split ->file_mmap() into ->mmap_addr()/->mmap_file()
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <net/flow.h>
24
25 #define MAX_LSM_EVM_XATTR 2
26
27 /* Boot-time LSM user choice */
28 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
29 CONFIG_DEFAULT_SECURITY;
30
31 static struct security_operations *security_ops;
32 static struct security_operations default_security_ops = {
33 .name = "default",
34 };
35
36 static inline int __init verify(struct security_operations *ops)
37 {
38 /* verify the security_operations structure exists */
39 if (!ops)
40 return -EINVAL;
41 security_fixup_ops(ops);
42 return 0;
43 }
44
45 static void __init do_security_initcalls(void)
46 {
47 initcall_t *call;
48 call = __security_initcall_start;
49 while (call < __security_initcall_end) {
50 (*call) ();
51 call++;
52 }
53 }
54
55 /**
56 * security_init - initializes the security framework
57 *
58 * This should be called early in the kernel initialization sequence.
59 */
60 int __init security_init(void)
61 {
62 printk(KERN_INFO "Security Framework initialized\n");
63
64 security_fixup_ops(&default_security_ops);
65 security_ops = &default_security_ops;
66 do_security_initcalls();
67
68 return 0;
69 }
70
71 void reset_security_ops(void)
72 {
73 security_ops = &default_security_ops;
74 }
75
76 /* Save user chosen LSM */
77 static int __init choose_lsm(char *str)
78 {
79 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
80 return 1;
81 }
82 __setup("security=", choose_lsm);
83
84 /**
85 * security_module_enable - Load given security module on boot ?
86 * @ops: a pointer to the struct security_operations that is to be checked.
87 *
88 * Each LSM must pass this method before registering its own operations
89 * to avoid security registration races. This method may also be used
90 * to check if your LSM is currently loaded during kernel initialization.
91 *
92 * Return true if:
93 * -The passed LSM is the one chosen by user at boot time,
94 * -or the passed LSM is configured as the default and the user did not
95 * choose an alternate LSM at boot time.
96 * Otherwise, return false.
97 */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100 return !strcmp(ops->name, chosen_lsm);
101 }
102
103 /**
104 * register_security - registers a security framework with the kernel
105 * @ops: a pointer to the struct security_options that is to be registered
106 *
107 * This function allows a security module to register itself with the
108 * kernel security subsystem. Some rudimentary checking is done on the @ops
109 * value passed to this function. You'll need to check first if your LSM
110 * is allowed to register its @ops by calling security_module_enable(@ops).
111 *
112 * If there is already a security module registered with the kernel,
113 * an error will be returned. Otherwise %0 is returned on success.
114 */
115 int __init register_security(struct security_operations *ops)
116 {
117 if (verify(ops)) {
118 printk(KERN_DEBUG "%s could not verify "
119 "security_operations structure.\n", __func__);
120 return -EINVAL;
121 }
122
123 if (security_ops != &default_security_ops)
124 return -EAGAIN;
125
126 security_ops = ops;
127
128 return 0;
129 }
130
131 /* Security operations */
132
133 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
134 {
135 return security_ops->ptrace_access_check(child, mode);
136 }
137
138 int security_ptrace_traceme(struct task_struct *parent)
139 {
140 return security_ops->ptrace_traceme(parent);
141 }
142
143 int security_capget(struct task_struct *target,
144 kernel_cap_t *effective,
145 kernel_cap_t *inheritable,
146 kernel_cap_t *permitted)
147 {
148 return security_ops->capget(target, effective, inheritable, permitted);
149 }
150
151 int security_capset(struct cred *new, const struct cred *old,
152 const kernel_cap_t *effective,
153 const kernel_cap_t *inheritable,
154 const kernel_cap_t *permitted)
155 {
156 return security_ops->capset(new, old,
157 effective, inheritable, permitted);
158 }
159
160 int security_capable(const struct cred *cred, struct user_namespace *ns,
161 int cap)
162 {
163 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
164 }
165
166 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
167 int cap)
168 {
169 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
170 }
171
172 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
173 {
174 return security_ops->quotactl(cmds, type, id, sb);
175 }
176
177 int security_quota_on(struct dentry *dentry)
178 {
179 return security_ops->quota_on(dentry);
180 }
181
182 int security_syslog(int type)
183 {
184 return security_ops->syslog(type);
185 }
186
187 int security_settime(const struct timespec *ts, const struct timezone *tz)
188 {
189 return security_ops->settime(ts, tz);
190 }
191
192 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
193 {
194 return security_ops->vm_enough_memory(mm, pages);
195 }
196
197 int security_bprm_set_creds(struct linux_binprm *bprm)
198 {
199 return security_ops->bprm_set_creds(bprm);
200 }
201
202 int security_bprm_check(struct linux_binprm *bprm)
203 {
204 int ret;
205
206 ret = security_ops->bprm_check_security(bprm);
207 if (ret)
208 return ret;
209 return ima_bprm_check(bprm);
210 }
211
212 void security_bprm_committing_creds(struct linux_binprm *bprm)
213 {
214 security_ops->bprm_committing_creds(bprm);
215 }
216
217 void security_bprm_committed_creds(struct linux_binprm *bprm)
218 {
219 security_ops->bprm_committed_creds(bprm);
220 }
221
222 int security_bprm_secureexec(struct linux_binprm *bprm)
223 {
224 return security_ops->bprm_secureexec(bprm);
225 }
226
227 int security_sb_alloc(struct super_block *sb)
228 {
229 return security_ops->sb_alloc_security(sb);
230 }
231
232 void security_sb_free(struct super_block *sb)
233 {
234 security_ops->sb_free_security(sb);
235 }
236
237 int security_sb_copy_data(char *orig, char *copy)
238 {
239 return security_ops->sb_copy_data(orig, copy);
240 }
241 EXPORT_SYMBOL(security_sb_copy_data);
242
243 int security_sb_remount(struct super_block *sb, void *data)
244 {
245 return security_ops->sb_remount(sb, data);
246 }
247
248 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
249 {
250 return security_ops->sb_kern_mount(sb, flags, data);
251 }
252
253 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
254 {
255 return security_ops->sb_show_options(m, sb);
256 }
257
258 int security_sb_statfs(struct dentry *dentry)
259 {
260 return security_ops->sb_statfs(dentry);
261 }
262
263 int security_sb_mount(char *dev_name, struct path *path,
264 char *type, unsigned long flags, void *data)
265 {
266 return security_ops->sb_mount(dev_name, path, type, flags, data);
267 }
268
269 int security_sb_umount(struct vfsmount *mnt, int flags)
270 {
271 return security_ops->sb_umount(mnt, flags);
272 }
273
274 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
275 {
276 return security_ops->sb_pivotroot(old_path, new_path);
277 }
278
279 int security_sb_set_mnt_opts(struct super_block *sb,
280 struct security_mnt_opts *opts)
281 {
282 return security_ops->sb_set_mnt_opts(sb, opts);
283 }
284 EXPORT_SYMBOL(security_sb_set_mnt_opts);
285
286 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
287 struct super_block *newsb)
288 {
289 security_ops->sb_clone_mnt_opts(oldsb, newsb);
290 }
291 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
292
293 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
294 {
295 return security_ops->sb_parse_opts_str(options, opts);
296 }
297 EXPORT_SYMBOL(security_sb_parse_opts_str);
298
299 int security_inode_alloc(struct inode *inode)
300 {
301 inode->i_security = NULL;
302 return security_ops->inode_alloc_security(inode);
303 }
304
305 void security_inode_free(struct inode *inode)
306 {
307 integrity_inode_free(inode);
308 security_ops->inode_free_security(inode);
309 }
310
311 int security_inode_init_security(struct inode *inode, struct inode *dir,
312 const struct qstr *qstr,
313 const initxattrs initxattrs, void *fs_data)
314 {
315 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
316 struct xattr *lsm_xattr, *evm_xattr, *xattr;
317 int ret;
318
319 if (unlikely(IS_PRIVATE(inode)))
320 return 0;
321
322 memset(new_xattrs, 0, sizeof new_xattrs);
323 if (!initxattrs)
324 return security_ops->inode_init_security(inode, dir, qstr,
325 NULL, NULL, NULL);
326 lsm_xattr = new_xattrs;
327 ret = security_ops->inode_init_security(inode, dir, qstr,
328 &lsm_xattr->name,
329 &lsm_xattr->value,
330 &lsm_xattr->value_len);
331 if (ret)
332 goto out;
333
334 evm_xattr = lsm_xattr + 1;
335 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
336 if (ret)
337 goto out;
338 ret = initxattrs(inode, new_xattrs, fs_data);
339 out:
340 for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
341 kfree(xattr->name);
342 kfree(xattr->value);
343 }
344 return (ret == -EOPNOTSUPP) ? 0 : ret;
345 }
346 EXPORT_SYMBOL(security_inode_init_security);
347
348 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
349 const struct qstr *qstr, char **name,
350 void **value, size_t *len)
351 {
352 if (unlikely(IS_PRIVATE(inode)))
353 return -EOPNOTSUPP;
354 return security_ops->inode_init_security(inode, dir, qstr, name, value,
355 len);
356 }
357 EXPORT_SYMBOL(security_old_inode_init_security);
358
359 #ifdef CONFIG_SECURITY_PATH
360 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
361 unsigned int dev)
362 {
363 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
364 return 0;
365 return security_ops->path_mknod(dir, dentry, mode, dev);
366 }
367 EXPORT_SYMBOL(security_path_mknod);
368
369 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
370 {
371 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
372 return 0;
373 return security_ops->path_mkdir(dir, dentry, mode);
374 }
375 EXPORT_SYMBOL(security_path_mkdir);
376
377 int security_path_rmdir(struct path *dir, struct dentry *dentry)
378 {
379 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380 return 0;
381 return security_ops->path_rmdir(dir, dentry);
382 }
383
384 int security_path_unlink(struct path *dir, struct dentry *dentry)
385 {
386 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
387 return 0;
388 return security_ops->path_unlink(dir, dentry);
389 }
390 EXPORT_SYMBOL(security_path_unlink);
391
392 int security_path_symlink(struct path *dir, struct dentry *dentry,
393 const char *old_name)
394 {
395 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
396 return 0;
397 return security_ops->path_symlink(dir, dentry, old_name);
398 }
399
400 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
401 struct dentry *new_dentry)
402 {
403 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
404 return 0;
405 return security_ops->path_link(old_dentry, new_dir, new_dentry);
406 }
407
408 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
409 struct path *new_dir, struct dentry *new_dentry)
410 {
411 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
412 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
413 return 0;
414 return security_ops->path_rename(old_dir, old_dentry, new_dir,
415 new_dentry);
416 }
417 EXPORT_SYMBOL(security_path_rename);
418
419 int security_path_truncate(struct path *path)
420 {
421 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
422 return 0;
423 return security_ops->path_truncate(path);
424 }
425
426 int security_path_chmod(struct path *path, umode_t mode)
427 {
428 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
429 return 0;
430 return security_ops->path_chmod(path, mode);
431 }
432
433 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
434 {
435 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
436 return 0;
437 return security_ops->path_chown(path, uid, gid);
438 }
439
440 int security_path_chroot(struct path *path)
441 {
442 return security_ops->path_chroot(path);
443 }
444 #endif
445
446 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
447 {
448 if (unlikely(IS_PRIVATE(dir)))
449 return 0;
450 return security_ops->inode_create(dir, dentry, mode);
451 }
452 EXPORT_SYMBOL_GPL(security_inode_create);
453
454 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
455 struct dentry *new_dentry)
456 {
457 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
458 return 0;
459 return security_ops->inode_link(old_dentry, dir, new_dentry);
460 }
461
462 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
463 {
464 if (unlikely(IS_PRIVATE(dentry->d_inode)))
465 return 0;
466 return security_ops->inode_unlink(dir, dentry);
467 }
468
469 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
470 const char *old_name)
471 {
472 if (unlikely(IS_PRIVATE(dir)))
473 return 0;
474 return security_ops->inode_symlink(dir, dentry, old_name);
475 }
476
477 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
478 {
479 if (unlikely(IS_PRIVATE(dir)))
480 return 0;
481 return security_ops->inode_mkdir(dir, dentry, mode);
482 }
483 EXPORT_SYMBOL_GPL(security_inode_mkdir);
484
485 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
486 {
487 if (unlikely(IS_PRIVATE(dentry->d_inode)))
488 return 0;
489 return security_ops->inode_rmdir(dir, dentry);
490 }
491
492 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
493 {
494 if (unlikely(IS_PRIVATE(dir)))
495 return 0;
496 return security_ops->inode_mknod(dir, dentry, mode, dev);
497 }
498
499 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
500 struct inode *new_dir, struct dentry *new_dentry)
501 {
502 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
503 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
504 return 0;
505 return security_ops->inode_rename(old_dir, old_dentry,
506 new_dir, new_dentry);
507 }
508
509 int security_inode_readlink(struct dentry *dentry)
510 {
511 if (unlikely(IS_PRIVATE(dentry->d_inode)))
512 return 0;
513 return security_ops->inode_readlink(dentry);
514 }
515
516 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
517 {
518 if (unlikely(IS_PRIVATE(dentry->d_inode)))
519 return 0;
520 return security_ops->inode_follow_link(dentry, nd);
521 }
522
523 int security_inode_permission(struct inode *inode, int mask)
524 {
525 if (unlikely(IS_PRIVATE(inode)))
526 return 0;
527 return security_ops->inode_permission(inode, mask);
528 }
529
530 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
531 {
532 int ret;
533
534 if (unlikely(IS_PRIVATE(dentry->d_inode)))
535 return 0;
536 ret = security_ops->inode_setattr(dentry, attr);
537 if (ret)
538 return ret;
539 return evm_inode_setattr(dentry, attr);
540 }
541 EXPORT_SYMBOL_GPL(security_inode_setattr);
542
543 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
544 {
545 if (unlikely(IS_PRIVATE(dentry->d_inode)))
546 return 0;
547 return security_ops->inode_getattr(mnt, dentry);
548 }
549
550 int security_inode_setxattr(struct dentry *dentry, const char *name,
551 const void *value, size_t size, int flags)
552 {
553 int ret;
554
555 if (unlikely(IS_PRIVATE(dentry->d_inode)))
556 return 0;
557 ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
558 if (ret)
559 return ret;
560 return evm_inode_setxattr(dentry, name, value, size);
561 }
562
563 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
564 const void *value, size_t size, int flags)
565 {
566 if (unlikely(IS_PRIVATE(dentry->d_inode)))
567 return;
568 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
569 evm_inode_post_setxattr(dentry, name, value, size);
570 }
571
572 int security_inode_getxattr(struct dentry *dentry, const char *name)
573 {
574 if (unlikely(IS_PRIVATE(dentry->d_inode)))
575 return 0;
576 return security_ops->inode_getxattr(dentry, name);
577 }
578
579 int security_inode_listxattr(struct dentry *dentry)
580 {
581 if (unlikely(IS_PRIVATE(dentry->d_inode)))
582 return 0;
583 return security_ops->inode_listxattr(dentry);
584 }
585
586 int security_inode_removexattr(struct dentry *dentry, const char *name)
587 {
588 int ret;
589
590 if (unlikely(IS_PRIVATE(dentry->d_inode)))
591 return 0;
592 ret = security_ops->inode_removexattr(dentry, name);
593 if (ret)
594 return ret;
595 return evm_inode_removexattr(dentry, name);
596 }
597
598 int security_inode_need_killpriv(struct dentry *dentry)
599 {
600 return security_ops->inode_need_killpriv(dentry);
601 }
602
603 int security_inode_killpriv(struct dentry *dentry)
604 {
605 return security_ops->inode_killpriv(dentry);
606 }
607
608 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
609 {
610 if (unlikely(IS_PRIVATE(inode)))
611 return -EOPNOTSUPP;
612 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
613 }
614
615 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
616 {
617 if (unlikely(IS_PRIVATE(inode)))
618 return -EOPNOTSUPP;
619 return security_ops->inode_setsecurity(inode, name, value, size, flags);
620 }
621
622 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
623 {
624 if (unlikely(IS_PRIVATE(inode)))
625 return 0;
626 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
627 }
628
629 void security_inode_getsecid(const struct inode *inode, u32 *secid)
630 {
631 security_ops->inode_getsecid(inode, secid);
632 }
633
634 int security_file_permission(struct file *file, int mask)
635 {
636 int ret;
637
638 ret = security_ops->file_permission(file, mask);
639 if (ret)
640 return ret;
641
642 return fsnotify_perm(file, mask);
643 }
644
645 int security_file_alloc(struct file *file)
646 {
647 return security_ops->file_alloc_security(file);
648 }
649
650 void security_file_free(struct file *file)
651 {
652 security_ops->file_free_security(file);
653 }
654
655 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
656 {
657 return security_ops->file_ioctl(file, cmd, arg);
658 }
659
660 int security_mmap_file(struct file *file, unsigned long reqprot,
661 unsigned long prot, unsigned long flags)
662 {
663 int ret;
664
665 ret = security_ops->mmap_file(file, reqprot, prot, flags);
666 if (ret)
667 return ret;
668 return ima_file_mmap(file, prot);
669 }
670
671 int security_mmap_addr(unsigned long addr)
672 {
673 return security_ops->mmap_addr(addr);
674 }
675
676 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
677 unsigned long prot)
678 {
679 return security_ops->file_mprotect(vma, reqprot, prot);
680 }
681
682 int security_file_lock(struct file *file, unsigned int cmd)
683 {
684 return security_ops->file_lock(file, cmd);
685 }
686
687 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
688 {
689 return security_ops->file_fcntl(file, cmd, arg);
690 }
691
692 int security_file_set_fowner(struct file *file)
693 {
694 return security_ops->file_set_fowner(file);
695 }
696
697 int security_file_send_sigiotask(struct task_struct *tsk,
698 struct fown_struct *fown, int sig)
699 {
700 return security_ops->file_send_sigiotask(tsk, fown, sig);
701 }
702
703 int security_file_receive(struct file *file)
704 {
705 return security_ops->file_receive(file);
706 }
707
708 int security_file_open(struct file *file, const struct cred *cred)
709 {
710 int ret;
711
712 ret = security_ops->file_open(file, cred);
713 if (ret)
714 return ret;
715
716 return fsnotify_perm(file, MAY_OPEN);
717 }
718
719 int security_task_create(unsigned long clone_flags)
720 {
721 return security_ops->task_create(clone_flags);
722 }
723
724 void security_task_free(struct task_struct *task)
725 {
726 security_ops->task_free(task);
727 }
728
729 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
730 {
731 return security_ops->cred_alloc_blank(cred, gfp);
732 }
733
734 void security_cred_free(struct cred *cred)
735 {
736 security_ops->cred_free(cred);
737 }
738
739 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
740 {
741 return security_ops->cred_prepare(new, old, gfp);
742 }
743
744 void security_transfer_creds(struct cred *new, const struct cred *old)
745 {
746 security_ops->cred_transfer(new, old);
747 }
748
749 int security_kernel_act_as(struct cred *new, u32 secid)
750 {
751 return security_ops->kernel_act_as(new, secid);
752 }
753
754 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
755 {
756 return security_ops->kernel_create_files_as(new, inode);
757 }
758
759 int security_kernel_module_request(char *kmod_name)
760 {
761 return security_ops->kernel_module_request(kmod_name);
762 }
763
764 int security_task_fix_setuid(struct cred *new, const struct cred *old,
765 int flags)
766 {
767 return security_ops->task_fix_setuid(new, old, flags);
768 }
769
770 int security_task_setpgid(struct task_struct *p, pid_t pgid)
771 {
772 return security_ops->task_setpgid(p, pgid);
773 }
774
775 int security_task_getpgid(struct task_struct *p)
776 {
777 return security_ops->task_getpgid(p);
778 }
779
780 int security_task_getsid(struct task_struct *p)
781 {
782 return security_ops->task_getsid(p);
783 }
784
785 void security_task_getsecid(struct task_struct *p, u32 *secid)
786 {
787 security_ops->task_getsecid(p, secid);
788 }
789 EXPORT_SYMBOL(security_task_getsecid);
790
791 int security_task_setnice(struct task_struct *p, int nice)
792 {
793 return security_ops->task_setnice(p, nice);
794 }
795
796 int security_task_setioprio(struct task_struct *p, int ioprio)
797 {
798 return security_ops->task_setioprio(p, ioprio);
799 }
800
801 int security_task_getioprio(struct task_struct *p)
802 {
803 return security_ops->task_getioprio(p);
804 }
805
806 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
807 struct rlimit *new_rlim)
808 {
809 return security_ops->task_setrlimit(p, resource, new_rlim);
810 }
811
812 int security_task_setscheduler(struct task_struct *p)
813 {
814 return security_ops->task_setscheduler(p);
815 }
816
817 int security_task_getscheduler(struct task_struct *p)
818 {
819 return security_ops->task_getscheduler(p);
820 }
821
822 int security_task_movememory(struct task_struct *p)
823 {
824 return security_ops->task_movememory(p);
825 }
826
827 int security_task_kill(struct task_struct *p, struct siginfo *info,
828 int sig, u32 secid)
829 {
830 return security_ops->task_kill(p, info, sig, secid);
831 }
832
833 int security_task_wait(struct task_struct *p)
834 {
835 return security_ops->task_wait(p);
836 }
837
838 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
839 unsigned long arg4, unsigned long arg5)
840 {
841 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
842 }
843
844 void security_task_to_inode(struct task_struct *p, struct inode *inode)
845 {
846 security_ops->task_to_inode(p, inode);
847 }
848
849 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
850 {
851 return security_ops->ipc_permission(ipcp, flag);
852 }
853
854 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
855 {
856 security_ops->ipc_getsecid(ipcp, secid);
857 }
858
859 int security_msg_msg_alloc(struct msg_msg *msg)
860 {
861 return security_ops->msg_msg_alloc_security(msg);
862 }
863
864 void security_msg_msg_free(struct msg_msg *msg)
865 {
866 security_ops->msg_msg_free_security(msg);
867 }
868
869 int security_msg_queue_alloc(struct msg_queue *msq)
870 {
871 return security_ops->msg_queue_alloc_security(msq);
872 }
873
874 void security_msg_queue_free(struct msg_queue *msq)
875 {
876 security_ops->msg_queue_free_security(msq);
877 }
878
879 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
880 {
881 return security_ops->msg_queue_associate(msq, msqflg);
882 }
883
884 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
885 {
886 return security_ops->msg_queue_msgctl(msq, cmd);
887 }
888
889 int security_msg_queue_msgsnd(struct msg_queue *msq,
890 struct msg_msg *msg, int msqflg)
891 {
892 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
893 }
894
895 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
896 struct task_struct *target, long type, int mode)
897 {
898 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
899 }
900
901 int security_shm_alloc(struct shmid_kernel *shp)
902 {
903 return security_ops->shm_alloc_security(shp);
904 }
905
906 void security_shm_free(struct shmid_kernel *shp)
907 {
908 security_ops->shm_free_security(shp);
909 }
910
911 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
912 {
913 return security_ops->shm_associate(shp, shmflg);
914 }
915
916 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
917 {
918 return security_ops->shm_shmctl(shp, cmd);
919 }
920
921 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
922 {
923 return security_ops->shm_shmat(shp, shmaddr, shmflg);
924 }
925
926 int security_sem_alloc(struct sem_array *sma)
927 {
928 return security_ops->sem_alloc_security(sma);
929 }
930
931 void security_sem_free(struct sem_array *sma)
932 {
933 security_ops->sem_free_security(sma);
934 }
935
936 int security_sem_associate(struct sem_array *sma, int semflg)
937 {
938 return security_ops->sem_associate(sma, semflg);
939 }
940
941 int security_sem_semctl(struct sem_array *sma, int cmd)
942 {
943 return security_ops->sem_semctl(sma, cmd);
944 }
945
946 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
947 unsigned nsops, int alter)
948 {
949 return security_ops->sem_semop(sma, sops, nsops, alter);
950 }
951
952 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
953 {
954 if (unlikely(inode && IS_PRIVATE(inode)))
955 return;
956 security_ops->d_instantiate(dentry, inode);
957 }
958 EXPORT_SYMBOL(security_d_instantiate);
959
960 int security_getprocattr(struct task_struct *p, char *name, char **value)
961 {
962 return security_ops->getprocattr(p, name, value);
963 }
964
965 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
966 {
967 return security_ops->setprocattr(p, name, value, size);
968 }
969
970 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
971 {
972 return security_ops->netlink_send(sk, skb);
973 }
974
975 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
976 {
977 return security_ops->secid_to_secctx(secid, secdata, seclen);
978 }
979 EXPORT_SYMBOL(security_secid_to_secctx);
980
981 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
982 {
983 return security_ops->secctx_to_secid(secdata, seclen, secid);
984 }
985 EXPORT_SYMBOL(security_secctx_to_secid);
986
987 void security_release_secctx(char *secdata, u32 seclen)
988 {
989 security_ops->release_secctx(secdata, seclen);
990 }
991 EXPORT_SYMBOL(security_release_secctx);
992
993 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
994 {
995 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
996 }
997 EXPORT_SYMBOL(security_inode_notifysecctx);
998
999 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1000 {
1001 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1002 }
1003 EXPORT_SYMBOL(security_inode_setsecctx);
1004
1005 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1006 {
1007 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1008 }
1009 EXPORT_SYMBOL(security_inode_getsecctx);
1010
1011 #ifdef CONFIG_SECURITY_NETWORK
1012
1013 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1014 {
1015 return security_ops->unix_stream_connect(sock, other, newsk);
1016 }
1017 EXPORT_SYMBOL(security_unix_stream_connect);
1018
1019 int security_unix_may_send(struct socket *sock, struct socket *other)
1020 {
1021 return security_ops->unix_may_send(sock, other);
1022 }
1023 EXPORT_SYMBOL(security_unix_may_send);
1024
1025 int security_socket_create(int family, int type, int protocol, int kern)
1026 {
1027 return security_ops->socket_create(family, type, protocol, kern);
1028 }
1029
1030 int security_socket_post_create(struct socket *sock, int family,
1031 int type, int protocol, int kern)
1032 {
1033 return security_ops->socket_post_create(sock, family, type,
1034 protocol, kern);
1035 }
1036
1037 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1038 {
1039 return security_ops->socket_bind(sock, address, addrlen);
1040 }
1041
1042 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1043 {
1044 return security_ops->socket_connect(sock, address, addrlen);
1045 }
1046
1047 int security_socket_listen(struct socket *sock, int backlog)
1048 {
1049 return security_ops->socket_listen(sock, backlog);
1050 }
1051
1052 int security_socket_accept(struct socket *sock, struct socket *newsock)
1053 {
1054 return security_ops->socket_accept(sock, newsock);
1055 }
1056
1057 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1058 {
1059 return security_ops->socket_sendmsg(sock, msg, size);
1060 }
1061
1062 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1063 int size, int flags)
1064 {
1065 return security_ops->socket_recvmsg(sock, msg, size, flags);
1066 }
1067
1068 int security_socket_getsockname(struct socket *sock)
1069 {
1070 return security_ops->socket_getsockname(sock);
1071 }
1072
1073 int security_socket_getpeername(struct socket *sock)
1074 {
1075 return security_ops->socket_getpeername(sock);
1076 }
1077
1078 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1079 {
1080 return security_ops->socket_getsockopt(sock, level, optname);
1081 }
1082
1083 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1084 {
1085 return security_ops->socket_setsockopt(sock, level, optname);
1086 }
1087
1088 int security_socket_shutdown(struct socket *sock, int how)
1089 {
1090 return security_ops->socket_shutdown(sock, how);
1091 }
1092
1093 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1094 {
1095 return security_ops->socket_sock_rcv_skb(sk, skb);
1096 }
1097 EXPORT_SYMBOL(security_sock_rcv_skb);
1098
1099 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1100 int __user *optlen, unsigned len)
1101 {
1102 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1103 }
1104
1105 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1106 {
1107 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1108 }
1109 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1110
1111 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1112 {
1113 return security_ops->sk_alloc_security(sk, family, priority);
1114 }
1115
1116 void security_sk_free(struct sock *sk)
1117 {
1118 security_ops->sk_free_security(sk);
1119 }
1120
1121 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1122 {
1123 security_ops->sk_clone_security(sk, newsk);
1124 }
1125 EXPORT_SYMBOL(security_sk_clone);
1126
1127 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1128 {
1129 security_ops->sk_getsecid(sk, &fl->flowi_secid);
1130 }
1131 EXPORT_SYMBOL(security_sk_classify_flow);
1132
1133 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1134 {
1135 security_ops->req_classify_flow(req, fl);
1136 }
1137 EXPORT_SYMBOL(security_req_classify_flow);
1138
1139 void security_sock_graft(struct sock *sk, struct socket *parent)
1140 {
1141 security_ops->sock_graft(sk, parent);
1142 }
1143 EXPORT_SYMBOL(security_sock_graft);
1144
1145 int security_inet_conn_request(struct sock *sk,
1146 struct sk_buff *skb, struct request_sock *req)
1147 {
1148 return security_ops->inet_conn_request(sk, skb, req);
1149 }
1150 EXPORT_SYMBOL(security_inet_conn_request);
1151
1152 void security_inet_csk_clone(struct sock *newsk,
1153 const struct request_sock *req)
1154 {
1155 security_ops->inet_csk_clone(newsk, req);
1156 }
1157
1158 void security_inet_conn_established(struct sock *sk,
1159 struct sk_buff *skb)
1160 {
1161 security_ops->inet_conn_established(sk, skb);
1162 }
1163
1164 int security_secmark_relabel_packet(u32 secid)
1165 {
1166 return security_ops->secmark_relabel_packet(secid);
1167 }
1168 EXPORT_SYMBOL(security_secmark_relabel_packet);
1169
1170 void security_secmark_refcount_inc(void)
1171 {
1172 security_ops->secmark_refcount_inc();
1173 }
1174 EXPORT_SYMBOL(security_secmark_refcount_inc);
1175
1176 void security_secmark_refcount_dec(void)
1177 {
1178 security_ops->secmark_refcount_dec();
1179 }
1180 EXPORT_SYMBOL(security_secmark_refcount_dec);
1181
1182 int security_tun_dev_create(void)
1183 {
1184 return security_ops->tun_dev_create();
1185 }
1186 EXPORT_SYMBOL(security_tun_dev_create);
1187
1188 void security_tun_dev_post_create(struct sock *sk)
1189 {
1190 return security_ops->tun_dev_post_create(sk);
1191 }
1192 EXPORT_SYMBOL(security_tun_dev_post_create);
1193
1194 int security_tun_dev_attach(struct sock *sk)
1195 {
1196 return security_ops->tun_dev_attach(sk);
1197 }
1198 EXPORT_SYMBOL(security_tun_dev_attach);
1199
1200 #endif /* CONFIG_SECURITY_NETWORK */
1201
1202 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1203
1204 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1205 {
1206 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1207 }
1208 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1209
1210 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1211 struct xfrm_sec_ctx **new_ctxp)
1212 {
1213 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1214 }
1215
1216 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1217 {
1218 security_ops->xfrm_policy_free_security(ctx);
1219 }
1220 EXPORT_SYMBOL(security_xfrm_policy_free);
1221
1222 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1223 {
1224 return security_ops->xfrm_policy_delete_security(ctx);
1225 }
1226
1227 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1228 {
1229 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1230 }
1231 EXPORT_SYMBOL(security_xfrm_state_alloc);
1232
1233 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1234 struct xfrm_sec_ctx *polsec, u32 secid)
1235 {
1236 if (!polsec)
1237 return 0;
1238 /*
1239 * We want the context to be taken from secid which is usually
1240 * from the sock.
1241 */
1242 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1243 }
1244
1245 int security_xfrm_state_delete(struct xfrm_state *x)
1246 {
1247 return security_ops->xfrm_state_delete_security(x);
1248 }
1249 EXPORT_SYMBOL(security_xfrm_state_delete);
1250
1251 void security_xfrm_state_free(struct xfrm_state *x)
1252 {
1253 security_ops->xfrm_state_free_security(x);
1254 }
1255
1256 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1257 {
1258 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1259 }
1260
1261 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1262 struct xfrm_policy *xp,
1263 const struct flowi *fl)
1264 {
1265 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1266 }
1267
1268 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1269 {
1270 return security_ops->xfrm_decode_session(skb, secid, 1);
1271 }
1272
1273 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1274 {
1275 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1276
1277 BUG_ON(rc);
1278 }
1279 EXPORT_SYMBOL(security_skb_classify_flow);
1280
1281 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1282
1283 #ifdef CONFIG_KEYS
1284
1285 int security_key_alloc(struct key *key, const struct cred *cred,
1286 unsigned long flags)
1287 {
1288 return security_ops->key_alloc(key, cred, flags);
1289 }
1290
1291 void security_key_free(struct key *key)
1292 {
1293 security_ops->key_free(key);
1294 }
1295
1296 int security_key_permission(key_ref_t key_ref,
1297 const struct cred *cred, key_perm_t perm)
1298 {
1299 return security_ops->key_permission(key_ref, cred, perm);
1300 }
1301
1302 int security_key_getsecurity(struct key *key, char **_buffer)
1303 {
1304 return security_ops->key_getsecurity(key, _buffer);
1305 }
1306
1307 #endif /* CONFIG_KEYS */
1308
1309 #ifdef CONFIG_AUDIT
1310
1311 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1312 {
1313 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1314 }
1315
1316 int security_audit_rule_known(struct audit_krule *krule)
1317 {
1318 return security_ops->audit_rule_known(krule);
1319 }
1320
1321 void security_audit_rule_free(void *lsmrule)
1322 {
1323 security_ops->audit_rule_free(lsmrule);
1324 }
1325
1326 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1327 struct audit_context *actx)
1328 {
1329 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1330 }
1331
1332 #endif /* CONFIG_AUDIT */