470604689cafb96037d2db2b985198b7b79a55d0
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52 * fill ring buffer with silence
53 * runtime->silence_start: starting pointer to silence area
54 * runtime->silence_filled: size filled with silence
55 * runtime->silence_threshold: threshold from application
56 * runtime->silence_size: maximal size from application
57 *
58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59 */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62 struct snd_pcm_runtime *runtime = substream->runtime;
63 snd_pcm_uframes_t frames, ofs, transfer;
64 int err;
65
66 if (runtime->silence_size < runtime->boundary) {
67 snd_pcm_sframes_t noise_dist, n;
68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 if (runtime->silence_start != appl_ptr) {
70 n = appl_ptr - runtime->silence_start;
71 if (n < 0)
72 n += runtime->boundary;
73 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 runtime->silence_filled -= n;
75 else
76 runtime->silence_filled = 0;
77 runtime->silence_start = appl_ptr;
78 }
79 if (runtime->silence_filled >= runtime->buffer_size)
80 return;
81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 return;
84 frames = runtime->silence_threshold - noise_dist;
85 if (frames > runtime->silence_size)
86 frames = runtime->silence_size;
87 } else {
88 if (new_hw_ptr == ULONG_MAX) { /* initialization */
89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 if (avail > runtime->buffer_size)
91 avail = runtime->buffer_size;
92 runtime->silence_filled = avail > 0 ? avail : 0;
93 runtime->silence_start = (runtime->status->hw_ptr +
94 runtime->silence_filled) %
95 runtime->boundary;
96 } else {
97 ofs = runtime->status->hw_ptr;
98 frames = new_hw_ptr - ofs;
99 if ((snd_pcm_sframes_t)frames < 0)
100 frames += runtime->boundary;
101 runtime->silence_filled -= frames;
102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 runtime->silence_filled = 0;
104 runtime->silence_start = new_hw_ptr;
105 } else {
106 runtime->silence_start = ofs;
107 }
108 }
109 frames = runtime->buffer_size - runtime->silence_filled;
110 }
111 if (snd_BUG_ON(frames > runtime->buffer_size))
112 return;
113 if (frames == 0)
114 return;
115 ofs = runtime->silence_start % runtime->buffer_size;
116 while (frames > 0) {
117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 err = fill_silence_frames(substream, ofs, transfer);
119 snd_BUG_ON(err < 0);
120 runtime->silence_filled += transfer;
121 frames -= transfer;
122 ofs = 0;
123 }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 char *name, size_t len)
129 {
130 snprintf(name, len, "pcmC%dD%d%c:%d",
131 substream->pcm->card->number,
132 substream->pcm->device,
133 substream->stream ? 'c' : 'p',
134 substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146 ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask) 0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do { \
152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
153 dump_stack(); \
154 } while (0)
155
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158 struct snd_pcm_runtime *runtime = substream->runtime;
159
160 trace_xrun(substream);
161 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165 char name[16];
166 snd_pcm_debug_name(substream, name, sizeof(name));
167 pcm_warn(substream->pcm, "XRUN: %s\n", name);
168 dump_stack_on_xrun(substream);
169 }
170 }
171
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
174 do { \
175 trace_hw_ptr_error(substream, reason); \
176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 (in_interrupt) ? 'Q' : 'P', ##args); \
179 dump_stack_on_xrun(substream); \
180 } \
181 } while (0)
182
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186
187 #endif
188
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190 struct snd_pcm_runtime *runtime)
191 {
192 snd_pcm_uframes_t avail;
193
194 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195 avail = snd_pcm_playback_avail(runtime);
196 else
197 avail = snd_pcm_capture_avail(runtime);
198 if (avail > runtime->avail_max)
199 runtime->avail_max = avail;
200 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201 if (avail >= runtime->buffer_size) {
202 snd_pcm_drain_done(substream);
203 return -EPIPE;
204 }
205 } else {
206 if (avail >= runtime->stop_threshold) {
207 xrun(substream);
208 return -EPIPE;
209 }
210 }
211 if (runtime->twake) {
212 if (avail >= runtime->twake)
213 wake_up(&runtime->tsleep);
214 } else if (avail >= runtime->control->avail_min)
215 wake_up(&runtime->sleep);
216 return 0;
217 }
218
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220 struct timespec *curr_tstamp,
221 struct timespec *audio_tstamp)
222 {
223 struct snd_pcm_runtime *runtime = substream->runtime;
224 u64 audio_frames, audio_nsecs;
225 struct timespec driver_tstamp;
226
227 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228 return;
229
230 if (!(substream->ops->get_time_info) ||
231 (runtime->audio_tstamp_report.actual_type ==
232 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233
234 /*
235 * provide audio timestamp derived from pointer position
236 * add delay only if requested
237 */
238
239 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240
241 if (runtime->audio_tstamp_config.report_delay) {
242 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243 audio_frames -= runtime->delay;
244 else
245 audio_frames += runtime->delay;
246 }
247 audio_nsecs = div_u64(audio_frames * 1000000000LL,
248 runtime->rate);
249 *audio_tstamp = ns_to_timespec(audio_nsecs);
250 }
251 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
252 runtime->status->audio_tstamp = *audio_tstamp;
253 runtime->status->tstamp = *curr_tstamp;
254 }
255
256 /*
257 * re-take a driver timestamp to let apps detect if the reference tstamp
258 * read by low-level hardware was provided with a delay
259 */
260 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
261 runtime->driver_tstamp = driver_tstamp;
262 }
263
264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
265 unsigned int in_interrupt)
266 {
267 struct snd_pcm_runtime *runtime = substream->runtime;
268 snd_pcm_uframes_t pos;
269 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
270 snd_pcm_sframes_t hdelta, delta;
271 unsigned long jdelta;
272 unsigned long curr_jiffies;
273 struct timespec curr_tstamp;
274 struct timespec audio_tstamp;
275 int crossed_boundary = 0;
276
277 old_hw_ptr = runtime->status->hw_ptr;
278
279 /*
280 * group pointer, time and jiffies reads to allow for more
281 * accurate correlations/corrections.
282 * The values are stored at the end of this routine after
283 * corrections for hw_ptr position
284 */
285 pos = substream->ops->pointer(substream);
286 curr_jiffies = jiffies;
287 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
288 if ((substream->ops->get_time_info) &&
289 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
290 substream->ops->get_time_info(substream, &curr_tstamp,
291 &audio_tstamp,
292 &runtime->audio_tstamp_config,
293 &runtime->audio_tstamp_report);
294
295 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
296 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
297 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298 } else
299 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
300 }
301
302 if (pos == SNDRV_PCM_POS_XRUN) {
303 xrun(substream);
304 return -EPIPE;
305 }
306 if (pos >= runtime->buffer_size) {
307 if (printk_ratelimit()) {
308 char name[16];
309 snd_pcm_debug_name(substream, name, sizeof(name));
310 pcm_err(substream->pcm,
311 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
312 name, pos, runtime->buffer_size,
313 runtime->period_size);
314 }
315 pos = 0;
316 }
317 pos -= pos % runtime->min_align;
318 trace_hwptr(substream, pos, in_interrupt);
319 hw_base = runtime->hw_ptr_base;
320 new_hw_ptr = hw_base + pos;
321 if (in_interrupt) {
322 /* we know that one period was processed */
323 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
324 delta = runtime->hw_ptr_interrupt + runtime->period_size;
325 if (delta > new_hw_ptr) {
326 /* check for double acknowledged interrupts */
327 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
328 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
329 hw_base += runtime->buffer_size;
330 if (hw_base >= runtime->boundary) {
331 hw_base = 0;
332 crossed_boundary++;
333 }
334 new_hw_ptr = hw_base + pos;
335 goto __delta;
336 }
337 }
338 }
339 /* new_hw_ptr might be lower than old_hw_ptr in case when */
340 /* pointer crosses the end of the ring buffer */
341 if (new_hw_ptr < old_hw_ptr) {
342 hw_base += runtime->buffer_size;
343 if (hw_base >= runtime->boundary) {
344 hw_base = 0;
345 crossed_boundary++;
346 }
347 new_hw_ptr = hw_base + pos;
348 }
349 __delta:
350 delta = new_hw_ptr - old_hw_ptr;
351 if (delta < 0)
352 delta += runtime->boundary;
353
354 if (runtime->no_period_wakeup) {
355 snd_pcm_sframes_t xrun_threshold;
356 /*
357 * Without regular period interrupts, we have to check
358 * the elapsed time to detect xruns.
359 */
360 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
361 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
362 goto no_delta_check;
363 hdelta = jdelta - delta * HZ / runtime->rate;
364 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
365 while (hdelta > xrun_threshold) {
366 delta += runtime->buffer_size;
367 hw_base += runtime->buffer_size;
368 if (hw_base >= runtime->boundary) {
369 hw_base = 0;
370 crossed_boundary++;
371 }
372 new_hw_ptr = hw_base + pos;
373 hdelta -= runtime->hw_ptr_buffer_jiffies;
374 }
375 goto no_delta_check;
376 }
377
378 /* something must be really wrong */
379 if (delta >= runtime->buffer_size + runtime->period_size) {
380 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
381 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
382 substream->stream, (long)pos,
383 (long)new_hw_ptr, (long)old_hw_ptr);
384 return 0;
385 }
386
387 /* Do jiffies check only in xrun_debug mode */
388 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
389 goto no_jiffies_check;
390
391 /* Skip the jiffies check for hardwares with BATCH flag.
392 * Such hardware usually just increases the position at each IRQ,
393 * thus it can't give any strange position.
394 */
395 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
396 goto no_jiffies_check;
397 hdelta = delta;
398 if (hdelta < runtime->delay)
399 goto no_jiffies_check;
400 hdelta -= runtime->delay;
401 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
402 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
403 delta = jdelta /
404 (((runtime->period_size * HZ) / runtime->rate)
405 + HZ/100);
406 /* move new_hw_ptr according jiffies not pos variable */
407 new_hw_ptr = old_hw_ptr;
408 hw_base = delta;
409 /* use loop to avoid checks for delta overflows */
410 /* the delta value is small or zero in most cases */
411 while (delta > 0) {
412 new_hw_ptr += runtime->period_size;
413 if (new_hw_ptr >= runtime->boundary) {
414 new_hw_ptr -= runtime->boundary;
415 crossed_boundary--;
416 }
417 delta--;
418 }
419 /* align hw_base to buffer_size */
420 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
421 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
422 (long)pos, (long)hdelta,
423 (long)runtime->period_size, jdelta,
424 ((hdelta * HZ) / runtime->rate), hw_base,
425 (unsigned long)old_hw_ptr,
426 (unsigned long)new_hw_ptr);
427 /* reset values to proper state */
428 delta = 0;
429 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
430 }
431 no_jiffies_check:
432 if (delta > runtime->period_size + runtime->period_size / 2) {
433 hw_ptr_error(substream, in_interrupt,
434 "Lost interrupts?",
435 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
436 substream->stream, (long)delta,
437 (long)new_hw_ptr,
438 (long)old_hw_ptr);
439 }
440
441 no_delta_check:
442 if (runtime->status->hw_ptr == new_hw_ptr) {
443 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
444 return 0;
445 }
446
447 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
448 runtime->silence_size > 0)
449 snd_pcm_playback_silence(substream, new_hw_ptr);
450
451 if (in_interrupt) {
452 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
453 if (delta < 0)
454 delta += runtime->boundary;
455 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
456 runtime->hw_ptr_interrupt += delta;
457 if (runtime->hw_ptr_interrupt >= runtime->boundary)
458 runtime->hw_ptr_interrupt -= runtime->boundary;
459 }
460 runtime->hw_ptr_base = hw_base;
461 runtime->status->hw_ptr = new_hw_ptr;
462 runtime->hw_ptr_jiffies = curr_jiffies;
463 if (crossed_boundary) {
464 snd_BUG_ON(crossed_boundary != 1);
465 runtime->hw_ptr_wrap += runtime->boundary;
466 }
467
468 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
469
470 return snd_pcm_update_state(substream, runtime);
471 }
472
473 /* CAUTION: call it with irq disabled */
474 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
475 {
476 return snd_pcm_update_hw_ptr0(substream, 0);
477 }
478
479 /**
480 * snd_pcm_set_ops - set the PCM operators
481 * @pcm: the pcm instance
482 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
483 * @ops: the operator table
484 *
485 * Sets the given PCM operators to the pcm instance.
486 */
487 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
488 const struct snd_pcm_ops *ops)
489 {
490 struct snd_pcm_str *stream = &pcm->streams[direction];
491 struct snd_pcm_substream *substream;
492
493 for (substream = stream->substream; substream != NULL; substream = substream->next)
494 substream->ops = ops;
495 }
496 EXPORT_SYMBOL(snd_pcm_set_ops);
497
498 /**
499 * snd_pcm_sync - set the PCM sync id
500 * @substream: the pcm substream
501 *
502 * Sets the PCM sync identifier for the card.
503 */
504 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
505 {
506 struct snd_pcm_runtime *runtime = substream->runtime;
507
508 runtime->sync.id32[0] = substream->pcm->card->number;
509 runtime->sync.id32[1] = -1;
510 runtime->sync.id32[2] = -1;
511 runtime->sync.id32[3] = -1;
512 }
513 EXPORT_SYMBOL(snd_pcm_set_sync);
514
515 /*
516 * Standard ioctl routine
517 */
518
519 static inline unsigned int div32(unsigned int a, unsigned int b,
520 unsigned int *r)
521 {
522 if (b == 0) {
523 *r = 0;
524 return UINT_MAX;
525 }
526 *r = a % b;
527 return a / b;
528 }
529
530 static inline unsigned int div_down(unsigned int a, unsigned int b)
531 {
532 if (b == 0)
533 return UINT_MAX;
534 return a / b;
535 }
536
537 static inline unsigned int div_up(unsigned int a, unsigned int b)
538 {
539 unsigned int r;
540 unsigned int q;
541 if (b == 0)
542 return UINT_MAX;
543 q = div32(a, b, &r);
544 if (r)
545 ++q;
546 return q;
547 }
548
549 static inline unsigned int mul(unsigned int a, unsigned int b)
550 {
551 if (a == 0)
552 return 0;
553 if (div_down(UINT_MAX, a) < b)
554 return UINT_MAX;
555 return a * b;
556 }
557
558 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
559 unsigned int c, unsigned int *r)
560 {
561 u_int64_t n = (u_int64_t) a * b;
562 if (c == 0) {
563 *r = 0;
564 return UINT_MAX;
565 }
566 n = div_u64_rem(n, c, r);
567 if (n >= UINT_MAX) {
568 *r = 0;
569 return UINT_MAX;
570 }
571 return n;
572 }
573
574 /**
575 * snd_interval_refine - refine the interval value of configurator
576 * @i: the interval value to refine
577 * @v: the interval value to refer to
578 *
579 * Refines the interval value with the reference value.
580 * The interval is changed to the range satisfying both intervals.
581 * The interval status (min, max, integer, etc.) are evaluated.
582 *
583 * Return: Positive if the value is changed, zero if it's not changed, or a
584 * negative error code.
585 */
586 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
587 {
588 int changed = 0;
589 if (snd_BUG_ON(snd_interval_empty(i)))
590 return -EINVAL;
591 if (i->min < v->min) {
592 i->min = v->min;
593 i->openmin = v->openmin;
594 changed = 1;
595 } else if (i->min == v->min && !i->openmin && v->openmin) {
596 i->openmin = 1;
597 changed = 1;
598 }
599 if (i->max > v->max) {
600 i->max = v->max;
601 i->openmax = v->openmax;
602 changed = 1;
603 } else if (i->max == v->max && !i->openmax && v->openmax) {
604 i->openmax = 1;
605 changed = 1;
606 }
607 if (!i->integer && v->integer) {
608 i->integer = 1;
609 changed = 1;
610 }
611 if (i->integer) {
612 if (i->openmin) {
613 i->min++;
614 i->openmin = 0;
615 }
616 if (i->openmax) {
617 i->max--;
618 i->openmax = 0;
619 }
620 } else if (!i->openmin && !i->openmax && i->min == i->max)
621 i->integer = 1;
622 if (snd_interval_checkempty(i)) {
623 snd_interval_none(i);
624 return -EINVAL;
625 }
626 return changed;
627 }
628 EXPORT_SYMBOL(snd_interval_refine);
629
630 static int snd_interval_refine_first(struct snd_interval *i)
631 {
632 const unsigned int last_max = i->max;
633
634 if (snd_BUG_ON(snd_interval_empty(i)))
635 return -EINVAL;
636 if (snd_interval_single(i))
637 return 0;
638 i->max = i->min;
639 if (i->openmin)
640 i->max++;
641 /* only exclude max value if also excluded before refine */
642 i->openmax = (i->openmax && i->max >= last_max);
643 return 1;
644 }
645
646 static int snd_interval_refine_last(struct snd_interval *i)
647 {
648 const unsigned int last_min = i->min;
649
650 if (snd_BUG_ON(snd_interval_empty(i)))
651 return -EINVAL;
652 if (snd_interval_single(i))
653 return 0;
654 i->min = i->max;
655 if (i->openmax)
656 i->min--;
657 /* only exclude min value if also excluded before refine */
658 i->openmin = (i->openmin && i->min <= last_min);
659 return 1;
660 }
661
662 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
663 {
664 if (a->empty || b->empty) {
665 snd_interval_none(c);
666 return;
667 }
668 c->empty = 0;
669 c->min = mul(a->min, b->min);
670 c->openmin = (a->openmin || b->openmin);
671 c->max = mul(a->max, b->max);
672 c->openmax = (a->openmax || b->openmax);
673 c->integer = (a->integer && b->integer);
674 }
675
676 /**
677 * snd_interval_div - refine the interval value with division
678 * @a: dividend
679 * @b: divisor
680 * @c: quotient
681 *
682 * c = a / b
683 *
684 * Returns non-zero if the value is changed, zero if not changed.
685 */
686 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
687 {
688 unsigned int r;
689 if (a->empty || b->empty) {
690 snd_interval_none(c);
691 return;
692 }
693 c->empty = 0;
694 c->min = div32(a->min, b->max, &r);
695 c->openmin = (r || a->openmin || b->openmax);
696 if (b->min > 0) {
697 c->max = div32(a->max, b->min, &r);
698 if (r) {
699 c->max++;
700 c->openmax = 1;
701 } else
702 c->openmax = (a->openmax || b->openmin);
703 } else {
704 c->max = UINT_MAX;
705 c->openmax = 0;
706 }
707 c->integer = 0;
708 }
709
710 /**
711 * snd_interval_muldivk - refine the interval value
712 * @a: dividend 1
713 * @b: dividend 2
714 * @k: divisor (as integer)
715 * @c: result
716 *
717 * c = a * b / k
718 *
719 * Returns non-zero if the value is changed, zero if not changed.
720 */
721 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
722 unsigned int k, struct snd_interval *c)
723 {
724 unsigned int r;
725 if (a->empty || b->empty) {
726 snd_interval_none(c);
727 return;
728 }
729 c->empty = 0;
730 c->min = muldiv32(a->min, b->min, k, &r);
731 c->openmin = (r || a->openmin || b->openmin);
732 c->max = muldiv32(a->max, b->max, k, &r);
733 if (r) {
734 c->max++;
735 c->openmax = 1;
736 } else
737 c->openmax = (a->openmax || b->openmax);
738 c->integer = 0;
739 }
740
741 /**
742 * snd_interval_mulkdiv - refine the interval value
743 * @a: dividend 1
744 * @k: dividend 2 (as integer)
745 * @b: divisor
746 * @c: result
747 *
748 * c = a * k / b
749 *
750 * Returns non-zero if the value is changed, zero if not changed.
751 */
752 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
753 const struct snd_interval *b, struct snd_interval *c)
754 {
755 unsigned int r;
756 if (a->empty || b->empty) {
757 snd_interval_none(c);
758 return;
759 }
760 c->empty = 0;
761 c->min = muldiv32(a->min, k, b->max, &r);
762 c->openmin = (r || a->openmin || b->openmax);
763 if (b->min > 0) {
764 c->max = muldiv32(a->max, k, b->min, &r);
765 if (r) {
766 c->max++;
767 c->openmax = 1;
768 } else
769 c->openmax = (a->openmax || b->openmin);
770 } else {
771 c->max = UINT_MAX;
772 c->openmax = 0;
773 }
774 c->integer = 0;
775 }
776
777 /* ---- */
778
779
780 /**
781 * snd_interval_ratnum - refine the interval value
782 * @i: interval to refine
783 * @rats_count: number of ratnum_t
784 * @rats: ratnum_t array
785 * @nump: pointer to store the resultant numerator
786 * @denp: pointer to store the resultant denominator
787 *
788 * Return: Positive if the value is changed, zero if it's not changed, or a
789 * negative error code.
790 */
791 int snd_interval_ratnum(struct snd_interval *i,
792 unsigned int rats_count, const struct snd_ratnum *rats,
793 unsigned int *nump, unsigned int *denp)
794 {
795 unsigned int best_num, best_den;
796 int best_diff;
797 unsigned int k;
798 struct snd_interval t;
799 int err;
800 unsigned int result_num, result_den;
801 int result_diff;
802
803 best_num = best_den = best_diff = 0;
804 for (k = 0; k < rats_count; ++k) {
805 unsigned int num = rats[k].num;
806 unsigned int den;
807 unsigned int q = i->min;
808 int diff;
809 if (q == 0)
810 q = 1;
811 den = div_up(num, q);
812 if (den < rats[k].den_min)
813 continue;
814 if (den > rats[k].den_max)
815 den = rats[k].den_max;
816 else {
817 unsigned int r;
818 r = (den - rats[k].den_min) % rats[k].den_step;
819 if (r != 0)
820 den -= r;
821 }
822 diff = num - q * den;
823 if (diff < 0)
824 diff = -diff;
825 if (best_num == 0 ||
826 diff * best_den < best_diff * den) {
827 best_diff = diff;
828 best_den = den;
829 best_num = num;
830 }
831 }
832 if (best_den == 0) {
833 i->empty = 1;
834 return -EINVAL;
835 }
836 t.min = div_down(best_num, best_den);
837 t.openmin = !!(best_num % best_den);
838
839 result_num = best_num;
840 result_diff = best_diff;
841 result_den = best_den;
842 best_num = best_den = best_diff = 0;
843 for (k = 0; k < rats_count; ++k) {
844 unsigned int num = rats[k].num;
845 unsigned int den;
846 unsigned int q = i->max;
847 int diff;
848 if (q == 0) {
849 i->empty = 1;
850 return -EINVAL;
851 }
852 den = div_down(num, q);
853 if (den > rats[k].den_max)
854 continue;
855 if (den < rats[k].den_min)
856 den = rats[k].den_min;
857 else {
858 unsigned int r;
859 r = (den - rats[k].den_min) % rats[k].den_step;
860 if (r != 0)
861 den += rats[k].den_step - r;
862 }
863 diff = q * den - num;
864 if (diff < 0)
865 diff = -diff;
866 if (best_num == 0 ||
867 diff * best_den < best_diff * den) {
868 best_diff = diff;
869 best_den = den;
870 best_num = num;
871 }
872 }
873 if (best_den == 0) {
874 i->empty = 1;
875 return -EINVAL;
876 }
877 t.max = div_up(best_num, best_den);
878 t.openmax = !!(best_num % best_den);
879 t.integer = 0;
880 err = snd_interval_refine(i, &t);
881 if (err < 0)
882 return err;
883
884 if (snd_interval_single(i)) {
885 if (best_diff * result_den < result_diff * best_den) {
886 result_num = best_num;
887 result_den = best_den;
888 }
889 if (nump)
890 *nump = result_num;
891 if (denp)
892 *denp = result_den;
893 }
894 return err;
895 }
896 EXPORT_SYMBOL(snd_interval_ratnum);
897
898 /**
899 * snd_interval_ratden - refine the interval value
900 * @i: interval to refine
901 * @rats_count: number of struct ratden
902 * @rats: struct ratden array
903 * @nump: pointer to store the resultant numerator
904 * @denp: pointer to store the resultant denominator
905 *
906 * Return: Positive if the value is changed, zero if it's not changed, or a
907 * negative error code.
908 */
909 static int snd_interval_ratden(struct snd_interval *i,
910 unsigned int rats_count,
911 const struct snd_ratden *rats,
912 unsigned int *nump, unsigned int *denp)
913 {
914 unsigned int best_num, best_diff, best_den;
915 unsigned int k;
916 struct snd_interval t;
917 int err;
918
919 best_num = best_den = best_diff = 0;
920 for (k = 0; k < rats_count; ++k) {
921 unsigned int num;
922 unsigned int den = rats[k].den;
923 unsigned int q = i->min;
924 int diff;
925 num = mul(q, den);
926 if (num > rats[k].num_max)
927 continue;
928 if (num < rats[k].num_min)
929 num = rats[k].num_max;
930 else {
931 unsigned int r;
932 r = (num - rats[k].num_min) % rats[k].num_step;
933 if (r != 0)
934 num += rats[k].num_step - r;
935 }
936 diff = num - q * den;
937 if (best_num == 0 ||
938 diff * best_den < best_diff * den) {
939 best_diff = diff;
940 best_den = den;
941 best_num = num;
942 }
943 }
944 if (best_den == 0) {
945 i->empty = 1;
946 return -EINVAL;
947 }
948 t.min = div_down(best_num, best_den);
949 t.openmin = !!(best_num % best_den);
950
951 best_num = best_den = best_diff = 0;
952 for (k = 0; k < rats_count; ++k) {
953 unsigned int num;
954 unsigned int den = rats[k].den;
955 unsigned int q = i->max;
956 int diff;
957 num = mul(q, den);
958 if (num < rats[k].num_min)
959 continue;
960 if (num > rats[k].num_max)
961 num = rats[k].num_max;
962 else {
963 unsigned int r;
964 r = (num - rats[k].num_min) % rats[k].num_step;
965 if (r != 0)
966 num -= r;
967 }
968 diff = q * den - num;
969 if (best_num == 0 ||
970 diff * best_den < best_diff * den) {
971 best_diff = diff;
972 best_den = den;
973 best_num = num;
974 }
975 }
976 if (best_den == 0) {
977 i->empty = 1;
978 return -EINVAL;
979 }
980 t.max = div_up(best_num, best_den);
981 t.openmax = !!(best_num % best_den);
982 t.integer = 0;
983 err = snd_interval_refine(i, &t);
984 if (err < 0)
985 return err;
986
987 if (snd_interval_single(i)) {
988 if (nump)
989 *nump = best_num;
990 if (denp)
991 *denp = best_den;
992 }
993 return err;
994 }
995
996 /**
997 * snd_interval_list - refine the interval value from the list
998 * @i: the interval value to refine
999 * @count: the number of elements in the list
1000 * @list: the value list
1001 * @mask: the bit-mask to evaluate
1002 *
1003 * Refines the interval value from the list.
1004 * When mask is non-zero, only the elements corresponding to bit 1 are
1005 * evaluated.
1006 *
1007 * Return: Positive if the value is changed, zero if it's not changed, or a
1008 * negative error code.
1009 */
1010 int snd_interval_list(struct snd_interval *i, unsigned int count,
1011 const unsigned int *list, unsigned int mask)
1012 {
1013 unsigned int k;
1014 struct snd_interval list_range;
1015
1016 if (!count) {
1017 i->empty = 1;
1018 return -EINVAL;
1019 }
1020 snd_interval_any(&list_range);
1021 list_range.min = UINT_MAX;
1022 list_range.max = 0;
1023 for (k = 0; k < count; k++) {
1024 if (mask && !(mask & (1 << k)))
1025 continue;
1026 if (!snd_interval_test(i, list[k]))
1027 continue;
1028 list_range.min = min(list_range.min, list[k]);
1029 list_range.max = max(list_range.max, list[k]);
1030 }
1031 return snd_interval_refine(i, &list_range);
1032 }
1033 EXPORT_SYMBOL(snd_interval_list);
1034
1035 /**
1036 * snd_interval_ranges - refine the interval value from the list of ranges
1037 * @i: the interval value to refine
1038 * @count: the number of elements in the list of ranges
1039 * @ranges: the ranges list
1040 * @mask: the bit-mask to evaluate
1041 *
1042 * Refines the interval value from the list of ranges.
1043 * When mask is non-zero, only the elements corresponding to bit 1 are
1044 * evaluated.
1045 *
1046 * Return: Positive if the value is changed, zero if it's not changed, or a
1047 * negative error code.
1048 */
1049 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1050 const struct snd_interval *ranges, unsigned int mask)
1051 {
1052 unsigned int k;
1053 struct snd_interval range_union;
1054 struct snd_interval range;
1055
1056 if (!count) {
1057 snd_interval_none(i);
1058 return -EINVAL;
1059 }
1060 snd_interval_any(&range_union);
1061 range_union.min = UINT_MAX;
1062 range_union.max = 0;
1063 for (k = 0; k < count; k++) {
1064 if (mask && !(mask & (1 << k)))
1065 continue;
1066 snd_interval_copy(&range, &ranges[k]);
1067 if (snd_interval_refine(&range, i) < 0)
1068 continue;
1069 if (snd_interval_empty(&range))
1070 continue;
1071
1072 if (range.min < range_union.min) {
1073 range_union.min = range.min;
1074 range_union.openmin = 1;
1075 }
1076 if (range.min == range_union.min && !range.openmin)
1077 range_union.openmin = 0;
1078 if (range.max > range_union.max) {
1079 range_union.max = range.max;
1080 range_union.openmax = 1;
1081 }
1082 if (range.max == range_union.max && !range.openmax)
1083 range_union.openmax = 0;
1084 }
1085 return snd_interval_refine(i, &range_union);
1086 }
1087 EXPORT_SYMBOL(snd_interval_ranges);
1088
1089 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1090 {
1091 unsigned int n;
1092 int changed = 0;
1093 n = i->min % step;
1094 if (n != 0 || i->openmin) {
1095 i->min += step - n;
1096 i->openmin = 0;
1097 changed = 1;
1098 }
1099 n = i->max % step;
1100 if (n != 0 || i->openmax) {
1101 i->max -= n;
1102 i->openmax = 0;
1103 changed = 1;
1104 }
1105 if (snd_interval_checkempty(i)) {
1106 i->empty = 1;
1107 return -EINVAL;
1108 }
1109 return changed;
1110 }
1111
1112 /* Info constraints helpers */
1113
1114 /**
1115 * snd_pcm_hw_rule_add - add the hw-constraint rule
1116 * @runtime: the pcm runtime instance
1117 * @cond: condition bits
1118 * @var: the variable to evaluate
1119 * @func: the evaluation function
1120 * @private: the private data pointer passed to function
1121 * @dep: the dependent variables
1122 *
1123 * Return: Zero if successful, or a negative error code on failure.
1124 */
1125 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1126 int var,
1127 snd_pcm_hw_rule_func_t func, void *private,
1128 int dep, ...)
1129 {
1130 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1131 struct snd_pcm_hw_rule *c;
1132 unsigned int k;
1133 va_list args;
1134 va_start(args, dep);
1135 if (constrs->rules_num >= constrs->rules_all) {
1136 struct snd_pcm_hw_rule *new;
1137 unsigned int new_rules = constrs->rules_all + 16;
1138 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1139 if (!new) {
1140 va_end(args);
1141 return -ENOMEM;
1142 }
1143 if (constrs->rules) {
1144 memcpy(new, constrs->rules,
1145 constrs->rules_num * sizeof(*c));
1146 kfree(constrs->rules);
1147 }
1148 constrs->rules = new;
1149 constrs->rules_all = new_rules;
1150 }
1151 c = &constrs->rules[constrs->rules_num];
1152 c->cond = cond;
1153 c->func = func;
1154 c->var = var;
1155 c->private = private;
1156 k = 0;
1157 while (1) {
1158 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1159 va_end(args);
1160 return -EINVAL;
1161 }
1162 c->deps[k++] = dep;
1163 if (dep < 0)
1164 break;
1165 dep = va_arg(args, int);
1166 }
1167 constrs->rules_num++;
1168 va_end(args);
1169 return 0;
1170 }
1171 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1172
1173 /**
1174 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1175 * @runtime: PCM runtime instance
1176 * @var: hw_params variable to apply the mask
1177 * @mask: the bitmap mask
1178 *
1179 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1180 *
1181 * Return: Zero if successful, or a negative error code on failure.
1182 */
1183 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1184 u_int32_t mask)
1185 {
1186 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1187 struct snd_mask *maskp = constrs_mask(constrs, var);
1188 *maskp->bits &= mask;
1189 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1190 if (*maskp->bits == 0)
1191 return -EINVAL;
1192 return 0;
1193 }
1194
1195 /**
1196 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the mask
1199 * @mask: the 64bit bitmap mask
1200 *
1201 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1202 *
1203 * Return: Zero if successful, or a negative error code on failure.
1204 */
1205 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1206 u_int64_t mask)
1207 {
1208 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1209 struct snd_mask *maskp = constrs_mask(constrs, var);
1210 maskp->bits[0] &= (u_int32_t)mask;
1211 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1212 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1213 if (! maskp->bits[0] && ! maskp->bits[1])
1214 return -EINVAL;
1215 return 0;
1216 }
1217 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1218
1219 /**
1220 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1221 * @runtime: PCM runtime instance
1222 * @var: hw_params variable to apply the integer constraint
1223 *
1224 * Apply the constraint of integer to an interval parameter.
1225 *
1226 * Return: Positive if the value is changed, zero if it's not changed, or a
1227 * negative error code.
1228 */
1229 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1230 {
1231 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1232 return snd_interval_setinteger(constrs_interval(constrs, var));
1233 }
1234 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1235
1236 /**
1237 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1238 * @runtime: PCM runtime instance
1239 * @var: hw_params variable to apply the range
1240 * @min: the minimal value
1241 * @max: the maximal value
1242 *
1243 * Apply the min/max range constraint to an interval parameter.
1244 *
1245 * Return: Positive if the value is changed, zero if it's not changed, or a
1246 * negative error code.
1247 */
1248 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1249 unsigned int min, unsigned int max)
1250 {
1251 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1252 struct snd_interval t;
1253 t.min = min;
1254 t.max = max;
1255 t.openmin = t.openmax = 0;
1256 t.integer = 0;
1257 return snd_interval_refine(constrs_interval(constrs, var), &t);
1258 }
1259 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1260
1261 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1262 struct snd_pcm_hw_rule *rule)
1263 {
1264 struct snd_pcm_hw_constraint_list *list = rule->private;
1265 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1266 }
1267
1268
1269 /**
1270 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1271 * @runtime: PCM runtime instance
1272 * @cond: condition bits
1273 * @var: hw_params variable to apply the list constraint
1274 * @l: list
1275 *
1276 * Apply the list of constraints to an interval parameter.
1277 *
1278 * Return: Zero if successful, or a negative error code on failure.
1279 */
1280 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1281 unsigned int cond,
1282 snd_pcm_hw_param_t var,
1283 const struct snd_pcm_hw_constraint_list *l)
1284 {
1285 return snd_pcm_hw_rule_add(runtime, cond, var,
1286 snd_pcm_hw_rule_list, (void *)l,
1287 var, -1);
1288 }
1289 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1290
1291 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1292 struct snd_pcm_hw_rule *rule)
1293 {
1294 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1295 return snd_interval_ranges(hw_param_interval(params, rule->var),
1296 r->count, r->ranges, r->mask);
1297 }
1298
1299
1300 /**
1301 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1302 * @runtime: PCM runtime instance
1303 * @cond: condition bits
1304 * @var: hw_params variable to apply the list of range constraints
1305 * @r: ranges
1306 *
1307 * Apply the list of range constraints to an interval parameter.
1308 *
1309 * Return: Zero if successful, or a negative error code on failure.
1310 */
1311 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1312 unsigned int cond,
1313 snd_pcm_hw_param_t var,
1314 const struct snd_pcm_hw_constraint_ranges *r)
1315 {
1316 return snd_pcm_hw_rule_add(runtime, cond, var,
1317 snd_pcm_hw_rule_ranges, (void *)r,
1318 var, -1);
1319 }
1320 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1321
1322 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1323 struct snd_pcm_hw_rule *rule)
1324 {
1325 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1326 unsigned int num = 0, den = 0;
1327 int err;
1328 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1329 r->nrats, r->rats, &num, &den);
1330 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1331 params->rate_num = num;
1332 params->rate_den = den;
1333 }
1334 return err;
1335 }
1336
1337 /**
1338 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1339 * @runtime: PCM runtime instance
1340 * @cond: condition bits
1341 * @var: hw_params variable to apply the ratnums constraint
1342 * @r: struct snd_ratnums constriants
1343 *
1344 * Return: Zero if successful, or a negative error code on failure.
1345 */
1346 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1347 unsigned int cond,
1348 snd_pcm_hw_param_t var,
1349 const struct snd_pcm_hw_constraint_ratnums *r)
1350 {
1351 return snd_pcm_hw_rule_add(runtime, cond, var,
1352 snd_pcm_hw_rule_ratnums, (void *)r,
1353 var, -1);
1354 }
1355 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1356
1357 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1358 struct snd_pcm_hw_rule *rule)
1359 {
1360 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1361 unsigned int num = 0, den = 0;
1362 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1363 r->nrats, r->rats, &num, &den);
1364 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1365 params->rate_num = num;
1366 params->rate_den = den;
1367 }
1368 return err;
1369 }
1370
1371 /**
1372 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1373 * @runtime: PCM runtime instance
1374 * @cond: condition bits
1375 * @var: hw_params variable to apply the ratdens constraint
1376 * @r: struct snd_ratdens constriants
1377 *
1378 * Return: Zero if successful, or a negative error code on failure.
1379 */
1380 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1381 unsigned int cond,
1382 snd_pcm_hw_param_t var,
1383 const struct snd_pcm_hw_constraint_ratdens *r)
1384 {
1385 return snd_pcm_hw_rule_add(runtime, cond, var,
1386 snd_pcm_hw_rule_ratdens, (void *)r,
1387 var, -1);
1388 }
1389 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1390
1391 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1392 struct snd_pcm_hw_rule *rule)
1393 {
1394 unsigned int l = (unsigned long) rule->private;
1395 int width = l & 0xffff;
1396 unsigned int msbits = l >> 16;
1397 const struct snd_interval *i =
1398 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1399
1400 if (!snd_interval_single(i))
1401 return 0;
1402
1403 if ((snd_interval_value(i) == width) ||
1404 (width == 0 && snd_interval_value(i) > msbits))
1405 params->msbits = min_not_zero(params->msbits, msbits);
1406
1407 return 0;
1408 }
1409
1410 /**
1411 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1412 * @runtime: PCM runtime instance
1413 * @cond: condition bits
1414 * @width: sample bits width
1415 * @msbits: msbits width
1416 *
1417 * This constraint will set the number of most significant bits (msbits) if a
1418 * sample format with the specified width has been select. If width is set to 0
1419 * the msbits will be set for any sample format with a width larger than the
1420 * specified msbits.
1421 *
1422 * Return: Zero if successful, or a negative error code on failure.
1423 */
1424 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1425 unsigned int cond,
1426 unsigned int width,
1427 unsigned int msbits)
1428 {
1429 unsigned long l = (msbits << 16) | width;
1430 return snd_pcm_hw_rule_add(runtime, cond, -1,
1431 snd_pcm_hw_rule_msbits,
1432 (void*) l,
1433 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1434 }
1435 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1436
1437 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1438 struct snd_pcm_hw_rule *rule)
1439 {
1440 unsigned long step = (unsigned long) rule->private;
1441 return snd_interval_step(hw_param_interval(params, rule->var), step);
1442 }
1443
1444 /**
1445 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1446 * @runtime: PCM runtime instance
1447 * @cond: condition bits
1448 * @var: hw_params variable to apply the step constraint
1449 * @step: step size
1450 *
1451 * Return: Zero if successful, or a negative error code on failure.
1452 */
1453 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1454 unsigned int cond,
1455 snd_pcm_hw_param_t var,
1456 unsigned long step)
1457 {
1458 return snd_pcm_hw_rule_add(runtime, cond, var,
1459 snd_pcm_hw_rule_step, (void *) step,
1460 var, -1);
1461 }
1462 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1463
1464 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1465 {
1466 static unsigned int pow2_sizes[] = {
1467 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1468 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1469 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1470 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1471 };
1472 return snd_interval_list(hw_param_interval(params, rule->var),
1473 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1474 }
1475
1476 /**
1477 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1478 * @runtime: PCM runtime instance
1479 * @cond: condition bits
1480 * @var: hw_params variable to apply the power-of-2 constraint
1481 *
1482 * Return: Zero if successful, or a negative error code on failure.
1483 */
1484 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1485 unsigned int cond,
1486 snd_pcm_hw_param_t var)
1487 {
1488 return snd_pcm_hw_rule_add(runtime, cond, var,
1489 snd_pcm_hw_rule_pow2, NULL,
1490 var, -1);
1491 }
1492 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1493
1494 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1495 struct snd_pcm_hw_rule *rule)
1496 {
1497 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1498 struct snd_interval *rate;
1499
1500 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1501 return snd_interval_list(rate, 1, &base_rate, 0);
1502 }
1503
1504 /**
1505 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1506 * @runtime: PCM runtime instance
1507 * @base_rate: the rate at which the hardware does not resample
1508 *
1509 * Return: Zero if successful, or a negative error code on failure.
1510 */
1511 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1512 unsigned int base_rate)
1513 {
1514 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1515 SNDRV_PCM_HW_PARAM_RATE,
1516 snd_pcm_hw_rule_noresample_func,
1517 (void *)(uintptr_t)base_rate,
1518 SNDRV_PCM_HW_PARAM_RATE, -1);
1519 }
1520 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1521
1522 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1523 snd_pcm_hw_param_t var)
1524 {
1525 if (hw_is_mask(var)) {
1526 snd_mask_any(hw_param_mask(params, var));
1527 params->cmask |= 1 << var;
1528 params->rmask |= 1 << var;
1529 return;
1530 }
1531 if (hw_is_interval(var)) {
1532 snd_interval_any(hw_param_interval(params, var));
1533 params->cmask |= 1 << var;
1534 params->rmask |= 1 << var;
1535 return;
1536 }
1537 snd_BUG();
1538 }
1539
1540 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1541 {
1542 unsigned int k;
1543 memset(params, 0, sizeof(*params));
1544 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1545 _snd_pcm_hw_param_any(params, k);
1546 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1547 _snd_pcm_hw_param_any(params, k);
1548 params->info = ~0U;
1549 }
1550 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1551
1552 /**
1553 * snd_pcm_hw_param_value - return @params field @var value
1554 * @params: the hw_params instance
1555 * @var: parameter to retrieve
1556 * @dir: pointer to the direction (-1,0,1) or %NULL
1557 *
1558 * Return: The value for field @var if it's fixed in configuration space
1559 * defined by @params. -%EINVAL otherwise.
1560 */
1561 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1562 snd_pcm_hw_param_t var, int *dir)
1563 {
1564 if (hw_is_mask(var)) {
1565 const struct snd_mask *mask = hw_param_mask_c(params, var);
1566 if (!snd_mask_single(mask))
1567 return -EINVAL;
1568 if (dir)
1569 *dir = 0;
1570 return snd_mask_value(mask);
1571 }
1572 if (hw_is_interval(var)) {
1573 const struct snd_interval *i = hw_param_interval_c(params, var);
1574 if (!snd_interval_single(i))
1575 return -EINVAL;
1576 if (dir)
1577 *dir = i->openmin;
1578 return snd_interval_value(i);
1579 }
1580 return -EINVAL;
1581 }
1582 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1583
1584 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1585 snd_pcm_hw_param_t var)
1586 {
1587 if (hw_is_mask(var)) {
1588 snd_mask_none(hw_param_mask(params, var));
1589 params->cmask |= 1 << var;
1590 params->rmask |= 1 << var;
1591 } else if (hw_is_interval(var)) {
1592 snd_interval_none(hw_param_interval(params, var));
1593 params->cmask |= 1 << var;
1594 params->rmask |= 1 << var;
1595 } else {
1596 snd_BUG();
1597 }
1598 }
1599 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1600
1601 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1602 snd_pcm_hw_param_t var)
1603 {
1604 int changed;
1605 if (hw_is_mask(var))
1606 changed = snd_mask_refine_first(hw_param_mask(params, var));
1607 else if (hw_is_interval(var))
1608 changed = snd_interval_refine_first(hw_param_interval(params, var));
1609 else
1610 return -EINVAL;
1611 if (changed) {
1612 params->cmask |= 1 << var;
1613 params->rmask |= 1 << var;
1614 }
1615 return changed;
1616 }
1617
1618
1619 /**
1620 * snd_pcm_hw_param_first - refine config space and return minimum value
1621 * @pcm: PCM instance
1622 * @params: the hw_params instance
1623 * @var: parameter to retrieve
1624 * @dir: pointer to the direction (-1,0,1) or %NULL
1625 *
1626 * Inside configuration space defined by @params remove from @var all
1627 * values > minimum. Reduce configuration space accordingly.
1628 *
1629 * Return: The minimum, or a negative error code on failure.
1630 */
1631 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1632 struct snd_pcm_hw_params *params,
1633 snd_pcm_hw_param_t var, int *dir)
1634 {
1635 int changed = _snd_pcm_hw_param_first(params, var);
1636 if (changed < 0)
1637 return changed;
1638 if (params->rmask) {
1639 int err = snd_pcm_hw_refine(pcm, params);
1640 if (err < 0)
1641 return err;
1642 }
1643 return snd_pcm_hw_param_value(params, var, dir);
1644 }
1645 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1646
1647 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1648 snd_pcm_hw_param_t var)
1649 {
1650 int changed;
1651 if (hw_is_mask(var))
1652 changed = snd_mask_refine_last(hw_param_mask(params, var));
1653 else if (hw_is_interval(var))
1654 changed = snd_interval_refine_last(hw_param_interval(params, var));
1655 else
1656 return -EINVAL;
1657 if (changed) {
1658 params->cmask |= 1 << var;
1659 params->rmask |= 1 << var;
1660 }
1661 return changed;
1662 }
1663
1664
1665 /**
1666 * snd_pcm_hw_param_last - refine config space and return maximum value
1667 * @pcm: PCM instance
1668 * @params: the hw_params instance
1669 * @var: parameter to retrieve
1670 * @dir: pointer to the direction (-1,0,1) or %NULL
1671 *
1672 * Inside configuration space defined by @params remove from @var all
1673 * values < maximum. Reduce configuration space accordingly.
1674 *
1675 * Return: The maximum, or a negative error code on failure.
1676 */
1677 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1678 struct snd_pcm_hw_params *params,
1679 snd_pcm_hw_param_t var, int *dir)
1680 {
1681 int changed = _snd_pcm_hw_param_last(params, var);
1682 if (changed < 0)
1683 return changed;
1684 if (params->rmask) {
1685 int err = snd_pcm_hw_refine(pcm, params);
1686 if (err < 0)
1687 return err;
1688 }
1689 return snd_pcm_hw_param_value(params, var, dir);
1690 }
1691 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1692
1693 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1694 void *arg)
1695 {
1696 struct snd_pcm_runtime *runtime = substream->runtime;
1697 unsigned long flags;
1698 snd_pcm_stream_lock_irqsave(substream, flags);
1699 if (snd_pcm_running(substream) &&
1700 snd_pcm_update_hw_ptr(substream) >= 0)
1701 runtime->status->hw_ptr %= runtime->buffer_size;
1702 else {
1703 runtime->status->hw_ptr = 0;
1704 runtime->hw_ptr_wrap = 0;
1705 }
1706 snd_pcm_stream_unlock_irqrestore(substream, flags);
1707 return 0;
1708 }
1709
1710 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1711 void *arg)
1712 {
1713 struct snd_pcm_channel_info *info = arg;
1714 struct snd_pcm_runtime *runtime = substream->runtime;
1715 int width;
1716 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1717 info->offset = -1;
1718 return 0;
1719 }
1720 width = snd_pcm_format_physical_width(runtime->format);
1721 if (width < 0)
1722 return width;
1723 info->offset = 0;
1724 switch (runtime->access) {
1725 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1726 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1727 info->first = info->channel * width;
1728 info->step = runtime->channels * width;
1729 break;
1730 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1731 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1732 {
1733 size_t size = runtime->dma_bytes / runtime->channels;
1734 info->first = info->channel * size * 8;
1735 info->step = width;
1736 break;
1737 }
1738 default:
1739 snd_BUG();
1740 break;
1741 }
1742 return 0;
1743 }
1744
1745 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1746 void *arg)
1747 {
1748 struct snd_pcm_hw_params *params = arg;
1749 snd_pcm_format_t format;
1750 int channels;
1751 ssize_t frame_size;
1752
1753 params->fifo_size = substream->runtime->hw.fifo_size;
1754 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1755 format = params_format(params);
1756 channels = params_channels(params);
1757 frame_size = snd_pcm_format_size(format, channels);
1758 if (frame_size > 0)
1759 params->fifo_size /= (unsigned)frame_size;
1760 }
1761 return 0;
1762 }
1763
1764 /**
1765 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1766 * @substream: the pcm substream instance
1767 * @cmd: ioctl command
1768 * @arg: ioctl argument
1769 *
1770 * Processes the generic ioctl commands for PCM.
1771 * Can be passed as the ioctl callback for PCM ops.
1772 *
1773 * Return: Zero if successful, or a negative error code on failure.
1774 */
1775 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1776 unsigned int cmd, void *arg)
1777 {
1778 switch (cmd) {
1779 case SNDRV_PCM_IOCTL1_RESET:
1780 return snd_pcm_lib_ioctl_reset(substream, arg);
1781 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1782 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1783 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1784 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1785 }
1786 return -ENXIO;
1787 }
1788 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1789
1790 /**
1791 * snd_pcm_period_elapsed - update the pcm status for the next period
1792 * @substream: the pcm substream instance
1793 *
1794 * This function is called from the interrupt handler when the
1795 * PCM has processed the period size. It will update the current
1796 * pointer, wake up sleepers, etc.
1797 *
1798 * Even if more than one periods have elapsed since the last call, you
1799 * have to call this only once.
1800 */
1801 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1802 {
1803 struct snd_pcm_runtime *runtime;
1804 unsigned long flags;
1805
1806 if (PCM_RUNTIME_CHECK(substream))
1807 return;
1808 runtime = substream->runtime;
1809
1810 snd_pcm_stream_lock_irqsave(substream, flags);
1811 if (!snd_pcm_running(substream) ||
1812 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1813 goto _end;
1814
1815 #ifdef CONFIG_SND_PCM_TIMER
1816 if (substream->timer_running)
1817 snd_timer_interrupt(substream->timer, 1);
1818 #endif
1819 _end:
1820 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1821 snd_pcm_stream_unlock_irqrestore(substream, flags);
1822 }
1823 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1824
1825 /*
1826 * Wait until avail_min data becomes available
1827 * Returns a negative error code if any error occurs during operation.
1828 * The available space is stored on availp. When err = 0 and avail = 0
1829 * on the capture stream, it indicates the stream is in DRAINING state.
1830 */
1831 static int wait_for_avail(struct snd_pcm_substream *substream,
1832 snd_pcm_uframes_t *availp)
1833 {
1834 struct snd_pcm_runtime *runtime = substream->runtime;
1835 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1836 wait_queue_entry_t wait;
1837 int err = 0;
1838 snd_pcm_uframes_t avail = 0;
1839 long wait_time, tout;
1840
1841 init_waitqueue_entry(&wait, current);
1842 set_current_state(TASK_INTERRUPTIBLE);
1843 add_wait_queue(&runtime->tsleep, &wait);
1844
1845 if (runtime->no_period_wakeup)
1846 wait_time = MAX_SCHEDULE_TIMEOUT;
1847 else {
1848 wait_time = 1;
1849 if (runtime->rate) {
1850 long t = runtime->period_size * 2 / runtime->rate;
1851 wait_time = max(t, wait_time);
1852 }
1853 wait_time = msecs_to_jiffies(wait_time * 1000);
1854 }
1855
1856 for (;;) {
1857 if (signal_pending(current)) {
1858 err = -ERESTARTSYS;
1859 break;
1860 }
1861
1862 /*
1863 * We need to check if space became available already
1864 * (and thus the wakeup happened already) first to close
1865 * the race of space already having become available.
1866 * This check must happen after been added to the waitqueue
1867 * and having current state be INTERRUPTIBLE.
1868 */
1869 if (is_playback)
1870 avail = snd_pcm_playback_avail(runtime);
1871 else
1872 avail = snd_pcm_capture_avail(runtime);
1873 if (avail >= runtime->twake)
1874 break;
1875 snd_pcm_stream_unlock_irq(substream);
1876
1877 tout = schedule_timeout(wait_time);
1878
1879 snd_pcm_stream_lock_irq(substream);
1880 set_current_state(TASK_INTERRUPTIBLE);
1881 switch (runtime->status->state) {
1882 case SNDRV_PCM_STATE_SUSPENDED:
1883 err = -ESTRPIPE;
1884 goto _endloop;
1885 case SNDRV_PCM_STATE_XRUN:
1886 err = -EPIPE;
1887 goto _endloop;
1888 case SNDRV_PCM_STATE_DRAINING:
1889 if (is_playback)
1890 err = -EPIPE;
1891 else
1892 avail = 0; /* indicate draining */
1893 goto _endloop;
1894 case SNDRV_PCM_STATE_OPEN:
1895 case SNDRV_PCM_STATE_SETUP:
1896 case SNDRV_PCM_STATE_DISCONNECTED:
1897 err = -EBADFD;
1898 goto _endloop;
1899 case SNDRV_PCM_STATE_PAUSED:
1900 continue;
1901 }
1902 if (!tout) {
1903 pcm_dbg(substream->pcm,
1904 "%s write error (DMA or IRQ trouble?)\n",
1905 is_playback ? "playback" : "capture");
1906 err = -EIO;
1907 break;
1908 }
1909 }
1910 _endloop:
1911 set_current_state(TASK_RUNNING);
1912 remove_wait_queue(&runtime->tsleep, &wait);
1913 *availp = avail;
1914 return err;
1915 }
1916
1917 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1918 int channel, unsigned long hwoff,
1919 void *buf, unsigned long bytes);
1920
1921 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1922 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1923
1924 /* calculate the target DMA-buffer position to be written/read */
1925 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1926 int channel, unsigned long hwoff)
1927 {
1928 return runtime->dma_area + hwoff +
1929 channel * (runtime->dma_bytes / runtime->channels);
1930 }
1931
1932 /* default copy_user ops for write; used for both interleaved and non- modes */
1933 static int default_write_copy(struct snd_pcm_substream *substream,
1934 int channel, unsigned long hwoff,
1935 void *buf, unsigned long bytes)
1936 {
1937 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1938 (void __user *)buf, bytes))
1939 return -EFAULT;
1940 return 0;
1941 }
1942
1943 /* default copy_kernel ops for write */
1944 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1945 int channel, unsigned long hwoff,
1946 void *buf, unsigned long bytes)
1947 {
1948 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1949 return 0;
1950 }
1951
1952 /* fill silence instead of copy data; called as a transfer helper
1953 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1954 * a NULL buffer is passed
1955 */
1956 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1957 unsigned long hwoff, void *buf, unsigned long bytes)
1958 {
1959 struct snd_pcm_runtime *runtime = substream->runtime;
1960
1961 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1962 return 0;
1963 if (substream->ops->fill_silence)
1964 return substream->ops->fill_silence(substream, channel,
1965 hwoff, bytes);
1966
1967 snd_pcm_format_set_silence(runtime->format,
1968 get_dma_ptr(runtime, channel, hwoff),
1969 bytes_to_samples(runtime, bytes));
1970 return 0;
1971 }
1972
1973 /* default copy_user ops for read; used for both interleaved and non- modes */
1974 static int default_read_copy(struct snd_pcm_substream *substream,
1975 int channel, unsigned long hwoff,
1976 void *buf, unsigned long bytes)
1977 {
1978 if (copy_to_user((void __user *)buf,
1979 get_dma_ptr(substream->runtime, channel, hwoff),
1980 bytes))
1981 return -EFAULT;
1982 return 0;
1983 }
1984
1985 /* default copy_kernel ops for read */
1986 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1987 int channel, unsigned long hwoff,
1988 void *buf, unsigned long bytes)
1989 {
1990 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1991 return 0;
1992 }
1993
1994 /* call transfer function with the converted pointers and sizes;
1995 * for interleaved mode, it's one shot for all samples
1996 */
1997 static int interleaved_copy(struct snd_pcm_substream *substream,
1998 snd_pcm_uframes_t hwoff, void *data,
1999 snd_pcm_uframes_t off,
2000 snd_pcm_uframes_t frames,
2001 pcm_transfer_f transfer)
2002 {
2003 struct snd_pcm_runtime *runtime = substream->runtime;
2004
2005 /* convert to bytes */
2006 hwoff = frames_to_bytes(runtime, hwoff);
2007 off = frames_to_bytes(runtime, off);
2008 frames = frames_to_bytes(runtime, frames);
2009 return transfer(substream, 0, hwoff, data + off, frames);
2010 }
2011
2012 /* call transfer function with the converted pointers and sizes for each
2013 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2014 */
2015 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2016 snd_pcm_uframes_t hwoff, void *data,
2017 snd_pcm_uframes_t off,
2018 snd_pcm_uframes_t frames,
2019 pcm_transfer_f transfer)
2020 {
2021 struct snd_pcm_runtime *runtime = substream->runtime;
2022 int channels = runtime->channels;
2023 void **bufs = data;
2024 int c, err;
2025
2026 /* convert to bytes; note that it's not frames_to_bytes() here.
2027 * in non-interleaved mode, we copy for each channel, thus
2028 * each copy is n_samples bytes x channels = whole frames.
2029 */
2030 off = samples_to_bytes(runtime, off);
2031 frames = samples_to_bytes(runtime, frames);
2032 hwoff = samples_to_bytes(runtime, hwoff);
2033 for (c = 0; c < channels; ++c, ++bufs) {
2034 if (!data || !*bufs)
2035 err = fill_silence(substream, c, hwoff, NULL, frames);
2036 else
2037 err = transfer(substream, c, hwoff, *bufs + off,
2038 frames);
2039 if (err < 0)
2040 return err;
2041 }
2042 return 0;
2043 }
2044
2045 /* fill silence on the given buffer position;
2046 * called from snd_pcm_playback_silence()
2047 */
2048 static int fill_silence_frames(struct snd_pcm_substream *substream,
2049 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2050 {
2051 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2052 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2053 return interleaved_copy(substream, off, NULL, 0, frames,
2054 fill_silence);
2055 else
2056 return noninterleaved_copy(substream, off, NULL, 0, frames,
2057 fill_silence);
2058 }
2059
2060 /* sanity-check for read/write methods */
2061 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2062 {
2063 struct snd_pcm_runtime *runtime;
2064 if (PCM_RUNTIME_CHECK(substream))
2065 return -ENXIO;
2066 runtime = substream->runtime;
2067 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2068 return -EINVAL;
2069 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2070 return -EBADFD;
2071 return 0;
2072 }
2073
2074 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2075 {
2076 switch (runtime->status->state) {
2077 case SNDRV_PCM_STATE_PREPARED:
2078 case SNDRV_PCM_STATE_RUNNING:
2079 case SNDRV_PCM_STATE_PAUSED:
2080 return 0;
2081 case SNDRV_PCM_STATE_XRUN:
2082 return -EPIPE;
2083 case SNDRV_PCM_STATE_SUSPENDED:
2084 return -ESTRPIPE;
2085 default:
2086 return -EBADFD;
2087 }
2088 }
2089
2090 /* update to the given appl_ptr and call ack callback if needed;
2091 * when an error is returned, take back to the original value
2092 */
2093 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2094 snd_pcm_uframes_t appl_ptr)
2095 {
2096 struct snd_pcm_runtime *runtime = substream->runtime;
2097 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2098 int ret;
2099
2100 if (old_appl_ptr == appl_ptr)
2101 return 0;
2102
2103 runtime->control->appl_ptr = appl_ptr;
2104 if (substream->ops->ack) {
2105 ret = substream->ops->ack(substream);
2106 if (ret < 0) {
2107 runtime->control->appl_ptr = old_appl_ptr;
2108 return ret;
2109 }
2110 }
2111
2112 trace_applptr(substream, old_appl_ptr, appl_ptr);
2113
2114 return 0;
2115 }
2116
2117 /* the common loop for read/write data */
2118 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2119 void *data, bool interleaved,
2120 snd_pcm_uframes_t size, bool in_kernel)
2121 {
2122 struct snd_pcm_runtime *runtime = substream->runtime;
2123 snd_pcm_uframes_t xfer = 0;
2124 snd_pcm_uframes_t offset = 0;
2125 snd_pcm_uframes_t avail;
2126 pcm_copy_f writer;
2127 pcm_transfer_f transfer;
2128 bool nonblock;
2129 bool is_playback;
2130 int err;
2131
2132 err = pcm_sanity_check(substream);
2133 if (err < 0)
2134 return err;
2135
2136 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2137 if (interleaved) {
2138 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2139 runtime->channels > 1)
2140 return -EINVAL;
2141 writer = interleaved_copy;
2142 } else {
2143 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2144 return -EINVAL;
2145 writer = noninterleaved_copy;
2146 }
2147
2148 if (!data) {
2149 if (is_playback)
2150 transfer = fill_silence;
2151 else
2152 return -EINVAL;
2153 } else if (in_kernel) {
2154 if (substream->ops->copy_kernel)
2155 transfer = substream->ops->copy_kernel;
2156 else
2157 transfer = is_playback ?
2158 default_write_copy_kernel : default_read_copy_kernel;
2159 } else {
2160 if (substream->ops->copy_user)
2161 transfer = (pcm_transfer_f)substream->ops->copy_user;
2162 else
2163 transfer = is_playback ?
2164 default_write_copy : default_read_copy;
2165 }
2166
2167 if (size == 0)
2168 return 0;
2169
2170 nonblock = !!(substream->f_flags & O_NONBLOCK);
2171
2172 snd_pcm_stream_lock_irq(substream);
2173 err = pcm_accessible_state(runtime);
2174 if (err < 0)
2175 goto _end_unlock;
2176
2177 if (!is_playback &&
2178 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2179 size >= runtime->start_threshold) {
2180 err = snd_pcm_start(substream);
2181 if (err < 0)
2182 goto _end_unlock;
2183 }
2184
2185 runtime->twake = runtime->control->avail_min ? : 1;
2186 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2187 snd_pcm_update_hw_ptr(substream);
2188 if (is_playback)
2189 avail = snd_pcm_playback_avail(runtime);
2190 else
2191 avail = snd_pcm_capture_avail(runtime);
2192 while (size > 0) {
2193 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2194 snd_pcm_uframes_t cont;
2195 if (!avail) {
2196 if (!is_playback &&
2197 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2198 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2199 goto _end_unlock;
2200 }
2201 if (nonblock) {
2202 err = -EAGAIN;
2203 goto _end_unlock;
2204 }
2205 runtime->twake = min_t(snd_pcm_uframes_t, size,
2206 runtime->control->avail_min ? : 1);
2207 err = wait_for_avail(substream, &avail);
2208 if (err < 0)
2209 goto _end_unlock;
2210 if (!avail)
2211 continue; /* draining */
2212 }
2213 frames = size > avail ? avail : size;
2214 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2215 appl_ofs = appl_ptr % runtime->buffer_size;
2216 cont = runtime->buffer_size - appl_ofs;
2217 if (frames > cont)
2218 frames = cont;
2219 if (snd_BUG_ON(!frames)) {
2220 runtime->twake = 0;
2221 snd_pcm_stream_unlock_irq(substream);
2222 return -EINVAL;
2223 }
2224 snd_pcm_stream_unlock_irq(substream);
2225 err = writer(substream, appl_ofs, data, offset, frames,
2226 transfer);
2227 snd_pcm_stream_lock_irq(substream);
2228 if (err < 0)
2229 goto _end_unlock;
2230 err = pcm_accessible_state(runtime);
2231 if (err < 0)
2232 goto _end_unlock;
2233 appl_ptr += frames;
2234 if (appl_ptr >= runtime->boundary)
2235 appl_ptr -= runtime->boundary;
2236 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2237 if (err < 0)
2238 goto _end_unlock;
2239
2240 offset += frames;
2241 size -= frames;
2242 xfer += frames;
2243 avail -= frames;
2244 if (is_playback &&
2245 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2246 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2247 err = snd_pcm_start(substream);
2248 if (err < 0)
2249 goto _end_unlock;
2250 }
2251 }
2252 _end_unlock:
2253 runtime->twake = 0;
2254 if (xfer > 0 && err >= 0)
2255 snd_pcm_update_state(substream, runtime);
2256 snd_pcm_stream_unlock_irq(substream);
2257 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2258 }
2259 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2260
2261 /*
2262 * standard channel mapping helpers
2263 */
2264
2265 /* default channel maps for multi-channel playbacks, up to 8 channels */
2266 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2267 { .channels = 1,
2268 .map = { SNDRV_CHMAP_MONO } },
2269 { .channels = 2,
2270 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2271 { .channels = 4,
2272 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2273 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2274 { .channels = 6,
2275 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2276 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2277 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2278 { .channels = 8,
2279 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2280 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2281 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2282 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2283 { }
2284 };
2285 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2286
2287 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2288 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2289 { .channels = 1,
2290 .map = { SNDRV_CHMAP_MONO } },
2291 { .channels = 2,
2292 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2293 { .channels = 4,
2294 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2295 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2296 { .channels = 6,
2297 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2298 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2299 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2300 { .channels = 8,
2301 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2302 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2303 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2304 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2305 { }
2306 };
2307 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2308
2309 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2310 {
2311 if (ch > info->max_channels)
2312 return false;
2313 return !info->channel_mask || (info->channel_mask & (1U << ch));
2314 }
2315
2316 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2317 struct snd_ctl_elem_info *uinfo)
2318 {
2319 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2320
2321 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2322 uinfo->count = 0;
2323 uinfo->count = info->max_channels;
2324 uinfo->value.integer.min = 0;
2325 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2326 return 0;
2327 }
2328
2329 /* get callback for channel map ctl element
2330 * stores the channel position firstly matching with the current channels
2331 */
2332 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2333 struct snd_ctl_elem_value *ucontrol)
2334 {
2335 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2336 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2337 struct snd_pcm_substream *substream;
2338 const struct snd_pcm_chmap_elem *map;
2339
2340 if (!info->chmap)
2341 return -EINVAL;
2342 substream = snd_pcm_chmap_substream(info, idx);
2343 if (!substream)
2344 return -ENODEV;
2345 memset(ucontrol->value.integer.value, 0,
2346 sizeof(ucontrol->value.integer.value));
2347 if (!substream->runtime)
2348 return 0; /* no channels set */
2349 for (map = info->chmap; map->channels; map++) {
2350 int i;
2351 if (map->channels == substream->runtime->channels &&
2352 valid_chmap_channels(info, map->channels)) {
2353 for (i = 0; i < map->channels; i++)
2354 ucontrol->value.integer.value[i] = map->map[i];
2355 return 0;
2356 }
2357 }
2358 return -EINVAL;
2359 }
2360
2361 /* tlv callback for channel map ctl element
2362 * expands the pre-defined channel maps in a form of TLV
2363 */
2364 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2365 unsigned int size, unsigned int __user *tlv)
2366 {
2367 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2368 const struct snd_pcm_chmap_elem *map;
2369 unsigned int __user *dst;
2370 int c, count = 0;
2371
2372 if (!info->chmap)
2373 return -EINVAL;
2374 if (size < 8)
2375 return -ENOMEM;
2376 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2377 return -EFAULT;
2378 size -= 8;
2379 dst = tlv + 2;
2380 for (map = info->chmap; map->channels; map++) {
2381 int chs_bytes = map->channels * 4;
2382 if (!valid_chmap_channels(info, map->channels))
2383 continue;
2384 if (size < 8)
2385 return -ENOMEM;
2386 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2387 put_user(chs_bytes, dst + 1))
2388 return -EFAULT;
2389 dst += 2;
2390 size -= 8;
2391 count += 8;
2392 if (size < chs_bytes)
2393 return -ENOMEM;
2394 size -= chs_bytes;
2395 count += chs_bytes;
2396 for (c = 0; c < map->channels; c++) {
2397 if (put_user(map->map[c], dst))
2398 return -EFAULT;
2399 dst++;
2400 }
2401 }
2402 if (put_user(count, tlv + 1))
2403 return -EFAULT;
2404 return 0;
2405 }
2406
2407 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2408 {
2409 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2410 info->pcm->streams[info->stream].chmap_kctl = NULL;
2411 kfree(info);
2412 }
2413
2414 /**
2415 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2416 * @pcm: the assigned PCM instance
2417 * @stream: stream direction
2418 * @chmap: channel map elements (for query)
2419 * @max_channels: the max number of channels for the stream
2420 * @private_value: the value passed to each kcontrol's private_value field
2421 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2422 *
2423 * Create channel-mapping control elements assigned to the given PCM stream(s).
2424 * Return: Zero if successful, or a negative error value.
2425 */
2426 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2427 const struct snd_pcm_chmap_elem *chmap,
2428 int max_channels,
2429 unsigned long private_value,
2430 struct snd_pcm_chmap **info_ret)
2431 {
2432 struct snd_pcm_chmap *info;
2433 struct snd_kcontrol_new knew = {
2434 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2435 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2436 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2437 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2438 .info = pcm_chmap_ctl_info,
2439 .get = pcm_chmap_ctl_get,
2440 .tlv.c = pcm_chmap_ctl_tlv,
2441 };
2442 int err;
2443
2444 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2445 return -EBUSY;
2446 info = kzalloc(sizeof(*info), GFP_KERNEL);
2447 if (!info)
2448 return -ENOMEM;
2449 info->pcm = pcm;
2450 info->stream = stream;
2451 info->chmap = chmap;
2452 info->max_channels = max_channels;
2453 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2454 knew.name = "Playback Channel Map";
2455 else
2456 knew.name = "Capture Channel Map";
2457 knew.device = pcm->device;
2458 knew.count = pcm->streams[stream].substream_count;
2459 knew.private_value = private_value;
2460 info->kctl = snd_ctl_new1(&knew, info);
2461 if (!info->kctl) {
2462 kfree(info);
2463 return -ENOMEM;
2464 }
2465 info->kctl->private_free = pcm_chmap_ctl_private_free;
2466 err = snd_ctl_add(pcm->card, info->kctl);
2467 if (err < 0)
2468 return err;
2469 pcm->streams[stream].chmap_kctl = info->kctl;
2470 if (info_ret)
2471 *info_ret = info;
2472 return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);