rtlwifi: Modify rtl_pci_init to return 0 on success
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22
23 #define MAX_LSM_EVM_XATTR 2
24
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27 CONFIG_DEFAULT_SECURITY;
28
29 static struct security_operations *security_ops;
30 static struct security_operations default_security_ops = {
31 .name = "default",
32 };
33
34 static inline int __init verify(struct security_operations *ops)
35 {
36 /* verify the security_operations structure exists */
37 if (!ops)
38 return -EINVAL;
39 security_fixup_ops(ops);
40 return 0;
41 }
42
43 static void __init do_security_initcalls(void)
44 {
45 initcall_t *call;
46 call = __security_initcall_start;
47 while (call < __security_initcall_end) {
48 (*call) ();
49 call++;
50 }
51 }
52
53 /**
54 * security_init - initializes the security framework
55 *
56 * This should be called early in the kernel initialization sequence.
57 */
58 int __init security_init(void)
59 {
60 printk(KERN_INFO "Security Framework initialized\n");
61
62 security_fixup_ops(&default_security_ops);
63 security_ops = &default_security_ops;
64 do_security_initcalls();
65
66 return 0;
67 }
68
69 void reset_security_ops(void)
70 {
71 security_ops = &default_security_ops;
72 }
73
74 /* Save user chosen LSM */
75 static int __init choose_lsm(char *str)
76 {
77 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
78 return 1;
79 }
80 __setup("security=", choose_lsm);
81
82 /**
83 * security_module_enable - Load given security module on boot ?
84 * @ops: a pointer to the struct security_operations that is to be checked.
85 *
86 * Each LSM must pass this method before registering its own operations
87 * to avoid security registration races. This method may also be used
88 * to check if your LSM is currently loaded during kernel initialization.
89 *
90 * Return true if:
91 * -The passed LSM is the one chosen by user at boot time,
92 * -or the passed LSM is configured as the default and the user did not
93 * choose an alternate LSM at boot time.
94 * Otherwise, return false.
95 */
96 int __init security_module_enable(struct security_operations *ops)
97 {
98 return !strcmp(ops->name, chosen_lsm);
99 }
100
101 /**
102 * register_security - registers a security framework with the kernel
103 * @ops: a pointer to the struct security_options that is to be registered
104 *
105 * This function allows a security module to register itself with the
106 * kernel security subsystem. Some rudimentary checking is done on the @ops
107 * value passed to this function. You'll need to check first if your LSM
108 * is allowed to register its @ops by calling security_module_enable(@ops).
109 *
110 * If there is already a security module registered with the kernel,
111 * an error will be returned. Otherwise %0 is returned on success.
112 */
113 int __init register_security(struct security_operations *ops)
114 {
115 if (verify(ops)) {
116 printk(KERN_DEBUG "%s could not verify "
117 "security_operations structure.\n", __func__);
118 return -EINVAL;
119 }
120
121 if (security_ops != &default_security_ops)
122 return -EAGAIN;
123
124 security_ops = ops;
125
126 return 0;
127 }
128
129 /* Security operations */
130
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133 return security_ops->ptrace_access_check(child, mode);
134 }
135
136 int security_ptrace_traceme(struct task_struct *parent)
137 {
138 return security_ops->ptrace_traceme(parent);
139 }
140
141 int security_capget(struct task_struct *target,
142 kernel_cap_t *effective,
143 kernel_cap_t *inheritable,
144 kernel_cap_t *permitted)
145 {
146 return security_ops->capget(target, effective, inheritable, permitted);
147 }
148
149 int security_capset(struct cred *new, const struct cred *old,
150 const kernel_cap_t *effective,
151 const kernel_cap_t *inheritable,
152 const kernel_cap_t *permitted)
153 {
154 return security_ops->capset(new, old,
155 effective, inheritable, permitted);
156 }
157
158 int security_capable(struct user_namespace *ns, const struct cred *cred,
159 int cap)
160 {
161 return security_ops->capable(current, cred, ns, cap,
162 SECURITY_CAP_AUDIT);
163 }
164
165 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
166 int cap)
167 {
168 const struct cred *cred;
169 int ret;
170
171 cred = get_task_cred(tsk);
172 ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
173 put_cred(cred);
174 return ret;
175 }
176
177 int security_real_capable_noaudit(struct task_struct *tsk,
178 struct user_namespace *ns, int cap)
179 {
180 const struct cred *cred;
181 int ret;
182
183 cred = get_task_cred(tsk);
184 ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
185 put_cred(cred);
186 return ret;
187 }
188
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191 return security_ops->quotactl(cmds, type, id, sb);
192 }
193
194 int security_quota_on(struct dentry *dentry)
195 {
196 return security_ops->quota_on(dentry);
197 }
198
199 int security_syslog(int type)
200 {
201 return security_ops->syslog(type);
202 }
203
204 int security_settime(const struct timespec *ts, const struct timezone *tz)
205 {
206 return security_ops->settime(ts, tz);
207 }
208
209 int security_vm_enough_memory(long pages)
210 {
211 WARN_ON(current->mm == NULL);
212 return security_ops->vm_enough_memory(current->mm, pages);
213 }
214
215 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
216 {
217 WARN_ON(mm == NULL);
218 return security_ops->vm_enough_memory(mm, pages);
219 }
220
221 int security_vm_enough_memory_kern(long pages)
222 {
223 /* If current->mm is a kernel thread then we will pass NULL,
224 for this specific case that is fine */
225 return security_ops->vm_enough_memory(current->mm, pages);
226 }
227
228 int security_bprm_set_creds(struct linux_binprm *bprm)
229 {
230 return security_ops->bprm_set_creds(bprm);
231 }
232
233 int security_bprm_check(struct linux_binprm *bprm)
234 {
235 int ret;
236
237 ret = security_ops->bprm_check_security(bprm);
238 if (ret)
239 return ret;
240 return ima_bprm_check(bprm);
241 }
242
243 void security_bprm_committing_creds(struct linux_binprm *bprm)
244 {
245 security_ops->bprm_committing_creds(bprm);
246 }
247
248 void security_bprm_committed_creds(struct linux_binprm *bprm)
249 {
250 security_ops->bprm_committed_creds(bprm);
251 }
252
253 int security_bprm_secureexec(struct linux_binprm *bprm)
254 {
255 return security_ops->bprm_secureexec(bprm);
256 }
257
258 int security_sb_alloc(struct super_block *sb)
259 {
260 return security_ops->sb_alloc_security(sb);
261 }
262
263 void security_sb_free(struct super_block *sb)
264 {
265 security_ops->sb_free_security(sb);
266 }
267
268 int security_sb_copy_data(char *orig, char *copy)
269 {
270 return security_ops->sb_copy_data(orig, copy);
271 }
272 EXPORT_SYMBOL(security_sb_copy_data);
273
274 int security_sb_remount(struct super_block *sb, void *data)
275 {
276 return security_ops->sb_remount(sb, data);
277 }
278
279 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
280 {
281 return security_ops->sb_kern_mount(sb, flags, data);
282 }
283
284 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
285 {
286 return security_ops->sb_show_options(m, sb);
287 }
288
289 int security_sb_statfs(struct dentry *dentry)
290 {
291 return security_ops->sb_statfs(dentry);
292 }
293
294 int security_sb_mount(char *dev_name, struct path *path,
295 char *type, unsigned long flags, void *data)
296 {
297 return security_ops->sb_mount(dev_name, path, type, flags, data);
298 }
299
300 int security_sb_umount(struct vfsmount *mnt, int flags)
301 {
302 return security_ops->sb_umount(mnt, flags);
303 }
304
305 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
306 {
307 return security_ops->sb_pivotroot(old_path, new_path);
308 }
309
310 int security_sb_set_mnt_opts(struct super_block *sb,
311 struct security_mnt_opts *opts)
312 {
313 return security_ops->sb_set_mnt_opts(sb, opts);
314 }
315 EXPORT_SYMBOL(security_sb_set_mnt_opts);
316
317 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
318 struct super_block *newsb)
319 {
320 security_ops->sb_clone_mnt_opts(oldsb, newsb);
321 }
322 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
323
324 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
325 {
326 return security_ops->sb_parse_opts_str(options, opts);
327 }
328 EXPORT_SYMBOL(security_sb_parse_opts_str);
329
330 int security_inode_alloc(struct inode *inode)
331 {
332 inode->i_security = NULL;
333 return security_ops->inode_alloc_security(inode);
334 }
335
336 void security_inode_free(struct inode *inode)
337 {
338 integrity_inode_free(inode);
339 security_ops->inode_free_security(inode);
340 }
341
342 int security_inode_init_security(struct inode *inode, struct inode *dir,
343 const struct qstr *qstr,
344 const initxattrs initxattrs, void *fs_data)
345 {
346 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
347 struct xattr *lsm_xattr, *evm_xattr, *xattr;
348 int ret;
349
350 if (unlikely(IS_PRIVATE(inode)))
351 return 0;
352
353 memset(new_xattrs, 0, sizeof new_xattrs);
354 if (!initxattrs)
355 return security_ops->inode_init_security(inode, dir, qstr,
356 NULL, NULL, NULL);
357 lsm_xattr = new_xattrs;
358 ret = security_ops->inode_init_security(inode, dir, qstr,
359 &lsm_xattr->name,
360 &lsm_xattr->value,
361 &lsm_xattr->value_len);
362 if (ret)
363 goto out;
364
365 evm_xattr = lsm_xattr + 1;
366 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
367 if (ret)
368 goto out;
369 ret = initxattrs(inode, new_xattrs, fs_data);
370 out:
371 for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
372 kfree(xattr->name);
373 kfree(xattr->value);
374 }
375 return (ret == -EOPNOTSUPP) ? 0 : ret;
376 }
377 EXPORT_SYMBOL(security_inode_init_security);
378
379 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
380 const struct qstr *qstr, char **name,
381 void **value, size_t *len)
382 {
383 if (unlikely(IS_PRIVATE(inode)))
384 return -EOPNOTSUPP;
385 return security_ops->inode_init_security(inode, dir, qstr, name, value,
386 len);
387 }
388 EXPORT_SYMBOL(security_old_inode_init_security);
389
390 #ifdef CONFIG_SECURITY_PATH
391 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
392 unsigned int dev)
393 {
394 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
395 return 0;
396 return security_ops->path_mknod(dir, dentry, mode, dev);
397 }
398 EXPORT_SYMBOL(security_path_mknod);
399
400 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
401 {
402 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403 return 0;
404 return security_ops->path_mkdir(dir, dentry, mode);
405 }
406 EXPORT_SYMBOL(security_path_mkdir);
407
408 int security_path_rmdir(struct path *dir, struct dentry *dentry)
409 {
410 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
411 return 0;
412 return security_ops->path_rmdir(dir, dentry);
413 }
414
415 int security_path_unlink(struct path *dir, struct dentry *dentry)
416 {
417 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
418 return 0;
419 return security_ops->path_unlink(dir, dentry);
420 }
421 EXPORT_SYMBOL(security_path_unlink);
422
423 int security_path_symlink(struct path *dir, struct dentry *dentry,
424 const char *old_name)
425 {
426 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
427 return 0;
428 return security_ops->path_symlink(dir, dentry, old_name);
429 }
430
431 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
432 struct dentry *new_dentry)
433 {
434 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
435 return 0;
436 return security_ops->path_link(old_dentry, new_dir, new_dentry);
437 }
438
439 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
440 struct path *new_dir, struct dentry *new_dentry)
441 {
442 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
443 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
444 return 0;
445 return security_ops->path_rename(old_dir, old_dentry, new_dir,
446 new_dentry);
447 }
448 EXPORT_SYMBOL(security_path_rename);
449
450 int security_path_truncate(struct path *path)
451 {
452 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
453 return 0;
454 return security_ops->path_truncate(path);
455 }
456
457 int security_path_chmod(struct path *path, umode_t mode)
458 {
459 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
460 return 0;
461 return security_ops->path_chmod(path, mode);
462 }
463
464 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
465 {
466 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
467 return 0;
468 return security_ops->path_chown(path, uid, gid);
469 }
470
471 int security_path_chroot(struct path *path)
472 {
473 return security_ops->path_chroot(path);
474 }
475 #endif
476
477 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
478 {
479 if (unlikely(IS_PRIVATE(dir)))
480 return 0;
481 return security_ops->inode_create(dir, dentry, mode);
482 }
483 EXPORT_SYMBOL_GPL(security_inode_create);
484
485 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
486 struct dentry *new_dentry)
487 {
488 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
489 return 0;
490 return security_ops->inode_link(old_dentry, dir, new_dentry);
491 }
492
493 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
494 {
495 if (unlikely(IS_PRIVATE(dentry->d_inode)))
496 return 0;
497 return security_ops->inode_unlink(dir, dentry);
498 }
499
500 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
501 const char *old_name)
502 {
503 if (unlikely(IS_PRIVATE(dir)))
504 return 0;
505 return security_ops->inode_symlink(dir, dentry, old_name);
506 }
507
508 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
509 {
510 if (unlikely(IS_PRIVATE(dir)))
511 return 0;
512 return security_ops->inode_mkdir(dir, dentry, mode);
513 }
514 EXPORT_SYMBOL_GPL(security_inode_mkdir);
515
516 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
517 {
518 if (unlikely(IS_PRIVATE(dentry->d_inode)))
519 return 0;
520 return security_ops->inode_rmdir(dir, dentry);
521 }
522
523 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
524 {
525 if (unlikely(IS_PRIVATE(dir)))
526 return 0;
527 return security_ops->inode_mknod(dir, dentry, mode, dev);
528 }
529
530 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
531 struct inode *new_dir, struct dentry *new_dentry)
532 {
533 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
534 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
535 return 0;
536 return security_ops->inode_rename(old_dir, old_dentry,
537 new_dir, new_dentry);
538 }
539
540 int security_inode_readlink(struct dentry *dentry)
541 {
542 if (unlikely(IS_PRIVATE(dentry->d_inode)))
543 return 0;
544 return security_ops->inode_readlink(dentry);
545 }
546
547 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
548 {
549 if (unlikely(IS_PRIVATE(dentry->d_inode)))
550 return 0;
551 return security_ops->inode_follow_link(dentry, nd);
552 }
553
554 int security_inode_permission(struct inode *inode, int mask)
555 {
556 if (unlikely(IS_PRIVATE(inode)))
557 return 0;
558 return security_ops->inode_permission(inode, mask);
559 }
560
561 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
562 {
563 int ret;
564
565 if (unlikely(IS_PRIVATE(dentry->d_inode)))
566 return 0;
567 ret = security_ops->inode_setattr(dentry, attr);
568 if (ret)
569 return ret;
570 return evm_inode_setattr(dentry, attr);
571 }
572 EXPORT_SYMBOL_GPL(security_inode_setattr);
573
574 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
575 {
576 if (unlikely(IS_PRIVATE(dentry->d_inode)))
577 return 0;
578 return security_ops->inode_getattr(mnt, dentry);
579 }
580
581 int security_inode_setxattr(struct dentry *dentry, const char *name,
582 const void *value, size_t size, int flags)
583 {
584 int ret;
585
586 if (unlikely(IS_PRIVATE(dentry->d_inode)))
587 return 0;
588 ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
589 if (ret)
590 return ret;
591 return evm_inode_setxattr(dentry, name, value, size);
592 }
593
594 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
595 const void *value, size_t size, int flags)
596 {
597 if (unlikely(IS_PRIVATE(dentry->d_inode)))
598 return;
599 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
600 evm_inode_post_setxattr(dentry, name, value, size);
601 }
602
603 int security_inode_getxattr(struct dentry *dentry, const char *name)
604 {
605 if (unlikely(IS_PRIVATE(dentry->d_inode)))
606 return 0;
607 return security_ops->inode_getxattr(dentry, name);
608 }
609
610 int security_inode_listxattr(struct dentry *dentry)
611 {
612 if (unlikely(IS_PRIVATE(dentry->d_inode)))
613 return 0;
614 return security_ops->inode_listxattr(dentry);
615 }
616
617 int security_inode_removexattr(struct dentry *dentry, const char *name)
618 {
619 int ret;
620
621 if (unlikely(IS_PRIVATE(dentry->d_inode)))
622 return 0;
623 ret = security_ops->inode_removexattr(dentry, name);
624 if (ret)
625 return ret;
626 return evm_inode_removexattr(dentry, name);
627 }
628
629 int security_inode_need_killpriv(struct dentry *dentry)
630 {
631 return security_ops->inode_need_killpriv(dentry);
632 }
633
634 int security_inode_killpriv(struct dentry *dentry)
635 {
636 return security_ops->inode_killpriv(dentry);
637 }
638
639 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
640 {
641 if (unlikely(IS_PRIVATE(inode)))
642 return -EOPNOTSUPP;
643 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
644 }
645
646 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
647 {
648 if (unlikely(IS_PRIVATE(inode)))
649 return -EOPNOTSUPP;
650 return security_ops->inode_setsecurity(inode, name, value, size, flags);
651 }
652
653 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
654 {
655 if (unlikely(IS_PRIVATE(inode)))
656 return 0;
657 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
658 }
659
660 void security_inode_getsecid(const struct inode *inode, u32 *secid)
661 {
662 security_ops->inode_getsecid(inode, secid);
663 }
664
665 int security_file_permission(struct file *file, int mask)
666 {
667 int ret;
668
669 ret = security_ops->file_permission(file, mask);
670 if (ret)
671 return ret;
672
673 return fsnotify_perm(file, mask);
674 }
675
676 int security_file_alloc(struct file *file)
677 {
678 return security_ops->file_alloc_security(file);
679 }
680
681 void security_file_free(struct file *file)
682 {
683 security_ops->file_free_security(file);
684 }
685
686 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
687 {
688 return security_ops->file_ioctl(file, cmd, arg);
689 }
690
691 int security_file_mmap(struct file *file, unsigned long reqprot,
692 unsigned long prot, unsigned long flags,
693 unsigned long addr, unsigned long addr_only)
694 {
695 int ret;
696
697 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
698 if (ret)
699 return ret;
700 return ima_file_mmap(file, prot);
701 }
702
703 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
704 unsigned long prot)
705 {
706 return security_ops->file_mprotect(vma, reqprot, prot);
707 }
708
709 int security_file_lock(struct file *file, unsigned int cmd)
710 {
711 return security_ops->file_lock(file, cmd);
712 }
713
714 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
715 {
716 return security_ops->file_fcntl(file, cmd, arg);
717 }
718
719 int security_file_set_fowner(struct file *file)
720 {
721 return security_ops->file_set_fowner(file);
722 }
723
724 int security_file_send_sigiotask(struct task_struct *tsk,
725 struct fown_struct *fown, int sig)
726 {
727 return security_ops->file_send_sigiotask(tsk, fown, sig);
728 }
729
730 int security_file_receive(struct file *file)
731 {
732 return security_ops->file_receive(file);
733 }
734
735 int security_dentry_open(struct file *file, const struct cred *cred)
736 {
737 int ret;
738
739 ret = security_ops->dentry_open(file, cred);
740 if (ret)
741 return ret;
742
743 return fsnotify_perm(file, MAY_OPEN);
744 }
745
746 int security_task_create(unsigned long clone_flags)
747 {
748 return security_ops->task_create(clone_flags);
749 }
750
751 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
752 {
753 return security_ops->cred_alloc_blank(cred, gfp);
754 }
755
756 void security_cred_free(struct cred *cred)
757 {
758 security_ops->cred_free(cred);
759 }
760
761 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
762 {
763 return security_ops->cred_prepare(new, old, gfp);
764 }
765
766 void security_transfer_creds(struct cred *new, const struct cred *old)
767 {
768 security_ops->cred_transfer(new, old);
769 }
770
771 int security_kernel_act_as(struct cred *new, u32 secid)
772 {
773 return security_ops->kernel_act_as(new, secid);
774 }
775
776 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
777 {
778 return security_ops->kernel_create_files_as(new, inode);
779 }
780
781 int security_kernel_module_request(char *kmod_name)
782 {
783 return security_ops->kernel_module_request(kmod_name);
784 }
785
786 int security_task_fix_setuid(struct cred *new, const struct cred *old,
787 int flags)
788 {
789 return security_ops->task_fix_setuid(new, old, flags);
790 }
791
792 int security_task_setpgid(struct task_struct *p, pid_t pgid)
793 {
794 return security_ops->task_setpgid(p, pgid);
795 }
796
797 int security_task_getpgid(struct task_struct *p)
798 {
799 return security_ops->task_getpgid(p);
800 }
801
802 int security_task_getsid(struct task_struct *p)
803 {
804 return security_ops->task_getsid(p);
805 }
806
807 void security_task_getsecid(struct task_struct *p, u32 *secid)
808 {
809 security_ops->task_getsecid(p, secid);
810 }
811 EXPORT_SYMBOL(security_task_getsecid);
812
813 int security_task_setnice(struct task_struct *p, int nice)
814 {
815 return security_ops->task_setnice(p, nice);
816 }
817
818 int security_task_setioprio(struct task_struct *p, int ioprio)
819 {
820 return security_ops->task_setioprio(p, ioprio);
821 }
822
823 int security_task_getioprio(struct task_struct *p)
824 {
825 return security_ops->task_getioprio(p);
826 }
827
828 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
829 struct rlimit *new_rlim)
830 {
831 return security_ops->task_setrlimit(p, resource, new_rlim);
832 }
833
834 int security_task_setscheduler(struct task_struct *p)
835 {
836 return security_ops->task_setscheduler(p);
837 }
838
839 int security_task_getscheduler(struct task_struct *p)
840 {
841 return security_ops->task_getscheduler(p);
842 }
843
844 int security_task_movememory(struct task_struct *p)
845 {
846 return security_ops->task_movememory(p);
847 }
848
849 int security_task_kill(struct task_struct *p, struct siginfo *info,
850 int sig, u32 secid)
851 {
852 return security_ops->task_kill(p, info, sig, secid);
853 }
854
855 int security_task_wait(struct task_struct *p)
856 {
857 return security_ops->task_wait(p);
858 }
859
860 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
861 unsigned long arg4, unsigned long arg5)
862 {
863 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
864 }
865
866 void security_task_to_inode(struct task_struct *p, struct inode *inode)
867 {
868 security_ops->task_to_inode(p, inode);
869 }
870
871 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
872 {
873 return security_ops->ipc_permission(ipcp, flag);
874 }
875
876 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
877 {
878 security_ops->ipc_getsecid(ipcp, secid);
879 }
880
881 int security_msg_msg_alloc(struct msg_msg *msg)
882 {
883 return security_ops->msg_msg_alloc_security(msg);
884 }
885
886 void security_msg_msg_free(struct msg_msg *msg)
887 {
888 security_ops->msg_msg_free_security(msg);
889 }
890
891 int security_msg_queue_alloc(struct msg_queue *msq)
892 {
893 return security_ops->msg_queue_alloc_security(msq);
894 }
895
896 void security_msg_queue_free(struct msg_queue *msq)
897 {
898 security_ops->msg_queue_free_security(msq);
899 }
900
901 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
902 {
903 return security_ops->msg_queue_associate(msq, msqflg);
904 }
905
906 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
907 {
908 return security_ops->msg_queue_msgctl(msq, cmd);
909 }
910
911 int security_msg_queue_msgsnd(struct msg_queue *msq,
912 struct msg_msg *msg, int msqflg)
913 {
914 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
915 }
916
917 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
918 struct task_struct *target, long type, int mode)
919 {
920 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
921 }
922
923 int security_shm_alloc(struct shmid_kernel *shp)
924 {
925 return security_ops->shm_alloc_security(shp);
926 }
927
928 void security_shm_free(struct shmid_kernel *shp)
929 {
930 security_ops->shm_free_security(shp);
931 }
932
933 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
934 {
935 return security_ops->shm_associate(shp, shmflg);
936 }
937
938 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
939 {
940 return security_ops->shm_shmctl(shp, cmd);
941 }
942
943 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
944 {
945 return security_ops->shm_shmat(shp, shmaddr, shmflg);
946 }
947
948 int security_sem_alloc(struct sem_array *sma)
949 {
950 return security_ops->sem_alloc_security(sma);
951 }
952
953 void security_sem_free(struct sem_array *sma)
954 {
955 security_ops->sem_free_security(sma);
956 }
957
958 int security_sem_associate(struct sem_array *sma, int semflg)
959 {
960 return security_ops->sem_associate(sma, semflg);
961 }
962
963 int security_sem_semctl(struct sem_array *sma, int cmd)
964 {
965 return security_ops->sem_semctl(sma, cmd);
966 }
967
968 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
969 unsigned nsops, int alter)
970 {
971 return security_ops->sem_semop(sma, sops, nsops, alter);
972 }
973
974 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
975 {
976 if (unlikely(inode && IS_PRIVATE(inode)))
977 return;
978 security_ops->d_instantiate(dentry, inode);
979 }
980 EXPORT_SYMBOL(security_d_instantiate);
981
982 int security_getprocattr(struct task_struct *p, char *name, char **value)
983 {
984 return security_ops->getprocattr(p, name, value);
985 }
986
987 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
988 {
989 return security_ops->setprocattr(p, name, value, size);
990 }
991
992 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
993 {
994 return security_ops->netlink_send(sk, skb);
995 }
996
997 int security_netlink_recv(struct sk_buff *skb, int cap)
998 {
999 return security_ops->netlink_recv(skb, cap);
1000 }
1001 EXPORT_SYMBOL(security_netlink_recv);
1002
1003 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1004 {
1005 return security_ops->secid_to_secctx(secid, secdata, seclen);
1006 }
1007 EXPORT_SYMBOL(security_secid_to_secctx);
1008
1009 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1010 {
1011 return security_ops->secctx_to_secid(secdata, seclen, secid);
1012 }
1013 EXPORT_SYMBOL(security_secctx_to_secid);
1014
1015 void security_release_secctx(char *secdata, u32 seclen)
1016 {
1017 security_ops->release_secctx(secdata, seclen);
1018 }
1019 EXPORT_SYMBOL(security_release_secctx);
1020
1021 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1022 {
1023 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1024 }
1025 EXPORT_SYMBOL(security_inode_notifysecctx);
1026
1027 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1028 {
1029 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1030 }
1031 EXPORT_SYMBOL(security_inode_setsecctx);
1032
1033 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1034 {
1035 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1036 }
1037 EXPORT_SYMBOL(security_inode_getsecctx);
1038
1039 #ifdef CONFIG_SECURITY_NETWORK
1040
1041 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1042 {
1043 return security_ops->unix_stream_connect(sock, other, newsk);
1044 }
1045 EXPORT_SYMBOL(security_unix_stream_connect);
1046
1047 int security_unix_may_send(struct socket *sock, struct socket *other)
1048 {
1049 return security_ops->unix_may_send(sock, other);
1050 }
1051 EXPORT_SYMBOL(security_unix_may_send);
1052
1053 int security_socket_create(int family, int type, int protocol, int kern)
1054 {
1055 return security_ops->socket_create(family, type, protocol, kern);
1056 }
1057
1058 int security_socket_post_create(struct socket *sock, int family,
1059 int type, int protocol, int kern)
1060 {
1061 return security_ops->socket_post_create(sock, family, type,
1062 protocol, kern);
1063 }
1064
1065 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1066 {
1067 return security_ops->socket_bind(sock, address, addrlen);
1068 }
1069
1070 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1071 {
1072 return security_ops->socket_connect(sock, address, addrlen);
1073 }
1074
1075 int security_socket_listen(struct socket *sock, int backlog)
1076 {
1077 return security_ops->socket_listen(sock, backlog);
1078 }
1079
1080 int security_socket_accept(struct socket *sock, struct socket *newsock)
1081 {
1082 return security_ops->socket_accept(sock, newsock);
1083 }
1084
1085 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1086 {
1087 return security_ops->socket_sendmsg(sock, msg, size);
1088 }
1089
1090 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1091 int size, int flags)
1092 {
1093 return security_ops->socket_recvmsg(sock, msg, size, flags);
1094 }
1095
1096 int security_socket_getsockname(struct socket *sock)
1097 {
1098 return security_ops->socket_getsockname(sock);
1099 }
1100
1101 int security_socket_getpeername(struct socket *sock)
1102 {
1103 return security_ops->socket_getpeername(sock);
1104 }
1105
1106 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1107 {
1108 return security_ops->socket_getsockopt(sock, level, optname);
1109 }
1110
1111 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1112 {
1113 return security_ops->socket_setsockopt(sock, level, optname);
1114 }
1115
1116 int security_socket_shutdown(struct socket *sock, int how)
1117 {
1118 return security_ops->socket_shutdown(sock, how);
1119 }
1120
1121 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1122 {
1123 return security_ops->socket_sock_rcv_skb(sk, skb);
1124 }
1125 EXPORT_SYMBOL(security_sock_rcv_skb);
1126
1127 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1128 int __user *optlen, unsigned len)
1129 {
1130 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1131 }
1132
1133 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1134 {
1135 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1136 }
1137 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1138
1139 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1140 {
1141 return security_ops->sk_alloc_security(sk, family, priority);
1142 }
1143
1144 void security_sk_free(struct sock *sk)
1145 {
1146 security_ops->sk_free_security(sk);
1147 }
1148
1149 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1150 {
1151 security_ops->sk_clone_security(sk, newsk);
1152 }
1153 EXPORT_SYMBOL(security_sk_clone);
1154
1155 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1156 {
1157 security_ops->sk_getsecid(sk, &fl->flowi_secid);
1158 }
1159 EXPORT_SYMBOL(security_sk_classify_flow);
1160
1161 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1162 {
1163 security_ops->req_classify_flow(req, fl);
1164 }
1165 EXPORT_SYMBOL(security_req_classify_flow);
1166
1167 void security_sock_graft(struct sock *sk, struct socket *parent)
1168 {
1169 security_ops->sock_graft(sk, parent);
1170 }
1171 EXPORT_SYMBOL(security_sock_graft);
1172
1173 int security_inet_conn_request(struct sock *sk,
1174 struct sk_buff *skb, struct request_sock *req)
1175 {
1176 return security_ops->inet_conn_request(sk, skb, req);
1177 }
1178 EXPORT_SYMBOL(security_inet_conn_request);
1179
1180 void security_inet_csk_clone(struct sock *newsk,
1181 const struct request_sock *req)
1182 {
1183 security_ops->inet_csk_clone(newsk, req);
1184 }
1185
1186 void security_inet_conn_established(struct sock *sk,
1187 struct sk_buff *skb)
1188 {
1189 security_ops->inet_conn_established(sk, skb);
1190 }
1191
1192 int security_secmark_relabel_packet(u32 secid)
1193 {
1194 return security_ops->secmark_relabel_packet(secid);
1195 }
1196 EXPORT_SYMBOL(security_secmark_relabel_packet);
1197
1198 void security_secmark_refcount_inc(void)
1199 {
1200 security_ops->secmark_refcount_inc();
1201 }
1202 EXPORT_SYMBOL(security_secmark_refcount_inc);
1203
1204 void security_secmark_refcount_dec(void)
1205 {
1206 security_ops->secmark_refcount_dec();
1207 }
1208 EXPORT_SYMBOL(security_secmark_refcount_dec);
1209
1210 int security_tun_dev_create(void)
1211 {
1212 return security_ops->tun_dev_create();
1213 }
1214 EXPORT_SYMBOL(security_tun_dev_create);
1215
1216 void security_tun_dev_post_create(struct sock *sk)
1217 {
1218 return security_ops->tun_dev_post_create(sk);
1219 }
1220 EXPORT_SYMBOL(security_tun_dev_post_create);
1221
1222 int security_tun_dev_attach(struct sock *sk)
1223 {
1224 return security_ops->tun_dev_attach(sk);
1225 }
1226 EXPORT_SYMBOL(security_tun_dev_attach);
1227
1228 #endif /* CONFIG_SECURITY_NETWORK */
1229
1230 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1231
1232 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1233 {
1234 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1235 }
1236 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1237
1238 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1239 struct xfrm_sec_ctx **new_ctxp)
1240 {
1241 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1242 }
1243
1244 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1245 {
1246 security_ops->xfrm_policy_free_security(ctx);
1247 }
1248 EXPORT_SYMBOL(security_xfrm_policy_free);
1249
1250 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1251 {
1252 return security_ops->xfrm_policy_delete_security(ctx);
1253 }
1254
1255 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1256 {
1257 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1258 }
1259 EXPORT_SYMBOL(security_xfrm_state_alloc);
1260
1261 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1262 struct xfrm_sec_ctx *polsec, u32 secid)
1263 {
1264 if (!polsec)
1265 return 0;
1266 /*
1267 * We want the context to be taken from secid which is usually
1268 * from the sock.
1269 */
1270 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1271 }
1272
1273 int security_xfrm_state_delete(struct xfrm_state *x)
1274 {
1275 return security_ops->xfrm_state_delete_security(x);
1276 }
1277 EXPORT_SYMBOL(security_xfrm_state_delete);
1278
1279 void security_xfrm_state_free(struct xfrm_state *x)
1280 {
1281 security_ops->xfrm_state_free_security(x);
1282 }
1283
1284 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1285 {
1286 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1287 }
1288
1289 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1290 struct xfrm_policy *xp,
1291 const struct flowi *fl)
1292 {
1293 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1294 }
1295
1296 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1297 {
1298 return security_ops->xfrm_decode_session(skb, secid, 1);
1299 }
1300
1301 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1302 {
1303 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1304
1305 BUG_ON(rc);
1306 }
1307 EXPORT_SYMBOL(security_skb_classify_flow);
1308
1309 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1310
1311 #ifdef CONFIG_KEYS
1312
1313 int security_key_alloc(struct key *key, const struct cred *cred,
1314 unsigned long flags)
1315 {
1316 return security_ops->key_alloc(key, cred, flags);
1317 }
1318
1319 void security_key_free(struct key *key)
1320 {
1321 security_ops->key_free(key);
1322 }
1323
1324 int security_key_permission(key_ref_t key_ref,
1325 const struct cred *cred, key_perm_t perm)
1326 {
1327 return security_ops->key_permission(key_ref, cred, perm);
1328 }
1329
1330 int security_key_getsecurity(struct key *key, char **_buffer)
1331 {
1332 return security_ops->key_getsecurity(key, _buffer);
1333 }
1334
1335 #endif /* CONFIG_KEYS */
1336
1337 #ifdef CONFIG_AUDIT
1338
1339 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1340 {
1341 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1342 }
1343
1344 int security_audit_rule_known(struct audit_krule *krule)
1345 {
1346 return security_ops->audit_rule_known(krule);
1347 }
1348
1349 void security_audit_rule_free(void *lsmrule)
1350 {
1351 security_ops->audit_rule_free(lsmrule);
1352 }
1353
1354 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1355 struct audit_context *actx)
1356 {
1357 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1358 }
1359
1360 #endif /* CONFIG_AUDIT */