAADR, 2);
1207 } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) {
1208 DBGP("disabling digital resample mode\n");
1209 ad1843_set_resample_mode(lith, 0);
1210 ad1843_write_multi(lith, 2,
1211 &ad1843_DAADL, 0,
1212 &ad1843_DAADR, 0);
1213 }
1214 ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits);
1215 return newsrc;
1216 }
1217
1218 /*
1219 * Return current output sources, in OSS format.
1220 */
1221
1222 static int ad1843_get_outsrc(lithium_t *lith)
1223 {
1224 int pcm, line, mic, cd;
1225
1226 pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM;
1227 line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE;
1228 cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD;
1229 mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC;
1230
1231 return pcm | line | cd | mic;
1232 }
1233
1234 /*
1235 * Set output sources. Arg is a mask of active sources in OSS format.
1236 *
1237 * Returns source mask on success, -errno on failure.
1238 */
1239
1240 static int ad1843_set_outsrc(lithium_t *lith, int mask)
1241 {
1242 int pcm, line, mic, cd;
1243
1244 if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE |
1245 SOUND_MASK_CD | SOUND_MASK_MIC))
1246 return -EINVAL;
1247 pcm = (mask & SOUND_MASK_PCM) ? 0 : 1;
1248 line = (mask & SOUND_MASK_LINE) ? 0 : 1;
1249 mic = (mask & SOUND_MASK_MIC) ? 0 : 1;
1250 cd = (mask & SOUND_MASK_CD) ? 0 : 1;
1251
1252 ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm);
1253 ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line);
1254 ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd);
1255 ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic);
1256
1257 return mask;
1258 }
1259
1260 /* Setup ad1843 for D/A conversion. */
1261
1262 static void ad1843_setup_dac(lithium_t *lith,
1263 int framerate,
1264 int fmt,
1265 int channels)
1266 {
1267 int ad_fmt = 0, ad_mode = 0;
1268
1269 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1270 lith, framerate, fmt, channels);
1271
1272 switch (fmt) {
1273 case AFMT_S8: ad_fmt = 1; break;
1274 case AFMT_U8: ad_fmt = 1; break;
1275 case AFMT_S16_LE: ad_fmt = 1; break;
1276 case AFMT_MU_LAW: ad_fmt = 2; break;
1277 case AFMT_A_LAW: ad_fmt = 3; break;
1278 default: ASSERT(0);
1279 }
1280
1281 switch (channels) {
1282 case 2: ad_mode = 0; break;
1283 case 1: ad_mode = 1; break;
1284 default: ASSERT(0);
1285 }
1286
1287 DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt);
1288 ASSERT(framerate >= 4000 && framerate <= 49000);
1289 ad1843_write_bits(lith, &ad1843_C1C, framerate);
1290 ad1843_write_multi(lith, 2,
1291 &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt);
1292 }
1293
1294 static void ad1843_shutdown_dac(lithium_t *lith)
1295 {
1296 ad1843_write_bits(lith, &ad1843_DA1F, 1);
1297 }
1298
1299 static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels)
1300 {
1301 int da_fmt = 0;
1302
1303 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1304 lith, framerate, fmt, channels);
1305
1306 switch (fmt) {
1307 case AFMT_S8: da_fmt = 1; break;
1308 case AFMT_U8: da_fmt = 1; break;
1309 case AFMT_S16_LE: da_fmt = 1; break;
1310 case AFMT_MU_LAW: da_fmt = 2; break;
1311 case AFMT_A_LAW: da_fmt = 3; break;
1312 default: ASSERT(0);
1313 }
1314
1315 DBGPV("da_fmt = %d\n", da_fmt);
1316 ASSERT(framerate >= 4000 && framerate <= 49000);
1317 ad1843_write_bits(lith, &ad1843_C2C, framerate);
1318 ad1843_write_multi(lith, 2,
1319 &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt);
1320 }
1321
1322 static void ad1843_shutdown_adc(lithium_t *lith)
1323 {
1324 /* nothing to do */
1325 }
1326
1327 /*
1328 * Fully initialize the ad1843. As described in the AD1843 data
1329 * sheet, section "START-UP SEQUENCE". The numbered comments are
1330 * subsection headings from the data sheet. See the data sheet, pages
1331 * 52-54, for more info.
1332 *
1333 * return 0 on success, -errno on failure. */
1334
1335 static int __init ad1843_init(lithium_t *lith)
1336 {
1337 unsigned long later;
1338 int err;
1339
1340 err = li_init(lith);
1341 if (err)
1342 return err;
1343
1344 if (ad1843_read_bits(lith, &ad1843_INIT) != 0) {
1345 printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n");
1346 return -EIO;
1347 }
1348
1349 ad1843_write_bits(lith, &ad1843_SCF, 1);
1350
1351 /* 4. Put the conversion resources into standby. */
1352
1353 ad1843_write_bits(lith, &ad1843_PDNI, 0);
1354 later = jiffies + HZ / 2; /* roughly half a second */
1355 DBGDO(shut_up++);
1356 while (ad1843_read_bits(lith, &ad1843_PDNO)) {
1357 if (time_after(jiffies, later)) {
1358 printk(KERN_ERR
1359 "vwsnd audio: AD1843 won't power up\n");
1360 return -EIO;
1361 }
1362 schedule();
1363 }
1364 DBGDO(shut_up--);
1365
1366 /* 5. Power up the clock generators and enable clock output pins. */
1367
1368 ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1);
1369
1370 /* 6. Configure conversion resources while they are in standby. */
1371
1372 /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */
1373
1374 ad1843_write_multi(lith, 3,
1375 &ad1843_DA1C, 1,
1376 &ad1843_ADLC, 2,
1377 &ad1843_ADRC, 2);
1378
1379 /* 7. Enable conversion resources. */
1380
1381 ad1843_write_bits(lith, &ad1843_ADTLK, 1);
1382 ad1843_write_multi(lith, 5,
1383 &ad1843_ANAEN, 1,
1384 &ad1843_AAMEN, 1,
1385 &ad1843_DA1EN, 1,
1386 &ad1843_ADLEN, 1,
1387 &ad1843_ADREN, 1);
1388
1389 /* 8. Configure conversion resources while they are enabled. */
1390
1391 ad1843_write_bits(lith, &ad1843_DA1C, 1);
1392
1393 /* Unmute all channels. */
1394
1395 ad1843_set_outsrc(lith,
1396 (SOUND_MASK_PCM | SOUND_MASK_LINE |
1397 SOUND_MASK_MIC | SOUND_MASK_CD));
1398 ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0);
1399
1400 /* Set default recording source to Line In and set
1401 * mic gain to +20 dB.
1402 */
1403
1404 ad1843_set_recsrc(lith, SOUND_MASK_LINE);
1405 ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1);
1406
1407 /* Set Speaker Out level to +/- 4V and unmute it. */
1408
1409 ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0);
1410
1411 return 0;
1412 }
1413
1414 /*****************************************************************************/
1415 /* PCM I/O */
1416
1417 #define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW)
1418 #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW)
1419
1420 typedef enum vwsnd_port_swstate { /* software state */
1421 SW_OFF,
1422 SW_INITIAL,
1423 SW_RUN,
1424 SW_DRAIN,
1425 } vwsnd_port_swstate_t;
1426
1427 typedef enum vwsnd_port_hwstate { /* hardware state */
1428 HW_STOPPED,
1429 HW_RUNNING,
1430 } vwsnd_port_hwstate_t;
1431
1432 /*
1433 * These flags are read by ISR, but only written at baseline.
1434 */
1435
1436 typedef enum vwsnd_port_flags {
1437 DISABLED = 1 << 0,
1438 ERFLOWN = 1 << 1, /* overflown or underflown */
1439 HW_BUSY = 1 << 2,
1440 } vwsnd_port_flags_t;
1441
1442 /*
1443 * vwsnd_port is the per-port data structure. Each device has two
1444 * ports, one for input and one for output.
1445 *
1446 * Locking:
1447 *
1448 * port->lock protects: hwstate, flags, swb_[iu]_avail.
1449 *
1450 * devc->io_sema protects: swstate, sw_*, swb_[iu]_idx.
1451 *
1452 * everything else is only written by open/release or
1453 * pcm_{setup,shutdown}(), which are serialized by a
1454 * combination of devc->open_sema and devc->io_sema.
1455 */
1456
1457 typedef struct vwsnd_port {
1458
1459 spinlock_t lock;
1460 wait_queue_head_t queue;
1461 vwsnd_port_swstate_t swstate;
1462 vwsnd_port_hwstate_t hwstate;
1463 vwsnd_port_flags_t flags;
1464
1465 int sw_channels;
1466 int sw_samplefmt;
1467 int sw_framerate;
1468 int sample_size;
1469 int frame_size;
1470 unsigned int zero_word; /* zero for the sample format */
1471
1472 int sw_fragshift;
1473 int sw_fragcount;
1474 int sw_subdivshift;
1475
1476 unsigned int hw_fragshift;
1477 unsigned int hw_fragsize;
1478 unsigned int hw_fragcount;
1479
1480 int hwbuf_size;
1481 unsigned long hwbuf_paddr;
1482 unsigned long hwbuf_vaddr;
1483 void * hwbuf; /* hwbuf == hwbuf_vaddr */
1484 int hwbuf_max; /* max bytes to preload */
1485
1486 void * swbuf;
1487 unsigned int swbuf_size; /* size in bytes */
1488 unsigned int swb_u_idx; /* index of next user byte */
1489 unsigned int swb_i_idx; /* index of next intr byte */
1490 unsigned int swb_u_avail; /* # bytes avail to user */
1491 unsigned int swb_i_avail; /* # bytes avail to intr */
1492
1493 dma_chan_t chan;
1494
1495 /* Accounting */
1496
1497 int byte_count;
1498 int frag_count;
1499 int MSC_offset;
1500
1501 } vwsnd_port_t;
1502
1503 /* vwsnd_dev is the per-device data structure. */
1504
1505 typedef struct vwsnd_dev {
1506 struct vwsnd_dev *next_dev;
1507 int audio_minor; /* minor number of audio device */
1508 int mixer_minor; /* minor number of mixer device */
1509
1510 struct semaphore open_sema;
1511 struct semaphore io_sema;
1512 struct semaphore mix_sema;
1513 mode_t open_mode;
1514 wait_queue_head_t open_wait;
1515
1516 lithium_t lith;
1517
1518 vwsnd_port_t rport;
1519 vwsnd_port_t wport;
1520 } vwsnd_dev_t;
1521
1522 static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */
1523
1524 static atomic_t vwsnd_use_count = ATOMIC_INIT(0);
1525
1526 # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count))
1527 # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count))
1528 # define IN_USE (atomic_read(&vwsnd_use_count) != 0)
1529
1530 /*
1531 * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may
1532 * be up to 8 Kb. This driver always uses 8 Kb.
1533 *
1534 * Memory bug workaround -- I'm not sure what's going on here, but
1535 * somehow pcm_copy_out() was triggering segv's going on to the next
1536 * page of the hw buffer. So, I make the hw buffer one size bigger
1537 * than we actually use. That way, the following page is allocated
1538 * and mapped, and no error. I suspect that something is broken
1539 * in Cobalt, but haven't really investigated. HBO is the actual
1540 * size of the buffer, and HWBUF_ORDER is what we allocate.
1541 */
1542
1543 #define HWBUF_SHIFT 13
1544 #define HWBUF_SIZE (1 << HWBUF_SHIFT)
1545 # define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0)
1546 # define HWBUF_ORDER (HBO + 1) /* next size bigger */
1547 #define MIN_SPEED 4000
1548 #define MAX_SPEED 49000
1549
1550 #define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1)
1551 #define MAX_FRAGSHIFT (PAGE_SHIFT)
1552 #define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT)
1553 #define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT)
1554 #define MIN_FRAGCOUNT(fragsize) 3
1555 #define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize))
1556 #define DEFAULT_FRAGSHIFT 12
1557 #define DEFAULT_FRAGCOUNT 16
1558 #define DEFAULT_SUBDIVSHIFT 0
1559
1560 /*
1561 * The software buffer (swbuf) is a ring buffer shared between user
1562 * level and interrupt level. Each level owns some of the bytes in
1563 * the buffer, and may give bytes away by calling swb_inc_{u,i}().
1564 * User level calls _u for user, and interrupt level calls _i for
1565 * interrupt.
1566 *
1567 * port->swb_{u,i}_avail is the number of bytes available to that level.
1568 *
1569 * port->swb_{u,i}_idx is the index of the first available byte in the
1570 * buffer.
1571 *
1572 * Each level calls swb_inc_{u,i}() to atomically increment its index,
1573 * recalculate the number of bytes available for both sides, and
1574 * return the number of bytes available. Since each side can only
1575 * give away bytes, the other side can only increase the number of
1576 * bytes available to this side. Each side updates its own index
1577 * variable, swb_{u,i}_idx, so no lock is needed to read it.
1578 *
1579 * To query the number of bytes available, call swb_inc_{u,i} with an
1580 * increment of zero.
1581 */
1582
1583 static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc)
1584 {
1585 if (inc) {
1586 port->swb_u_idx += inc;
1587 port->swb_u_idx %= port->swbuf_size;
1588 port->swb_u_avail -= inc;
1589 port->swb_i_avail += inc;
1590 }
1591 return port->swb_u_avail;
1592 }
1593
1594 static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc)
1595 {
1596 unsigned long flags;
1597 unsigned int ret;
1598
1599 spin_lock_irqsave(&port->lock, flags);
1600 {
1601 ret = __swb_inc_u(port, inc);
1602 }
1603 spin_unlock_irqrestore(&port->lock, flags);
1604 return ret;
1605 }
1606
1607 static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc)
1608 {
1609 if (inc) {
1610 port->swb_i_idx += inc;
1611 port->swb_i_idx %= port->swbuf_size;
1612 port->swb_i_avail -= inc;
1613 port->swb_u_avail += inc;
1614 }
1615 return port->swb_i_avail;
1616 }
1617
1618 static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc)
1619 {
1620 unsigned long flags;
1621 unsigned int ret;
1622
1623 spin_lock_irqsave(&port->lock, flags);
1624 {
1625 ret = __swb_inc_i(port, inc);
1626 }
1627 spin_unlock_irqrestore(&port->lock, flags);
1628 return ret;
1629 }
1630
1631 /*
1632 * pcm_setup - this routine initializes all port state after
1633 * mode-setting ioctls have been done, but before the first I/O is
1634 * done.
1635 *
1636 * Locking: called with devc->io_sema held.
1637 *
1638 * Returns 0 on success, -errno on failure.
1639 */
1640
1641 static int pcm_setup(vwsnd_dev_t *devc,
1642 vwsnd_port_t *rport,
1643 vwsnd_port_t *wport)
1644 {
1645 vwsnd_port_t *aport = rport ? rport : wport;
1646 int sample_size;
1647 unsigned int zero_word;
1648
1649 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1650
1651 ASSERT(aport != NULL);
1652 if (aport->swbuf != NULL)
1653 return 0;
1654 switch (aport->sw_samplefmt) {
1655 case AFMT_MU_LAW:
1656 sample_size = 1;
1657 zero_word = 0xFFFFFFFF ^ 0x80808080;
1658 break;
1659
1660 case AFMT_A_LAW:
1661 sample_size = 1;
1662 zero_word = 0xD5D5D5D5 ^ 0x80808080;
1663 break;
1664
1665 case AFMT_U8:
1666 sample_size = 1;
1667 zero_word = 0x80808080;
1668 break;
1669
1670 case AFMT_S8:
1671 sample_size = 1;
1672 zero_word = 0x00000000;
1673 break;
1674
1675 case AFMT_S16_LE:
1676 sample_size = 2;
1677 zero_word = 0x00000000;
1678 break;
1679
1680 default:
1681 sample_size = 0; /* prevent compiler warning */
1682 zero_word = 0;
1683 ASSERT(0);
1684 }
1685 aport->sample_size = sample_size;
1686 aport->zero_word = zero_word;
1687 aport->frame_size = aport->sw_channels * aport->sample_size;
1688 aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift;
1689 aport->hw_fragsize = 1 << aport->hw_fragshift;
1690 aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift;
1691 ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE);
1692 ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE);
1693 ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize));
1694 ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize));
1695 if (rport) {
1696 int hwfrags, swfrags;
1697 rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1698 hwfrags = rport->hwbuf_max >> aport->hw_fragshift;
1699 swfrags = aport->hw_fragcount - hwfrags;
1700 if (swfrags < 2)
1701 swfrags = 2;
1702 rport->swbuf_size = swfrags * aport->hw_fragsize;
1703 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1704 DBGPV("read hwbuf_max = %d, swbuf_size = %d\n",
1705 rport->hwbuf_max, rport->swbuf_size);
1706 }
1707 if (wport) {
1708 int hwfrags, swfrags;
1709 int total_bytes = aport->hw_fragcount * aport->hw_fragsize;
1710 wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1711 if (wport->hwbuf_max > total_bytes)
1712 wport->hwbuf_max = total_bytes;
1713 hwfrags = wport->hwbuf_max >> aport->hw_fragshift;
1714 DBGPV("hwfrags = %d\n", hwfrags);
1715 swfrags = aport->hw_fragcount - hwfrags;
1716 if (swfrags < 2)
1717 swfrags = 2;
1718 wport->swbuf_size = swfrags * aport->hw_fragsize;
1719 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1720 DBGPV("write hwbuf_max = %d, swbuf_size = %d\n",
1721 wport->hwbuf_max, wport->swbuf_size);
1722 }
1723
1724 aport->swb_u_idx = 0;
1725 aport->swb_i_idx = 0;
1726 aport->byte_count = 0;
1727
1728 /*
1729 * Is this a Cobalt bug? We need to make this buffer extend
1730 * one page further than we actually use -- somehow memcpy
1731 * causes an exceptoin otherwise. I suspect there's a bug in
1732 * Cobalt (or somewhere) where it's generating a fault on a
1733 * speculative load or something. Obviously, I haven't taken
1734 * the time to track it down.
1735 */
1736
1737 aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1738 if (!aport->swbuf)
1739 return -ENOMEM;
1740 if (rport && wport) {
1741 ASSERT(aport == rport);
1742 ASSERT(wport->swbuf == NULL);
1743 /* One extra page - see comment above. */
1744 wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1745 if (!wport->swbuf) {
1746 vfree(aport->swbuf);
1747 aport->swbuf = NULL;
1748 return -ENOMEM;
1749 }
1750 wport->sample_size = rport->sample_size;
1751 wport->zero_word = rport->zero_word;
1752 wport->frame_size = rport->frame_size;
1753 wport->hw_fragshift = rport->hw_fragshift;
1754 wport->hw_fragsize = rport->hw_fragsize;
1755 wport->hw_fragcount = rport->hw_fragcount;
1756 wport->swbuf_size = rport->swbuf_size;
1757 wport->hwbuf_max = rport->hwbuf_max;
1758 wport->swb_u_idx = rport->swb_u_idx;
1759 wport->swb_i_idx = rport->swb_i_idx;
1760 wport->byte_count = rport->byte_count;
1761 }
1762 if (rport) {
1763 rport->swb_u_avail = 0;
1764 rport->swb_i_avail = rport->swbuf_size;
1765 rport->swstate = SW_RUN;
1766 li_setup_dma(&rport->chan,
1767 &li_comm1,
1768 &devc->lith,
1769 rport->hwbuf_paddr,
1770 HWBUF_SHIFT,
1771 rport->hw_fragshift,
1772 rport->sw_channels,
1773 rport->sample_size);
1774 ad1843_setup_adc(&devc->lith,
1775 rport->sw_framerate,
1776 rport->sw_samplefmt,
1777 rport->sw_channels);
1778 li_enable_interrupts(&devc->lith, READ_INTR_MASK);
1779 if (!(rport->flags & DISABLED)) {
1780 ustmsc_t ustmsc;
1781 rport->hwstate = HW_RUNNING;
1782 li_activate_dma(&rport->chan);
1783 li_read_USTMSC(&rport->chan, &ustmsc);
1784 rport->MSC_offset = ustmsc.msc;
1785 }
1786 }
1787 if (wport) {
1788 if (wport->hwbuf_max > wport->swbuf_size)
1789 wport->hwbuf_max = wport->swbuf_size;
1790 wport->flags &= ~ERFLOWN;
1791 wport->swb_u_avail = wport->swbuf_size;
1792 wport->swb_i_avail = 0;
1793 wport->swstate = SW_RUN;
1794 li_setup_dma(&wport->chan,
1795 &li_comm2,
1796 &devc->lith,
1797 wport->hwbuf_paddr,
1798 HWBUF_SHIFT,
1799 wport->hw_fragshift,
1800 wport->sw_channels,
1801 wport->sample_size);
1802 ad1843_setup_dac(&devc->lith,
1803 wport->sw_framerate,
1804 wport->sw_samplefmt,
1805 wport->sw_channels);
1806 li_enable_interrupts(&devc->lith, WRITE_INTR_MASK);
1807 }
1808 DBGRV();
1809 return 0;
1810 }
1811
1812 /*
1813 * pcm_shutdown_port - shut down one port (direction) for PCM I/O.
1814 * Only called from pcm_shutdown.
1815 */
1816
1817 static void pcm_shutdown_port(vwsnd_dev_t *devc,
1818 vwsnd_port_t *aport,
1819 unsigned int mask)
1820 {
1821 unsigned long flags;
1822 vwsnd_port_hwstate_t hwstate;
1823 DECLARE_WAITQUEUE(wait, current);
1824
1825 aport->swstate = SW_INITIAL;
1826 add_wait_queue(&aport->queue, &wait);
1827 while (1) {
1828 set_current_state(TASK_UNINTERRUPTIBLE);
1829 spin_lock_irqsave(&aport->lock, flags);
1830 {
1831 hwstate = aport->hwstate;
1832 }
1833 spin_unlock_irqrestore(&aport->lock, flags);
1834 if (hwstate == HW_STOPPED)
1835 break;
1836 schedule();
1837 }
1838 current->state = TASK_RUNNING;
1839 remove_wait_queue(&aport->queue, &wait);
1840 li_disable_interrupts(&devc->lith, mask);
1841 if (aport == &devc->rport)
1842 ad1843_shutdown_adc(&devc->lith);
1843 else /* aport == &devc->wport) */
1844 ad1843_shutdown_dac(&devc->lith);
1845 li_shutdown_dma(&aport->chan);
1846 vfree(aport->swbuf);
1847 aport->swbuf = NULL;
1848 aport->byte_count = 0;
1849 }
1850
1851 /*
1852 * pcm_shutdown undoes what pcm_setup did.
1853 * Also sets the ports' swstate to newstate.
1854 */
1855
1856 static void pcm_shutdown(vwsnd_dev_t *devc,
1857 vwsnd_port_t *rport,
1858 vwsnd_port_t *wport)
1859 {
1860 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1861
1862 if (rport && rport->swbuf) {
1863 DBGPV("shutting down rport\n");
1864 pcm_shutdown_port(devc, rport, READ_INTR_MASK);
1865 }
1866 if (wport && wport->swbuf) {
1867 DBGPV("shutting down wport\n");
1868 pcm_shutdown_port(devc, wport, WRITE_INTR_MASK);
1869 }
1870 DBGRV();
1871 }
1872
1873 static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb)
1874 {
1875 char *src = rport->hwbuf + hwidx;
1876 char *dst = rport->swbuf + swidx;
1877 int fmt = rport->sw_samplefmt;
1878
1879 DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx);
1880 ASSERT(rport->hwbuf != NULL);
1881 ASSERT(rport->swbuf != NULL);
1882 ASSERT(nb > 0 && (nb % 32) == 0);
1883 ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1884 ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size);
1885 ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size);
1886
1887 if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1888
1889 /* See Sample Format Notes above. */
1890
1891 char *end = src + nb;
1892 while (src < end)
1893 *dst++ = *src++ ^ 0x80;
1894 } else
1895 memcpy(dst, src, nb);
1896 }
1897
1898 static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb)
1899 {
1900 char *src = wport->swbuf + swidx;
1901 char *dst = wport->hwbuf + hwidx;
1902 int fmt = wport->sw_samplefmt;
1903
1904 ASSERT(nb > 0 && (nb % 32) == 0);
1905 ASSERT(wport->hwbuf != NULL);
1906 ASSERT(wport->swbuf != NULL);
1907 ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1908 ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size);
1909 ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size);
1910 if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1911
1912 /* See Sample Format Notes above. */
1913
1914 char *end = src + nb;
1915 while (src < end)
1916 *dst++ = *src++ ^ 0x80;
1917 } else
1918 memcpy(dst, src, nb);
1919 }
1920
1921 /*
1922 * pcm_output() is called both from baselevel and from interrupt level.
1923 * This is where audio frames are copied into the hardware-accessible
1924 * ring buffer.
1925 *
1926 * Locking note: The part of this routine that figures out what to do
1927 * holds wport->lock. The longer part releases wport->lock, but sets
1928 * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and
1929 * checks for more work to do.
1930 *
1931 * If another thread calls pcm_output() while HW_BUSY is set, it
1932 * returns immediately, knowing that the thread that set HW_BUSY will
1933 * look for more work to do before returning.
1934 *
1935 * This has the advantage that port->lock is held for several short
1936 * periods instead of one long period. Also, when pcm_output is
1937 * called from base level, it reenables interrupts.
1938 */
1939
1940 static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb)
1941 {
1942 vwsnd_port_t *wport = &devc->wport;
1943 const int hwmax = wport->hwbuf_max;
1944 const int hwsize = wport->hwbuf_size;
1945 const int swsize = wport->swbuf_size;
1946 const int fragsize = wport->hw_fragsize;
1947 unsigned long iflags;
1948
1949 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
1950 spin_lock_irqsave(&wport->lock, iflags);
1951 if (erflown)
1952 wport->flags |= ERFLOWN;
1953 (void) __swb_inc_u(wport, nb);
1954 if (wport->flags & HW_BUSY) {
1955 spin_unlock_irqrestore(&wport->lock, iflags);
1956 DBGPV("returning: HW BUSY\n");
1957 return;
1958 }
1959 if (wport->flags & DISABLED) {
1960 spin_unlock_irqrestore(&wport->lock, iflags);
1961 DBGPV("returning: DISABLED\n");
1962 return;
1963 }
1964 wport->flags |= HW_BUSY;
1965 while (1) {
1966 int swptr, hwptr, hw_avail, sw_avail, swidx;
1967 vwsnd_port_hwstate_t hwstate = wport->hwstate;
1968 vwsnd_port_swstate_t swstate = wport->swstate;
1969 int hw_unavail;
1970 ustmsc_t ustmsc;
1971
1972 hwptr = li_read_hwptr(&wport->chan);
1973 swptr = li_read_swptr(&wport->chan);
1974 hw_unavail = (swptr - hwptr + hwsize) % hwsize;
1975 hw_avail = (hwmax - hw_unavail) & -fragsize;
1976 sw_avail = wport->swb_i_avail & -fragsize;
1977 if (sw_avail && swstate == SW_RUN) {
1978 if (wport->flags & ERFLOWN) {
1979 wport->flags &= ~ERFLOWN;
1980 }
1981 } else if (swstate == SW_INITIAL ||
1982 swstate == SW_OFF ||
1983 (swstate == SW_DRAIN &&
1984 !sw_avail &&
1985 (wport->flags & ERFLOWN))) {
1986 DBGP("stopping. hwstate = %d\n", hwstate);
1987 if (hwstate != HW_STOPPED) {
1988 li_deactivate_dma(&wport->chan);
1989 wport->hwstate = HW_STOPPED;
1990 }
1991 wake_up(&wport->queue);
1992 break;
1993 }
1994 if (!sw_avail || !hw_avail)
1995 break;
1996 spin_unlock_irqrestore(&wport->lock, iflags);
1997
1998 /*
1999 * We gave up the port lock, but we have the HW_BUSY flag.
2000 * Proceed without accessing any nonlocal state.
2001 * Do not exit the loop -- must check for more work.
2002 */
2003
2004 swidx = wport->swb_i_idx;
2005 nb = hw_avail;
2006 if (nb > sw_avail)
2007 nb = sw_avail;
2008 if (nb > hwsize - swptr)
2009 nb = hwsize - swptr; /* don't overflow hwbuf */
2010 if (nb > swsize - swidx)
2011 nb = swsize - swidx; /* don't overflow swbuf */
2012 ASSERT(nb > 0);
2013 if (nb % fragsize) {
2014 DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2015 DBGP("hw_avail = %d\n", hw_avail);
2016 DBGP("sw_avail = %d\n", sw_avail);
2017 DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2018 DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2019 }
2020 ASSERT(!(nb % fragsize));
2021 DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n",
2022 swidx, swidx + nb, swptr, swptr + nb);
2023 pcm_copy_out(wport, swidx, swptr, nb);
2024 li_write_swptr(&wport->chan, (swptr + nb) % hwsize);
2025 spin_lock_irqsave(&wport->lock, iflags);
2026 if (hwstate == HW_STOPPED) {
2027 DBGPV("starting\n");
2028 li_activate_dma(&wport->chan);
2029 wport->hwstate = HW_RUNNING;
2030 li_read_USTMSC(&wport->chan, &ustmsc);
2031 ASSERT(wport->byte_count % wport->frame_size == 0);
2032 wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size;
2033 }
2034 __swb_inc_i(wport, nb);
2035 wport->byte_count += nb;
2036 wport->frag_count += nb / fragsize;
2037 ASSERT(nb % fragsize == 0);
2038 wake_up(&wport->queue);
2039 }
2040 wport->flags &= ~HW_BUSY;
2041 spin_unlock_irqrestore(&wport->lock, iflags);
2042 DBGRV();
2043 }
2044
2045 /*
2046 * pcm_input() is called both from baselevel and from interrupt level.
2047 * This is where audio frames are copied out of the hardware-accessible
2048 * ring buffer.
2049 *
2050 * Locking note: The part of this routine that figures out what to do
2051 * holds rport->lock. The longer part releases rport->lock, but sets
2052 * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and
2053 * checks for more work to do.
2054 *
2055 * If another thread calls pcm_input() while HW_BUSY is set, it
2056 * returns immediately, knowing that the thread that set HW_BUSY will
2057 * look for more work to do before returning.
2058 *
2059 * This has the advantage that port->lock is held for several short
2060 * periods instead of one long period. Also, when pcm_input is
2061 * called from base level, it reenables interrupts.
2062 */
2063
2064 static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb)
2065 {
2066 vwsnd_port_t *rport = &devc->rport;
2067 const int hwmax = rport->hwbuf_max;
2068 const int hwsize = rport->hwbuf_size;
2069 const int swsize = rport->swbuf_size;
2070 const int fragsize = rport->hw_fragsize;
2071 unsigned long iflags;
2072
2073 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
2074
2075 spin_lock_irqsave(&rport->lock, iflags);
2076 if (erflown)
2077 rport->flags |= ERFLOWN;
2078 (void) __swb_inc_u(rport, nb);
2079 if (rport->flags & HW_BUSY || !rport->swbuf) {
2080 spin_unlock_irqrestore(&rport->lock, iflags);
2081 DBGPV("returning: HW BUSY or !swbuf\n");
2082 return;
2083 }
2084 if (rport->flags & DISABLED) {
2085 spin_unlock_irqrestore(&rport->lock, iflags);
2086 DBGPV("returning: DISABLED\n");
2087 return;
2088 }
2089 rport->flags |= HW_BUSY;
2090 while (1) {
2091 int swptr, hwptr, hw_avail, sw_avail, swidx;
2092 vwsnd_port_hwstate_t hwstate = rport->hwstate;
2093 vwsnd_port_swstate_t swstate = rport->swstate;
2094
2095 hwptr = li_read_hwptr(&rport->chan);
2096 swptr = li_read_swptr(&rport->chan);
2097 hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize;
2098 if (hw_avail > hwmax)
2099 hw_avail = hwmax;
2100 sw_avail = rport->swb_i_avail & -fragsize;
2101 if (swstate != SW_RUN) {
2102 DBGP("stopping. hwstate = %d\n", hwstate);
2103 if (hwstate != HW_STOPPED) {
2104 li_deactivate_dma(&rport->chan);
2105 rport->hwstate = HW_STOPPED;
2106 }
2107 wake_up(&rport->queue);
2108 break;
2109 }
2110 if (!sw_avail || !hw_avail)
2111 break;
2112 spin_unlock_irqrestore(&rport->lock, iflags);
2113
2114 /*
2115 * We gave up the port lock, but we have the HW_BUSY flag.
2116 * Proceed without accessing any nonlocal state.
2117 * Do not exit the loop -- must check for more work.
2118 */
2119
2120 swidx = rport->swb_i_idx;
2121 nb = hw_avail;
2122 if (nb > sw_avail)
2123 nb = sw_avail;
2124 if (nb > hwsize - swptr)
2125 nb = hwsize - swptr; /* don't overflow hwbuf */
2126 if (nb > swsize - swidx)
2127 nb = swsize - swidx; /* don't overflow swbuf */
2128 ASSERT(nb > 0);
2129 if (nb % fragsize) {
2130 DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2131 DBGP("hw_avail = %d\n", hw_avail);
2132 DBGP("sw_avail = %d\n", sw_avail);
2133 DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2134 DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2135 }
2136 ASSERT(!(nb % fragsize));
2137 DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n",
2138 swptr, swptr + nb, swidx, swidx + nb);
2139 pcm_copy_in(rport, swidx, swptr, nb);
2140 li_write_swptr(&rport->chan, (swptr + nb) % hwsize);
2141 spin_lock_irqsave(&rport->lock, iflags);
2142 __swb_inc_i(rport, nb);
2143 rport->byte_count += nb;
2144 rport->frag_count += nb / fragsize;
2145 ASSERT(nb % fragsize == 0);
2146 wake_up(&rport->queue);
2147 }
2148 rport->flags &= ~HW_BUSY;
2149 spin_unlock_irqrestore(&rport->lock, iflags);
2150 DBGRV();
2151 }
2152
2153 /*
2154 * pcm_flush_frag() writes zero samples to fill the current fragment,
2155 * then flushes it to the hardware.
2156 *
2157 * It is only meaningful to flush output, not input.
2158 */
2159
2160 static void pcm_flush_frag(vwsnd_dev_t *devc)
2161 {
2162 vwsnd_port_t *wport = &devc->wport;
2163
2164 DBGPV("swstate = %d\n", wport->swstate);
2165 if (wport->swstate == SW_RUN) {
2166 int idx = wport->swb_u_idx;
2167 int end = (idx + wport->hw_fragsize - 1)
2168 >> wport->hw_fragshift
2169 << wport->hw_fragshift;
2170 int nb = end - idx;
2171 DBGPV("clearing %d bytes\n", nb);
2172 if (nb)
2173 memset(wport->swbuf + idx,
2174 (char) wport->zero_word,
2175 nb);
2176 wport->swstate = SW_DRAIN;
2177 pcm_output(devc, 0, nb);
2178 }
2179 DBGRV();
2180 }
2181
2182 /*
2183 * Wait for output to drain. This sleeps uninterruptibly because
2184 * there is nothing intelligent we can do if interrupted. This
2185 * means the process will be delayed in responding to the signal.
2186 */
2187
2188 static void pcm_write_sync(vwsnd_dev_t *devc)
2189 {
2190 vwsnd_port_t *wport = &devc->wport;
2191 DECLARE_WAITQUEUE(wait, current);
2192 unsigned long flags;
2193 vwsnd_port_hwstate_t hwstate;
2194
2195 DBGEV("(devc=0x%p)\n", devc);
2196 add_wait_queue(&wport->queue, &wait);
2197 while (1) {
2198 set_current_state(TASK_UNINTERRUPTIBLE);
2199 spin_lock_irqsave(&wport->lock, flags);
2200 {
2201 hwstate = wport->hwstate;
2202 }
2203 spin_unlock_irqrestore(&wport->lock, flags);
2204 if (hwstate == HW_STOPPED)
2205 break;
2206 schedule();
2207 }
2208 current->state = TASK_RUNNING;
2209 remove_wait_queue(&wport->queue, &wait);
2210 DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate);
2211 DBGRV();
2212 }
2213
2214 /*****************************************************************************/
2215 /* audio driver */
2216
2217 /*
2218 * seek on an audio device always fails.
2219 */
2220
2221 static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status)
2222 {
2223 int overflown = status & LI_INTR_COMM1_OVERFLOW;
2224
2225 if (status & READ_INTR_MASK)
2226 pcm_input(devc, overflown, 0);
2227 }
2228
2229 static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status)
2230 {
2231 int underflown = status & LI_INTR_COMM2_UNDERFLOW;
2232
2233 if (status & WRITE_INTR_MASK)
2234 pcm_output(devc, underflown, 0);
2235 }
2236
2237 static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id, struct pt_regs *regs)
2238 {
2239 vwsnd_dev_t *devc = (vwsnd_dev_t *) dev_id;
2240 unsigned int status;
2241
2242 DBGEV("(irq=%d, dev_id=0x%p, regs=0x%p)\n", irq, dev_id, regs);
2243
2244 status = li_get_clear_intr_status(&devc->lith);
2245 vwsnd_audio_read_intr(devc, status);
2246 vwsnd_audio_write_intr(devc, status);
2247 return IRQ_HANDLED;
2248 }
2249
2250 static ssize_t vwsnd_audio_do_read(struct file *file,
2251 char *buffer,
2252 size_t count,
2253 loff_t *ppos)
2254 {
2255 vwsnd_dev_t *devc = file->private_data;
2256 vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ?
2257 &devc->rport : NULL);
2258 int ret, nb;
2259
2260 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2261 file, buffer, count, ppos);
2262
2263 if (!rport)
2264 return -EINVAL;
2265
2266 if (rport->swbuf == NULL) {
2267 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2268 &devc->wport : NULL;
2269 ret = pcm_setup(devc, rport, wport);
2270 if (ret < 0)
2271 return ret;
2272 }
2273
2274 if (!access_ok(VERIFY_READ, buffer, count))
2275 return -EFAULT;
2276 ret = 0;
2277 while (count) {
2278 DECLARE_WAITQUEUE(wait, current);
2279 add_wait_queue(&rport->queue, &wait);
2280 while ((nb = swb_inc_u(rport, 0)) == 0) {
2281 DBGPV("blocking\n");
2282 set_current_state(TASK_INTERRUPTIBLE);
2283 if (rport->flags & DISABLED ||
2284 file->f_flags & O_NONBLOCK) {
2285 current->state = TASK_RUNNING;
2286 remove_wait_queue(&rport->queue, &wait);
2287 return ret ? ret : -EAGAIN;
2288 }
2289 schedule();
2290 if (signal_pending(current)) {
2291 current->state = TASK_RUNNING;
2292 remove_wait_queue(&rport->queue, &wait);
2293 return ret ? ret : -ERESTARTSYS;
2294 }
2295 }
2296 current->state = TASK_RUNNING;
2297 remove_wait_queue(&rport->queue, &wait);
2298 pcm_input(devc, 0, 0);
2299 /* nb bytes are available in userbuf. */
2300 if (nb > count)
2301 nb = count;
2302 DBGPV("nb = %d\n", nb);
2303 if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb))
2304 return -EFAULT;
2305 (void) swb_inc_u(rport, nb);
2306 buffer += nb;
2307 count -= nb;
2308 ret += nb;
2309 }
2310 DBGPV("returning %d\n", ret);
2311 return ret;
2312 }
2313
2314 static ssize_t vwsnd_audio_read(struct file *file,
2315 char *buffer,
2316 size_t count,
2317 loff_t *ppos)
2318 {
2319 vwsnd_dev_t *devc = file->private_data;
2320 ssize_t ret;
2321
2322 down(&devc->io_sema);
2323 ret = vwsnd_audio_do_read(file, buffer, count, ppos);
2324 up(&devc->io_sema);
2325 return ret;
2326 }
2327
2328 static ssize_t vwsnd_audio_do_write(struct file *file,
2329 const char *buffer,
2330 size_t count,
2331 loff_t *ppos)
2332 {
2333 vwsnd_dev_t *devc = file->private_data;
2334 vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ?
2335 &devc->wport : NULL);
2336 int ret, nb;
2337
2338 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2339 file, buffer, count, ppos);
2340
2341 if (!wport)
2342 return -EINVAL;
2343
2344 if (wport->swbuf == NULL) {
2345 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2346 &devc->rport : NULL;
2347 ret = pcm_setup(devc, rport, wport);
2348 if (ret < 0)
2349 return ret;
2350 }
2351 if (!access_ok(VERIFY_WRITE, buffer, count))
2352 return -EFAULT;
2353 ret = 0;
2354 while (count) {
2355 DECLARE_WAITQUEUE(wait, current);
2356 add_wait_queue(&wport->queue, &wait);
2357 while ((nb = swb_inc_u(wport, 0)) == 0) {
2358 set_current_state(TASK_INTERRUPTIBLE);
2359 if (wport->flags & DISABLED ||
2360 file->f_flags & O_NONBLOCK) {
2361 current->state = TASK_RUNNING;
2362 remove_wait_queue(&wport->queue, &wait);
2363 return ret ? ret : -EAGAIN;
2364 }
2365 schedule();
2366 if (signal_pending(current)) {
2367 current->state = TASK_RUNNING;
2368 remove_wait_queue(&wport->queue, &wait);
2369 return ret ? ret : -ERESTARTSYS;
2370 }
2371 }
2372 current->state = TASK_RUNNING;
2373 remove_wait_queue(&wport->queue, &wait);
2374 /* nb bytes are available in userbuf. */
2375 if (nb > count)
2376 nb = count;
2377 DBGPV("nb = %d\n", nb);
2378 if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb))
2379 return -EFAULT;
2380 pcm_output(devc, 0, nb);
2381 buffer += nb;
2382 count -= nb;
2383 ret += nb;
2384 }
2385 DBGPV("returning %d\n", ret);
2386 return ret;
2387 }
2388
2389 static ssize_t vwsnd_audio_write(struct file *file,
2390 const char *buffer,
2391 size_t count,
2392 loff_t *ppos)
2393 {
2394 vwsnd_dev_t *devc = file->private_data;
2395 ssize_t ret;
2396
2397 down(&devc->io_sema);
2398 ret = vwsnd_audio_do_write(file, buffer, count, ppos);
2399 up(&devc->io_sema);
2400 return ret;
2401 }
2402
2403 /* No kernel lock - fine */
2404 static unsigned int vwsnd_audio_poll(struct file *file,
2405 struct poll_table_struct *wait)
2406 {
2407 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2408 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2409 &devc->rport : NULL;
2410 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2411 &devc->wport : NULL;
2412 unsigned int mask = 0;
2413
2414 DBGEV("(file=0x%p, wait=0x%p)\n", file, wait);
2415
2416 ASSERT(rport || wport);
2417 if (rport) {
2418 poll_wait(file, &rport->queue, wait);
2419 if (swb_inc_u(rport, 0))
2420 mask |= (POLLIN | POLLRDNORM);
2421 }
2422 if (wport) {
2423 poll_wait(file, &wport->queue, wait);
2424 if (wport->swbuf == NULL || swb_inc_u(wport, 0))
2425 mask |= (POLLOUT | POLLWRNORM);
2426 }
2427
2428 DBGPV("returning 0x%x\n", mask);
2429 return mask;
2430 }
2431
2432 static int vwsnd_audio_do_ioctl(struct inode *inode,
2433 struct file *file,
2434 unsigned int cmd,
2435 unsigned long arg)
2436 {
2437 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2438 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2439 &devc->rport : NULL;
2440 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2441 &devc->wport : NULL;
2442 vwsnd_port_t *aport = rport ? rport : wport;
2443 struct audio_buf_info buf_info;
2444 struct count_info info;
2445 unsigned long flags;
2446 int ival;
2447
2448
2449 DBGEV("(inode=0x%p, file=0x%p, cmd=0x%x, arg=0x%lx)\n",
2450 inode, file, cmd, arg);
2451 switch (cmd) {
2452 case OSS_GETVERSION: /* _SIOR ('M', 118, int) */
2453 DBGX("OSS_GETVERSION\n");
2454 ival = SOUND_VERSION;
2455 return put_user(ival, (int *) arg);
2456
2457 case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */
2458 DBGX("SNDCTL_DSP_GETCAPS\n");
2459 ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER;
2460 return put_user(ival, (int *) arg);
2461
2462 case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */
2463 DBGX("SNDCTL_DSP_GETFMTS\n");
2464 ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW |
2465 AFMT_U8 | AFMT_S8);
2466 return put_user(ival, (int *) arg);
2467 break;
2468
2469 case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */
2470 DBGX("SOUND_PCM_READ_RATE\n");
2471 ival = aport->sw_framerate;
2472 return put_user(ival, (int *) arg);
2473
2474 case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */
2475 DBGX("SOUND_PCM_READ_CHANNELS\n");
2476 ival = aport->sw_channels;
2477 return put_user(ival, (int *) arg);
2478
2479 case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */
2480 if (get_user(ival, (int *) arg))
2481 return -EFAULT;
2482 DBGX("SNDCTL_DSP_SPEED %d\n", ival);
2483 if (ival) {
2484 if (aport->swstate != SW_INITIAL) {
2485 DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n",
2486 aport->swstate);
2487 return -EINVAL;
2488 }
2489 if (ival < MIN_SPEED)
2490 ival = MIN_SPEED;
2491 if (ival > MAX_SPEED)
2492 ival = MAX_SPEED;
2493 if (rport)
2494 rport->sw_framerate = ival;
2495 if (wport)
2496 wport->sw_framerate = ival;
2497 } else
2498 ival = aport->sw_framerate;
2499 return put_user(ival, (int *) arg);
2500
2501 case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */
2502 if (get_user(ival, (int *) arg))
2503 return -EFAULT;
2504 DBGX("SNDCTL_DSP_STEREO %d\n", ival);
2505 if (ival != 0 && ival != 1)
2506 return -EINVAL;
2507 if (aport->swstate != SW_INITIAL)
2508 return -EINVAL;
2509 if (rport)
2510 rport->sw_channels = ival + 1;
2511 if (wport)
2512 wport->sw_channels = ival + 1;
2513 return put_user(ival, (int *) arg);
2514
2515 case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */
2516 if (get_user(ival, (int *) arg))
2517 return -EFAULT;
2518 DBGX("SNDCTL_DSP_CHANNELS %d\n", ival);
2519 if (ival != 1 && ival != 2)
2520 return -EINVAL;
2521 if (aport->swstate != SW_INITIAL)
2522 return -EINVAL;
2523 if (rport)
2524 rport->sw_channels = ival;
2525 if (wport)
2526 wport->sw_channels = ival;
2527 return put_user(ival, (int *) arg);
2528
2529 case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */
2530 ival = pcm_setup(devc, rport, wport);
2531 if (ival < 0) {
2532 DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival);
2533 return ival;
2534 }
2535 ival = 1 << aport->sw_fragshift;
2536 DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival);
2537 return put_user(ival, (int *) arg);
2538
2539 case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */
2540 if (get_user(ival, (int *) arg))
2541 return -EFAULT;
2542 DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n",
2543 ival >> 16, ival & 0xFFFF);
2544 if (aport->swstate != SW_INITIAL)
2545 return -EINVAL;
2546 {
2547 int sw_fragshift = ival & 0xFFFF;
2548 int sw_subdivshift = aport->sw_subdivshift;
2549 int hw_fragshift = sw_fragshift - sw_subdivshift;
2550 int sw_fragcount = (ival >> 16) & 0xFFFF;
2551 int hw_fragsize;
2552 if (hw_fragshift < MIN_FRAGSHIFT)
2553 hw_fragshift = MIN_FRAGSHIFT;
2554 if (hw_fragshift > MAX_FRAGSHIFT)
2555 hw_fragshift = MAX_FRAGSHIFT;
2556 sw_fragshift = hw_fragshift + aport->sw_subdivshift;
2557 hw_fragsize = 1 << hw_fragshift;
2558 if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize))
2559 sw_fragcount = MIN_FRAGCOUNT(hw_fragsize);
2560 if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2561 sw_fragcount = MAX_FRAGCOUNT(hw_fragsize);
2562 DBGPV("sw_fragshift = %d\n", sw_fragshift);
2563 DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport);
2564 if (rport) {
2565 rport->sw_fragshift = sw_fragshift;
2566 rport->sw_fragcount = sw_fragcount;
2567 }
2568 if (wport) {
2569 wport->sw_fragshift = sw_fragshift;
2570 wport->sw_fragcount = sw_fragcount;
2571 }
2572 ival = sw_fragcount << 16 | sw_fragshift;
2573 }
2574 DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n",
2575 ival >> 16, ival & 0xFFFF);
2576 return put_user(ival, (int *) arg);
2577
2578 case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */
2579 if (get_user(ival, (int *) arg))
2580 return -EFAULT;
2581 DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival);
2582 if (aport->swstate != SW_INITIAL)
2583 return -EINVAL;
2584 {
2585 int subdivshift;
2586 int hw_fragshift, hw_fragsize, hw_fragcount;
2587 switch (ival) {
2588 case 1: subdivshift = 0; break;
2589 case 2: subdivshift = 1; break;
2590 case 4: subdivshift = 2; break;
2591 default: return -EINVAL;
2592 }
2593 hw_fragshift = aport->sw_fragshift - subdivshift;
2594 if (hw_fragshift < MIN_FRAGSHIFT ||
2595 hw_fragshift > MAX_FRAGSHIFT)
2596 return -EINVAL;
2597 hw_fragsize = 1 << hw_fragshift;
2598 hw_fragcount = aport->sw_fragcount >> subdivshift;
2599 if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) ||
2600 hw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2601 return -EINVAL;
2602 if (rport)
2603 rport->sw_subdivshift = subdivshift;
2604 if (wport)
2605 wport->sw_subdivshift = subdivshift;
2606 }
2607 return 0;
2608
2609 case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */
2610 if (get_user(ival, (int *) arg))
2611 return -EFAULT;
2612 DBGX("SNDCTL_DSP_SETFMT %d\n", ival);
2613 if (ival != AFMT_QUERY) {
2614 if (aport->swstate != SW_INITIAL) {
2615 DBGP("SETFMT failed, swstate = %d\n",
2616 aport->swstate);
2617 return -EINVAL;
2618 }
2619 switch (ival) {
2620 case AFMT_MU_LAW:
2621 case AFMT_A_LAW:
2622 case AFMT_U8:
2623 case AFMT_S8:
2624 case AFMT_S16_LE:
2625 if (rport)
2626 rport->sw_samplefmt = ival;
2627 if (wport)
2628 wport->sw_samplefmt = ival;
2629 break;
2630 default:
2631 return -EINVAL;
2632 }
2633 }
2634 ival = aport->sw_samplefmt;
2635 return put_user(ival, (int *) arg);
2636
2637 case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */
2638 DBGXV("SNDCTL_DSP_GETOSPACE\n");
2639 if (!wport)
2640 return -EINVAL;
2641 ival = pcm_setup(devc, rport, wport);
2642 if (ival < 0)
2643 return ival;
2644 ival = swb_inc_u(wport, 0);
2645 buf_info.fragments = ival >> wport->sw_fragshift;
2646 buf_info.fragstotal = wport->sw_fragcount;
2647 buf_info.fragsize = 1 << wport->sw_fragshift;
2648 buf_info.bytes = ival;
2649 DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n",
2650 buf_info.fragments, buf_info.fragstotal,
2651 buf_info.fragsize, buf_info.bytes);
2652 if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
2653 return -EFAULT;
2654 return 0;
2655
2656 case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */
2657 DBGX("SNDCTL_DSP_GETISPACE\n");
2658 if (!rport)
2659 return -EINVAL;
2660 ival = pcm_setup(devc, rport, wport);
2661 if (ival < 0)
2662 return ival;
2663 ival = swb_inc_u(rport, 0);
2664 buf_info.fragments = ival >> rport->sw_fragshift;
2665 buf_info.fragstotal = rport->sw_fragcount;
2666 buf_info.fragsize = 1 << rport->sw_fragshift;
2667 buf_info.bytes = ival;
2668 DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n",
2669 buf_info.fragments, buf_info.fragstotal,
2670 buf_info.fragsize, buf_info.bytes);
2671 if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
2672 return -EFAULT;
2673 return 0;
2674
2675 case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */
2676 DBGX("SNDCTL_DSP_NONBLOCK\n");
2677 file->f_flags |= O_NONBLOCK;
2678 return 0;
2679
2680 case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */
2681 DBGX("SNDCTL_DSP_RESET\n");
2682 /*
2683 * Nothing special needs to be done for input. Input
2684 * samples sit in swbuf, but it will be reinitialized
2685 * to empty when pcm_setup() is called.
2686 */
2687 if (wport && wport->swbuf) {
2688 wport->swstate = SW_INITIAL;
2689 pcm_output(devc, 0, 0);
2690 pcm_write_sync(devc);
2691 }
2692 pcm_shutdown(devc, rport, wport);
2693 return 0;
2694
2695 case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */
2696 DBGX("SNDCTL_DSP_SYNC\n");
2697 if (wport) {
2698 pcm_flush_frag(devc);
2699 pcm_write_sync(devc);
2700 }
2701 pcm_shutdown(devc, rport, wport);
2702 return 0;
2703
2704 case SNDCTL_DSP_POST: /* _SIO ('P', 8) */
2705 DBGX("SNDCTL_DSP_POST\n");
2706 if (!wport)
2707 return -EINVAL;
2708 pcm_flush_frag(devc);
2709 return 0;
2710
2711 case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */
2712 DBGX("SNDCTL_DSP_GETIPTR\n");
2713 if (!rport)
2714 return -EINVAL;
2715 spin_lock_irqsave(&rport->lock, flags);
2716 {
2717 ustmsc_t ustmsc;
2718 if (rport->hwstate == HW_RUNNING) {
2719 ASSERT(rport->swstate == SW_RUN);
2720 li_read_USTMSC(&rport->chan, &ustmsc);
2721 info.bytes = ustmsc.msc - rport->MSC_offset;
2722 info.bytes *= rport->frame_size;
2723 } else {
2724 info.bytes = rport->byte_count;
2725 }
2726 info.blocks = rport->frag_count;
2727 info.ptr = 0; /* not implemented */
2728 rport->frag_count = 0;
2729 }
2730 spin_unlock_irqrestore(&rport->lock, flags);
2731 if (copy_to_user((void *) arg, &info, sizeof info))
2732 return -EFAULT;
2733 return 0;
2734
2735 case SNDCTL_DSP_GETOPTR: /* _SIOR ('P',18, count_info) */
2736 DBGX("SNDCTL_DSP_GETOPTR\n");
2737 if (!wport)
2738 return -EINVAL;
2739 spin_lock_irqsave(&wport->lock, flags);
2740 {
2741 ustmsc_t ustmsc;
2742 if (wport->hwstate == HW_RUNNING) {
2743 ASSERT(wport->swstate == SW_RUN);
2744 li_read_USTMSC(&wport->chan, &ustmsc);
2745 info.bytes = ustmsc.msc - wport->MSC_offset;
2746 info.bytes *= wport->frame_size;
2747 } else {
2748 info.bytes = wport->byte_count;
2749 }
2750 info.blocks = wport->frag_count;
2751 info.ptr = 0; /* not implemented */
2752 wport->frag_count = 0;
2753 }
2754 spin_unlock_irqrestore(&wport->lock, flags);
2755 if (copy_to_user((void *) arg, &info, sizeof info))
2756 return -EFAULT;
2757 return 0;
2758
2759 case SNDCTL_DSP_GETODELAY: /* _SIOR ('P', 23, int) */
2760 DBGX("SNDCTL_DSP_GETODELAY\n");
2761 if (!wport)
2762 return -EINVAL;
2763 spin_lock_irqsave(&wport->lock, flags);
2764 {
2765 int fsize = wport->frame_size;
2766 ival = wport->swb_i_avail / fsize;
2767 if (wport->hwstate == HW_RUNNING) {
2768 int swptr, hwptr, hwframes, hwbytes, hwsize;
2769 int totalhwbytes;
2770 ustmsc_t ustmsc;
2771
2772 hwsize = wport->hwbuf_size;
2773 swptr = li_read_swptr(&wport->chan);
2774 li_read_USTMSC(&wport->chan, &ustmsc);
2775 hwframes = ustmsc.msc - wport->MSC_offset;
2776 totalhwbytes = hwframes * fsize;
2777 hwptr = totalhwbytes % hwsize;
2778 hwbytes = (swptr - hwptr + hwsize) % hwsize;
2779 ival += hwbytes / fsize;
2780 }
2781 }
2782 spin_unlock_irqrestore(&wport->lock, flags);
2783 return put_user(ival, (int *) arg);
2784
2785 case SNDCTL_DSP_PROFILE: /* _SIOW ('P', 23, int) */
2786 DBGX("SNDCTL_DSP_PROFILE\n");
2787
2788 /*
2789 * Thomas Sailer explains SNDCTL_DSP_PROFILE
2790 * (private email, March 24, 1999):
2791 *
2792 * This gives the sound driver a hint on what it
2793 * should do with partial fragments
2794 * (i.e. fragments partially filled with write).
2795 * This can direct the driver to zero them or
2796 * leave them alone. But don't ask me what this
2797 * is good for, my driver just zeroes the last
2798 * fragment before the receiver stops, no idea
2799 * what good for any other behaviour could
2800 * be. Implementing it as NOP seems safe.
2801 */
2802
2803 break;
2804
2805 case SNDCTL_DSP_GETTRIGGER: /* _SIOR ('P',16, int) */
2806 DBGX("SNDCTL_DSP_GETTRIGGER\n");
2807 ival = 0;
2808 if (rport) {
2809 spin_lock_irqsave(&rport->lock, flags);
2810 {
2811 if (!(rport->flags & DISABLED))
2812 ival |= PCM_ENABLE_INPUT;
2813 }
2814 spin_unlock_irqrestore(&rport->lock, flags);
2815 }
2816 if (wport) {
2817 spin_lock_irqsave(&wport->lock, flags);
2818 {
2819 if (!(wport->flags & DISABLED))
2820 ival |= PCM_ENABLE_OUTPUT;
2821 }
2822 spin_unlock_irqrestore(&wport->lock, flags);
2823 }
2824 return put_user(ival, (int *) arg);
2825
2826 case SNDCTL_DSP_SETTRIGGER: /* _SIOW ('P',16, int) */
2827 if (get_user(ival, (int *) arg))
2828 return -EFAULT;
2829 DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival);
2830
2831 /*
2832 * If user is disabling I/O and port is not in initial
2833 * state, fail with EINVAL.
2834 */
2835
2836 if (((rport && !(ival & PCM_ENABLE_INPUT)) ||
2837 (wport && !(ival & PCM_ENABLE_OUTPUT))) &&
2838 aport->swstate != SW_INITIAL)
2839 return -EINVAL;
2840
2841 if (rport) {
2842 vwsnd_port_hwstate_t hwstate;
2843 spin_lock_irqsave(&rport->lock, flags);
2844 {
2845 hwstate = rport->hwstate;
2846 if (ival & PCM_ENABLE_INPUT)
2847 rport->flags &= ~DISABLED;
2848 else
2849 rport->flags |= DISABLED;
2850 }
2851 spin_unlock_irqrestore(&rport->lock, flags);
2852 if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) {
2853
2854 if (rport->swstate == SW_INITIAL)
2855 pcm_setup(devc, rport, wport);
2856 else
2857 li_activate_dma(&rport->chan);
2858 }
2859 }
2860 if (wport) {
2861 vwsnd_port_flags_t pflags;
2862 spin_lock_irqsave(&wport->lock, flags);
2863 {
2864 pflags = wport->flags;
2865 if (ival & PCM_ENABLE_OUTPUT)
2866 wport->flags &= ~DISABLED;
2867 else
2868 wport->flags |= DISABLED;
2869 }
2870 spin_unlock_irqrestore(&wport->lock, flags);
2871 if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) {
2872 if (wport->swstate == SW_RUN)
2873 pcm_output(devc, 0, 0);
2874 }
2875 }
2876 return 0;
2877
2878 default:
2879 DBGP("unknown ioctl 0x%x\n", cmd);
2880 return -EINVAL;
2881 }
2882 DBGP("unimplemented ioctl 0x%x\n", cmd);
2883 return -EINVAL;
2884 }
2885
2886 static int vwsnd_audio_ioctl(struct inode *inode,
2887 struct file *file,
2888 unsigned int cmd,
2889 unsigned long arg)
2890 {
2891 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2892 int ret;
2893
2894 down(&devc->io_sema);
2895 ret = vwsnd_audio_do_ioctl(inode, file, cmd, arg);
2896 up(&devc->io_sema);
2897 return ret;
2898 }
2899
2900 /* No mmap. */
2901
2902 static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma)
2903 {
2904 DBGE("(file=0x%p, vma=0x%p)\n", file, vma);
2905 return -ENODEV;
2906 }
2907
2908 /*
2909 * Open the audio device for read and/or write.
2910 *
2911 * Returns 0 on success, -errno on failure.
2912 */
2913
2914 static int vwsnd_audio_open(struct inode *inode, struct file *file)
2915 {
2916 vwsnd_dev_t *devc;
2917 int minor = iminor(inode);
2918 int sw_samplefmt;
2919
2920 DBGE("(inode=0x%p, file=0x%p)\n", inode, file);
2921
2922 INC_USE_COUNT;
2923 for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
2924 if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F))
2925 break;
2926
2927 if (devc == NULL) {
2928 DEC_USE_COUNT;
2929 return -ENODEV;
2930 }
2931
2932 down(&devc->open_sema);
2933 while (devc->open_mode & file->f_mode) {
2934 up(&devc->open_sema);
2935 if (file->f_flags & O_NONBLOCK) {
2936 DEC_USE_COUNT;
2937 return -EBUSY;
2938 }
2939 interruptible_sleep_on(&devc->open_wait);
2940 if (signal_pending(current)) {
2941 DEC_USE_COUNT;
2942 return -ERESTARTSYS;
2943 }
2944 down(&devc->open_sema);
2945 }
2946 devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
2947 up(&devc->open_sema);
2948
2949 /* get default sample format from minor number. */
2950
2951 sw_samplefmt = 0;
2952 if ((minor & 0xF) == SND_DEV_DSP)
2953 sw_samplefmt = AFMT_U8;
2954 else if ((minor & 0xF) == SND_DEV_AUDIO)
2955 sw_samplefmt = AFMT_MU_LAW;
2956 else if ((minor & 0xF) == SND_DEV_DSP16)
2957 sw_samplefmt = AFMT_S16_LE;
2958 else
2959 ASSERT(0);
2960
2961 /* Initialize vwsnd_ports. */
2962
2963 down(&devc->io_sema);
2964 {
2965 if (file->f_mode & FMODE_READ) {
2966 devc->rport.swstate = SW_INITIAL;
2967 devc->rport.flags = 0;
2968 devc->rport.sw_channels = 1;
2969 devc->rport.sw_samplefmt = sw_samplefmt;
2970 devc->rport.sw_framerate = 8000;
2971 devc->rport.sw_fragshift = DEFAULT_FRAGSHIFT;
2972 devc->rport.sw_fragcount = DEFAULT_FRAGCOUNT;
2973 devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
2974 devc->rport.byte_count = 0;
2975 devc->rport.frag_count = 0;
2976 }
2977 if (file->f_mode & FMODE_WRITE) {
2978 devc->wport.swstate = SW_INITIAL;
2979 devc->wport.flags = 0;
2980 devc->wport.sw_channels = 1;
2981 devc->wport.sw_samplefmt = sw_samplefmt;
2982 devc->wport.sw_framerate = 8000;
2983 devc->wport.sw_fragshift = DEFAULT_FRAGSHIFT;
2984 devc->wport.sw_fragcount = DEFAULT_FRAGCOUNT;
2985 devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
2986 devc->wport.byte_count = 0;
2987 devc->wport.frag_count = 0;
2988 }
2989 }
2990 up(&devc->io_sema);
2991
2992 file->private_data = devc;
2993 DBGRV();
2994 return 0;
2995 }
2996
2997 /*
2998 * Release (close) the audio device.
2999 */
3000
3001 static int vwsnd_audio_release(struct inode *inode, struct file *file)
3002 {
3003 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3004 vwsnd_port_t *wport = NULL, *rport = NULL;
3005 int err = 0;
3006
3007 lock_kernel();
3008 down(&devc->io_sema);
3009 {
3010 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3011
3012 if (file->f_mode & FMODE_READ)
3013 rport = &devc->rport;
3014 if (file->f_mode & FMODE_WRITE) {
3015 wport = &devc->wport;
3016 pcm_flush_frag(devc);
3017 pcm_write_sync(devc);
3018 }
3019 pcm_shutdown(devc, rport, wport);
3020 if (rport)
3021 rport->swstate = SW_OFF;
3022 if (wport)
3023 wport->swstate = SW_OFF;
3024 }
3025 up(&devc->io_sema);
3026
3027 down(&devc->open_sema);
3028 {
3029 devc->open_mode &= ~file->f_mode;
3030 }
3031 up(&devc->open_sema);
3032 wake_up(&devc->open_wait);
3033 DEC_USE_COUNT;
3034 DBGR();
3035 unlock_kernel();
3036 return err;
3037 }
3038
3039 static struct file_operations vwsnd_audio_fops = {
3040 .owner = THIS_MODULE,
3041 .llseek = no_llseek,
3042 .read = vwsnd_audio_read,
3043 .write = vwsnd_audio_write,
3044 .poll = vwsnd_audio_poll,
3045 .ioctl = vwsnd_audio_ioctl,
3046 .mmap = vwsnd_audio_mmap,
3047 .open = vwsnd_audio_open,
3048 .release = vwsnd_audio_release,
3049 };
3050
3051 /*****************************************************************************/
3052 /* mixer driver */
3053
3054 /* open the mixer device. */
3055
3056 static int vwsnd_mixer_open(struct inode *inode, struct file *file)
3057 {
3058 vwsnd_dev_t *devc;
3059
3060 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3061
3062 INC_USE_COUNT;
3063 for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
3064 if (devc->mixer_minor == iminor(inode))
3065 break;
3066
3067 if (devc == NULL) {
3068 DEC_USE_COUNT;
3069 return -ENODEV;
3070 }
3071 file->private_data = devc;
3072 return 0;
3073 }
3074
3075 /* release (close) the mixer device. */
3076
3077 static int vwsnd_mixer_release(struct inode *inode, struct file *file)
3078 {
3079 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3080 DEC_USE_COUNT;
3081 return 0;
3082 }
3083
3084 /* mixer_read_ioctl handles all read ioctls on the mixer device. */
3085
3086 static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
3087 {
3088 int val = -1;
3089
3090 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3091
3092 switch (nr) {
3093 case SOUND_MIXER_CAPS:
3094 val = SOUND_CAP_EXCL_INPUT;
3095 break;
3096
3097 case SOUND_MIXER_DEVMASK:
3098 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3099 SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3100 break;
3101
3102 case SOUND_MIXER_STEREODEVS:
3103 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3104 SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3105 break;
3106
3107 case SOUND_MIXER_OUTMASK:
3108 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3109 SOUND_MASK_MIC | SOUND_MASK_CD);
3110 break;
3111
3112 case SOUND_MIXER_RECMASK:
3113 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3114 SOUND_MASK_MIC | SOUND_MASK_CD);
3115 break;
3116
3117 case SOUND_MIXER_PCM:
3118 val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM);
3119 break;
3120
3121 case SOUND_MIXER_LINE:
3122 val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE);
3123 break;
3124
3125 case SOUND_MIXER_MIC:
3126 val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC);
3127 break;
3128
3129 case SOUND_MIXER_CD:
3130 val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD);
3131 break;
3132
3133 case SOUND_MIXER_RECLEV:
3134 val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV);
3135 break;
3136
3137 case SOUND_MIXER_RECSRC:
3138 val = ad1843_get_recsrc(&devc->lith);
3139 break;
3140
3141 case SOUND_MIXER_OUTSRC:
3142 val = ad1843_get_outsrc(&devc->lith);
3143 break;
3144
3145 default:
3146 return -EINVAL;
3147 }
3148 return put_user(val, (int __user *) arg);
3149 }
3150
3151 /* mixer_write_ioctl handles all write ioctls on the mixer device. */
3152
3153 static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
3154 {
3155 int val;
3156 int err;
3157
3158 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3159
3160 err = get_user(val, (int __user *) arg);
3161 if (err)
3162 return -EFAULT;
3163 switch (nr) {
3164 case SOUND_MIXER_PCM:
3165 val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val);
3166 break;
3167
3168 case SOUND_MIXER_LINE:
3169 val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val);
3170 break;
3171
3172 case SOUND_MIXER_MIC:
3173 val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val);
3174 break;
3175
3176 case SOUND_MIXER_CD:
3177 val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val);
3178 break;
3179
3180 case SOUND_MIXER_RECLEV:
3181 val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val);
3182 break;
3183
3184 case SOUND_MIXER_RECSRC:
3185 if (devc->rport.swbuf || devc->wport.swbuf)
3186 return -EBUSY; /* can't change recsrc while running */
3187 val = ad1843_set_recsrc(&devc->lith, val);
3188 break;
3189
3190 case SOUND_MIXER_OUTSRC:
3191 val = ad1843_set_outsrc(&devc->lith, val);
3192 break;
3193
3194 default:
3195 return -EINVAL;
3196 }
3197 if (val < 0)
3198 return val;
3199 return put_user(val, (int __user *) arg);
3200 }
3201
3202 /* This is the ioctl entry to the mixer driver. */
3203
3204 static int vwsnd_mixer_ioctl(struct inode *ioctl,
3205 struct file *file,
3206 unsigned int cmd,
3207 unsigned long arg)
3208 {
3209 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3210 const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT;
3211 const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT;
3212 int retval;
3213
3214 DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg);
3215
3216 down(&devc->mix_sema);
3217 {
3218 if ((cmd & ~nrmask) == MIXER_READ(0))
3219 retval = mixer_read_ioctl(devc, nr, (void __user *) arg);
3220 else if ((cmd & ~nrmask) == MIXER_WRITE(0))
3221 retval = mixer_write_ioctl(devc, nr, (void __user *) arg);
3222 else
3223 retval = -EINVAL;
3224 }
3225 up(&devc->mix_sema);
3226 return retval;
3227 }
3228
3229 static struct file_operations vwsnd_mixer_fops = {
3230 .owner = THIS_MODULE,
3231 .llseek = no_llseek,
3232 .ioctl = vwsnd_mixer_ioctl,
3233 .open = vwsnd_mixer_open,
3234 .release = vwsnd_mixer_release,
3235 };
3236
3237 /*****************************************************************************/
3238 /* probe/attach/unload */
3239
3240 /* driver probe routine. Return nonzero if hardware is found. */
3241
3242 static int __init probe_vwsnd(struct address_info *hw_config)
3243 {
3244 lithium_t lith;
3245 int w;
3246 unsigned long later;
3247
3248 DBGEV("(hw_config=0x%p)\n", hw_config);
3249
3250 /* XXX verify lithium present (to prevent crash on non-vw) */
3251
3252 if (li_create(&lith, hw_config->io_base) != 0) {
3253 printk(KERN_WARNING "probe_vwsnd: can't map lithium\n");
3254 return 0;
3255 }
3256 later = jiffies + 2;
3257 li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
3258 do {
3259 w = li_readl(&lith, LI_HOST_CONTROLLER);
3260 } while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later));
3261
3262 li_destroy(&lith);
3263
3264 DBGPV("HC = 0x%04x\n", w);
3265
3266 if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) {
3267
3268 /* This may indicate a beta machine with no audio,
3269 * or a future machine with different audio.
3270 * On beta-release 320 w/ no audio, HC == 0x4000 */
3271
3272 printk(KERN_WARNING "probe_vwsnd: audio codec not found\n");
3273 return 0;
3274 }
3275
3276 if (w & LI_HC_LINK_FAILURE) {
3277 printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n");
3278 return 0;
3279 }
3280
3281 printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n",
3282 hw_config->io_base, hw_config->irq);
3283
3284 return 1;
3285 }
3286
3287 /*
3288 * driver attach routine. Initialize driver data structures and
3289 * initialize hardware. A new vwsnd_dev_t is allocated and put
3290 * onto the global list, vwsnd_dev_list.
3291 *
3292 * Return +minor_dev on success, -errno on failure.
3293 */
3294
3295 static int __init attach_vwsnd(struct address_info *hw_config)
3296 {
3297 vwsnd_dev_t *devc = NULL;
3298 int err = -ENOMEM;
3299
3300 DBGEV("(hw_config=0x%p)\n", hw_config);
3301
3302 devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL);
3303 if (devc == NULL)
3304 goto fail0;
3305
3306 err = li_create(&devc->lith, hw_config->io_base);
3307 if (err)
3308 goto fail1;
3309
3310 init_waitqueue_head(&devc->open_wait);
3311
3312 devc->rport.hwbuf_size = HWBUF_SIZE;
3313 devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3314 if (!devc->rport.hwbuf_vaddr)
3315 goto fail2;
3316 devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr;
3317 devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf);
3318
3319 /*
3320 * Quote from the NT driver:
3321 *
3322 * // WARNING!!! HACK to setup output dma!!!
3323 * // This is required because even on output there is some data
3324 * // trickling into the input DMA channel. This is a bug in the
3325 * // Lithium microcode.
3326 * // --sde
3327 *
3328 * We set the input side's DMA base address here. It will remain
3329 * valid until the driver is unloaded.
3330 */
3331
3332 li_writel(&devc->lith, LI_COMM1_BASE,
3333 devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8));
3334
3335 devc->wport.hwbuf_size = HWBUF_SIZE;
3336 devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3337 if (!devc->wport.hwbuf_vaddr)
3338 goto fail3;
3339 devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr;
3340 devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf);
3341 DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf);
3342
3343 DBGDO(shut_up++);
3344 err = ad1843_init(&devc->lith);
3345 DBGDO(shut_up--);
3346 if (err)
3347 goto fail4;
3348
3349 /* install interrupt handler */
3350
3351 err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc);
3352 if (err)
3353 goto fail5;
3354
3355 /* register this device's drivers. */
3356
3357 devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1);
3358 if ((err = devc->audio_minor) < 0) {
3359 DBGDO(printk(KERN_WARNING
3360 "attach_vwsnd: register_sound_dsp error %d\n",
3361 err));
3362 goto fail6;
3363 }
3364 devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops,
3365 devc->audio_minor >> 4);
3366 if ((err = devc->mixer_minor) < 0) {
3367 DBGDO(printk(KERN_WARNING
3368 "attach_vwsnd: register_sound_mixer error %d\n",
3369 err));
3370 goto fail7;
3371 }
3372
3373 /* Squirrel away device indices for unload routine. */
3374
3375 hw_config->slots[0] = devc->audio_minor;
3376
3377 /* Initialize as much of *devc as possible */
3378
3379 init_MUTEX(&devc->open_sema);
3380 init_MUTEX(&devc->io_sema);
3381 init_MUTEX(&devc->mix_sema);
3382 devc->open_mode = 0;
3383 spin_lock_init(&devc->rport.lock);
3384 init_waitqueue_head(&devc->rport.queue);
3385 devc->rport.swstate = SW_OFF;
3386 devc->rport.hwstate = HW_STOPPED;
3387 devc->rport.flags = 0;
3388 devc->rport.swbuf = NULL;
3389 spin_lock_init(&devc->wport.lock);
3390 init_waitqueue_head(&devc->wport.queue);
3391 devc->wport.swstate = SW_OFF;
3392 devc->wport.hwstate = HW_STOPPED;
3393 devc->wport.flags = 0;
3394 devc->wport.swbuf = NULL;
3395
3396 /* Success. Link us onto the local device list. */
3397
3398 devc->next_dev = vwsnd_dev_list;
3399 vwsnd_dev_list = devc;
3400 return devc->audio_minor;
3401
3402 /* So many ways to fail. Undo what we did. */
3403
3404 fail7:
3405 unregister_sound_dsp(devc->audio_minor);
3406 fail6:
3407 free_irq(hw_config->irq, devc);
3408 fail5:
3409 fail4:
3410 free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3411 fail3:
3412 free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3413 fail2:
3414 li_destroy(&devc->lith);
3415 fail1:
3416 kfree(devc);
3417 fail0:
3418 return err;
3419 }
3420
3421 static int __exit unload_vwsnd(struct address_info *hw_config)
3422 {
3423 vwsnd_dev_t *devc, **devcp;
3424
3425 DBGE("()\n");
3426
3427 devcp = &vwsnd_dev_list;
3428 while ((devc = *devcp)) {
3429 if (devc->audio_minor == hw_config->slots[0]) {
3430 *devcp = devc->next_dev;
3431 break;
3432 }
3433 devcp = &devc->next_dev;
3434 }
3435
3436 if (!devc)
3437 return -ENODEV;
3438
3439 unregister_sound_mixer(devc->mixer_minor);
3440 unregister_sound_dsp(devc->audio_minor);
3441 free_irq(hw_config->irq, devc);
3442 free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3443 free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3444 li_destroy(&devc->lith);
3445 kfree(devc);
3446
3447 return 0;
3448 }
3449
3450 /*****************************************************************************/
3451 /* initialization and loadable kernel module interface */
3452
3453 static struct address_info the_hw_config = {
3454 0xFF001000, /* lithium phys addr */
3455 CO_IRQ(CO_APIC_LI_AUDIO) /* irq */
3456 };
3457
3458 MODULE_DESCRIPTION("SGI Visual Workstation sound module");
3459 MODULE_AUTHOR("Bob Miller <kbob@sgi.com>");
3460 MODULE_LICENSE("GPL");
3461
3462 static int __init init_vwsnd(void)
3463 {
3464 int err;
3465
3466 DBGXV("\n");
3467 DBGXV("sound::vwsnd::init_module()\n");
3468
3469 if (!probe_vwsnd(&the_hw_config))
3470 return -ENODEV;
3471
3472 err = attach_vwsnd(&the_hw_config);
3473 if (err < 0)
3474 return err;
3475 return 0;
3476 }
3477
3478 static void __exit cleanup_vwsnd(void)
3479 {
3480 DBGX("sound::vwsnd::cleanup_module()\n");
3481
3482 unload_vwsnd(&the_hw_config);
3483 }
3484
3485 module_init(init_vwsnd);
3486 module_exit(cleanup_vwsnd);