fs/vfs/security: pass last path component to LSM on inode creation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul.moore@hp.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/dcache.h>
43 #include <linux/file.h>
44 #include <linux/fdtable.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/proc_fs.h>
48 #include <linux/netfilter_ipv4.h>
49 #include <linux/netfilter_ipv6.h>
50 #include <linux/tty.h>
51 #include <net/icmp.h>
52 #include <net/ip.h> /* for local_port_range[] */
53 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
54 #include <net/net_namespace.h>
55 #include <net/netlabel.h>
56 #include <linux/uaccess.h>
57 #include <asm/ioctls.h>
58 #include <asm/atomic.h>
59 #include <linux/bitops.h>
60 #include <linux/interrupt.h>
61 #include <linux/netdevice.h> /* for network interface checks */
62 #include <linux/netlink.h>
63 #include <linux/tcp.h>
64 #include <linux/udp.h>
65 #include <linux/dccp.h>
66 #include <linux/quota.h>
67 #include <linux/un.h> /* for Unix socket types */
68 #include <net/af_unix.h> /* for Unix socket types */
69 #include <linux/parser.h>
70 #include <linux/nfs_mount.h>
71 #include <net/ipv6.h>
72 #include <linux/hugetlb.h>
73 #include <linux/personality.h>
74 #include <linux/sysctl.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81
82 #include "avc.h"
83 #include "objsec.h"
84 #include "netif.h"
85 #include "netnode.h"
86 #include "netport.h"
87 #include "xfrm.h"
88 #include "netlabel.h"
89 #include "audit.h"
90
91 #define NUM_SEL_MNT_OPTS 5
92
93 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
94 extern struct security_operations *security_ops;
95
96 /* SECMARK reference count */
97 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
98
99 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
100 int selinux_enforcing;
101
102 static int __init enforcing_setup(char *str)
103 {
104 unsigned long enforcing;
105 if (!strict_strtoul(str, 0, &enforcing))
106 selinux_enforcing = enforcing ? 1 : 0;
107 return 1;
108 }
109 __setup("enforcing=", enforcing_setup);
110 #endif
111
112 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
113 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
114
115 static int __init selinux_enabled_setup(char *str)
116 {
117 unsigned long enabled;
118 if (!strict_strtoul(str, 0, &enabled))
119 selinux_enabled = enabled ? 1 : 0;
120 return 1;
121 }
122 __setup("selinux=", selinux_enabled_setup);
123 #else
124 int selinux_enabled = 1;
125 #endif
126
127 static struct kmem_cache *sel_inode_cache;
128
129 /**
130 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
131 *
132 * Description:
133 * This function checks the SECMARK reference counter to see if any SECMARK
134 * targets are currently configured, if the reference counter is greater than
135 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
136 * enabled, false (0) if SECMARK is disabled.
137 *
138 */
139 static int selinux_secmark_enabled(void)
140 {
141 return (atomic_read(&selinux_secmark_refcount) > 0);
142 }
143
144 /*
145 * initialise the security for the init task
146 */
147 static void cred_init_security(void)
148 {
149 struct cred *cred = (struct cred *) current->real_cred;
150 struct task_security_struct *tsec;
151
152 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
153 if (!tsec)
154 panic("SELinux: Failed to initialize initial task.\n");
155
156 tsec->osid = tsec->sid = SECINITSID_KERNEL;
157 cred->security = tsec;
158 }
159
160 /*
161 * get the security ID of a set of credentials
162 */
163 static inline u32 cred_sid(const struct cred *cred)
164 {
165 const struct task_security_struct *tsec;
166
167 tsec = cred->security;
168 return tsec->sid;
169 }
170
171 /*
172 * get the objective security ID of a task
173 */
174 static inline u32 task_sid(const struct task_struct *task)
175 {
176 u32 sid;
177
178 rcu_read_lock();
179 sid = cred_sid(__task_cred(task));
180 rcu_read_unlock();
181 return sid;
182 }
183
184 /*
185 * get the subjective security ID of the current task
186 */
187 static inline u32 current_sid(void)
188 {
189 const struct task_security_struct *tsec = current_security();
190
191 return tsec->sid;
192 }
193
194 /* Allocate and free functions for each kind of security blob. */
195
196 static int inode_alloc_security(struct inode *inode)
197 {
198 struct inode_security_struct *isec;
199 u32 sid = current_sid();
200
201 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
202 if (!isec)
203 return -ENOMEM;
204
205 mutex_init(&isec->lock);
206 INIT_LIST_HEAD(&isec->list);
207 isec->inode = inode;
208 isec->sid = SECINITSID_UNLABELED;
209 isec->sclass = SECCLASS_FILE;
210 isec->task_sid = sid;
211 inode->i_security = isec;
212
213 return 0;
214 }
215
216 static void inode_free_security(struct inode *inode)
217 {
218 struct inode_security_struct *isec = inode->i_security;
219 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
220
221 spin_lock(&sbsec->isec_lock);
222 if (!list_empty(&isec->list))
223 list_del_init(&isec->list);
224 spin_unlock(&sbsec->isec_lock);
225
226 inode->i_security = NULL;
227 kmem_cache_free(sel_inode_cache, isec);
228 }
229
230 static int file_alloc_security(struct file *file)
231 {
232 struct file_security_struct *fsec;
233 u32 sid = current_sid();
234
235 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
236 if (!fsec)
237 return -ENOMEM;
238
239 fsec->sid = sid;
240 fsec->fown_sid = sid;
241 file->f_security = fsec;
242
243 return 0;
244 }
245
246 static void file_free_security(struct file *file)
247 {
248 struct file_security_struct *fsec = file->f_security;
249 file->f_security = NULL;
250 kfree(fsec);
251 }
252
253 static int superblock_alloc_security(struct super_block *sb)
254 {
255 struct superblock_security_struct *sbsec;
256
257 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
258 if (!sbsec)
259 return -ENOMEM;
260
261 mutex_init(&sbsec->lock);
262 INIT_LIST_HEAD(&sbsec->isec_head);
263 spin_lock_init(&sbsec->isec_lock);
264 sbsec->sb = sb;
265 sbsec->sid = SECINITSID_UNLABELED;
266 sbsec->def_sid = SECINITSID_FILE;
267 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
268 sb->s_security = sbsec;
269
270 return 0;
271 }
272
273 static void superblock_free_security(struct super_block *sb)
274 {
275 struct superblock_security_struct *sbsec = sb->s_security;
276 sb->s_security = NULL;
277 kfree(sbsec);
278 }
279
280 /* The security server must be initialized before
281 any labeling or access decisions can be provided. */
282 extern int ss_initialized;
283
284 /* The file system's label must be initialized prior to use. */
285
286 static const char *labeling_behaviors[6] = {
287 "uses xattr",
288 "uses transition SIDs",
289 "uses task SIDs",
290 "uses genfs_contexts",
291 "not configured for labeling",
292 "uses mountpoint labeling",
293 };
294
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296
297 static inline int inode_doinit(struct inode *inode)
298 {
299 return inode_doinit_with_dentry(inode, NULL);
300 }
301
302 enum {
303 Opt_error = -1,
304 Opt_context = 1,
305 Opt_fscontext = 2,
306 Opt_defcontext = 3,
307 Opt_rootcontext = 4,
308 Opt_labelsupport = 5,
309 };
310
311 static const match_table_t tokens = {
312 {Opt_context, CONTEXT_STR "%s"},
313 {Opt_fscontext, FSCONTEXT_STR "%s"},
314 {Opt_defcontext, DEFCONTEXT_STR "%s"},
315 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 {Opt_labelsupport, LABELSUPP_STR},
317 {Opt_error, NULL},
318 };
319
320 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
321
322 static int may_context_mount_sb_relabel(u32 sid,
323 struct superblock_security_struct *sbsec,
324 const struct cred *cred)
325 {
326 const struct task_security_struct *tsec = cred->security;
327 int rc;
328
329 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 FILESYSTEM__RELABELFROM, NULL);
331 if (rc)
332 return rc;
333
334 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 FILESYSTEM__RELABELTO, NULL);
336 return rc;
337 }
338
339 static int may_context_mount_inode_relabel(u32 sid,
340 struct superblock_security_struct *sbsec,
341 const struct cred *cred)
342 {
343 const struct task_security_struct *tsec = cred->security;
344 int rc;
345 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 FILESYSTEM__RELABELFROM, NULL);
347 if (rc)
348 return rc;
349
350 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 FILESYSTEM__ASSOCIATE, NULL);
352 return rc;
353 }
354
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357 struct superblock_security_struct *sbsec = sb->s_security;
358 struct dentry *root = sb->s_root;
359 struct inode *root_inode = root->d_inode;
360 int rc = 0;
361
362 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 /* Make sure that the xattr handler exists and that no
364 error other than -ENODATA is returned by getxattr on
365 the root directory. -ENODATA is ok, as this may be
366 the first boot of the SELinux kernel before we have
367 assigned xattr values to the filesystem. */
368 if (!root_inode->i_op->getxattr) {
369 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 "xattr support\n", sb->s_id, sb->s_type->name);
371 rc = -EOPNOTSUPP;
372 goto out;
373 }
374 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 if (rc < 0 && rc != -ENODATA) {
376 if (rc == -EOPNOTSUPP)
377 printk(KERN_WARNING "SELinux: (dev %s, type "
378 "%s) has no security xattr handler\n",
379 sb->s_id, sb->s_type->name);
380 else
381 printk(KERN_WARNING "SELinux: (dev %s, type "
382 "%s) getxattr errno %d\n", sb->s_id,
383 sb->s_type->name, -rc);
384 goto out;
385 }
386 }
387
388 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389
390 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 sb->s_id, sb->s_type->name);
393 else
394 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 sb->s_id, sb->s_type->name,
396 labeling_behaviors[sbsec->behavior-1]);
397
398 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 sbsec->behavior == SECURITY_FS_USE_NONE ||
401 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 sbsec->flags &= ~SE_SBLABELSUPP;
403
404 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 sbsec->flags |= SE_SBLABELSUPP;
407
408 /* Initialize the root inode. */
409 rc = inode_doinit_with_dentry(root_inode, root);
410
411 /* Initialize any other inodes associated with the superblock, e.g.
412 inodes created prior to initial policy load or inodes created
413 during get_sb by a pseudo filesystem that directly
414 populates itself. */
415 spin_lock(&sbsec->isec_lock);
416 next_inode:
417 if (!list_empty(&sbsec->isec_head)) {
418 struct inode_security_struct *isec =
419 list_entry(sbsec->isec_head.next,
420 struct inode_security_struct, list);
421 struct inode *inode = isec->inode;
422 spin_unlock(&sbsec->isec_lock);
423 inode = igrab(inode);
424 if (inode) {
425 if (!IS_PRIVATE(inode))
426 inode_doinit(inode);
427 iput(inode);
428 }
429 spin_lock(&sbsec->isec_lock);
430 list_del_init(&isec->list);
431 goto next_inode;
432 }
433 spin_unlock(&sbsec->isec_lock);
434 out:
435 return rc;
436 }
437
438 /*
439 * This function should allow an FS to ask what it's mount security
440 * options were so it can use those later for submounts, displaying
441 * mount options, or whatever.
442 */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444 struct security_mnt_opts *opts)
445 {
446 int rc = 0, i;
447 struct superblock_security_struct *sbsec = sb->s_security;
448 char *context = NULL;
449 u32 len;
450 char tmp;
451
452 security_init_mnt_opts(opts);
453
454 if (!(sbsec->flags & SE_SBINITIALIZED))
455 return -EINVAL;
456
457 if (!ss_initialized)
458 return -EINVAL;
459
460 tmp = sbsec->flags & SE_MNTMASK;
461 /* count the number of mount options for this sb */
462 for (i = 0; i < 8; i++) {
463 if (tmp & 0x01)
464 opts->num_mnt_opts++;
465 tmp >>= 1;
466 }
467 /* Check if the Label support flag is set */
468 if (sbsec->flags & SE_SBLABELSUPP)
469 opts->num_mnt_opts++;
470
471 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 if (!opts->mnt_opts) {
473 rc = -ENOMEM;
474 goto out_free;
475 }
476
477 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 if (!opts->mnt_opts_flags) {
479 rc = -ENOMEM;
480 goto out_free;
481 }
482
483 i = 0;
484 if (sbsec->flags & FSCONTEXT_MNT) {
485 rc = security_sid_to_context(sbsec->sid, &context, &len);
486 if (rc)
487 goto out_free;
488 opts->mnt_opts[i] = context;
489 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 }
491 if (sbsec->flags & CONTEXT_MNT) {
492 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 if (rc)
494 goto out_free;
495 opts->mnt_opts[i] = context;
496 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 }
498 if (sbsec->flags & DEFCONTEXT_MNT) {
499 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 if (rc)
501 goto out_free;
502 opts->mnt_opts[i] = context;
503 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 }
505 if (sbsec->flags & ROOTCONTEXT_MNT) {
506 struct inode *root = sbsec->sb->s_root->d_inode;
507 struct inode_security_struct *isec = root->i_security;
508
509 rc = security_sid_to_context(isec->sid, &context, &len);
510 if (rc)
511 goto out_free;
512 opts->mnt_opts[i] = context;
513 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 }
515 if (sbsec->flags & SE_SBLABELSUPP) {
516 opts->mnt_opts[i] = NULL;
517 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 }
519
520 BUG_ON(i != opts->num_mnt_opts);
521
522 return 0;
523
524 out_free:
525 security_free_mnt_opts(opts);
526 return rc;
527 }
528
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 u32 old_sid, u32 new_sid)
531 {
532 char mnt_flags = sbsec->flags & SE_MNTMASK;
533
534 /* check if the old mount command had the same options */
535 if (sbsec->flags & SE_SBINITIALIZED)
536 if (!(sbsec->flags & flag) ||
537 (old_sid != new_sid))
538 return 1;
539
540 /* check if we were passed the same options twice,
541 * aka someone passed context=a,context=b
542 */
543 if (!(sbsec->flags & SE_SBINITIALIZED))
544 if (mnt_flags & flag)
545 return 1;
546 return 0;
547 }
548
549 /*
550 * Allow filesystems with binary mount data to explicitly set mount point
551 * labeling information.
552 */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554 struct security_mnt_opts *opts)
555 {
556 const struct cred *cred = current_cred();
557 int rc = 0, i;
558 struct superblock_security_struct *sbsec = sb->s_security;
559 const char *name = sb->s_type->name;
560 struct inode *inode = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *root_isec = inode->i_security;
562 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 u32 defcontext_sid = 0;
564 char **mount_options = opts->mnt_opts;
565 int *flags = opts->mnt_opts_flags;
566 int num_opts = opts->num_mnt_opts;
567
568 mutex_lock(&sbsec->lock);
569
570 if (!ss_initialized) {
571 if (!num_opts) {
572 /* Defer initialization until selinux_complete_init,
573 after the initial policy is loaded and the security
574 server is ready to handle calls. */
575 goto out;
576 }
577 rc = -EINVAL;
578 printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 "before the security server is initialized\n");
580 goto out;
581 }
582
583 /*
584 * Binary mount data FS will come through this function twice. Once
585 * from an explicit call and once from the generic calls from the vfs.
586 * Since the generic VFS calls will not contain any security mount data
587 * we need to skip the double mount verification.
588 *
589 * This does open a hole in which we will not notice if the first
590 * mount using this sb set explict options and a second mount using
591 * this sb does not set any security options. (The first options
592 * will be used for both mounts)
593 */
594 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 && (num_opts == 0))
596 goto out;
597
598 /*
599 * parse the mount options, check if they are valid sids.
600 * also check if someone is trying to mount the same sb more
601 * than once with different security options.
602 */
603 for (i = 0; i < num_opts; i++) {
604 u32 sid;
605
606 if (flags[i] == SE_SBLABELSUPP)
607 continue;
608 rc = security_context_to_sid(mount_options[i],
609 strlen(mount_options[i]), &sid);
610 if (rc) {
611 printk(KERN_WARNING "SELinux: security_context_to_sid"
612 "(%s) failed for (dev %s, type %s) errno=%d\n",
613 mount_options[i], sb->s_id, name, rc);
614 goto out;
615 }
616 switch (flags[i]) {
617 case FSCONTEXT_MNT:
618 fscontext_sid = sid;
619
620 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 fscontext_sid))
622 goto out_double_mount;
623
624 sbsec->flags |= FSCONTEXT_MNT;
625 break;
626 case CONTEXT_MNT:
627 context_sid = sid;
628
629 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 context_sid))
631 goto out_double_mount;
632
633 sbsec->flags |= CONTEXT_MNT;
634 break;
635 case ROOTCONTEXT_MNT:
636 rootcontext_sid = sid;
637
638 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 rootcontext_sid))
640 goto out_double_mount;
641
642 sbsec->flags |= ROOTCONTEXT_MNT;
643
644 break;
645 case DEFCONTEXT_MNT:
646 defcontext_sid = sid;
647
648 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 defcontext_sid))
650 goto out_double_mount;
651
652 sbsec->flags |= DEFCONTEXT_MNT;
653
654 break;
655 default:
656 rc = -EINVAL;
657 goto out;
658 }
659 }
660
661 if (sbsec->flags & SE_SBINITIALIZED) {
662 /* previously mounted with options, but not on this attempt? */
663 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 goto out_double_mount;
665 rc = 0;
666 goto out;
667 }
668
669 if (strcmp(sb->s_type->name, "proc") == 0)
670 sbsec->flags |= SE_SBPROC;
671
672 /* Determine the labeling behavior to use for this filesystem type. */
673 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 if (rc) {
675 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 __func__, sb->s_type->name, rc);
677 goto out;
678 }
679
680 /* sets the context of the superblock for the fs being mounted. */
681 if (fscontext_sid) {
682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 if (rc)
684 goto out;
685
686 sbsec->sid = fscontext_sid;
687 }
688
689 /*
690 * Switch to using mount point labeling behavior.
691 * sets the label used on all file below the mountpoint, and will set
692 * the superblock context if not already set.
693 */
694 if (context_sid) {
695 if (!fscontext_sid) {
696 rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 cred);
698 if (rc)
699 goto out;
700 sbsec->sid = context_sid;
701 } else {
702 rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 cred);
704 if (rc)
705 goto out;
706 }
707 if (!rootcontext_sid)
708 rootcontext_sid = context_sid;
709
710 sbsec->mntpoint_sid = context_sid;
711 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 }
713
714 if (rootcontext_sid) {
715 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 cred);
717 if (rc)
718 goto out;
719
720 root_isec->sid = rootcontext_sid;
721 root_isec->initialized = 1;
722 }
723
724 if (defcontext_sid) {
725 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 rc = -EINVAL;
727 printk(KERN_WARNING "SELinux: defcontext option is "
728 "invalid for this filesystem type\n");
729 goto out;
730 }
731
732 if (defcontext_sid != sbsec->def_sid) {
733 rc = may_context_mount_inode_relabel(defcontext_sid,
734 sbsec, cred);
735 if (rc)
736 goto out;
737 }
738
739 sbsec->def_sid = defcontext_sid;
740 }
741
742 rc = sb_finish_set_opts(sb);
743 out:
744 mutex_unlock(&sbsec->lock);
745 return rc;
746 out_double_mount:
747 rc = -EINVAL;
748 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
749 "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 goto out;
751 }
752
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 struct super_block *newsb)
755 {
756 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 struct superblock_security_struct *newsbsec = newsb->s_security;
758
759 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
760 int set_context = (oldsbsec->flags & CONTEXT_MNT);
761 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
762
763 /*
764 * if the parent was able to be mounted it clearly had no special lsm
765 * mount options. thus we can safely deal with this superblock later
766 */
767 if (!ss_initialized)
768 return;
769
770 /* how can we clone if the old one wasn't set up?? */
771 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772
773 /* if fs is reusing a sb, just let its options stand... */
774 if (newsbsec->flags & SE_SBINITIALIZED)
775 return;
776
777 mutex_lock(&newsbsec->lock);
778
779 newsbsec->flags = oldsbsec->flags;
780
781 newsbsec->sid = oldsbsec->sid;
782 newsbsec->def_sid = oldsbsec->def_sid;
783 newsbsec->behavior = oldsbsec->behavior;
784
785 if (set_context) {
786 u32 sid = oldsbsec->mntpoint_sid;
787
788 if (!set_fscontext)
789 newsbsec->sid = sid;
790 if (!set_rootcontext) {
791 struct inode *newinode = newsb->s_root->d_inode;
792 struct inode_security_struct *newisec = newinode->i_security;
793 newisec->sid = sid;
794 }
795 newsbsec->mntpoint_sid = sid;
796 }
797 if (set_rootcontext) {
798 const struct inode *oldinode = oldsb->s_root->d_inode;
799 const struct inode_security_struct *oldisec = oldinode->i_security;
800 struct inode *newinode = newsb->s_root->d_inode;
801 struct inode_security_struct *newisec = newinode->i_security;
802
803 newisec->sid = oldisec->sid;
804 }
805
806 sb_finish_set_opts(newsb);
807 mutex_unlock(&newsbsec->lock);
808 }
809
810 static int selinux_parse_opts_str(char *options,
811 struct security_mnt_opts *opts)
812 {
813 char *p;
814 char *context = NULL, *defcontext = NULL;
815 char *fscontext = NULL, *rootcontext = NULL;
816 int rc, num_mnt_opts = 0;
817
818 opts->num_mnt_opts = 0;
819
820 /* Standard string-based options. */
821 while ((p = strsep(&options, "|")) != NULL) {
822 int token;
823 substring_t args[MAX_OPT_ARGS];
824
825 if (!*p)
826 continue;
827
828 token = match_token(p, tokens, args);
829
830 switch (token) {
831 case Opt_context:
832 if (context || defcontext) {
833 rc = -EINVAL;
834 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 goto out_err;
836 }
837 context = match_strdup(&args[0]);
838 if (!context) {
839 rc = -ENOMEM;
840 goto out_err;
841 }
842 break;
843
844 case Opt_fscontext:
845 if (fscontext) {
846 rc = -EINVAL;
847 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 goto out_err;
849 }
850 fscontext = match_strdup(&args[0]);
851 if (!fscontext) {
852 rc = -ENOMEM;
853 goto out_err;
854 }
855 break;
856
857 case Opt_rootcontext:
858 if (rootcontext) {
859 rc = -EINVAL;
860 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 goto out_err;
862 }
863 rootcontext = match_strdup(&args[0]);
864 if (!rootcontext) {
865 rc = -ENOMEM;
866 goto out_err;
867 }
868 break;
869
870 case Opt_defcontext:
871 if (context || defcontext) {
872 rc = -EINVAL;
873 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 goto out_err;
875 }
876 defcontext = match_strdup(&args[0]);
877 if (!defcontext) {
878 rc = -ENOMEM;
879 goto out_err;
880 }
881 break;
882 case Opt_labelsupport:
883 break;
884 default:
885 rc = -EINVAL;
886 printk(KERN_WARNING "SELinux: unknown mount option\n");
887 goto out_err;
888
889 }
890 }
891
892 rc = -ENOMEM;
893 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 if (!opts->mnt_opts)
895 goto out_err;
896
897 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 if (!opts->mnt_opts_flags) {
899 kfree(opts->mnt_opts);
900 goto out_err;
901 }
902
903 if (fscontext) {
904 opts->mnt_opts[num_mnt_opts] = fscontext;
905 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 }
907 if (context) {
908 opts->mnt_opts[num_mnt_opts] = context;
909 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 }
911 if (rootcontext) {
912 opts->mnt_opts[num_mnt_opts] = rootcontext;
913 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 }
915 if (defcontext) {
916 opts->mnt_opts[num_mnt_opts] = defcontext;
917 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 }
919
920 opts->num_mnt_opts = num_mnt_opts;
921 return 0;
922
923 out_err:
924 kfree(context);
925 kfree(defcontext);
926 kfree(fscontext);
927 kfree(rootcontext);
928 return rc;
929 }
930 /*
931 * string mount options parsing and call set the sbsec
932 */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935 int rc = 0;
936 char *options = data;
937 struct security_mnt_opts opts;
938
939 security_init_mnt_opts(&opts);
940
941 if (!data)
942 goto out;
943
944 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945
946 rc = selinux_parse_opts_str(options, &opts);
947 if (rc)
948 goto out_err;
949
950 out:
951 rc = selinux_set_mnt_opts(sb, &opts);
952
953 out_err:
954 security_free_mnt_opts(&opts);
955 return rc;
956 }
957
958 static void selinux_write_opts(struct seq_file *m,
959 struct security_mnt_opts *opts)
960 {
961 int i;
962 char *prefix;
963
964 for (i = 0; i < opts->num_mnt_opts; i++) {
965 char *has_comma;
966
967 if (opts->mnt_opts[i])
968 has_comma = strchr(opts->mnt_opts[i], ',');
969 else
970 has_comma = NULL;
971
972 switch (opts->mnt_opts_flags[i]) {
973 case CONTEXT_MNT:
974 prefix = CONTEXT_STR;
975 break;
976 case FSCONTEXT_MNT:
977 prefix = FSCONTEXT_STR;
978 break;
979 case ROOTCONTEXT_MNT:
980 prefix = ROOTCONTEXT_STR;
981 break;
982 case DEFCONTEXT_MNT:
983 prefix = DEFCONTEXT_STR;
984 break;
985 case SE_SBLABELSUPP:
986 seq_putc(m, ',');
987 seq_puts(m, LABELSUPP_STR);
988 continue;
989 default:
990 BUG();
991 };
992 /* we need a comma before each option */
993 seq_putc(m, ',');
994 seq_puts(m, prefix);
995 if (has_comma)
996 seq_putc(m, '\"');
997 seq_puts(m, opts->mnt_opts[i]);
998 if (has_comma)
999 seq_putc(m, '\"');
1000 }
1001 }
1002
1003 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1004 {
1005 struct security_mnt_opts opts;
1006 int rc;
1007
1008 rc = selinux_get_mnt_opts(sb, &opts);
1009 if (rc) {
1010 /* before policy load we may get EINVAL, don't show anything */
1011 if (rc == -EINVAL)
1012 rc = 0;
1013 return rc;
1014 }
1015
1016 selinux_write_opts(m, &opts);
1017
1018 security_free_mnt_opts(&opts);
1019
1020 return rc;
1021 }
1022
1023 static inline u16 inode_mode_to_security_class(umode_t mode)
1024 {
1025 switch (mode & S_IFMT) {
1026 case S_IFSOCK:
1027 return SECCLASS_SOCK_FILE;
1028 case S_IFLNK:
1029 return SECCLASS_LNK_FILE;
1030 case S_IFREG:
1031 return SECCLASS_FILE;
1032 case S_IFBLK:
1033 return SECCLASS_BLK_FILE;
1034 case S_IFDIR:
1035 return SECCLASS_DIR;
1036 case S_IFCHR:
1037 return SECCLASS_CHR_FILE;
1038 case S_IFIFO:
1039 return SECCLASS_FIFO_FILE;
1040
1041 }
1042
1043 return SECCLASS_FILE;
1044 }
1045
1046 static inline int default_protocol_stream(int protocol)
1047 {
1048 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1049 }
1050
1051 static inline int default_protocol_dgram(int protocol)
1052 {
1053 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1054 }
1055
1056 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1057 {
1058 switch (family) {
1059 case PF_UNIX:
1060 switch (type) {
1061 case SOCK_STREAM:
1062 case SOCK_SEQPACKET:
1063 return SECCLASS_UNIX_STREAM_SOCKET;
1064 case SOCK_DGRAM:
1065 return SECCLASS_UNIX_DGRAM_SOCKET;
1066 }
1067 break;
1068 case PF_INET:
1069 case PF_INET6:
1070 switch (type) {
1071 case SOCK_STREAM:
1072 if (default_protocol_stream(protocol))
1073 return SECCLASS_TCP_SOCKET;
1074 else
1075 return SECCLASS_RAWIP_SOCKET;
1076 case SOCK_DGRAM:
1077 if (default_protocol_dgram(protocol))
1078 return SECCLASS_UDP_SOCKET;
1079 else
1080 return SECCLASS_RAWIP_SOCKET;
1081 case SOCK_DCCP:
1082 return SECCLASS_DCCP_SOCKET;
1083 default:
1084 return SECCLASS_RAWIP_SOCKET;
1085 }
1086 break;
1087 case PF_NETLINK:
1088 switch (protocol) {
1089 case NETLINK_ROUTE:
1090 return SECCLASS_NETLINK_ROUTE_SOCKET;
1091 case NETLINK_FIREWALL:
1092 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1093 case NETLINK_INET_DIAG:
1094 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1095 case NETLINK_NFLOG:
1096 return SECCLASS_NETLINK_NFLOG_SOCKET;
1097 case NETLINK_XFRM:
1098 return SECCLASS_NETLINK_XFRM_SOCKET;
1099 case NETLINK_SELINUX:
1100 return SECCLASS_NETLINK_SELINUX_SOCKET;
1101 case NETLINK_AUDIT:
1102 return SECCLASS_NETLINK_AUDIT_SOCKET;
1103 case NETLINK_IP6_FW:
1104 return SECCLASS_NETLINK_IP6FW_SOCKET;
1105 case NETLINK_DNRTMSG:
1106 return SECCLASS_NETLINK_DNRT_SOCKET;
1107 case NETLINK_KOBJECT_UEVENT:
1108 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1109 default:
1110 return SECCLASS_NETLINK_SOCKET;
1111 }
1112 case PF_PACKET:
1113 return SECCLASS_PACKET_SOCKET;
1114 case PF_KEY:
1115 return SECCLASS_KEY_SOCKET;
1116 case PF_APPLETALK:
1117 return SECCLASS_APPLETALK_SOCKET;
1118 }
1119
1120 return SECCLASS_SOCKET;
1121 }
1122
1123 #ifdef CONFIG_PROC_FS
1124 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1125 u16 tclass,
1126 u32 *sid)
1127 {
1128 int buflen, rc;
1129 char *buffer, *path, *end;
1130
1131 buffer = (char *)__get_free_page(GFP_KERNEL);
1132 if (!buffer)
1133 return -ENOMEM;
1134
1135 buflen = PAGE_SIZE;
1136 end = buffer+buflen;
1137 *--end = '\0';
1138 buflen--;
1139 path = end-1;
1140 *path = '/';
1141 while (de && de != de->parent) {
1142 buflen -= de->namelen + 1;
1143 if (buflen < 0)
1144 break;
1145 end -= de->namelen;
1146 memcpy(end, de->name, de->namelen);
1147 *--end = '/';
1148 path = end;
1149 de = de->parent;
1150 }
1151 rc = security_genfs_sid("proc", path, tclass, sid);
1152 free_page((unsigned long)buffer);
1153 return rc;
1154 }
1155 #else
1156 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1157 u16 tclass,
1158 u32 *sid)
1159 {
1160 return -EINVAL;
1161 }
1162 #endif
1163
1164 /* The inode's security attributes must be initialized before first use. */
1165 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1166 {
1167 struct superblock_security_struct *sbsec = NULL;
1168 struct inode_security_struct *isec = inode->i_security;
1169 u32 sid;
1170 struct dentry *dentry;
1171 #define INITCONTEXTLEN 255
1172 char *context = NULL;
1173 unsigned len = 0;
1174 int rc = 0;
1175
1176 if (isec->initialized)
1177 goto out;
1178
1179 mutex_lock(&isec->lock);
1180 if (isec->initialized)
1181 goto out_unlock;
1182
1183 sbsec = inode->i_sb->s_security;
1184 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1185 /* Defer initialization until selinux_complete_init,
1186 after the initial policy is loaded and the security
1187 server is ready to handle calls. */
1188 spin_lock(&sbsec->isec_lock);
1189 if (list_empty(&isec->list))
1190 list_add(&isec->list, &sbsec->isec_head);
1191 spin_unlock(&sbsec->isec_lock);
1192 goto out_unlock;
1193 }
1194
1195 switch (sbsec->behavior) {
1196 case SECURITY_FS_USE_XATTR:
1197 if (!inode->i_op->getxattr) {
1198 isec->sid = sbsec->def_sid;
1199 break;
1200 }
1201
1202 /* Need a dentry, since the xattr API requires one.
1203 Life would be simpler if we could just pass the inode. */
1204 if (opt_dentry) {
1205 /* Called from d_instantiate or d_splice_alias. */
1206 dentry = dget(opt_dentry);
1207 } else {
1208 /* Called from selinux_complete_init, try to find a dentry. */
1209 dentry = d_find_alias(inode);
1210 }
1211 if (!dentry) {
1212 /*
1213 * this is can be hit on boot when a file is accessed
1214 * before the policy is loaded. When we load policy we
1215 * may find inodes that have no dentry on the
1216 * sbsec->isec_head list. No reason to complain as these
1217 * will get fixed up the next time we go through
1218 * inode_doinit with a dentry, before these inodes could
1219 * be used again by userspace.
1220 */
1221 goto out_unlock;
1222 }
1223
1224 len = INITCONTEXTLEN;
1225 context = kmalloc(len+1, GFP_NOFS);
1226 if (!context) {
1227 rc = -ENOMEM;
1228 dput(dentry);
1229 goto out_unlock;
1230 }
1231 context[len] = '\0';
1232 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1233 context, len);
1234 if (rc == -ERANGE) {
1235 kfree(context);
1236
1237 /* Need a larger buffer. Query for the right size. */
1238 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1239 NULL, 0);
1240 if (rc < 0) {
1241 dput(dentry);
1242 goto out_unlock;
1243 }
1244 len = rc;
1245 context = kmalloc(len+1, GFP_NOFS);
1246 if (!context) {
1247 rc = -ENOMEM;
1248 dput(dentry);
1249 goto out_unlock;
1250 }
1251 context[len] = '\0';
1252 rc = inode->i_op->getxattr(dentry,
1253 XATTR_NAME_SELINUX,
1254 context, len);
1255 }
1256 dput(dentry);
1257 if (rc < 0) {
1258 if (rc != -ENODATA) {
1259 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1260 "%d for dev=%s ino=%ld\n", __func__,
1261 -rc, inode->i_sb->s_id, inode->i_ino);
1262 kfree(context);
1263 goto out_unlock;
1264 }
1265 /* Map ENODATA to the default file SID */
1266 sid = sbsec->def_sid;
1267 rc = 0;
1268 } else {
1269 rc = security_context_to_sid_default(context, rc, &sid,
1270 sbsec->def_sid,
1271 GFP_NOFS);
1272 if (rc) {
1273 char *dev = inode->i_sb->s_id;
1274 unsigned long ino = inode->i_ino;
1275
1276 if (rc == -EINVAL) {
1277 if (printk_ratelimit())
1278 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1279 "context=%s. This indicates you may need to relabel the inode or the "
1280 "filesystem in question.\n", ino, dev, context);
1281 } else {
1282 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1283 "returned %d for dev=%s ino=%ld\n",
1284 __func__, context, -rc, dev, ino);
1285 }
1286 kfree(context);
1287 /* Leave with the unlabeled SID */
1288 rc = 0;
1289 break;
1290 }
1291 }
1292 kfree(context);
1293 isec->sid = sid;
1294 break;
1295 case SECURITY_FS_USE_TASK:
1296 isec->sid = isec->task_sid;
1297 break;
1298 case SECURITY_FS_USE_TRANS:
1299 /* Default to the fs SID. */
1300 isec->sid = sbsec->sid;
1301
1302 /* Try to obtain a transition SID. */
1303 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1304 rc = security_transition_sid(isec->task_sid,
1305 sbsec->sid,
1306 isec->sclass,
1307 &sid);
1308 if (rc)
1309 goto out_unlock;
1310 isec->sid = sid;
1311 break;
1312 case SECURITY_FS_USE_MNTPOINT:
1313 isec->sid = sbsec->mntpoint_sid;
1314 break;
1315 default:
1316 /* Default to the fs superblock SID. */
1317 isec->sid = sbsec->sid;
1318
1319 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1320 struct proc_inode *proci = PROC_I(inode);
1321 if (proci->pde) {
1322 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1323 rc = selinux_proc_get_sid(proci->pde,
1324 isec->sclass,
1325 &sid);
1326 if (rc)
1327 goto out_unlock;
1328 isec->sid = sid;
1329 }
1330 }
1331 break;
1332 }
1333
1334 isec->initialized = 1;
1335
1336 out_unlock:
1337 mutex_unlock(&isec->lock);
1338 out:
1339 if (isec->sclass == SECCLASS_FILE)
1340 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1341 return rc;
1342 }
1343
1344 /* Convert a Linux signal to an access vector. */
1345 static inline u32 signal_to_av(int sig)
1346 {
1347 u32 perm = 0;
1348
1349 switch (sig) {
1350 case SIGCHLD:
1351 /* Commonly granted from child to parent. */
1352 perm = PROCESS__SIGCHLD;
1353 break;
1354 case SIGKILL:
1355 /* Cannot be caught or ignored */
1356 perm = PROCESS__SIGKILL;
1357 break;
1358 case SIGSTOP:
1359 /* Cannot be caught or ignored */
1360 perm = PROCESS__SIGSTOP;
1361 break;
1362 default:
1363 /* All other signals. */
1364 perm = PROCESS__SIGNAL;
1365 break;
1366 }
1367
1368 return perm;
1369 }
1370
1371 /*
1372 * Check permission between a pair of credentials
1373 * fork check, ptrace check, etc.
1374 */
1375 static int cred_has_perm(const struct cred *actor,
1376 const struct cred *target,
1377 u32 perms)
1378 {
1379 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1380
1381 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1382 }
1383
1384 /*
1385 * Check permission between a pair of tasks, e.g. signal checks,
1386 * fork check, ptrace check, etc.
1387 * tsk1 is the actor and tsk2 is the target
1388 * - this uses the default subjective creds of tsk1
1389 */
1390 static int task_has_perm(const struct task_struct *tsk1,
1391 const struct task_struct *tsk2,
1392 u32 perms)
1393 {
1394 const struct task_security_struct *__tsec1, *__tsec2;
1395 u32 sid1, sid2;
1396
1397 rcu_read_lock();
1398 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1399 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1400 rcu_read_unlock();
1401 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1402 }
1403
1404 /*
1405 * Check permission between current and another task, e.g. signal checks,
1406 * fork check, ptrace check, etc.
1407 * current is the actor and tsk2 is the target
1408 * - this uses current's subjective creds
1409 */
1410 static int current_has_perm(const struct task_struct *tsk,
1411 u32 perms)
1412 {
1413 u32 sid, tsid;
1414
1415 sid = current_sid();
1416 tsid = task_sid(tsk);
1417 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1418 }
1419
1420 #if CAP_LAST_CAP > 63
1421 #error Fix SELinux to handle capabilities > 63.
1422 #endif
1423
1424 /* Check whether a task is allowed to use a capability. */
1425 static int task_has_capability(struct task_struct *tsk,
1426 const struct cred *cred,
1427 int cap, int audit)
1428 {
1429 struct common_audit_data ad;
1430 struct av_decision avd;
1431 u16 sclass;
1432 u32 sid = cred_sid(cred);
1433 u32 av = CAP_TO_MASK(cap);
1434 int rc;
1435
1436 COMMON_AUDIT_DATA_INIT(&ad, CAP);
1437 ad.tsk = tsk;
1438 ad.u.cap = cap;
1439
1440 switch (CAP_TO_INDEX(cap)) {
1441 case 0:
1442 sclass = SECCLASS_CAPABILITY;
1443 break;
1444 case 1:
1445 sclass = SECCLASS_CAPABILITY2;
1446 break;
1447 default:
1448 printk(KERN_ERR
1449 "SELinux: out of range capability %d\n", cap);
1450 BUG();
1451 }
1452
1453 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1454 if (audit == SECURITY_CAP_AUDIT)
1455 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1456 return rc;
1457 }
1458
1459 /* Check whether a task is allowed to use a system operation. */
1460 static int task_has_system(struct task_struct *tsk,
1461 u32 perms)
1462 {
1463 u32 sid = task_sid(tsk);
1464
1465 return avc_has_perm(sid, SECINITSID_KERNEL,
1466 SECCLASS_SYSTEM, perms, NULL);
1467 }
1468
1469 /* Check whether a task has a particular permission to an inode.
1470 The 'adp' parameter is optional and allows other audit
1471 data to be passed (e.g. the dentry). */
1472 static int inode_has_perm(const struct cred *cred,
1473 struct inode *inode,
1474 u32 perms,
1475 struct common_audit_data *adp)
1476 {
1477 struct inode_security_struct *isec;
1478 struct common_audit_data ad;
1479 u32 sid;
1480
1481 validate_creds(cred);
1482
1483 if (unlikely(IS_PRIVATE(inode)))
1484 return 0;
1485
1486 sid = cred_sid(cred);
1487 isec = inode->i_security;
1488
1489 if (!adp) {
1490 adp = &ad;
1491 COMMON_AUDIT_DATA_INIT(&ad, FS);
1492 ad.u.fs.inode = inode;
1493 }
1494
1495 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1496 }
1497
1498 /* Same as inode_has_perm, but pass explicit audit data containing
1499 the dentry to help the auditing code to more easily generate the
1500 pathname if needed. */
1501 static inline int dentry_has_perm(const struct cred *cred,
1502 struct vfsmount *mnt,
1503 struct dentry *dentry,
1504 u32 av)
1505 {
1506 struct inode *inode = dentry->d_inode;
1507 struct common_audit_data ad;
1508
1509 COMMON_AUDIT_DATA_INIT(&ad, FS);
1510 ad.u.fs.path.mnt = mnt;
1511 ad.u.fs.path.dentry = dentry;
1512 return inode_has_perm(cred, inode, av, &ad);
1513 }
1514
1515 /* Check whether a task can use an open file descriptor to
1516 access an inode in a given way. Check access to the
1517 descriptor itself, and then use dentry_has_perm to
1518 check a particular permission to the file.
1519 Access to the descriptor is implicitly granted if it
1520 has the same SID as the process. If av is zero, then
1521 access to the file is not checked, e.g. for cases
1522 where only the descriptor is affected like seek. */
1523 static int file_has_perm(const struct cred *cred,
1524 struct file *file,
1525 u32 av)
1526 {
1527 struct file_security_struct *fsec = file->f_security;
1528 struct inode *inode = file->f_path.dentry->d_inode;
1529 struct common_audit_data ad;
1530 u32 sid = cred_sid(cred);
1531 int rc;
1532
1533 COMMON_AUDIT_DATA_INIT(&ad, FS);
1534 ad.u.fs.path = file->f_path;
1535
1536 if (sid != fsec->sid) {
1537 rc = avc_has_perm(sid, fsec->sid,
1538 SECCLASS_FD,
1539 FD__USE,
1540 &ad);
1541 if (rc)
1542 goto out;
1543 }
1544
1545 /* av is zero if only checking access to the descriptor. */
1546 rc = 0;
1547 if (av)
1548 rc = inode_has_perm(cred, inode, av, &ad);
1549
1550 out:
1551 return rc;
1552 }
1553
1554 /* Check whether a task can create a file. */
1555 static int may_create(struct inode *dir,
1556 struct dentry *dentry,
1557 u16 tclass)
1558 {
1559 const struct task_security_struct *tsec = current_security();
1560 struct inode_security_struct *dsec;
1561 struct superblock_security_struct *sbsec;
1562 u32 sid, newsid;
1563 struct common_audit_data ad;
1564 int rc;
1565
1566 dsec = dir->i_security;
1567 sbsec = dir->i_sb->s_security;
1568
1569 sid = tsec->sid;
1570 newsid = tsec->create_sid;
1571
1572 COMMON_AUDIT_DATA_INIT(&ad, FS);
1573 ad.u.fs.path.dentry = dentry;
1574
1575 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1576 DIR__ADD_NAME | DIR__SEARCH,
1577 &ad);
1578 if (rc)
1579 return rc;
1580
1581 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1582 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1583 if (rc)
1584 return rc;
1585 }
1586
1587 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1588 if (rc)
1589 return rc;
1590
1591 return avc_has_perm(newsid, sbsec->sid,
1592 SECCLASS_FILESYSTEM,
1593 FILESYSTEM__ASSOCIATE, &ad);
1594 }
1595
1596 /* Check whether a task can create a key. */
1597 static int may_create_key(u32 ksid,
1598 struct task_struct *ctx)
1599 {
1600 u32 sid = task_sid(ctx);
1601
1602 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1603 }
1604
1605 #define MAY_LINK 0
1606 #define MAY_UNLINK 1
1607 #define MAY_RMDIR 2
1608
1609 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1610 static int may_link(struct inode *dir,
1611 struct dentry *dentry,
1612 int kind)
1613
1614 {
1615 struct inode_security_struct *dsec, *isec;
1616 struct common_audit_data ad;
1617 u32 sid = current_sid();
1618 u32 av;
1619 int rc;
1620
1621 dsec = dir->i_security;
1622 isec = dentry->d_inode->i_security;
1623
1624 COMMON_AUDIT_DATA_INIT(&ad, FS);
1625 ad.u.fs.path.dentry = dentry;
1626
1627 av = DIR__SEARCH;
1628 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1629 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1630 if (rc)
1631 return rc;
1632
1633 switch (kind) {
1634 case MAY_LINK:
1635 av = FILE__LINK;
1636 break;
1637 case MAY_UNLINK:
1638 av = FILE__UNLINK;
1639 break;
1640 case MAY_RMDIR:
1641 av = DIR__RMDIR;
1642 break;
1643 default:
1644 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1645 __func__, kind);
1646 return 0;
1647 }
1648
1649 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1650 return rc;
1651 }
1652
1653 static inline int may_rename(struct inode *old_dir,
1654 struct dentry *old_dentry,
1655 struct inode *new_dir,
1656 struct dentry *new_dentry)
1657 {
1658 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1659 struct common_audit_data ad;
1660 u32 sid = current_sid();
1661 u32 av;
1662 int old_is_dir, new_is_dir;
1663 int rc;
1664
1665 old_dsec = old_dir->i_security;
1666 old_isec = old_dentry->d_inode->i_security;
1667 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1668 new_dsec = new_dir->i_security;
1669
1670 COMMON_AUDIT_DATA_INIT(&ad, FS);
1671
1672 ad.u.fs.path.dentry = old_dentry;
1673 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1674 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1675 if (rc)
1676 return rc;
1677 rc = avc_has_perm(sid, old_isec->sid,
1678 old_isec->sclass, FILE__RENAME, &ad);
1679 if (rc)
1680 return rc;
1681 if (old_is_dir && new_dir != old_dir) {
1682 rc = avc_has_perm(sid, old_isec->sid,
1683 old_isec->sclass, DIR__REPARENT, &ad);
1684 if (rc)
1685 return rc;
1686 }
1687
1688 ad.u.fs.path.dentry = new_dentry;
1689 av = DIR__ADD_NAME | DIR__SEARCH;
1690 if (new_dentry->d_inode)
1691 av |= DIR__REMOVE_NAME;
1692 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1693 if (rc)
1694 return rc;
1695 if (new_dentry->d_inode) {
1696 new_isec = new_dentry->d_inode->i_security;
1697 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1698 rc = avc_has_perm(sid, new_isec->sid,
1699 new_isec->sclass,
1700 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1701 if (rc)
1702 return rc;
1703 }
1704
1705 return 0;
1706 }
1707
1708 /* Check whether a task can perform a filesystem operation. */
1709 static int superblock_has_perm(const struct cred *cred,
1710 struct super_block *sb,
1711 u32 perms,
1712 struct common_audit_data *ad)
1713 {
1714 struct superblock_security_struct *sbsec;
1715 u32 sid = cred_sid(cred);
1716
1717 sbsec = sb->s_security;
1718 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1719 }
1720
1721 /* Convert a Linux mode and permission mask to an access vector. */
1722 static inline u32 file_mask_to_av(int mode, int mask)
1723 {
1724 u32 av = 0;
1725
1726 if ((mode & S_IFMT) != S_IFDIR) {
1727 if (mask & MAY_EXEC)
1728 av |= FILE__EXECUTE;
1729 if (mask & MAY_READ)
1730 av |= FILE__READ;
1731
1732 if (mask & MAY_APPEND)
1733 av |= FILE__APPEND;
1734 else if (mask & MAY_WRITE)
1735 av |= FILE__WRITE;
1736
1737 } else {
1738 if (mask & MAY_EXEC)
1739 av |= DIR__SEARCH;
1740 if (mask & MAY_WRITE)
1741 av |= DIR__WRITE;
1742 if (mask & MAY_READ)
1743 av |= DIR__READ;
1744 }
1745
1746 return av;
1747 }
1748
1749 /* Convert a Linux file to an access vector. */
1750 static inline u32 file_to_av(struct file *file)
1751 {
1752 u32 av = 0;
1753
1754 if (file->f_mode & FMODE_READ)
1755 av |= FILE__READ;
1756 if (file->f_mode & FMODE_WRITE) {
1757 if (file->f_flags & O_APPEND)
1758 av |= FILE__APPEND;
1759 else
1760 av |= FILE__WRITE;
1761 }
1762 if (!av) {
1763 /*
1764 * Special file opened with flags 3 for ioctl-only use.
1765 */
1766 av = FILE__IOCTL;
1767 }
1768
1769 return av;
1770 }
1771
1772 /*
1773 * Convert a file to an access vector and include the correct open
1774 * open permission.
1775 */
1776 static inline u32 open_file_to_av(struct file *file)
1777 {
1778 u32 av = file_to_av(file);
1779
1780 if (selinux_policycap_openperm)
1781 av |= FILE__OPEN;
1782
1783 return av;
1784 }
1785
1786 /* Hook functions begin here. */
1787
1788 static int selinux_ptrace_access_check(struct task_struct *child,
1789 unsigned int mode)
1790 {
1791 int rc;
1792
1793 rc = cap_ptrace_access_check(child, mode);
1794 if (rc)
1795 return rc;
1796
1797 if (mode == PTRACE_MODE_READ) {
1798 u32 sid = current_sid();
1799 u32 csid = task_sid(child);
1800 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1801 }
1802
1803 return current_has_perm(child, PROCESS__PTRACE);
1804 }
1805
1806 static int selinux_ptrace_traceme(struct task_struct *parent)
1807 {
1808 int rc;
1809
1810 rc = cap_ptrace_traceme(parent);
1811 if (rc)
1812 return rc;
1813
1814 return task_has_perm(parent, current, PROCESS__PTRACE);
1815 }
1816
1817 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1818 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1819 {
1820 int error;
1821
1822 error = current_has_perm(target, PROCESS__GETCAP);
1823 if (error)
1824 return error;
1825
1826 return cap_capget(target, effective, inheritable, permitted);
1827 }
1828
1829 static int selinux_capset(struct cred *new, const struct cred *old,
1830 const kernel_cap_t *effective,
1831 const kernel_cap_t *inheritable,
1832 const kernel_cap_t *permitted)
1833 {
1834 int error;
1835
1836 error = cap_capset(new, old,
1837 effective, inheritable, permitted);
1838 if (error)
1839 return error;
1840
1841 return cred_has_perm(old, new, PROCESS__SETCAP);
1842 }
1843
1844 /*
1845 * (This comment used to live with the selinux_task_setuid hook,
1846 * which was removed).
1847 *
1848 * Since setuid only affects the current process, and since the SELinux
1849 * controls are not based on the Linux identity attributes, SELinux does not
1850 * need to control this operation. However, SELinux does control the use of
1851 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1852 */
1853
1854 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1855 int cap, int audit)
1856 {
1857 int rc;
1858
1859 rc = cap_capable(tsk, cred, cap, audit);
1860 if (rc)
1861 return rc;
1862
1863 return task_has_capability(tsk, cred, cap, audit);
1864 }
1865
1866 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1867 {
1868 int buflen, rc;
1869 char *buffer, *path, *end;
1870
1871 rc = -ENOMEM;
1872 buffer = (char *)__get_free_page(GFP_KERNEL);
1873 if (!buffer)
1874 goto out;
1875
1876 buflen = PAGE_SIZE;
1877 end = buffer+buflen;
1878 *--end = '\0';
1879 buflen--;
1880 path = end-1;
1881 *path = '/';
1882 while (table) {
1883 const char *name = table->procname;
1884 size_t namelen = strlen(name);
1885 buflen -= namelen + 1;
1886 if (buflen < 0)
1887 goto out_free;
1888 end -= namelen;
1889 memcpy(end, name, namelen);
1890 *--end = '/';
1891 path = end;
1892 table = table->parent;
1893 }
1894 buflen -= 4;
1895 if (buflen < 0)
1896 goto out_free;
1897 end -= 4;
1898 memcpy(end, "/sys", 4);
1899 path = end;
1900 rc = security_genfs_sid("proc", path, tclass, sid);
1901 out_free:
1902 free_page((unsigned long)buffer);
1903 out:
1904 return rc;
1905 }
1906
1907 static int selinux_sysctl(ctl_table *table, int op)
1908 {
1909 int error = 0;
1910 u32 av;
1911 u32 tsid, sid;
1912 int rc;
1913
1914 sid = current_sid();
1915
1916 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1917 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1918 if (rc) {
1919 /* Default to the well-defined sysctl SID. */
1920 tsid = SECINITSID_SYSCTL;
1921 }
1922
1923 /* The op values are "defined" in sysctl.c, thereby creating
1924 * a bad coupling between this module and sysctl.c */
1925 if (op == 001) {
1926 error = avc_has_perm(sid, tsid,
1927 SECCLASS_DIR, DIR__SEARCH, NULL);
1928 } else {
1929 av = 0;
1930 if (op & 004)
1931 av |= FILE__READ;
1932 if (op & 002)
1933 av |= FILE__WRITE;
1934 if (av)
1935 error = avc_has_perm(sid, tsid,
1936 SECCLASS_FILE, av, NULL);
1937 }
1938
1939 return error;
1940 }
1941
1942 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1943 {
1944 const struct cred *cred = current_cred();
1945 int rc = 0;
1946
1947 if (!sb)
1948 return 0;
1949
1950 switch (cmds) {
1951 case Q_SYNC:
1952 case Q_QUOTAON:
1953 case Q_QUOTAOFF:
1954 case Q_SETINFO:
1955 case Q_SETQUOTA:
1956 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1957 break;
1958 case Q_GETFMT:
1959 case Q_GETINFO:
1960 case Q_GETQUOTA:
1961 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1962 break;
1963 default:
1964 rc = 0; /* let the kernel handle invalid cmds */
1965 break;
1966 }
1967 return rc;
1968 }
1969
1970 static int selinux_quota_on(struct dentry *dentry)
1971 {
1972 const struct cred *cred = current_cred();
1973
1974 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1975 }
1976
1977 static int selinux_syslog(int type)
1978 {
1979 int rc;
1980
1981 switch (type) {
1982 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1983 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1984 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1985 break;
1986 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1987 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1988 /* Set level of messages printed to console */
1989 case SYSLOG_ACTION_CONSOLE_LEVEL:
1990 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1991 break;
1992 case SYSLOG_ACTION_CLOSE: /* Close log */
1993 case SYSLOG_ACTION_OPEN: /* Open log */
1994 case SYSLOG_ACTION_READ: /* Read from log */
1995 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1996 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1997 default:
1998 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1999 break;
2000 }
2001 return rc;
2002 }
2003
2004 /*
2005 * Check that a process has enough memory to allocate a new virtual
2006 * mapping. 0 means there is enough memory for the allocation to
2007 * succeed and -ENOMEM implies there is not.
2008 *
2009 * Do not audit the selinux permission check, as this is applied to all
2010 * processes that allocate mappings.
2011 */
2012 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2013 {
2014 int rc, cap_sys_admin = 0;
2015
2016 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2017 SECURITY_CAP_NOAUDIT);
2018 if (rc == 0)
2019 cap_sys_admin = 1;
2020
2021 return __vm_enough_memory(mm, pages, cap_sys_admin);
2022 }
2023
2024 /* binprm security operations */
2025
2026 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2027 {
2028 const struct task_security_struct *old_tsec;
2029 struct task_security_struct *new_tsec;
2030 struct inode_security_struct *isec;
2031 struct common_audit_data ad;
2032 struct inode *inode = bprm->file->f_path.dentry->d_inode;
2033 int rc;
2034
2035 rc = cap_bprm_set_creds(bprm);
2036 if (rc)
2037 return rc;
2038
2039 /* SELinux context only depends on initial program or script and not
2040 * the script interpreter */
2041 if (bprm->cred_prepared)
2042 return 0;
2043
2044 old_tsec = current_security();
2045 new_tsec = bprm->cred->security;
2046 isec = inode->i_security;
2047
2048 /* Default to the current task SID. */
2049 new_tsec->sid = old_tsec->sid;
2050 new_tsec->osid = old_tsec->sid;
2051
2052 /* Reset fs, key, and sock SIDs on execve. */
2053 new_tsec->create_sid = 0;
2054 new_tsec->keycreate_sid = 0;
2055 new_tsec->sockcreate_sid = 0;
2056
2057 if (old_tsec->exec_sid) {
2058 new_tsec->sid = old_tsec->exec_sid;
2059 /* Reset exec SID on execve. */
2060 new_tsec->exec_sid = 0;
2061 } else {
2062 /* Check for a default transition on this program. */
2063 rc = security_transition_sid(old_tsec->sid, isec->sid,
2064 SECCLASS_PROCESS, &new_tsec->sid);
2065 if (rc)
2066 return rc;
2067 }
2068
2069 COMMON_AUDIT_DATA_INIT(&ad, FS);
2070 ad.u.fs.path = bprm->file->f_path;
2071
2072 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2073 new_tsec->sid = old_tsec->sid;
2074
2075 if (new_tsec->sid == old_tsec->sid) {
2076 rc = avc_has_perm(old_tsec->sid, isec->sid,
2077 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2078 if (rc)
2079 return rc;
2080 } else {
2081 /* Check permissions for the transition. */
2082 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2083 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2084 if (rc)
2085 return rc;
2086
2087 rc = avc_has_perm(new_tsec->sid, isec->sid,
2088 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2089 if (rc)
2090 return rc;
2091
2092 /* Check for shared state */
2093 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2094 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2095 SECCLASS_PROCESS, PROCESS__SHARE,
2096 NULL);
2097 if (rc)
2098 return -EPERM;
2099 }
2100
2101 /* Make sure that anyone attempting to ptrace over a task that
2102 * changes its SID has the appropriate permit */
2103 if (bprm->unsafe &
2104 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2105 struct task_struct *tracer;
2106 struct task_security_struct *sec;
2107 u32 ptsid = 0;
2108
2109 rcu_read_lock();
2110 tracer = tracehook_tracer_task(current);
2111 if (likely(tracer != NULL)) {
2112 sec = __task_cred(tracer)->security;
2113 ptsid = sec->sid;
2114 }
2115 rcu_read_unlock();
2116
2117 if (ptsid != 0) {
2118 rc = avc_has_perm(ptsid, new_tsec->sid,
2119 SECCLASS_PROCESS,
2120 PROCESS__PTRACE, NULL);
2121 if (rc)
2122 return -EPERM;
2123 }
2124 }
2125
2126 /* Clear any possibly unsafe personality bits on exec: */
2127 bprm->per_clear |= PER_CLEAR_ON_SETID;
2128 }
2129
2130 return 0;
2131 }
2132
2133 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2134 {
2135 const struct task_security_struct *tsec = current_security();
2136 u32 sid, osid;
2137 int atsecure = 0;
2138
2139 sid = tsec->sid;
2140 osid = tsec->osid;
2141
2142 if (osid != sid) {
2143 /* Enable secure mode for SIDs transitions unless
2144 the noatsecure permission is granted between
2145 the two SIDs, i.e. ahp returns 0. */
2146 atsecure = avc_has_perm(osid, sid,
2147 SECCLASS_PROCESS,
2148 PROCESS__NOATSECURE, NULL);
2149 }
2150
2151 return (atsecure || cap_bprm_secureexec(bprm));
2152 }
2153
2154 extern struct vfsmount *selinuxfs_mount;
2155 extern struct dentry *selinux_null;
2156
2157 /* Derived from fs/exec.c:flush_old_files. */
2158 static inline void flush_unauthorized_files(const struct cred *cred,
2159 struct files_struct *files)
2160 {
2161 struct common_audit_data ad;
2162 struct file *file, *devnull = NULL;
2163 struct tty_struct *tty;
2164 struct fdtable *fdt;
2165 long j = -1;
2166 int drop_tty = 0;
2167
2168 tty = get_current_tty();
2169 if (tty) {
2170 spin_lock(&tty_files_lock);
2171 if (!list_empty(&tty->tty_files)) {
2172 struct tty_file_private *file_priv;
2173 struct inode *inode;
2174
2175 /* Revalidate access to controlling tty.
2176 Use inode_has_perm on the tty inode directly rather
2177 than using file_has_perm, as this particular open
2178 file may belong to another process and we are only
2179 interested in the inode-based check here. */
2180 file_priv = list_first_entry(&tty->tty_files,
2181 struct tty_file_private, list);
2182 file = file_priv->file;
2183 inode = file->f_path.dentry->d_inode;
2184 if (inode_has_perm(cred, inode,
2185 FILE__READ | FILE__WRITE, NULL)) {
2186 drop_tty = 1;
2187 }
2188 }
2189 spin_unlock(&tty_files_lock);
2190 tty_kref_put(tty);
2191 }
2192 /* Reset controlling tty. */
2193 if (drop_tty)
2194 no_tty();
2195
2196 /* Revalidate access to inherited open files. */
2197
2198 COMMON_AUDIT_DATA_INIT(&ad, FS);
2199
2200 spin_lock(&files->file_lock);
2201 for (;;) {
2202 unsigned long set, i;
2203 int fd;
2204
2205 j++;
2206 i = j * __NFDBITS;
2207 fdt = files_fdtable(files);
2208 if (i >= fdt->max_fds)
2209 break;
2210 set = fdt->open_fds->fds_bits[j];
2211 if (!set)
2212 continue;
2213 spin_unlock(&files->file_lock);
2214 for ( ; set ; i++, set >>= 1) {
2215 if (set & 1) {
2216 file = fget(i);
2217 if (!file)
2218 continue;
2219 if (file_has_perm(cred,
2220 file,
2221 file_to_av(file))) {
2222 sys_close(i);
2223 fd = get_unused_fd();
2224 if (fd != i) {
2225 if (fd >= 0)
2226 put_unused_fd(fd);
2227 fput(file);
2228 continue;
2229 }
2230 if (devnull) {
2231 get_file(devnull);
2232 } else {
2233 devnull = dentry_open(
2234 dget(selinux_null),
2235 mntget(selinuxfs_mount),
2236 O_RDWR, cred);
2237 if (IS_ERR(devnull)) {
2238 devnull = NULL;
2239 put_unused_fd(fd);
2240 fput(file);
2241 continue;
2242 }
2243 }
2244 fd_install(fd, devnull);
2245 }
2246 fput(file);
2247 }
2248 }
2249 spin_lock(&files->file_lock);
2250
2251 }
2252 spin_unlock(&files->file_lock);
2253 }
2254
2255 /*
2256 * Prepare a process for imminent new credential changes due to exec
2257 */
2258 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2259 {
2260 struct task_security_struct *new_tsec;
2261 struct rlimit *rlim, *initrlim;
2262 int rc, i;
2263
2264 new_tsec = bprm->cred->security;
2265 if (new_tsec->sid == new_tsec->osid)
2266 return;
2267
2268 /* Close files for which the new task SID is not authorized. */
2269 flush_unauthorized_files(bprm->cred, current->files);
2270
2271 /* Always clear parent death signal on SID transitions. */
2272 current->pdeath_signal = 0;
2273
2274 /* Check whether the new SID can inherit resource limits from the old
2275 * SID. If not, reset all soft limits to the lower of the current
2276 * task's hard limit and the init task's soft limit.
2277 *
2278 * Note that the setting of hard limits (even to lower them) can be
2279 * controlled by the setrlimit check. The inclusion of the init task's
2280 * soft limit into the computation is to avoid resetting soft limits
2281 * higher than the default soft limit for cases where the default is
2282 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2283 */
2284 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2285 PROCESS__RLIMITINH, NULL);
2286 if (rc) {
2287 /* protect against do_prlimit() */
2288 task_lock(current);
2289 for (i = 0; i < RLIM_NLIMITS; i++) {
2290 rlim = current->signal->rlim + i;
2291 initrlim = init_task.signal->rlim + i;
2292 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2293 }
2294 task_unlock(current);
2295 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2296 }
2297 }
2298
2299 /*
2300 * Clean up the process immediately after the installation of new credentials
2301 * due to exec
2302 */
2303 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2304 {
2305 const struct task_security_struct *tsec = current_security();
2306 struct itimerval itimer;
2307 u32 osid, sid;
2308 int rc, i;
2309
2310 osid = tsec->osid;
2311 sid = tsec->sid;
2312
2313 if (sid == osid)
2314 return;
2315
2316 /* Check whether the new SID can inherit signal state from the old SID.
2317 * If not, clear itimers to avoid subsequent signal generation and
2318 * flush and unblock signals.
2319 *
2320 * This must occur _after_ the task SID has been updated so that any
2321 * kill done after the flush will be checked against the new SID.
2322 */
2323 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2324 if (rc) {
2325 memset(&itimer, 0, sizeof itimer);
2326 for (i = 0; i < 3; i++)
2327 do_setitimer(i, &itimer, NULL);
2328 spin_lock_irq(&current->sighand->siglock);
2329 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2330 __flush_signals(current);
2331 flush_signal_handlers(current, 1);
2332 sigemptyset(&current->blocked);
2333 }
2334 spin_unlock_irq(&current->sighand->siglock);
2335 }
2336
2337 /* Wake up the parent if it is waiting so that it can recheck
2338 * wait permission to the new task SID. */
2339 read_lock(&tasklist_lock);
2340 __wake_up_parent(current, current->real_parent);
2341 read_unlock(&tasklist_lock);
2342 }
2343
2344 /* superblock security operations */
2345
2346 static int selinux_sb_alloc_security(struct super_block *sb)
2347 {
2348 return superblock_alloc_security(sb);
2349 }
2350
2351 static void selinux_sb_free_security(struct super_block *sb)
2352 {
2353 superblock_free_security(sb);
2354 }
2355
2356 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2357 {
2358 if (plen > olen)
2359 return 0;
2360
2361 return !memcmp(prefix, option, plen);
2362 }
2363
2364 static inline int selinux_option(char *option, int len)
2365 {
2366 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2367 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2368 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2369 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2370 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2371 }
2372
2373 static inline void take_option(char **to, char *from, int *first, int len)
2374 {
2375 if (!*first) {
2376 **to = ',';
2377 *to += 1;
2378 } else
2379 *first = 0;
2380 memcpy(*to, from, len);
2381 *to += len;
2382 }
2383
2384 static inline void take_selinux_option(char **to, char *from, int *first,
2385 int len)
2386 {
2387 int current_size = 0;
2388
2389 if (!*first) {
2390 **to = '|';
2391 *to += 1;
2392 } else
2393 *first = 0;
2394
2395 while (current_size < len) {
2396 if (*from != '"') {
2397 **to = *from;
2398 *to += 1;
2399 }
2400 from += 1;
2401 current_size += 1;
2402 }
2403 }
2404
2405 static int selinux_sb_copy_data(char *orig, char *copy)
2406 {
2407 int fnosec, fsec, rc = 0;
2408 char *in_save, *in_curr, *in_end;
2409 char *sec_curr, *nosec_save, *nosec;
2410 int open_quote = 0;
2411
2412 in_curr = orig;
2413 sec_curr = copy;
2414
2415 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2416 if (!nosec) {
2417 rc = -ENOMEM;
2418 goto out;
2419 }
2420
2421 nosec_save = nosec;
2422 fnosec = fsec = 1;
2423 in_save = in_end = orig;
2424
2425 do {
2426 if (*in_end == '"')
2427 open_quote = !open_quote;
2428 if ((*in_end == ',' && open_quote == 0) ||
2429 *in_end == '\0') {
2430 int len = in_end - in_curr;
2431
2432 if (selinux_option(in_curr, len))
2433 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2434 else
2435 take_option(&nosec, in_curr, &fnosec, len);
2436
2437 in_curr = in_end + 1;
2438 }
2439 } while (*in_end++);
2440
2441 strcpy(in_save, nosec_save);
2442 free_page((unsigned long)nosec_save);
2443 out:
2444 return rc;
2445 }
2446
2447 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2448 {
2449 const struct cred *cred = current_cred();
2450 struct common_audit_data ad;
2451 int rc;
2452
2453 rc = superblock_doinit(sb, data);
2454 if (rc)
2455 return rc;
2456
2457 /* Allow all mounts performed by the kernel */
2458 if (flags & MS_KERNMOUNT)
2459 return 0;
2460
2461 COMMON_AUDIT_DATA_INIT(&ad, FS);
2462 ad.u.fs.path.dentry = sb->s_root;
2463 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2464 }
2465
2466 static int selinux_sb_statfs(struct dentry *dentry)
2467 {
2468 const struct cred *cred = current_cred();
2469 struct common_audit_data ad;
2470
2471 COMMON_AUDIT_DATA_INIT(&ad, FS);
2472 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2473 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2474 }
2475
2476 static int selinux_mount(char *dev_name,
2477 struct path *path,
2478 char *type,
2479 unsigned long flags,
2480 void *data)
2481 {
2482 const struct cred *cred = current_cred();
2483
2484 if (flags & MS_REMOUNT)
2485 return superblock_has_perm(cred, path->mnt->mnt_sb,
2486 FILESYSTEM__REMOUNT, NULL);
2487 else
2488 return dentry_has_perm(cred, path->mnt, path->dentry,
2489 FILE__MOUNTON);
2490 }
2491
2492 static int selinux_umount(struct vfsmount *mnt, int flags)
2493 {
2494 const struct cred *cred = current_cred();
2495
2496 return superblock_has_perm(cred, mnt->mnt_sb,
2497 FILESYSTEM__UNMOUNT, NULL);
2498 }
2499
2500 /* inode security operations */
2501
2502 static int selinux_inode_alloc_security(struct inode *inode)
2503 {
2504 return inode_alloc_security(inode);
2505 }
2506
2507 static void selinux_inode_free_security(struct inode *inode)
2508 {
2509 inode_free_security(inode);
2510 }
2511
2512 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2513 const struct qstr *qstr, char **name,
2514 void **value, size_t *len)
2515 {
2516 const struct task_security_struct *tsec = current_security();
2517 struct inode_security_struct *dsec;
2518 struct superblock_security_struct *sbsec;
2519 u32 sid, newsid, clen;
2520 int rc;
2521 char *namep = NULL, *context;
2522
2523 dsec = dir->i_security;
2524 sbsec = dir->i_sb->s_security;
2525
2526 sid = tsec->sid;
2527 newsid = tsec->create_sid;
2528
2529 if ((sbsec->flags & SE_SBINITIALIZED) &&
2530 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2531 newsid = sbsec->mntpoint_sid;
2532 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2533 rc = security_transition_sid(sid, dsec->sid,
2534 inode_mode_to_security_class(inode->i_mode),
2535 &newsid);
2536 if (rc) {
2537 printk(KERN_WARNING "%s: "
2538 "security_transition_sid failed, rc=%d (dev=%s "
2539 "ino=%ld)\n",
2540 __func__,
2541 -rc, inode->i_sb->s_id, inode->i_ino);
2542 return rc;
2543 }
2544 }
2545
2546 /* Possibly defer initialization to selinux_complete_init. */
2547 if (sbsec->flags & SE_SBINITIALIZED) {
2548 struct inode_security_struct *isec = inode->i_security;
2549 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2550 isec->sid = newsid;
2551 isec->initialized = 1;
2552 }
2553
2554 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2555 return -EOPNOTSUPP;
2556
2557 if (name) {
2558 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2559 if (!namep)
2560 return -ENOMEM;
2561 *name = namep;
2562 }
2563
2564 if (value && len) {
2565 rc = security_sid_to_context_force(newsid, &context, &clen);
2566 if (rc) {
2567 kfree(namep);
2568 return rc;
2569 }
2570 *value = context;
2571 *len = clen;
2572 }
2573
2574 return 0;
2575 }
2576
2577 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2578 {
2579 return may_create(dir, dentry, SECCLASS_FILE);
2580 }
2581
2582 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2583 {
2584 return may_link(dir, old_dentry, MAY_LINK);
2585 }
2586
2587 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2588 {
2589 return may_link(dir, dentry, MAY_UNLINK);
2590 }
2591
2592 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2593 {
2594 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2595 }
2596
2597 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2598 {
2599 return may_create(dir, dentry, SECCLASS_DIR);
2600 }
2601
2602 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2603 {
2604 return may_link(dir, dentry, MAY_RMDIR);
2605 }
2606
2607 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2608 {
2609 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2610 }
2611
2612 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2613 struct inode *new_inode, struct dentry *new_dentry)
2614 {
2615 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2616 }
2617
2618 static int selinux_inode_readlink(struct dentry *dentry)
2619 {
2620 const struct cred *cred = current_cred();
2621
2622 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2623 }
2624
2625 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2626 {
2627 const struct cred *cred = current_cred();
2628
2629 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2630 }
2631
2632 static int selinux_inode_permission(struct inode *inode, int mask)
2633 {
2634 const struct cred *cred = current_cred();
2635 struct common_audit_data ad;
2636 u32 perms;
2637 bool from_access;
2638
2639 from_access = mask & MAY_ACCESS;
2640 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2641
2642 /* No permission to check. Existence test. */
2643 if (!mask)
2644 return 0;
2645
2646 COMMON_AUDIT_DATA_INIT(&ad, FS);
2647 ad.u.fs.inode = inode;
2648
2649 if (from_access)
2650 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2651
2652 perms = file_mask_to_av(inode->i_mode, mask);
2653
2654 return inode_has_perm(cred, inode, perms, &ad);
2655 }
2656
2657 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2658 {
2659 const struct cred *cred = current_cred();
2660 unsigned int ia_valid = iattr->ia_valid;
2661
2662 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2663 if (ia_valid & ATTR_FORCE) {
2664 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2665 ATTR_FORCE);
2666 if (!ia_valid)
2667 return 0;
2668 }
2669
2670 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2671 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2672 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2673
2674 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2675 }
2676
2677 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2678 {
2679 const struct cred *cred = current_cred();
2680
2681 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2682 }
2683
2684 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2685 {
2686 const struct cred *cred = current_cred();
2687
2688 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2689 sizeof XATTR_SECURITY_PREFIX - 1)) {
2690 if (!strcmp(name, XATTR_NAME_CAPS)) {
2691 if (!capable(CAP_SETFCAP))
2692 return -EPERM;
2693 } else if (!capable(CAP_SYS_ADMIN)) {
2694 /* A different attribute in the security namespace.
2695 Restrict to administrator. */
2696 return -EPERM;
2697 }
2698 }
2699
2700 /* Not an attribute we recognize, so just check the
2701 ordinary setattr permission. */
2702 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2703 }
2704
2705 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2706 const void *value, size_t size, int flags)
2707 {
2708 struct inode *inode = dentry->d_inode;
2709 struct inode_security_struct *isec = inode->i_security;
2710 struct superblock_security_struct *sbsec;
2711 struct common_audit_data ad;
2712 u32 newsid, sid = current_sid();
2713 int rc = 0;
2714
2715 if (strcmp(name, XATTR_NAME_SELINUX))
2716 return selinux_inode_setotherxattr(dentry, name);
2717
2718 sbsec = inode->i_sb->s_security;
2719 if (!(sbsec->flags & SE_SBLABELSUPP))
2720 return -EOPNOTSUPP;
2721
2722 if (!is_owner_or_cap(inode))
2723 return -EPERM;
2724
2725 COMMON_AUDIT_DATA_INIT(&ad, FS);
2726 ad.u.fs.path.dentry = dentry;
2727
2728 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2729 FILE__RELABELFROM, &ad);
2730 if (rc)
2731 return rc;
2732
2733 rc = security_context_to_sid(value, size, &newsid);
2734 if (rc == -EINVAL) {
2735 if (!capable(CAP_MAC_ADMIN))
2736 return rc;
2737 rc = security_context_to_sid_force(value, size, &newsid);
2738 }
2739 if (rc)
2740 return rc;
2741
2742 rc = avc_has_perm(sid, newsid, isec->sclass,
2743 FILE__RELABELTO, &ad);
2744 if (rc)
2745 return rc;
2746
2747 rc = security_validate_transition(isec->sid, newsid, sid,
2748 isec->sclass);
2749 if (rc)
2750 return rc;
2751
2752 return avc_has_perm(newsid,
2753 sbsec->sid,
2754 SECCLASS_FILESYSTEM,
2755 FILESYSTEM__ASSOCIATE,
2756 &ad);
2757 }
2758
2759 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2760 const void *value, size_t size,
2761 int flags)
2762 {
2763 struct inode *inode = dentry->d_inode;
2764 struct inode_security_struct *isec = inode->i_security;
2765 u32 newsid;
2766 int rc;
2767
2768 if (strcmp(name, XATTR_NAME_SELINUX)) {
2769 /* Not an attribute we recognize, so nothing to do. */
2770 return;
2771 }
2772
2773 rc = security_context_to_sid_force(value, size, &newsid);
2774 if (rc) {
2775 printk(KERN_ERR "SELinux: unable to map context to SID"
2776 "for (%s, %lu), rc=%d\n",
2777 inode->i_sb->s_id, inode->i_ino, -rc);
2778 return;
2779 }
2780
2781 isec->sid = newsid;
2782 return;
2783 }
2784
2785 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2786 {
2787 const struct cred *cred = current_cred();
2788
2789 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2790 }
2791
2792 static int selinux_inode_listxattr(struct dentry *dentry)
2793 {
2794 const struct cred *cred = current_cred();
2795
2796 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2797 }
2798
2799 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2800 {
2801 if (strcmp(name, XATTR_NAME_SELINUX))
2802 return selinux_inode_setotherxattr(dentry, name);
2803
2804 /* No one is allowed to remove a SELinux security label.
2805 You can change the label, but all data must be labeled. */
2806 return -EACCES;
2807 }
2808
2809 /*
2810 * Copy the inode security context value to the user.
2811 *
2812 * Permission check is handled by selinux_inode_getxattr hook.
2813 */
2814 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2815 {
2816 u32 size;
2817 int error;
2818 char *context = NULL;
2819 struct inode_security_struct *isec = inode->i_security;
2820
2821 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2822 return -EOPNOTSUPP;
2823
2824 /*
2825 * If the caller has CAP_MAC_ADMIN, then get the raw context
2826 * value even if it is not defined by current policy; otherwise,
2827 * use the in-core value under current policy.
2828 * Use the non-auditing forms of the permission checks since
2829 * getxattr may be called by unprivileged processes commonly
2830 * and lack of permission just means that we fall back to the
2831 * in-core context value, not a denial.
2832 */
2833 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2834 SECURITY_CAP_NOAUDIT);
2835 if (!error)
2836 error = security_sid_to_context_force(isec->sid, &context,
2837 &size);
2838 else
2839 error = security_sid_to_context(isec->sid, &context, &size);
2840 if (error)
2841 return error;
2842 error = size;
2843 if (alloc) {
2844 *buffer = context;
2845 goto out_nofree;
2846 }
2847 kfree(context);
2848 out_nofree:
2849 return error;
2850 }
2851
2852 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2853 const void *value, size_t size, int flags)
2854 {
2855 struct inode_security_struct *isec = inode->i_security;
2856 u32 newsid;
2857 int rc;
2858
2859 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2860 return -EOPNOTSUPP;
2861
2862 if (!value || !size)
2863 return -EACCES;
2864
2865 rc = security_context_to_sid((void *)value, size, &newsid);
2866 if (rc)
2867 return rc;
2868
2869 isec->sid = newsid;
2870 isec->initialized = 1;
2871 return 0;
2872 }
2873
2874 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2875 {
2876 const int len = sizeof(XATTR_NAME_SELINUX);
2877 if (buffer && len <= buffer_size)
2878 memcpy(buffer, XATTR_NAME_SELINUX, len);
2879 return len;
2880 }
2881
2882 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2883 {
2884 struct inode_security_struct *isec = inode->i_security;
2885 *secid = isec->sid;
2886 }
2887
2888 /* file security operations */
2889
2890 static int selinux_revalidate_file_permission(struct file *file, int mask)
2891 {
2892 const struct cred *cred = current_cred();
2893 struct inode *inode = file->f_path.dentry->d_inode;
2894
2895 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2896 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2897 mask |= MAY_APPEND;
2898
2899 return file_has_perm(cred, file,
2900 file_mask_to_av(inode->i_mode, mask));
2901 }
2902
2903 static int selinux_file_permission(struct file *file, int mask)
2904 {
2905 struct inode *inode = file->f_path.dentry->d_inode;
2906 struct file_security_struct *fsec = file->f_security;
2907 struct inode_security_struct *isec = inode->i_security;
2908 u32 sid = current_sid();
2909
2910 if (!mask)
2911 /* No permission to check. Existence test. */
2912 return 0;
2913
2914 if (sid == fsec->sid && fsec->isid == isec->sid &&
2915 fsec->pseqno == avc_policy_seqno())
2916 /* No change since dentry_open check. */
2917 return 0;
2918
2919 return selinux_revalidate_file_permission(file, mask);
2920 }
2921
2922 static int selinux_file_alloc_security(struct file *file)
2923 {
2924 return file_alloc_security(file);
2925 }
2926
2927 static void selinux_file_free_security(struct file *file)
2928 {
2929 file_free_security(file);
2930 }
2931
2932 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2933 unsigned long arg)
2934 {
2935 const struct cred *cred = current_cred();
2936 u32 av = 0;
2937
2938 if (_IOC_DIR(cmd) & _IOC_WRITE)
2939 av |= FILE__WRITE;
2940 if (_IOC_DIR(cmd) & _IOC_READ)
2941 av |= FILE__READ;
2942 if (!av)
2943 av = FILE__IOCTL;
2944
2945 return file_has_perm(cred, file, av);
2946 }
2947
2948 static int default_noexec;
2949
2950 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2951 {
2952 const struct cred *cred = current_cred();
2953 int rc = 0;
2954
2955 if (default_noexec &&
2956 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2957 /*
2958 * We are making executable an anonymous mapping or a
2959 * private file mapping that will also be writable.
2960 * This has an additional check.
2961 */
2962 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2963 if (rc)
2964 goto error;
2965 }
2966
2967 if (file) {
2968 /* read access is always possible with a mapping */
2969 u32 av = FILE__READ;
2970
2971 /* write access only matters if the mapping is shared */
2972 if (shared && (prot & PROT_WRITE))
2973 av |= FILE__WRITE;
2974
2975 if (prot & PROT_EXEC)
2976 av |= FILE__EXECUTE;
2977
2978 return file_has_perm(cred, file, av);
2979 }
2980
2981 error:
2982 return rc;
2983 }
2984
2985 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2986 unsigned long prot, unsigned long flags,
2987 unsigned long addr, unsigned long addr_only)
2988 {
2989 int rc = 0;
2990 u32 sid = current_sid();
2991
2992 /*
2993 * notice that we are intentionally putting the SELinux check before
2994 * the secondary cap_file_mmap check. This is such a likely attempt
2995 * at bad behaviour/exploit that we always want to get the AVC, even
2996 * if DAC would have also denied the operation.
2997 */
2998 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
2999 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3000 MEMPROTECT__MMAP_ZERO, NULL);
3001 if (rc)
3002 return rc;
3003 }
3004
3005 /* do DAC check on address space usage */
3006 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3007 if (rc || addr_only)
3008 return rc;
3009
3010 if (selinux_checkreqprot)
3011 prot = reqprot;
3012
3013 return file_map_prot_check(file, prot,
3014 (flags & MAP_TYPE) == MAP_SHARED);
3015 }
3016
3017 static int selinux_file_mprotect(struct vm_area_struct *vma,
3018 unsigned long reqprot,
3019 unsigned long prot)
3020 {
3021 const struct cred *cred = current_cred();
3022
3023 if (selinux_checkreqprot)
3024 prot = reqprot;
3025
3026 if (default_noexec &&
3027 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3028 int rc = 0;
3029 if (vma->vm_start >= vma->vm_mm->start_brk &&
3030 vma->vm_end <= vma->vm_mm->brk) {
3031 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3032 } else if (!vma->vm_file &&
3033 vma->vm_start <= vma->vm_mm->start_stack &&
3034 vma->vm_end >= vma->vm_mm->start_stack) {
3035 rc = current_has_perm(current, PROCESS__EXECSTACK);
3036 } else if (vma->vm_file && vma->anon_vma) {
3037 /*
3038 * We are making executable a file mapping that has
3039 * had some COW done. Since pages might have been
3040 * written, check ability to execute the possibly
3041 * modified content. This typically should only
3042 * occur for text relocations.
3043 */
3044 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3045 }
3046 if (rc)
3047 return rc;
3048 }
3049
3050 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3051 }
3052
3053 static int selinux_file_lock(struct file *file, unsigned int cmd)
3054 {
3055 const struct cred *cred = current_cred();
3056
3057 return file_has_perm(cred, file, FILE__LOCK);
3058 }
3059
3060 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3061 unsigned long arg)
3062 {
3063 const struct cred *cred = current_cred();
3064 int err = 0;
3065
3066 switch (cmd) {
3067 case F_SETFL:
3068 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3069 err = -EINVAL;
3070 break;
3071 }
3072
3073 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3074 err = file_has_perm(cred, file, FILE__WRITE);
3075 break;
3076 }
3077 /* fall through */
3078 case F_SETOWN:
3079 case F_SETSIG:
3080 case F_GETFL:
3081 case F_GETOWN:
3082 case F_GETSIG:
3083 /* Just check FD__USE permission */
3084 err = file_has_perm(cred, file, 0);
3085 break;
3086 case F_GETLK:
3087 case F_SETLK:
3088 case F_SETLKW:
3089 #if BITS_PER_LONG == 32
3090 case F_GETLK64:
3091 case F_SETLK64:
3092 case F_SETLKW64:
3093 #endif
3094 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3095 err = -EINVAL;
3096 break;
3097 }
3098 err = file_has_perm(cred, file, FILE__LOCK);
3099 break;
3100 }
3101
3102 return err;
3103 }
3104
3105 static int selinux_file_set_fowner(struct file *file)
3106 {
3107 struct file_security_struct *fsec;
3108
3109 fsec = file->f_security;
3110 fsec->fown_sid = current_sid();
3111
3112 return 0;
3113 }
3114
3115 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3116 struct fown_struct *fown, int signum)
3117 {
3118 struct file *file;
3119 u32 sid = task_sid(tsk);
3120 u32 perm;
3121 struct file_security_struct *fsec;
3122
3123 /* struct fown_struct is never outside the context of a struct file */
3124 file = container_of(fown, struct file, f_owner);
3125
3126 fsec = file->f_security;
3127
3128 if (!signum)
3129 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3130 else
3131 perm = signal_to_av(signum);
3132
3133 return avc_has_perm(fsec->fown_sid, sid,
3134 SECCLASS_PROCESS, perm, NULL);
3135 }
3136
3137 static int selinux_file_receive(struct file *file)
3138 {
3139 const struct cred *cred = current_cred();
3140
3141 return file_has_perm(cred, file, file_to_av(file));
3142 }
3143
3144 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3145 {
3146 struct file_security_struct *fsec;
3147 struct inode *inode;
3148 struct inode_security_struct *isec;
3149
3150 inode = file->f_path.dentry->d_inode;
3151 fsec = file->f_security;
3152 isec = inode->i_security;
3153 /*
3154 * Save inode label and policy sequence number
3155 * at open-time so that selinux_file_permission
3156 * can determine whether revalidation is necessary.
3157 * Task label is already saved in the file security
3158 * struct as its SID.
3159 */
3160 fsec->isid = isec->sid;
3161 fsec->pseqno = avc_policy_seqno();
3162 /*
3163 * Since the inode label or policy seqno may have changed
3164 * between the selinux_inode_permission check and the saving
3165 * of state above, recheck that access is still permitted.
3166 * Otherwise, access might never be revalidated against the
3167 * new inode label or new policy.
3168 * This check is not redundant - do not remove.
3169 */
3170 return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3171 }
3172
3173 /* task security operations */
3174
3175 static int selinux_task_create(unsigned long clone_flags)
3176 {
3177 return current_has_perm(current, PROCESS__FORK);
3178 }
3179
3180 /*
3181 * allocate the SELinux part of blank credentials
3182 */
3183 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3184 {
3185 struct task_security_struct *tsec;
3186
3187 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3188 if (!tsec)
3189 return -ENOMEM;
3190
3191 cred->security = tsec;
3192 return 0;
3193 }
3194
3195 /*
3196 * detach and free the LSM part of a set of credentials
3197 */
3198 static void selinux_cred_free(struct cred *cred)
3199 {
3200 struct task_security_struct *tsec = cred->security;
3201
3202 BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3203 cred->security = (void *) 0x7UL;
3204 kfree(tsec);
3205 }
3206
3207 /*
3208 * prepare a new set of credentials for modification
3209 */
3210 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3211 gfp_t gfp)
3212 {
3213 const struct task_security_struct *old_tsec;
3214 struct task_security_struct *tsec;
3215
3216 old_tsec = old->security;
3217
3218 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3219 if (!tsec)
3220 return -ENOMEM;
3221
3222 new->security = tsec;
3223 return 0;
3224 }
3225
3226 /*
3227 * transfer the SELinux data to a blank set of creds
3228 */
3229 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3230 {
3231 const struct task_security_struct *old_tsec = old->security;
3232 struct task_security_struct *tsec = new->security;
3233
3234 *tsec = *old_tsec;
3235 }
3236
3237 /*
3238 * set the security data for a kernel service
3239 * - all the creation contexts are set to unlabelled
3240 */
3241 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3242 {
3243 struct task_security_struct *tsec = new->security;
3244 u32 sid = current_sid();
3245 int ret;
3246
3247 ret = avc_has_perm(sid, secid,
3248 SECCLASS_KERNEL_SERVICE,
3249 KERNEL_SERVICE__USE_AS_OVERRIDE,
3250 NULL);
3251 if (ret == 0) {
3252 tsec->sid = secid;
3253 tsec->create_sid = 0;
3254 tsec->keycreate_sid = 0;
3255 tsec->sockcreate_sid = 0;
3256 }
3257 return ret;
3258 }
3259
3260 /*
3261 * set the file creation context in a security record to the same as the
3262 * objective context of the specified inode
3263 */
3264 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3265 {
3266 struct inode_security_struct *isec = inode->i_security;
3267 struct task_security_struct *tsec = new->security;
3268 u32 sid = current_sid();
3269 int ret;
3270
3271 ret = avc_has_perm(sid, isec->sid,
3272 SECCLASS_KERNEL_SERVICE,
3273 KERNEL_SERVICE__CREATE_FILES_AS,
3274 NULL);
3275
3276 if (ret == 0)
3277 tsec->create_sid = isec->sid;
3278 return ret;
3279 }
3280
3281 static int selinux_kernel_module_request(char *kmod_name)
3282 {
3283 u32 sid;
3284 struct common_audit_data ad;
3285
3286 sid = task_sid(current);
3287
3288 COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3289 ad.u.kmod_name = kmod_name;
3290
3291 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3292 SYSTEM__MODULE_REQUEST, &ad);
3293 }
3294
3295 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3296 {
3297 return current_has_perm(p, PROCESS__SETPGID);
3298 }
3299
3300 static int selinux_task_getpgid(struct task_struct *p)
3301 {
3302 return current_has_perm(p, PROCESS__GETPGID);
3303 }
3304
3305 static int selinux_task_getsid(struct task_struct *p)
3306 {
3307 return current_has_perm(p, PROCESS__GETSESSION);
3308 }
3309
3310 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3311 {
3312 *secid = task_sid(p);
3313 }
3314
3315 static int selinux_task_setnice(struct task_struct *p, int nice)
3316 {
3317 int rc;
3318
3319 rc = cap_task_setnice(p, nice);
3320 if (rc)
3321 return rc;
3322
3323 return current_has_perm(p, PROCESS__SETSCHED);
3324 }
3325
3326 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3327 {
3328 int rc;
3329
3330 rc = cap_task_setioprio(p, ioprio);
3331 if (rc)
3332 return rc;
3333
3334 return current_has_perm(p, PROCESS__SETSCHED);
3335 }
3336
3337 static int selinux_task_getioprio(struct task_struct *p)
3338 {
3339 return current_has_perm(p, PROCESS__GETSCHED);
3340 }
3341
3342 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3343 struct rlimit *new_rlim)
3344 {
3345 struct rlimit *old_rlim = p->signal->rlim + resource;
3346
3347 /* Control the ability to change the hard limit (whether
3348 lowering or raising it), so that the hard limit can
3349 later be used as a safe reset point for the soft limit
3350 upon context transitions. See selinux_bprm_committing_creds. */
3351 if (old_rlim->rlim_max != new_rlim->rlim_max)
3352 return current_has_perm(p, PROCESS__SETRLIMIT);
3353
3354 return 0;
3355 }
3356
3357 static int selinux_task_setscheduler(struct task_struct *p)
3358 {
3359 int rc;
3360
3361 rc = cap_task_setscheduler(p);
3362 if (rc)
3363 return rc;
3364
3365 return current_has_perm(p, PROCESS__SETSCHED);
3366 }
3367
3368 static int selinux_task_getscheduler(struct task_struct *p)
3369 {
3370 return current_has_perm(p, PROCESS__GETSCHED);
3371 }
3372
3373 static int selinux_task_movememory(struct task_struct *p)
3374 {
3375 return current_has_perm(p, PROCESS__SETSCHED);
3376 }
3377
3378 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3379 int sig, u32 secid)
3380 {
3381 u32 perm;
3382 int rc;
3383
3384 if (!sig)
3385 perm = PROCESS__SIGNULL; /* null signal; existence test */
3386 else
3387 perm = signal_to_av(sig);
3388 if (secid)
3389 rc = avc_has_perm(secid, task_sid(p),
3390 SECCLASS_PROCESS, perm, NULL);
3391 else
3392 rc = current_has_perm(p, perm);
3393 return rc;
3394 }
3395
3396 static int selinux_task_wait(struct task_struct *p)
3397 {
3398 return task_has_perm(p, current, PROCESS__SIGCHLD);
3399 }
3400
3401 static void selinux_task_to_inode(struct task_struct *p,
3402 struct inode *inode)
3403 {
3404 struct inode_security_struct *isec = inode->i_security;
3405 u32 sid = task_sid(p);
3406
3407 isec->sid = sid;
3408 isec->initialized = 1;
3409 }
3410
3411 /* Returns error only if unable to parse addresses */
3412 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3413 struct common_audit_data *ad, u8 *proto)
3414 {
3415 int offset, ihlen, ret = -EINVAL;
3416 struct iphdr _iph, *ih;
3417
3418 offset = skb_network_offset(skb);
3419 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3420 if (ih == NULL)
3421 goto out;
3422
3423 ihlen = ih->ihl * 4;
3424 if (ihlen < sizeof(_iph))
3425 goto out;
3426
3427 ad->u.net.v4info.saddr = ih->saddr;
3428 ad->u.net.v4info.daddr = ih->daddr;
3429 ret = 0;
3430
3431 if (proto)
3432 *proto = ih->protocol;
3433
3434 switch (ih->protocol) {
3435 case IPPROTO_TCP: {
3436 struct tcphdr _tcph, *th;
3437
3438 if (ntohs(ih->frag_off) & IP_OFFSET)
3439 break;
3440
3441 offset += ihlen;
3442 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3443 if (th == NULL)
3444 break;
3445
3446 ad->u.net.sport = th->source;
3447 ad->u.net.dport = th->dest;
3448 break;
3449 }
3450
3451 case IPPROTO_UDP: {
3452 struct udphdr _udph, *uh;
3453
3454 if (ntohs(ih->frag_off) & IP_OFFSET)
3455 break;
3456
3457 offset += ihlen;
3458 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3459 if (uh == NULL)
3460 break;
3461
3462 ad->u.net.sport = uh->source;
3463 ad->u.net.dport = uh->dest;
3464 break;
3465 }
3466
3467 case IPPROTO_DCCP: {
3468 struct dccp_hdr _dccph, *dh;
3469
3470 if (ntohs(ih->frag_off) & IP_OFFSET)
3471 break;
3472
3473 offset += ihlen;
3474 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3475 if (dh == NULL)
3476 break;
3477
3478 ad->u.net.sport = dh->dccph_sport;
3479 ad->u.net.dport = dh->dccph_dport;
3480 break;
3481 }
3482
3483 default:
3484 break;
3485 }
3486 out:
3487 return ret;
3488 }
3489
3490 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3491
3492 /* Returns error only if unable to parse addresses */
3493 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3494 struct common_audit_data *ad, u8 *proto)
3495 {
3496 u8 nexthdr;
3497 int ret = -EINVAL, offset;
3498 struct ipv6hdr _ipv6h, *ip6;
3499
3500 offset = skb_network_offset(skb);
3501 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3502 if (ip6 == NULL)
3503 goto out;
3504
3505 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3506 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3507 ret = 0;
3508
3509 nexthdr = ip6->nexthdr;
3510 offset += sizeof(_ipv6h);
3511 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3512 if (offset < 0)
3513 goto out;
3514
3515 if (proto)
3516 *proto = nexthdr;
3517
3518 switch (nexthdr) {
3519 case IPPROTO_TCP: {
3520 struct tcphdr _tcph, *th;
3521
3522 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3523 if (th == NULL)
3524 break;
3525
3526 ad->u.net.sport = th->source;
3527 ad->u.net.dport = th->dest;
3528 break;
3529 }
3530
3531 case IPPROTO_UDP: {
3532 struct udphdr _udph, *uh;
3533
3534 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3535 if (uh == NULL)
3536 break;
3537
3538 ad->u.net.sport = uh->source;
3539 ad->u.net.dport = uh->dest;
3540 break;
3541 }
3542
3543 case IPPROTO_DCCP: {
3544 struct dccp_hdr _dccph, *dh;
3545
3546 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3547 if (dh == NULL)
3548 break;
3549
3550 ad->u.net.sport = dh->dccph_sport;
3551 ad->u.net.dport = dh->dccph_dport;
3552 break;
3553 }
3554
3555 /* includes fragments */
3556 default:
3557 break;
3558 }
3559 out:
3560 return ret;
3561 }
3562
3563 #endif /* IPV6 */
3564
3565 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3566 char **_addrp, int src, u8 *proto)
3567 {
3568 char *addrp;
3569 int ret;
3570
3571 switch (ad->u.net.family) {
3572 case PF_INET:
3573 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3574 if (ret)
3575 goto parse_error;
3576 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3577 &ad->u.net.v4info.daddr);
3578 goto okay;
3579
3580 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3581 case PF_INET6:
3582 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3583 if (ret)
3584 goto parse_error;
3585 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3586 &ad->u.net.v6info.daddr);
3587 goto okay;
3588 #endif /* IPV6 */
3589 default:
3590 addrp = NULL;
3591 goto okay;
3592 }
3593
3594 parse_error:
3595 printk(KERN_WARNING
3596 "SELinux: failure in selinux_parse_skb(),"
3597 " unable to parse packet\n");
3598 return ret;
3599
3600 okay:
3601 if (_addrp)
3602 *_addrp = addrp;
3603 return 0;
3604 }
3605
3606 /**
3607 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3608 * @skb: the packet
3609 * @family: protocol family
3610 * @sid: the packet's peer label SID
3611 *
3612 * Description:
3613 * Check the various different forms of network peer labeling and determine
3614 * the peer label/SID for the packet; most of the magic actually occurs in
3615 * the security server function security_net_peersid_cmp(). The function
3616 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3617 * or -EACCES if @sid is invalid due to inconsistencies with the different
3618 * peer labels.
3619 *
3620 */
3621 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3622 {
3623 int err;
3624 u32 xfrm_sid;
3625 u32 nlbl_sid;
3626 u32 nlbl_type;
3627
3628 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3629 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3630
3631 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3632 if (unlikely(err)) {
3633 printk(KERN_WARNING
3634 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3635 " unable to determine packet's peer label\n");
3636 return -EACCES;
3637 }
3638
3639 return 0;
3640 }
3641
3642 /* socket security operations */
3643
3644 static u32 socket_sockcreate_sid(const struct task_security_struct *tsec)
3645 {
3646 return tsec->sockcreate_sid ? : tsec->sid;
3647 }
3648
3649 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3650 {
3651 struct sk_security_struct *sksec = sk->sk_security;
3652 struct common_audit_data ad;
3653 u32 tsid = task_sid(task);
3654
3655 if (sksec->sid == SECINITSID_KERNEL)
3656 return 0;
3657
3658 COMMON_AUDIT_DATA_INIT(&ad, NET);
3659 ad.u.net.sk = sk;
3660
3661 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3662 }
3663
3664 static int selinux_socket_create(int family, int type,
3665 int protocol, int kern)
3666 {
3667 const struct task_security_struct *tsec = current_security();
3668 u32 newsid;
3669 u16 secclass;
3670
3671 if (kern)
3672 return 0;
3673
3674 newsid = socket_sockcreate_sid(tsec);
3675 secclass = socket_type_to_security_class(family, type, protocol);
3676 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3677 }
3678
3679 static int selinux_socket_post_create(struct socket *sock, int family,
3680 int type, int protocol, int kern)
3681 {
3682 const struct task_security_struct *tsec = current_security();
3683 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3684 struct sk_security_struct *sksec;
3685 int err = 0;
3686
3687 if (kern)
3688 isec->sid = SECINITSID_KERNEL;
3689 else
3690 isec->sid = socket_sockcreate_sid(tsec);
3691
3692 isec->sclass = socket_type_to_security_class(family, type, protocol);
3693 isec->initialized = 1;
3694
3695 if (sock->sk) {
3696 sksec = sock->sk->sk_security;
3697 sksec->sid = isec->sid;
3698 sksec->sclass = isec->sclass;
3699 err = selinux_netlbl_socket_post_create(sock->sk, family);
3700 }
3701
3702 return err;
3703 }
3704
3705 /* Range of port numbers used to automatically bind.
3706 Need to determine whether we should perform a name_bind
3707 permission check between the socket and the port number. */
3708
3709 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3710 {
3711 struct sock *sk = sock->sk;
3712 u16 family;
3713 int err;
3714
3715 err = sock_has_perm(current, sk, SOCKET__BIND);
3716 if (err)
3717 goto out;
3718
3719 /*
3720 * If PF_INET or PF_INET6, check name_bind permission for the port.
3721 * Multiple address binding for SCTP is not supported yet: we just
3722 * check the first address now.
3723 */
3724 family = sk->sk_family;
3725 if (family == PF_INET || family == PF_INET6) {
3726 char *addrp;
3727 struct sk_security_struct *sksec = sk->sk_security;
3728 struct common_audit_data ad;
3729 struct sockaddr_in *addr4 = NULL;
3730 struct sockaddr_in6 *addr6 = NULL;
3731 unsigned short snum;
3732 u32 sid, node_perm;
3733
3734 if (family == PF_INET) {
3735 addr4 = (struct sockaddr_in *)address;
3736 snum = ntohs(addr4->sin_port);
3737 addrp = (char *)&addr4->sin_addr.s_addr;
3738 } else {
3739 addr6 = (struct sockaddr_in6 *)address;
3740 snum = ntohs(addr6->sin6_port);
3741 addrp = (char *)&addr6->sin6_addr.s6_addr;
3742 }
3743
3744 if (snum) {
3745 int low, high;
3746
3747 inet_get_local_port_range(&low, &high);
3748
3749 if (snum < max(PROT_SOCK, low) || snum > high) {
3750 err = sel_netport_sid(sk->sk_protocol,
3751 snum, &sid);
3752 if (err)
3753 goto out;
3754 COMMON_AUDIT_DATA_INIT(&ad, NET);
3755 ad.u.net.sport = htons(snum);
3756 ad.u.net.family = family;
3757 err = avc_has_perm(sksec->sid, sid,
3758 sksec->sclass,
3759 SOCKET__NAME_BIND, &ad);
3760 if (err)
3761 goto out;
3762 }
3763 }
3764
3765 switch (sksec->sclass) {
3766 case SECCLASS_TCP_SOCKET:
3767 node_perm = TCP_SOCKET__NODE_BIND;
3768 break;
3769
3770 case SECCLASS_UDP_SOCKET:
3771 node_perm = UDP_SOCKET__NODE_BIND;
3772 break;
3773
3774 case SECCLASS_DCCP_SOCKET:
3775 node_perm = DCCP_SOCKET__NODE_BIND;
3776 break;
3777
3778 default:
3779 node_perm = RAWIP_SOCKET__NODE_BIND;
3780 break;
3781 }
3782
3783 err = sel_netnode_sid(addrp, family, &sid);
3784 if (err)
3785 goto out;
3786
3787 COMMON_AUDIT_DATA_INIT(&ad, NET);
3788 ad.u.net.sport = htons(snum);
3789 ad.u.net.family = family;
3790
3791 if (family == PF_INET)
3792 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3793 else
3794 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3795
3796 err = avc_has_perm(sksec->sid, sid,
3797 sksec->sclass, node_perm, &ad);
3798 if (err)
3799 goto out;
3800 }
3801 out:
3802 return err;
3803 }
3804
3805 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3806 {
3807 struct sock *sk = sock->sk;
3808 struct sk_security_struct *sksec = sk->sk_security;
3809 int err;
3810
3811 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3812 if (err)
3813 return err;
3814
3815 /*
3816 * If a TCP or DCCP socket, check name_connect permission for the port.
3817 */
3818 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3819 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3820 struct common_audit_data ad;
3821 struct sockaddr_in *addr4 = NULL;
3822 struct sockaddr_in6 *addr6 = NULL;
3823 unsigned short snum;
3824 u32 sid, perm;
3825
3826 if (sk->sk_family == PF_INET) {
3827 addr4 = (struct sockaddr_in *)address;
3828 if (addrlen < sizeof(struct sockaddr_in))
3829 return -EINVAL;
3830 snum = ntohs(addr4->sin_port);
3831 } else {
3832 addr6 = (struct sockaddr_in6 *)address;
3833 if (addrlen < SIN6_LEN_RFC2133)
3834 return -EINVAL;
3835 snum = ntohs(addr6->sin6_port);
3836 }
3837
3838 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3839 if (err)
3840 goto out;
3841
3842 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3843 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3844
3845 COMMON_AUDIT_DATA_INIT(&ad, NET);
3846 ad.u.net.dport = htons(snum);
3847 ad.u.net.family = sk->sk_family;
3848 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3849 if (err)
3850 goto out;
3851 }
3852
3853 err = selinux_netlbl_socket_connect(sk, address);
3854
3855 out:
3856 return err;
3857 }
3858
3859 static int selinux_socket_listen(struct socket *sock, int backlog)
3860 {
3861 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3862 }
3863
3864 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3865 {
3866 int err;
3867 struct inode_security_struct *isec;
3868 struct inode_security_struct *newisec;
3869
3870 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3871 if (err)
3872 return err;
3873
3874 newisec = SOCK_INODE(newsock)->i_security;
3875
3876 isec = SOCK_INODE(sock)->i_security;
3877 newisec->sclass = isec->sclass;
3878 newisec->sid = isec->sid;
3879 newisec->initialized = 1;
3880
3881 return 0;
3882 }
3883
3884 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3885 int size)
3886 {
3887 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3888 }
3889
3890 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3891 int size, int flags)
3892 {
3893 return sock_has_perm(current, sock->sk, SOCKET__READ);
3894 }
3895
3896 static int selinux_socket_getsockname(struct socket *sock)
3897 {
3898 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3899 }
3900
3901 static int selinux_socket_getpeername(struct socket *sock)
3902 {
3903 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3904 }
3905
3906 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3907 {
3908 int err;
3909
3910 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3911 if (err)
3912 return err;
3913
3914 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3915 }
3916
3917 static int selinux_socket_getsockopt(struct socket *sock, int level,
3918 int optname)
3919 {
3920 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3921 }
3922
3923 static int selinux_socket_shutdown(struct socket *sock, int how)
3924 {
3925 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
3926 }
3927
3928 static int selinux_socket_unix_stream_connect(struct sock *sock,
3929 struct sock *other,
3930 struct sock *newsk)
3931 {
3932 struct sk_security_struct *sksec_sock = sock->sk_security;
3933 struct sk_security_struct *sksec_other = other->sk_security;
3934 struct sk_security_struct *sksec_new = newsk->sk_security;
3935 struct common_audit_data ad;
3936 int err;
3937
3938 COMMON_AUDIT_DATA_INIT(&ad, NET);
3939 ad.u.net.sk = other;
3940
3941 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
3942 sksec_other->sclass,
3943 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3944 if (err)
3945 return err;
3946
3947 /* server child socket */
3948 sksec_new->peer_sid = sksec_sock->sid;
3949 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
3950 &sksec_new->sid);
3951 if (err)
3952 return err;
3953
3954 /* connecting socket */
3955 sksec_sock->peer_sid = sksec_new->sid;
3956
3957 return 0;
3958 }
3959
3960 static int selinux_socket_unix_may_send(struct socket *sock,
3961 struct socket *other)
3962 {
3963 struct sk_security_struct *ssec = sock->sk->sk_security;
3964 struct sk_security_struct *osec = other->sk->sk_security;
3965 struct common_audit_data ad;
3966
3967 COMMON_AUDIT_DATA_INIT(&ad, NET);
3968 ad.u.net.sk = other->sk;
3969
3970 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
3971 &ad);
3972 }
3973
3974 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3975 u32 peer_sid,
3976 struct common_audit_data *ad)
3977 {
3978 int err;
3979 u32 if_sid;
3980 u32 node_sid;
3981
3982 err = sel_netif_sid(ifindex, &if_sid);
3983 if (err)
3984 return err;
3985 err = avc_has_perm(peer_sid, if_sid,
3986 SECCLASS_NETIF, NETIF__INGRESS, ad);
3987 if (err)
3988 return err;
3989
3990 err = sel_netnode_sid(addrp, family, &node_sid);
3991 if (err)
3992 return err;
3993 return avc_has_perm(peer_sid, node_sid,
3994 SECCLASS_NODE, NODE__RECVFROM, ad);
3995 }
3996
3997 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3998 u16 family)
3999 {
4000 int err = 0;
4001 struct sk_security_struct *sksec = sk->sk_security;
4002 u32 peer_sid;
4003 u32 sk_sid = sksec->sid;
4004 struct common_audit_data ad;
4005 char *addrp;
4006
4007 COMMON_AUDIT_DATA_INIT(&ad, NET);
4008 ad.u.net.netif = skb->skb_iif;
4009 ad.u.net.family = family;
4010 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4011 if (err)
4012 return err;
4013
4014 if (selinux_secmark_enabled()) {
4015 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4016 PACKET__RECV, &ad);
4017 if (err)
4018 return err;
4019 }
4020
4021 if (selinux_policycap_netpeer) {
4022 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4023 if (err)
4024 return err;
4025 err = avc_has_perm(sk_sid, peer_sid,
4026 SECCLASS_PEER, PEER__RECV, &ad);
4027 if (err)
4028 selinux_netlbl_err(skb, err, 0);
4029 } else {
4030 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4031 if (err)
4032 return err;
4033 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4034 }
4035
4036 return err;
4037 }
4038
4039 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4040 {
4041 int err;
4042 struct sk_security_struct *sksec = sk->sk_security;
4043 u16 family = sk->sk_family;
4044 u32 sk_sid = sksec->sid;
4045 struct common_audit_data ad;
4046 char *addrp;
4047 u8 secmark_active;
4048 u8 peerlbl_active;
4049
4050 if (family != PF_INET && family != PF_INET6)
4051 return 0;
4052
4053 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4054 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4055 family = PF_INET;
4056
4057 /* If any sort of compatibility mode is enabled then handoff processing
4058 * to the selinux_sock_rcv_skb_compat() function to deal with the
4059 * special handling. We do this in an attempt to keep this function
4060 * as fast and as clean as possible. */
4061 if (!selinux_policycap_netpeer)
4062 return selinux_sock_rcv_skb_compat(sk, skb, family);
4063
4064 secmark_active = selinux_secmark_enabled();
4065 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4066 if (!secmark_active && !peerlbl_active)
4067 return 0;
4068
4069 COMMON_AUDIT_DATA_INIT(&ad, NET);
4070 ad.u.net.netif = skb->skb_iif;
4071 ad.u.net.family = family;
4072 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4073 if (err)
4074 return err;
4075
4076 if (peerlbl_active) {
4077 u32 peer_sid;
4078
4079 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4080 if (err)
4081 return err;
4082 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4083 peer_sid, &ad);
4084 if (err) {
4085 selinux_netlbl_err(skb, err, 0);
4086 return err;
4087 }
4088 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4089 PEER__RECV, &ad);
4090 if (err)
4091 selinux_netlbl_err(skb, err, 0);
4092 }
4093
4094 if (secmark_active) {
4095 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4096 PACKET__RECV, &ad);
4097 if (err)
4098 return err;
4099 }
4100
4101 return err;
4102 }
4103
4104 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4105 int __user *optlen, unsigned len)
4106 {
4107 int err = 0;
4108 char *scontext;
4109 u32 scontext_len;
4110 struct sk_security_struct *sksec = sock->sk->sk_security;
4111 u32 peer_sid = SECSID_NULL;
4112
4113 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4114 sksec->sclass == SECCLASS_TCP_SOCKET)
4115 peer_sid = sksec->peer_sid;
4116 if (peer_sid == SECSID_NULL)
4117 return -ENOPROTOOPT;
4118
4119 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4120 if (err)
4121 return err;
4122
4123 if (scontext_len > len) {
4124 err = -ERANGE;
4125 goto out_len;
4126 }
4127
4128 if (copy_to_user(optval, scontext, scontext_len))
4129 err = -EFAULT;
4130
4131 out_len:
4132 if (put_user(scontext_len, optlen))
4133 err = -EFAULT;
4134 kfree(scontext);
4135 return err;
4136 }
4137
4138 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4139 {
4140 u32 peer_secid = SECSID_NULL;
4141 u16 family;
4142
4143 if (skb && skb->protocol == htons(ETH_P_IP))
4144 family = PF_INET;
4145 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4146 family = PF_INET6;
4147 else if (sock)
4148 family = sock->sk->sk_family;
4149 else
4150 goto out;
4151
4152 if (sock && family == PF_UNIX)
4153 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4154 else if (skb)
4155 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4156
4157 out:
4158 *secid = peer_secid;
4159 if (peer_secid == SECSID_NULL)
4160 return -EINVAL;
4161 return 0;
4162 }
4163
4164 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4165 {
4166 struct sk_security_struct *sksec;
4167
4168 sksec = kzalloc(sizeof(*sksec), priority);
4169 if (!sksec)
4170 return -ENOMEM;
4171
4172 sksec->peer_sid = SECINITSID_UNLABELED;
4173 sksec->sid = SECINITSID_UNLABELED;
4174 selinux_netlbl_sk_security_reset(sksec);
4175 sk->sk_security = sksec;
4176
4177 return 0;
4178 }
4179
4180 static void selinux_sk_free_security(struct sock *sk)
4181 {
4182 struct sk_security_struct *sksec = sk->sk_security;
4183
4184 sk->sk_security = NULL;
4185 selinux_netlbl_sk_security_free(sksec);
4186 kfree(sksec);
4187 }
4188
4189 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4190 {
4191 struct sk_security_struct *sksec = sk->sk_security;
4192 struct sk_security_struct *newsksec = newsk->sk_security;
4193
4194 newsksec->sid = sksec->sid;
4195 newsksec->peer_sid = sksec->peer_sid;
4196 newsksec->sclass = sksec->sclass;
4197
4198 selinux_netlbl_sk_security_reset(newsksec);
4199 }
4200
4201 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4202 {
4203 if (!sk)
4204 *secid = SECINITSID_ANY_SOCKET;
4205 else {
4206 struct sk_security_struct *sksec = sk->sk_security;
4207
4208 *secid = sksec->sid;
4209 }
4210 }
4211
4212 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4213 {
4214 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4215 struct sk_security_struct *sksec = sk->sk_security;
4216
4217 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4218 sk->sk_family == PF_UNIX)
4219 isec->sid = sksec->sid;
4220 sksec->sclass = isec->sclass;
4221 }
4222
4223 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4224 struct request_sock *req)
4225 {
4226 struct sk_security_struct *sksec = sk->sk_security;
4227 int err;
4228 u16 family = sk->sk_family;
4229 u32 newsid;
4230 u32 peersid;
4231
4232 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4233 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4234 family = PF_INET;
4235
4236 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4237 if (err)
4238 return err;
4239 if (peersid == SECSID_NULL) {
4240 req->secid = sksec->sid;
4241 req->peer_secid = SECSID_NULL;
4242 } else {
4243 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4244 if (err)
4245 return err;
4246 req->secid = newsid;
4247 req->peer_secid = peersid;
4248 }
4249
4250 return selinux_netlbl_inet_conn_request(req, family);
4251 }
4252
4253 static void selinux_inet_csk_clone(struct sock *newsk,
4254 const struct request_sock *req)
4255 {
4256 struct sk_security_struct *newsksec = newsk->sk_security;
4257
4258 newsksec->sid = req->secid;
4259 newsksec->peer_sid = req->peer_secid;
4260 /* NOTE: Ideally, we should also get the isec->sid for the
4261 new socket in sync, but we don't have the isec available yet.
4262 So we will wait until sock_graft to do it, by which
4263 time it will have been created and available. */
4264
4265 /* We don't need to take any sort of lock here as we are the only
4266 * thread with access to newsksec */
4267 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4268 }
4269
4270 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4271 {
4272 u16 family = sk->sk_family;
4273 struct sk_security_struct *sksec = sk->sk_security;
4274
4275 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4276 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4277 family = PF_INET;
4278
4279 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4280 }
4281
4282 static int selinux_secmark_relabel_packet(u32 sid)
4283 {
4284 const struct task_security_struct *__tsec;
4285 u32 tsid;
4286
4287 __tsec = current_security();
4288 tsid = __tsec->sid;
4289
4290 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4291 }
4292
4293 static void selinux_secmark_refcount_inc(void)
4294 {
4295 atomic_inc(&selinux_secmark_refcount);
4296 }
4297
4298 static void selinux_secmark_refcount_dec(void)
4299 {
4300 atomic_dec(&selinux_secmark_refcount);
4301 }
4302
4303 static void selinux_req_classify_flow(const struct request_sock *req,
4304 struct flowi *fl)
4305 {
4306 fl->secid = req->secid;
4307 }
4308
4309 static int selinux_tun_dev_create(void)
4310 {
4311 u32 sid = current_sid();
4312
4313 /* we aren't taking into account the "sockcreate" SID since the socket
4314 * that is being created here is not a socket in the traditional sense,
4315 * instead it is a private sock, accessible only to the kernel, and
4316 * representing a wide range of network traffic spanning multiple
4317 * connections unlike traditional sockets - check the TUN driver to
4318 * get a better understanding of why this socket is special */
4319
4320 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4321 NULL);
4322 }
4323
4324 static void selinux_tun_dev_post_create(struct sock *sk)
4325 {
4326 struct sk_security_struct *sksec = sk->sk_security;
4327
4328 /* we don't currently perform any NetLabel based labeling here and it
4329 * isn't clear that we would want to do so anyway; while we could apply
4330 * labeling without the support of the TUN user the resulting labeled
4331 * traffic from the other end of the connection would almost certainly
4332 * cause confusion to the TUN user that had no idea network labeling
4333 * protocols were being used */
4334
4335 /* see the comments in selinux_tun_dev_create() about why we don't use
4336 * the sockcreate SID here */
4337
4338 sksec->sid = current_sid();
4339 sksec->sclass = SECCLASS_TUN_SOCKET;
4340 }
4341
4342 static int selinux_tun_dev_attach(struct sock *sk)
4343 {
4344 struct sk_security_struct *sksec = sk->sk_security;
4345 u32 sid = current_sid();
4346 int err;
4347
4348 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4349 TUN_SOCKET__RELABELFROM, NULL);
4350 if (err)
4351 return err;
4352 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4353 TUN_SOCKET__RELABELTO, NULL);
4354 if (err)
4355 return err;
4356
4357 sksec->sid = sid;
4358
4359 return 0;
4360 }
4361
4362 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4363 {
4364 int err = 0;
4365 u32 perm;
4366 struct nlmsghdr *nlh;
4367 struct sk_security_struct *sksec = sk->sk_security;
4368
4369 if (skb->len < NLMSG_SPACE(0)) {
4370 err = -EINVAL;
4371 goto out;
4372 }
4373 nlh = nlmsg_hdr(skb);
4374
4375 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4376 if (err) {
4377 if (err == -EINVAL) {
4378 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4379 "SELinux: unrecognized netlink message"
4380 " type=%hu for sclass=%hu\n",
4381 nlh->nlmsg_type, sksec->sclass);
4382 if (!selinux_enforcing || security_get_allow_unknown())
4383 err = 0;
4384 }
4385
4386 /* Ignore */
4387 if (err == -ENOENT)
4388 err = 0;
4389 goto out;
4390 }
4391
4392 err = sock_has_perm(current, sk, perm);
4393 out:
4394 return err;
4395 }
4396
4397 #ifdef CONFIG_NETFILTER
4398
4399 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4400 u16 family)
4401 {
4402 int err;
4403 char *addrp;
4404 u32 peer_sid;
4405 struct common_audit_data ad;
4406 u8 secmark_active;
4407 u8 netlbl_active;
4408 u8 peerlbl_active;
4409
4410 if (!selinux_policycap_netpeer)
4411 return NF_ACCEPT;
4412
4413 secmark_active = selinux_secmark_enabled();
4414 netlbl_active = netlbl_enabled();
4415 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4416 if (!secmark_active && !peerlbl_active)
4417 return NF_ACCEPT;
4418
4419 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4420 return NF_DROP;
4421
4422 COMMON_AUDIT_DATA_INIT(&ad, NET);
4423 ad.u.net.netif = ifindex;
4424 ad.u.net.family = family;
4425 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4426 return NF_DROP;
4427
4428 if (peerlbl_active) {
4429 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4430 peer_sid, &ad);
4431 if (err) {
4432 selinux_netlbl_err(skb, err, 1);
4433 return NF_DROP;
4434 }
4435 }
4436
4437 if (secmark_active)
4438 if (avc_has_perm(peer_sid, skb->secmark,
4439 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4440 return NF_DROP;
4441
4442 if (netlbl_active)
4443 /* we do this in the FORWARD path and not the POST_ROUTING
4444 * path because we want to make sure we apply the necessary
4445 * labeling before IPsec is applied so we can leverage AH
4446 * protection */
4447 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4448 return NF_DROP;
4449
4450 return NF_ACCEPT;
4451 }
4452
4453 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4454 struct sk_buff *skb,
4455 const struct net_device *in,
4456 const struct net_device *out,
4457 int (*okfn)(struct sk_buff *))
4458 {
4459 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4460 }
4461
4462 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4463 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4464 struct sk_buff *skb,
4465 const struct net_device *in,
4466 const struct net_device *out,
4467 int (*okfn)(struct sk_buff *))
4468 {
4469 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4470 }
4471 #endif /* IPV6 */
4472
4473 static unsigned int selinux_ip_output(struct sk_buff *skb,
4474 u16 family)
4475 {
4476 u32 sid;
4477
4478 if (!netlbl_enabled())
4479 return NF_ACCEPT;
4480
4481 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4482 * because we want to make sure we apply the necessary labeling
4483 * before IPsec is applied so we can leverage AH protection */
4484 if (skb->sk) {
4485 struct sk_security_struct *sksec = skb->sk->sk_security;
4486 sid = sksec->sid;
4487 } else
4488 sid = SECINITSID_KERNEL;
4489 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4490 return NF_DROP;
4491
4492 return NF_ACCEPT;
4493 }
4494
4495 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4496 struct sk_buff *skb,
4497 const struct net_device *in,
4498 const struct net_device *out,
4499 int (*okfn)(struct sk_buff *))
4500 {
4501 return selinux_ip_output(skb, PF_INET);
4502 }
4503
4504 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4505 int ifindex,
4506 u16 family)
4507 {
4508 struct sock *sk = skb->sk;
4509 struct sk_security_struct *sksec;
4510 struct common_audit_data ad;
4511 char *addrp;
4512 u8 proto;
4513
4514 if (sk == NULL)
4515 return NF_ACCEPT;
4516 sksec = sk->sk_security;
4517
4518 COMMON_AUDIT_DATA_INIT(&ad, NET);
4519 ad.u.net.netif = ifindex;
4520 ad.u.net.family = family;
4521 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4522 return NF_DROP;
4523
4524 if (selinux_secmark_enabled())
4525 if (avc_has_perm(sksec->sid, skb->secmark,
4526 SECCLASS_PACKET, PACKET__SEND, &ad))
4527 return NF_DROP_ERR(-ECONNREFUSED);
4528
4529 if (selinux_policycap_netpeer)
4530 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4531 return NF_DROP_ERR(-ECONNREFUSED);
4532
4533 return NF_ACCEPT;
4534 }
4535
4536 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4537 u16 family)
4538 {
4539 u32 secmark_perm;
4540 u32 peer_sid;
4541 struct sock *sk;
4542 struct common_audit_data ad;
4543 char *addrp;
4544 u8 secmark_active;
4545 u8 peerlbl_active;
4546
4547 /* If any sort of compatibility mode is enabled then handoff processing
4548 * to the selinux_ip_postroute_compat() function to deal with the
4549 * special handling. We do this in an attempt to keep this function
4550 * as fast and as clean as possible. */
4551 if (!selinux_policycap_netpeer)
4552 return selinux_ip_postroute_compat(skb, ifindex, family);
4553 #ifdef CONFIG_XFRM
4554 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4555 * packet transformation so allow the packet to pass without any checks
4556 * since we'll have another chance to perform access control checks
4557 * when the packet is on it's final way out.
4558 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4559 * is NULL, in this case go ahead and apply access control. */
4560 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4561 return NF_ACCEPT;
4562 #endif
4563 secmark_active = selinux_secmark_enabled();
4564 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4565 if (!secmark_active && !peerlbl_active)
4566 return NF_ACCEPT;
4567
4568 /* if the packet is being forwarded then get the peer label from the
4569 * packet itself; otherwise check to see if it is from a local
4570 * application or the kernel, if from an application get the peer label
4571 * from the sending socket, otherwise use the kernel's sid */
4572 sk = skb->sk;
4573 if (sk == NULL) {
4574 switch (family) {
4575 case PF_INET:
4576 if (IPCB(skb)->flags & IPSKB_FORWARDED)
4577 secmark_perm = PACKET__FORWARD_OUT;
4578 else
4579 secmark_perm = PACKET__SEND;
4580 break;
4581 case PF_INET6:
4582 if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4583 secmark_perm = PACKET__FORWARD_OUT;
4584 else
4585 secmark_perm = PACKET__SEND;
4586 break;
4587 default:
4588 return NF_DROP_ERR(-ECONNREFUSED);
4589 }
4590 if (secmark_perm == PACKET__FORWARD_OUT) {
4591 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4592 return NF_DROP;
4593 } else
4594 peer_sid = SECINITSID_KERNEL;
4595 } else {
4596 struct sk_security_struct *sksec = sk->sk_security;
4597 peer_sid = sksec->sid;
4598 secmark_perm = PACKET__SEND;
4599 }
4600
4601 COMMON_AUDIT_DATA_INIT(&ad, NET);
4602 ad.u.net.netif = ifindex;
4603 ad.u.net.family = family;
4604 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4605 return NF_DROP;
4606
4607 if (secmark_active)
4608 if (avc_has_perm(peer_sid, skb->secmark,
4609 SECCLASS_PACKET, secmark_perm, &ad))
4610 return NF_DROP_ERR(-ECONNREFUSED);
4611
4612 if (peerlbl_active) {
4613 u32 if_sid;
4614 u32 node_sid;
4615
4616 if (sel_netif_sid(ifindex, &if_sid))
4617 return NF_DROP;
4618 if (avc_has_perm(peer_sid, if_sid,
4619 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4620 return NF_DROP_ERR(-ECONNREFUSED);
4621
4622 if (sel_netnode_sid(addrp, family, &node_sid))
4623 return NF_DROP;
4624 if (avc_has_perm(peer_sid, node_sid,
4625 SECCLASS_NODE, NODE__SENDTO, &ad))
4626 return NF_DROP_ERR(-ECONNREFUSED);
4627 }
4628
4629 return NF_ACCEPT;
4630 }
4631
4632 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4633 struct sk_buff *skb,
4634 const struct net_device *in,
4635 const struct net_device *out,
4636 int (*okfn)(struct sk_buff *))
4637 {
4638 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4639 }
4640
4641 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4642 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4643 struct sk_buff *skb,
4644 const struct net_device *in,
4645 const struct net_device *out,
4646 int (*okfn)(struct sk_buff *))
4647 {
4648 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4649 }
4650 #endif /* IPV6 */
4651
4652 #endif /* CONFIG_NETFILTER */
4653
4654 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4655 {
4656 int err;
4657
4658 err = cap_netlink_send(sk, skb);
4659 if (err)
4660 return err;
4661
4662 return selinux_nlmsg_perm(sk, skb);
4663 }
4664
4665 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4666 {
4667 int err;
4668 struct common_audit_data ad;
4669
4670 err = cap_netlink_recv(skb, capability);
4671 if (err)
4672 return err;
4673
4674 COMMON_AUDIT_DATA_INIT(&ad, CAP);
4675 ad.u.cap = capability;
4676
4677 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4678 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4679 }
4680
4681 static int ipc_alloc_security(struct task_struct *task,
4682 struct kern_ipc_perm *perm,
4683 u16 sclass)
4684 {
4685 struct ipc_security_struct *isec;
4686 u32 sid;
4687
4688 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4689 if (!isec)
4690 return -ENOMEM;
4691
4692 sid = task_sid(task);
4693 isec->sclass = sclass;
4694 isec->sid = sid;
4695 perm->security = isec;
4696
4697 return 0;
4698 }
4699
4700 static void ipc_free_security(struct kern_ipc_perm *perm)
4701 {
4702 struct ipc_security_struct *isec = perm->security;
4703 perm->security = NULL;
4704 kfree(isec);
4705 }
4706
4707 static int msg_msg_alloc_security(struct msg_msg *msg)
4708 {
4709 struct msg_security_struct *msec;
4710
4711 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4712 if (!msec)
4713 return -ENOMEM;
4714
4715 msec->sid = SECINITSID_UNLABELED;
4716 msg->security = msec;
4717
4718 return 0;
4719 }
4720
4721 static void msg_msg_free_security(struct msg_msg *msg)
4722 {
4723 struct msg_security_struct *msec = msg->security;
4724
4725 msg->security = NULL;
4726 kfree(msec);
4727 }
4728
4729 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4730 u32 perms)
4731 {
4732 struct ipc_security_struct *isec;
4733 struct common_audit_data ad;
4734 u32 sid = current_sid();
4735
4736 isec = ipc_perms->security;
4737
4738 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4739 ad.u.ipc_id = ipc_perms->key;
4740
4741 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4742 }
4743
4744 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4745 {
4746 return msg_msg_alloc_security(msg);
4747 }
4748
4749 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4750 {
4751 msg_msg_free_security(msg);
4752 }
4753
4754 /* message queue security operations */
4755 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4756 {
4757 struct ipc_security_struct *isec;
4758 struct common_audit_data ad;
4759 u32 sid = current_sid();
4760 int rc;
4761
4762 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4763 if (rc)
4764 return rc;
4765
4766 isec = msq->q_perm.security;
4767
4768 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4769 ad.u.ipc_id = msq->q_perm.key;
4770
4771 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4772 MSGQ__CREATE, &ad);
4773 if (rc) {
4774 ipc_free_security(&msq->q_perm);
4775 return rc;
4776 }
4777 return 0;
4778 }
4779
4780 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4781 {
4782 ipc_free_security(&msq->q_perm);
4783 }
4784
4785 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4786 {
4787 struct ipc_security_struct *isec;
4788 struct common_audit_data ad;
4789 u32 sid = current_sid();
4790
4791 isec = msq->q_perm.security;
4792
4793 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4794 ad.u.ipc_id = msq->q_perm.key;
4795
4796 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4797 MSGQ__ASSOCIATE, &ad);
4798 }
4799
4800 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4801 {
4802 int err;
4803 int perms;
4804
4805 switch (cmd) {
4806 case IPC_INFO:
4807 case MSG_INFO:
4808 /* No specific object, just general system-wide information. */
4809 return task_has_system(current, SYSTEM__IPC_INFO);
4810 case IPC_STAT:
4811 case MSG_STAT:
4812 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4813 break;
4814 case IPC_SET:
4815 perms = MSGQ__SETATTR;
4816 break;
4817 case IPC_RMID:
4818 perms = MSGQ__DESTROY;
4819 break;
4820 default:
4821 return 0;
4822 }
4823
4824 err = ipc_has_perm(&msq->q_perm, perms);
4825 return err;
4826 }
4827
4828 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4829 {
4830 struct ipc_security_struct *isec;
4831 struct msg_security_struct *msec;
4832 struct common_audit_data ad;
4833 u32 sid = current_sid();
4834 int rc;
4835
4836 isec = msq->q_perm.security;
4837 msec = msg->security;
4838
4839 /*
4840 * First time through, need to assign label to the message
4841 */
4842 if (msec->sid == SECINITSID_UNLABELED) {
4843 /*
4844 * Compute new sid based on current process and
4845 * message queue this message will be stored in
4846 */
4847 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4848 &msec->sid);
4849 if (rc)
4850 return rc;
4851 }
4852
4853 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4854 ad.u.ipc_id = msq->q_perm.key;
4855
4856 /* Can this process write to the queue? */
4857 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4858 MSGQ__WRITE, &ad);
4859 if (!rc)
4860 /* Can this process send the message */
4861 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4862 MSG__SEND, &ad);
4863 if (!rc)
4864 /* Can the message be put in the queue? */
4865 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4866 MSGQ__ENQUEUE, &ad);
4867
4868 return rc;
4869 }
4870
4871 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4872 struct task_struct *target,
4873 long type, int mode)
4874 {
4875 struct ipc_security_struct *isec;
4876 struct msg_security_struct *msec;
4877 struct common_audit_data ad;
4878 u32 sid = task_sid(target);
4879 int rc;
4880
4881 isec = msq->q_perm.security;
4882 msec = msg->security;
4883
4884 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4885 ad.u.ipc_id = msq->q_perm.key;
4886
4887 rc = avc_has_perm(sid, isec->sid,
4888 SECCLASS_MSGQ, MSGQ__READ, &ad);
4889 if (!rc)
4890 rc = avc_has_perm(sid, msec->sid,
4891 SECCLASS_MSG, MSG__RECEIVE, &ad);
4892 return rc;
4893 }
4894
4895 /* Shared Memory security operations */
4896 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4897 {
4898 struct ipc_security_struct *isec;
4899 struct common_audit_data ad;
4900 u32 sid = current_sid();
4901 int rc;
4902
4903 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4904 if (rc)
4905 return rc;
4906
4907 isec = shp->shm_perm.security;
4908
4909 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4910 ad.u.ipc_id = shp->shm_perm.key;
4911
4912 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4913 SHM__CREATE, &ad);
4914 if (rc) {
4915 ipc_free_security(&shp->shm_perm);
4916 return rc;
4917 }
4918 return 0;
4919 }
4920
4921 static void selinux_shm_free_security(struct shmid_kernel *shp)
4922 {
4923 ipc_free_security(&shp->shm_perm);
4924 }
4925
4926 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4927 {
4928 struct ipc_security_struct *isec;
4929 struct common_audit_data ad;
4930 u32 sid = current_sid();
4931
4932 isec = shp->shm_perm.security;
4933
4934 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4935 ad.u.ipc_id = shp->shm_perm.key;
4936
4937 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4938 SHM__ASSOCIATE, &ad);
4939 }
4940
4941 /* Note, at this point, shp is locked down */
4942 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4943 {
4944 int perms;
4945 int err;
4946
4947 switch (cmd) {
4948 case IPC_INFO:
4949 case SHM_INFO:
4950 /* No specific object, just general system-wide information. */
4951 return task_has_system(current, SYSTEM__IPC_INFO);
4952 case IPC_STAT:
4953 case SHM_STAT:
4954 perms = SHM__GETATTR | SHM__ASSOCIATE;
4955 break;
4956 case IPC_SET:
4957 perms = SHM__SETATTR;
4958 break;
4959 case SHM_LOCK:
4960 case SHM_UNLOCK:
4961 perms = SHM__LOCK;
4962 break;
4963 case IPC_RMID:
4964 perms = SHM__DESTROY;
4965 break;
4966 default:
4967 return 0;
4968 }
4969
4970 err = ipc_has_perm(&shp->shm_perm, perms);
4971 return err;
4972 }
4973
4974 static int selinux_shm_shmat(struct shmid_kernel *shp,
4975 char __user *shmaddr, int shmflg)
4976 {
4977 u32 perms;
4978
4979 if (shmflg & SHM_RDONLY)
4980 perms = SHM__READ;
4981 else
4982 perms = SHM__READ | SHM__WRITE;
4983
4984 return ipc_has_perm(&shp->shm_perm, perms);
4985 }
4986
4987 /* Semaphore security operations */
4988 static int selinux_sem_alloc_security(struct sem_array *sma)
4989 {
4990 struct ipc_security_struct *isec;
4991 struct common_audit_data ad;
4992 u32 sid = current_sid();
4993 int rc;
4994
4995 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4996 if (rc)
4997 return rc;
4998
4999 isec = sma->sem_perm.security;
5000
5001 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5002 ad.u.ipc_id = sma->sem_perm.key;
5003
5004 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5005 SEM__CREATE, &ad);
5006 if (rc) {
5007 ipc_free_security(&sma->sem_perm);
5008 return rc;
5009 }
5010 return 0;
5011 }
5012
5013 static void selinux_sem_free_security(struct sem_array *sma)
5014 {
5015 ipc_free_security(&sma->sem_perm);
5016 }
5017
5018 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5019 {
5020 struct ipc_security_struct *isec;
5021 struct common_audit_data ad;
5022 u32 sid = current_sid();
5023
5024 isec = sma->sem_perm.security;
5025
5026 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5027 ad.u.ipc_id = sma->sem_perm.key;
5028
5029 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5030 SEM__ASSOCIATE, &ad);
5031 }
5032
5033 /* Note, at this point, sma is locked down */
5034 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5035 {
5036 int err;
5037 u32 perms;
5038
5039 switch (cmd) {
5040 case IPC_INFO:
5041 case SEM_INFO:
5042 /* No specific object, just general system-wide information. */
5043 return task_has_system(current, SYSTEM__IPC_INFO);
5044 case GETPID:
5045 case GETNCNT:
5046 case GETZCNT:
5047 perms = SEM__GETATTR;
5048 break;
5049 case GETVAL:
5050 case GETALL:
5051 perms = SEM__READ;
5052 break;
5053 case SETVAL:
5054 case SETALL:
5055 perms = SEM__WRITE;
5056 break;
5057 case IPC_RMID:
5058 perms = SEM__DESTROY;
5059 break;
5060 case IPC_SET:
5061 perms = SEM__SETATTR;
5062 break;
5063 case IPC_STAT:
5064 case SEM_STAT:
5065 perms = SEM__GETATTR | SEM__ASSOCIATE;
5066 break;
5067 default:
5068 return 0;
5069 }
5070
5071 err = ipc_has_perm(&sma->sem_perm, perms);
5072 return err;
5073 }
5074
5075 static int selinux_sem_semop(struct sem_array *sma,
5076 struct sembuf *sops, unsigned nsops, int alter)
5077 {
5078 u32 perms;
5079
5080 if (alter)
5081 perms = SEM__READ | SEM__WRITE;
5082 else
5083 perms = SEM__READ;
5084
5085 return ipc_has_perm(&sma->sem_perm, perms);
5086 }
5087
5088 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5089 {
5090 u32 av = 0;
5091
5092 av = 0;
5093 if (flag & S_IRUGO)
5094 av |= IPC__UNIX_READ;
5095 if (flag & S_IWUGO)
5096 av |= IPC__UNIX_WRITE;
5097
5098 if (av == 0)
5099 return 0;
5100
5101 return ipc_has_perm(ipcp, av);
5102 }
5103
5104 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5105 {
5106 struct ipc_security_struct *isec = ipcp->security;
5107 *secid = isec->sid;
5108 }
5109
5110 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5111 {
5112 if (inode)
5113 inode_doinit_with_dentry(inode, dentry);
5114 }
5115
5116 static int selinux_getprocattr(struct task_struct *p,
5117 char *name, char **value)
5118 {
5119 const struct task_security_struct *__tsec;
5120 u32 sid;
5121 int error;
5122 unsigned len;
5123
5124 if (current != p) {
5125 error = current_has_perm(p, PROCESS__GETATTR);
5126 if (error)
5127 return error;
5128 }
5129
5130 rcu_read_lock();
5131 __tsec = __task_cred(p)->security;
5132
5133 if (!strcmp(name, "current"))
5134 sid = __tsec->sid;
5135 else if (!strcmp(name, "prev"))
5136 sid = __tsec->osid;
5137 else if (!strcmp(name, "exec"))
5138 sid = __tsec->exec_sid;
5139 else if (!strcmp(name, "fscreate"))
5140 sid = __tsec->create_sid;
5141 else if (!strcmp(name, "keycreate"))
5142 sid = __tsec->keycreate_sid;
5143 else if (!strcmp(name, "sockcreate"))
5144 sid = __tsec->sockcreate_sid;
5145 else
5146 goto invalid;
5147 rcu_read_unlock();
5148
5149 if (!sid)
5150 return 0;
5151
5152 error = security_sid_to_context(sid, value, &len);
5153 if (error)
5154 return error;
5155 return len;
5156
5157 invalid:
5158 rcu_read_unlock();
5159 return -EINVAL;
5160 }
5161
5162 static int selinux_setprocattr(struct task_struct *p,
5163 char *name, void *value, size_t size)
5164 {
5165 struct task_security_struct *tsec;
5166 struct task_struct *tracer;
5167 struct cred *new;
5168 u32 sid = 0, ptsid;
5169 int error;
5170 char *str = value;
5171
5172 if (current != p) {
5173 /* SELinux only allows a process to change its own
5174 security attributes. */
5175 return -EACCES;
5176 }
5177
5178 /*
5179 * Basic control over ability to set these attributes at all.
5180 * current == p, but we'll pass them separately in case the
5181 * above restriction is ever removed.
5182 */
5183 if (!strcmp(name, "exec"))
5184 error = current_has_perm(p, PROCESS__SETEXEC);
5185 else if (!strcmp(name, "fscreate"))
5186 error = current_has_perm(p, PROCESS__SETFSCREATE);
5187 else if (!strcmp(name, "keycreate"))
5188 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5189 else if (!strcmp(name, "sockcreate"))
5190 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5191 else if (!strcmp(name, "current"))
5192 error = current_has_perm(p, PROCESS__SETCURRENT);
5193 else
5194 error = -EINVAL;
5195 if (error)
5196 return error;
5197
5198 /* Obtain a SID for the context, if one was specified. */
5199 if (size && str[1] && str[1] != '\n') {
5200 if (str[size-1] == '\n') {
5201 str[size-1] = 0;
5202 size--;
5203 }
5204 error = security_context_to_sid(value, size, &sid);
5205 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5206 if (!capable(CAP_MAC_ADMIN))
5207 return error;
5208 error = security_context_to_sid_force(value, size,
5209 &sid);
5210 }
5211 if (error)
5212 return error;
5213 }
5214
5215 new = prepare_creds();
5216 if (!new)
5217 return -ENOMEM;
5218
5219 /* Permission checking based on the specified context is
5220 performed during the actual operation (execve,
5221 open/mkdir/...), when we know the full context of the
5222 operation. See selinux_bprm_set_creds for the execve
5223 checks and may_create for the file creation checks. The
5224 operation will then fail if the context is not permitted. */
5225 tsec = new->security;
5226 if (!strcmp(name, "exec")) {
5227 tsec->exec_sid = sid;
5228 } else if (!strcmp(name, "fscreate")) {
5229 tsec->create_sid = sid;
5230 } else if (!strcmp(name, "keycreate")) {
5231 error = may_create_key(sid, p);
5232 if (error)
5233 goto abort_change;
5234 tsec->keycreate_sid = sid;
5235 } else if (!strcmp(name, "sockcreate")) {
5236 tsec->sockcreate_sid = sid;
5237 } else if (!strcmp(name, "current")) {
5238 error = -EINVAL;
5239 if (sid == 0)
5240 goto abort_change;
5241
5242 /* Only allow single threaded processes to change context */
5243 error = -EPERM;
5244 if (!current_is_single_threaded()) {
5245 error = security_bounded_transition(tsec->sid, sid);
5246 if (error)
5247 goto abort_change;
5248 }
5249
5250 /* Check permissions for the transition. */
5251 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5252 PROCESS__DYNTRANSITION, NULL);
5253 if (error)
5254 goto abort_change;
5255
5256 /* Check for ptracing, and update the task SID if ok.
5257 Otherwise, leave SID unchanged and fail. */
5258 ptsid = 0;
5259 task_lock(p);
5260 tracer = tracehook_tracer_task(p);
5261 if (tracer)
5262 ptsid = task_sid(tracer);
5263 task_unlock(p);
5264
5265 if (tracer) {
5266 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5267 PROCESS__PTRACE, NULL);
5268 if (error)
5269 goto abort_change;
5270 }
5271
5272 tsec->sid = sid;
5273 } else {
5274 error = -EINVAL;
5275 goto abort_change;
5276 }
5277
5278 commit_creds(new);
5279 return size;
5280
5281 abort_change:
5282 abort_creds(new);
5283 return error;
5284 }
5285
5286 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5287 {
5288 return security_sid_to_context(secid, secdata, seclen);
5289 }
5290
5291 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5292 {
5293 return security_context_to_sid(secdata, seclen, secid);
5294 }
5295
5296 static void selinux_release_secctx(char *secdata, u32 seclen)
5297 {
5298 kfree(secdata);
5299 }
5300
5301 /*
5302 * called with inode->i_mutex locked
5303 */
5304 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5305 {
5306 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5307 }
5308
5309 /*
5310 * called with inode->i_mutex locked
5311 */
5312 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5313 {
5314 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5315 }
5316
5317 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5318 {
5319 int len = 0;
5320 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5321 ctx, true);
5322 if (len < 0)
5323 return len;
5324 *ctxlen = len;
5325 return 0;
5326 }
5327 #ifdef CONFIG_KEYS
5328
5329 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5330 unsigned long flags)
5331 {
5332 const struct task_security_struct *tsec;
5333 struct key_security_struct *ksec;
5334
5335 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5336 if (!ksec)
5337 return -ENOMEM;
5338
5339 tsec = cred->security;
5340 if (tsec->keycreate_sid)
5341 ksec->sid = tsec->keycreate_sid;
5342 else
5343 ksec->sid = tsec->sid;
5344
5345 k->security = ksec;
5346 return 0;
5347 }
5348
5349 static void selinux_key_free(struct key *k)
5350 {
5351 struct key_security_struct *ksec = k->security;
5352
5353 k->security = NULL;
5354 kfree(ksec);
5355 }
5356
5357 static int selinux_key_permission(key_ref_t key_ref,
5358 const struct cred *cred,
5359 key_perm_t perm)
5360 {
5361 struct key *key;
5362 struct key_security_struct *ksec;
5363 u32 sid;
5364
5365 /* if no specific permissions are requested, we skip the
5366 permission check. No serious, additional covert channels
5367 appear to be created. */
5368 if (perm == 0)
5369 return 0;
5370
5371 sid = cred_sid(cred);
5372
5373 key = key_ref_to_ptr(key_ref);
5374 ksec = key->security;
5375
5376 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5377 }
5378
5379 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5380 {
5381 struct key_security_struct *ksec = key->security;
5382 char *context = NULL;
5383 unsigned len;
5384 int rc;
5385
5386 rc = security_sid_to_context(ksec->sid, &context, &len);
5387 if (!rc)
5388 rc = len;
5389 *_buffer = context;
5390 return rc;
5391 }
5392
5393 #endif
5394
5395 static struct security_operations selinux_ops = {
5396 .name = "selinux",
5397
5398 .ptrace_access_check = selinux_ptrace_access_check,
5399 .ptrace_traceme = selinux_ptrace_traceme,
5400 .capget = selinux_capget,
5401 .capset = selinux_capset,
5402 .sysctl = selinux_sysctl,
5403 .capable = selinux_capable,
5404 .quotactl = selinux_quotactl,
5405 .quota_on = selinux_quota_on,
5406 .syslog = selinux_syslog,
5407 .vm_enough_memory = selinux_vm_enough_memory,
5408
5409 .netlink_send = selinux_netlink_send,
5410 .netlink_recv = selinux_netlink_recv,
5411
5412 .bprm_set_creds = selinux_bprm_set_creds,
5413 .bprm_committing_creds = selinux_bprm_committing_creds,
5414 .bprm_committed_creds = selinux_bprm_committed_creds,
5415 .bprm_secureexec = selinux_bprm_secureexec,
5416
5417 .sb_alloc_security = selinux_sb_alloc_security,
5418 .sb_free_security = selinux_sb_free_security,
5419 .sb_copy_data = selinux_sb_copy_data,
5420 .sb_kern_mount = selinux_sb_kern_mount,
5421 .sb_show_options = selinux_sb_show_options,
5422 .sb_statfs = selinux_sb_statfs,
5423 .sb_mount = selinux_mount,
5424 .sb_umount = selinux_umount,
5425 .sb_set_mnt_opts = selinux_set_mnt_opts,
5426 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5427 .sb_parse_opts_str = selinux_parse_opts_str,
5428
5429
5430 .inode_alloc_security = selinux_inode_alloc_security,
5431 .inode_free_security = selinux_inode_free_security,
5432 .inode_init_security = selinux_inode_init_security,
5433 .inode_create = selinux_inode_create,
5434 .inode_link = selinux_inode_link,
5435 .inode_unlink = selinux_inode_unlink,
5436 .inode_symlink = selinux_inode_symlink,
5437 .inode_mkdir = selinux_inode_mkdir,
5438 .inode_rmdir = selinux_inode_rmdir,
5439 .inode_mknod = selinux_inode_mknod,
5440 .inode_rename = selinux_inode_rename,
5441 .inode_readlink = selinux_inode_readlink,
5442 .inode_follow_link = selinux_inode_follow_link,
5443 .inode_permission = selinux_inode_permission,
5444 .inode_setattr = selinux_inode_setattr,
5445 .inode_getattr = selinux_inode_getattr,
5446 .inode_setxattr = selinux_inode_setxattr,
5447 .inode_post_setxattr = selinux_inode_post_setxattr,
5448 .inode_getxattr = selinux_inode_getxattr,
5449 .inode_listxattr = selinux_inode_listxattr,
5450 .inode_removexattr = selinux_inode_removexattr,
5451 .inode_getsecurity = selinux_inode_getsecurity,
5452 .inode_setsecurity = selinux_inode_setsecurity,
5453 .inode_listsecurity = selinux_inode_listsecurity,
5454 .inode_getsecid = selinux_inode_getsecid,
5455
5456 .file_permission = selinux_file_permission,
5457 .file_alloc_security = selinux_file_alloc_security,
5458 .file_free_security = selinux_file_free_security,
5459 .file_ioctl = selinux_file_ioctl,
5460 .file_mmap = selinux_file_mmap,
5461 .file_mprotect = selinux_file_mprotect,
5462 .file_lock = selinux_file_lock,
5463 .file_fcntl = selinux_file_fcntl,
5464 .file_set_fowner = selinux_file_set_fowner,
5465 .file_send_sigiotask = selinux_file_send_sigiotask,
5466 .file_receive = selinux_file_receive,
5467
5468 .dentry_open = selinux_dentry_open,
5469
5470 .task_create = selinux_task_create,
5471 .cred_alloc_blank = selinux_cred_alloc_blank,
5472 .cred_free = selinux_cred_free,
5473 .cred_prepare = selinux_cred_prepare,
5474 .cred_transfer = selinux_cred_transfer,
5475 .kernel_act_as = selinux_kernel_act_as,
5476 .kernel_create_files_as = selinux_kernel_create_files_as,
5477 .kernel_module_request = selinux_kernel_module_request,
5478 .task_setpgid = selinux_task_setpgid,
5479 .task_getpgid = selinux_task_getpgid,
5480 .task_getsid = selinux_task_getsid,
5481 .task_getsecid = selinux_task_getsecid,
5482 .task_setnice = selinux_task_setnice,
5483 .task_setioprio = selinux_task_setioprio,
5484 .task_getioprio = selinux_task_getioprio,
5485 .task_setrlimit = selinux_task_setrlimit,
5486 .task_setscheduler = selinux_task_setscheduler,
5487 .task_getscheduler = selinux_task_getscheduler,
5488 .task_movememory = selinux_task_movememory,
5489 .task_kill = selinux_task_kill,
5490 .task_wait = selinux_task_wait,
5491 .task_to_inode = selinux_task_to_inode,
5492
5493 .ipc_permission = selinux_ipc_permission,
5494 .ipc_getsecid = selinux_ipc_getsecid,
5495
5496 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5497 .msg_msg_free_security = selinux_msg_msg_free_security,
5498
5499 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5500 .msg_queue_free_security = selinux_msg_queue_free_security,
5501 .msg_queue_associate = selinux_msg_queue_associate,
5502 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5503 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5504 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5505
5506 .shm_alloc_security = selinux_shm_alloc_security,
5507 .shm_free_security = selinux_shm_free_security,
5508 .shm_associate = selinux_shm_associate,
5509 .shm_shmctl = selinux_shm_shmctl,
5510 .shm_shmat = selinux_shm_shmat,
5511
5512 .sem_alloc_security = selinux_sem_alloc_security,
5513 .sem_free_security = selinux_sem_free_security,
5514 .sem_associate = selinux_sem_associate,
5515 .sem_semctl = selinux_sem_semctl,
5516 .sem_semop = selinux_sem_semop,
5517
5518 .d_instantiate = selinux_d_instantiate,
5519
5520 .getprocattr = selinux_getprocattr,
5521 .setprocattr = selinux_setprocattr,
5522
5523 .secid_to_secctx = selinux_secid_to_secctx,
5524 .secctx_to_secid = selinux_secctx_to_secid,
5525 .release_secctx = selinux_release_secctx,
5526 .inode_notifysecctx = selinux_inode_notifysecctx,
5527 .inode_setsecctx = selinux_inode_setsecctx,
5528 .inode_getsecctx = selinux_inode_getsecctx,
5529
5530 .unix_stream_connect = selinux_socket_unix_stream_connect,
5531 .unix_may_send = selinux_socket_unix_may_send,
5532
5533 .socket_create = selinux_socket_create,
5534 .socket_post_create = selinux_socket_post_create,
5535 .socket_bind = selinux_socket_bind,
5536 .socket_connect = selinux_socket_connect,
5537 .socket_listen = selinux_socket_listen,
5538 .socket_accept = selinux_socket_accept,
5539 .socket_sendmsg = selinux_socket_sendmsg,
5540 .socket_recvmsg = selinux_socket_recvmsg,
5541 .socket_getsockname = selinux_socket_getsockname,
5542 .socket_getpeername = selinux_socket_getpeername,
5543 .socket_getsockopt = selinux_socket_getsockopt,
5544 .socket_setsockopt = selinux_socket_setsockopt,
5545 .socket_shutdown = selinux_socket_shutdown,
5546 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5547 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5548 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5549 .sk_alloc_security = selinux_sk_alloc_security,
5550 .sk_free_security = selinux_sk_free_security,
5551 .sk_clone_security = selinux_sk_clone_security,
5552 .sk_getsecid = selinux_sk_getsecid,
5553 .sock_graft = selinux_sock_graft,
5554 .inet_conn_request = selinux_inet_conn_request,
5555 .inet_csk_clone = selinux_inet_csk_clone,
5556 .inet_conn_established = selinux_inet_conn_established,
5557 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5558 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5559 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5560 .req_classify_flow = selinux_req_classify_flow,
5561 .tun_dev_create = selinux_tun_dev_create,
5562 .tun_dev_post_create = selinux_tun_dev_post_create,
5563 .tun_dev_attach = selinux_tun_dev_attach,
5564
5565 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5566 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5567 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5568 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5569 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5570 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5571 .xfrm_state_free_security = selinux_xfrm_state_free,
5572 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5573 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5574 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5575 .xfrm_decode_session = selinux_xfrm_decode_session,
5576 #endif
5577
5578 #ifdef CONFIG_KEYS
5579 .key_alloc = selinux_key_alloc,
5580 .key_free = selinux_key_free,
5581 .key_permission = selinux_key_permission,
5582 .key_getsecurity = selinux_key_getsecurity,
5583 #endif
5584
5585 #ifdef CONFIG_AUDIT
5586 .audit_rule_init = selinux_audit_rule_init,
5587 .audit_rule_known = selinux_audit_rule_known,
5588 .audit_rule_match = selinux_audit_rule_match,
5589 .audit_rule_free = selinux_audit_rule_free,
5590 #endif
5591 };
5592
5593 static __init int selinux_init(void)
5594 {
5595 if (!security_module_enable(&selinux_ops)) {
5596 selinux_enabled = 0;
5597 return 0;
5598 }
5599
5600 if (!selinux_enabled) {
5601 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5602 return 0;
5603 }
5604
5605 printk(KERN_INFO "SELinux: Initializing.\n");
5606
5607 /* Set the security state for the initial task. */
5608 cred_init_security();
5609
5610 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5611
5612 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5613 sizeof(struct inode_security_struct),
5614 0, SLAB_PANIC, NULL);
5615 avc_init();
5616
5617 if (register_security(&selinux_ops))
5618 panic("SELinux: Unable to register with kernel.\n");
5619
5620 if (selinux_enforcing)
5621 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5622 else
5623 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5624
5625 return 0;
5626 }
5627
5628 static void delayed_superblock_init(struct super_block *sb, void *unused)
5629 {
5630 superblock_doinit(sb, NULL);
5631 }
5632
5633 void selinux_complete_init(void)
5634 {
5635 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5636
5637 /* Set up any superblocks initialized prior to the policy load. */
5638 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5639 iterate_supers(delayed_superblock_init, NULL);
5640 }
5641
5642 /* SELinux requires early initialization in order to label
5643 all processes and objects when they are created. */
5644 security_initcall(selinux_init);
5645
5646 #if defined(CONFIG_NETFILTER)
5647
5648 static struct nf_hook_ops selinux_ipv4_ops[] = {
5649 {
5650 .hook = selinux_ipv4_postroute,
5651 .owner = THIS_MODULE,
5652 .pf = PF_INET,
5653 .hooknum = NF_INET_POST_ROUTING,
5654 .priority = NF_IP_PRI_SELINUX_LAST,
5655 },
5656 {
5657 .hook = selinux_ipv4_forward,
5658 .owner = THIS_MODULE,
5659 .pf = PF_INET,
5660 .hooknum = NF_INET_FORWARD,
5661 .priority = NF_IP_PRI_SELINUX_FIRST,
5662 },
5663 {
5664 .hook = selinux_ipv4_output,
5665 .owner = THIS_MODULE,
5666 .pf = PF_INET,
5667 .hooknum = NF_INET_LOCAL_OUT,
5668 .priority = NF_IP_PRI_SELINUX_FIRST,
5669 }
5670 };
5671
5672 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5673
5674 static struct nf_hook_ops selinux_ipv6_ops[] = {
5675 {
5676 .hook = selinux_ipv6_postroute,
5677 .owner = THIS_MODULE,
5678 .pf = PF_INET6,
5679 .hooknum = NF_INET_POST_ROUTING,
5680 .priority = NF_IP6_PRI_SELINUX_LAST,
5681 },
5682 {
5683 .hook = selinux_ipv6_forward,
5684 .owner = THIS_MODULE,
5685 .pf = PF_INET6,
5686 .hooknum = NF_INET_FORWARD,
5687 .priority = NF_IP6_PRI_SELINUX_FIRST,
5688 }
5689 };
5690
5691 #endif /* IPV6 */
5692
5693 static int __init selinux_nf_ip_init(void)
5694 {
5695 int err = 0;
5696
5697 if (!selinux_enabled)
5698 goto out;
5699
5700 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5701
5702 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5703 if (err)
5704 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5705
5706 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5707 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5708 if (err)
5709 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5710 #endif /* IPV6 */
5711
5712 out:
5713 return err;
5714 }
5715
5716 __initcall(selinux_nf_ip_init);
5717
5718 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5719 static void selinux_nf_ip_exit(void)
5720 {
5721 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5722
5723 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5724 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5725 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5726 #endif /* IPV6 */
5727 }
5728 #endif
5729
5730 #else /* CONFIG_NETFILTER */
5731
5732 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5733 #define selinux_nf_ip_exit()
5734 #endif
5735
5736 #endif /* CONFIG_NETFILTER */
5737
5738 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5739 static int selinux_disabled;
5740
5741 int selinux_disable(void)
5742 {
5743 extern void exit_sel_fs(void);
5744
5745 if (ss_initialized) {
5746 /* Not permitted after initial policy load. */
5747 return -EINVAL;
5748 }
5749
5750 if (selinux_disabled) {
5751 /* Only do this once. */
5752 return -EINVAL;
5753 }
5754
5755 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5756
5757 selinux_disabled = 1;
5758 selinux_enabled = 0;
5759
5760 reset_security_ops();
5761
5762 /* Try to destroy the avc node cache */
5763 avc_disable();
5764
5765 /* Unregister netfilter hooks. */
5766 selinux_nf_ip_exit();
5767
5768 /* Unregister selinuxfs. */
5769 exit_sel_fs();
5770
5771 return 0;
5772 }
5773 #endif