userns: security: make capabilities relative to the user namespace
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / security / commoncap.c
1 /* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31
32 /*
33 * If a non-root user executes a setuid-root binary in
34 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
35 * However if fE is also set, then the intent is for only
36 * the file capabilities to be applied, and the setuid-root
37 * bit is left on either to change the uid (plausible) or
38 * to get full privilege on a kernel without file capabilities
39 * support. So in that case we do not raise capabilities.
40 *
41 * Warn if that happens, once per boot.
42 */
43 static void warn_setuid_and_fcaps_mixed(const char *fname)
44 {
45 static int warned;
46 if (!warned) {
47 printk(KERN_INFO "warning: `%s' has both setuid-root and"
48 " effective capabilities. Therefore not raising all"
49 " capabilities.\n", fname);
50 warned = 1;
51 }
52 }
53
54 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
55 {
56 return 0;
57 }
58
59 int cap_netlink_recv(struct sk_buff *skb, int cap)
60 {
61 if (!cap_raised(current_cap(), cap))
62 return -EPERM;
63 return 0;
64 }
65 EXPORT_SYMBOL(cap_netlink_recv);
66
67 /**
68 * cap_capable - Determine whether a task has a particular effective capability
69 * @tsk: The task to query
70 * @cred: The credentials to use
71 * @ns: The user namespace in which we need the capability
72 * @cap: The capability to check for
73 * @audit: Whether to write an audit message or not
74 *
75 * Determine whether the nominated task has the specified capability amongst
76 * its effective set, returning 0 if it does, -ve if it does not.
77 *
78 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
79 * and has_capability() functions. That is, it has the reverse semantics:
80 * cap_has_capability() returns 0 when a task has a capability, but the
81 * kernel's capable() and has_capability() returns 1 for this case.
82 */
83 int cap_capable(struct task_struct *tsk, const struct cred *cred,
84 struct user_namespace *targ_ns, int cap, int audit)
85 {
86 for (;;) {
87 /* The creator of the user namespace has all caps. */
88 if (targ_ns != &init_user_ns && targ_ns->creator == cred->user)
89 return 0;
90
91 /* Do we have the necessary capabilities? */
92 if (targ_ns == cred->user->user_ns)
93 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
94
95 /* Have we tried all of the parent namespaces? */
96 if (targ_ns == &init_user_ns)
97 return -EPERM;
98
99 /*
100 *If you have a capability in a parent user ns, then you have
101 * it over all children user namespaces as well.
102 */
103 targ_ns = targ_ns->creator->user_ns;
104 }
105
106 /* We never get here */
107 }
108
109 /**
110 * cap_settime - Determine whether the current process may set the system clock
111 * @ts: The time to set
112 * @tz: The timezone to set
113 *
114 * Determine whether the current process may set the system clock and timezone
115 * information, returning 0 if permission granted, -ve if denied.
116 */
117 int cap_settime(const struct timespec *ts, const struct timezone *tz)
118 {
119 if (!capable(CAP_SYS_TIME))
120 return -EPERM;
121 return 0;
122 }
123
124 /**
125 * cap_ptrace_access_check - Determine whether the current process may access
126 * another
127 * @child: The process to be accessed
128 * @mode: The mode of attachment.
129 *
130 * Determine whether a process may access another, returning 0 if permission
131 * granted, -ve if denied.
132 */
133 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
134 {
135 int ret = 0;
136
137 rcu_read_lock();
138 if (!cap_issubset(__task_cred(child)->cap_permitted,
139 current_cred()->cap_permitted) &&
140 !capable(CAP_SYS_PTRACE))
141 ret = -EPERM;
142 rcu_read_unlock();
143 return ret;
144 }
145
146 /**
147 * cap_ptrace_traceme - Determine whether another process may trace the current
148 * @parent: The task proposed to be the tracer
149 *
150 * Determine whether the nominated task is permitted to trace the current
151 * process, returning 0 if permission is granted, -ve if denied.
152 */
153 int cap_ptrace_traceme(struct task_struct *parent)
154 {
155 int ret = 0;
156
157 rcu_read_lock();
158 if (!cap_issubset(current_cred()->cap_permitted,
159 __task_cred(parent)->cap_permitted) &&
160 !has_capability(parent, CAP_SYS_PTRACE))
161 ret = -EPERM;
162 rcu_read_unlock();
163 return ret;
164 }
165
166 /**
167 * cap_capget - Retrieve a task's capability sets
168 * @target: The task from which to retrieve the capability sets
169 * @effective: The place to record the effective set
170 * @inheritable: The place to record the inheritable set
171 * @permitted: The place to record the permitted set
172 *
173 * This function retrieves the capabilities of the nominated task and returns
174 * them to the caller.
175 */
176 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
177 kernel_cap_t *inheritable, kernel_cap_t *permitted)
178 {
179 const struct cred *cred;
180
181 /* Derived from kernel/capability.c:sys_capget. */
182 rcu_read_lock();
183 cred = __task_cred(target);
184 *effective = cred->cap_effective;
185 *inheritable = cred->cap_inheritable;
186 *permitted = cred->cap_permitted;
187 rcu_read_unlock();
188 return 0;
189 }
190
191 /*
192 * Determine whether the inheritable capabilities are limited to the old
193 * permitted set. Returns 1 if they are limited, 0 if they are not.
194 */
195 static inline int cap_inh_is_capped(void)
196 {
197
198 /* they are so limited unless the current task has the CAP_SETPCAP
199 * capability
200 */
201 if (cap_capable(current, current_cred(),
202 current_cred()->user->user_ns, CAP_SETPCAP,
203 SECURITY_CAP_AUDIT) == 0)
204 return 0;
205 return 1;
206 }
207
208 /**
209 * cap_capset - Validate and apply proposed changes to current's capabilities
210 * @new: The proposed new credentials; alterations should be made here
211 * @old: The current task's current credentials
212 * @effective: A pointer to the proposed new effective capabilities set
213 * @inheritable: A pointer to the proposed new inheritable capabilities set
214 * @permitted: A pointer to the proposed new permitted capabilities set
215 *
216 * This function validates and applies a proposed mass change to the current
217 * process's capability sets. The changes are made to the proposed new
218 * credentials, and assuming no error, will be committed by the caller of LSM.
219 */
220 int cap_capset(struct cred *new,
221 const struct cred *old,
222 const kernel_cap_t *effective,
223 const kernel_cap_t *inheritable,
224 const kernel_cap_t *permitted)
225 {
226 if (cap_inh_is_capped() &&
227 !cap_issubset(*inheritable,
228 cap_combine(old->cap_inheritable,
229 old->cap_permitted)))
230 /* incapable of using this inheritable set */
231 return -EPERM;
232
233 if (!cap_issubset(*inheritable,
234 cap_combine(old->cap_inheritable,
235 old->cap_bset)))
236 /* no new pI capabilities outside bounding set */
237 return -EPERM;
238
239 /* verify restrictions on target's new Permitted set */
240 if (!cap_issubset(*permitted, old->cap_permitted))
241 return -EPERM;
242
243 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
244 if (!cap_issubset(*effective, *permitted))
245 return -EPERM;
246
247 new->cap_effective = *effective;
248 new->cap_inheritable = *inheritable;
249 new->cap_permitted = *permitted;
250 return 0;
251 }
252
253 /*
254 * Clear proposed capability sets for execve().
255 */
256 static inline void bprm_clear_caps(struct linux_binprm *bprm)
257 {
258 cap_clear(bprm->cred->cap_permitted);
259 bprm->cap_effective = false;
260 }
261
262 /**
263 * cap_inode_need_killpriv - Determine if inode change affects privileges
264 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
265 *
266 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
267 * affects the security markings on that inode, and if it is, should
268 * inode_killpriv() be invoked or the change rejected?
269 *
270 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
271 * -ve to deny the change.
272 */
273 int cap_inode_need_killpriv(struct dentry *dentry)
274 {
275 struct inode *inode = dentry->d_inode;
276 int error;
277
278 if (!inode->i_op->getxattr)
279 return 0;
280
281 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
282 if (error <= 0)
283 return 0;
284 return 1;
285 }
286
287 /**
288 * cap_inode_killpriv - Erase the security markings on an inode
289 * @dentry: The inode/dentry to alter
290 *
291 * Erase the privilege-enhancing security markings on an inode.
292 *
293 * Returns 0 if successful, -ve on error.
294 */
295 int cap_inode_killpriv(struct dentry *dentry)
296 {
297 struct inode *inode = dentry->d_inode;
298
299 if (!inode->i_op->removexattr)
300 return 0;
301
302 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
303 }
304
305 /*
306 * Calculate the new process capability sets from the capability sets attached
307 * to a file.
308 */
309 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
310 struct linux_binprm *bprm,
311 bool *effective)
312 {
313 struct cred *new = bprm->cred;
314 unsigned i;
315 int ret = 0;
316
317 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
318 *effective = true;
319
320 CAP_FOR_EACH_U32(i) {
321 __u32 permitted = caps->permitted.cap[i];
322 __u32 inheritable = caps->inheritable.cap[i];
323
324 /*
325 * pP' = (X & fP) | (pI & fI)
326 */
327 new->cap_permitted.cap[i] =
328 (new->cap_bset.cap[i] & permitted) |
329 (new->cap_inheritable.cap[i] & inheritable);
330
331 if (permitted & ~new->cap_permitted.cap[i])
332 /* insufficient to execute correctly */
333 ret = -EPERM;
334 }
335
336 /*
337 * For legacy apps, with no internal support for recognizing they
338 * do not have enough capabilities, we return an error if they are
339 * missing some "forced" (aka file-permitted) capabilities.
340 */
341 return *effective ? ret : 0;
342 }
343
344 /*
345 * Extract the on-exec-apply capability sets for an executable file.
346 */
347 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
348 {
349 struct inode *inode = dentry->d_inode;
350 __u32 magic_etc;
351 unsigned tocopy, i;
352 int size;
353 struct vfs_cap_data caps;
354
355 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
356
357 if (!inode || !inode->i_op->getxattr)
358 return -ENODATA;
359
360 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
361 XATTR_CAPS_SZ);
362 if (size == -ENODATA || size == -EOPNOTSUPP)
363 /* no data, that's ok */
364 return -ENODATA;
365 if (size < 0)
366 return size;
367
368 if (size < sizeof(magic_etc))
369 return -EINVAL;
370
371 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
372
373 switch (magic_etc & VFS_CAP_REVISION_MASK) {
374 case VFS_CAP_REVISION_1:
375 if (size != XATTR_CAPS_SZ_1)
376 return -EINVAL;
377 tocopy = VFS_CAP_U32_1;
378 break;
379 case VFS_CAP_REVISION_2:
380 if (size != XATTR_CAPS_SZ_2)
381 return -EINVAL;
382 tocopy = VFS_CAP_U32_2;
383 break;
384 default:
385 return -EINVAL;
386 }
387
388 CAP_FOR_EACH_U32(i) {
389 if (i >= tocopy)
390 break;
391 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
392 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
393 }
394
395 return 0;
396 }
397
398 /*
399 * Attempt to get the on-exec apply capability sets for an executable file from
400 * its xattrs and, if present, apply them to the proposed credentials being
401 * constructed by execve().
402 */
403 static int get_file_caps(struct linux_binprm *bprm, bool *effective)
404 {
405 struct dentry *dentry;
406 int rc = 0;
407 struct cpu_vfs_cap_data vcaps;
408
409 bprm_clear_caps(bprm);
410
411 if (!file_caps_enabled)
412 return 0;
413
414 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
415 return 0;
416
417 dentry = dget(bprm->file->f_dentry);
418
419 rc = get_vfs_caps_from_disk(dentry, &vcaps);
420 if (rc < 0) {
421 if (rc == -EINVAL)
422 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
423 __func__, rc, bprm->filename);
424 else if (rc == -ENODATA)
425 rc = 0;
426 goto out;
427 }
428
429 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
430 if (rc == -EINVAL)
431 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
432 __func__, rc, bprm->filename);
433
434 out:
435 dput(dentry);
436 if (rc)
437 bprm_clear_caps(bprm);
438
439 return rc;
440 }
441
442 /**
443 * cap_bprm_set_creds - Set up the proposed credentials for execve().
444 * @bprm: The execution parameters, including the proposed creds
445 *
446 * Set up the proposed credentials for a new execution context being
447 * constructed by execve(). The proposed creds in @bprm->cred is altered,
448 * which won't take effect immediately. Returns 0 if successful, -ve on error.
449 */
450 int cap_bprm_set_creds(struct linux_binprm *bprm)
451 {
452 const struct cred *old = current_cred();
453 struct cred *new = bprm->cred;
454 bool effective;
455 int ret;
456
457 effective = false;
458 ret = get_file_caps(bprm, &effective);
459 if (ret < 0)
460 return ret;
461
462 if (!issecure(SECURE_NOROOT)) {
463 /*
464 * If the legacy file capability is set, then don't set privs
465 * for a setuid root binary run by a non-root user. Do set it
466 * for a root user just to cause least surprise to an admin.
467 */
468 if (effective && new->uid != 0 && new->euid == 0) {
469 warn_setuid_and_fcaps_mixed(bprm->filename);
470 goto skip;
471 }
472 /*
473 * To support inheritance of root-permissions and suid-root
474 * executables under compatibility mode, we override the
475 * capability sets for the file.
476 *
477 * If only the real uid is 0, we do not set the effective bit.
478 */
479 if (new->euid == 0 || new->uid == 0) {
480 /* pP' = (cap_bset & ~0) | (pI & ~0) */
481 new->cap_permitted = cap_combine(old->cap_bset,
482 old->cap_inheritable);
483 }
484 if (new->euid == 0)
485 effective = true;
486 }
487 skip:
488
489 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
490 * credentials unless they have the appropriate permit
491 */
492 if ((new->euid != old->uid ||
493 new->egid != old->gid ||
494 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
495 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
496 /* downgrade; they get no more than they had, and maybe less */
497 if (!capable(CAP_SETUID)) {
498 new->euid = new->uid;
499 new->egid = new->gid;
500 }
501 new->cap_permitted = cap_intersect(new->cap_permitted,
502 old->cap_permitted);
503 }
504
505 new->suid = new->fsuid = new->euid;
506 new->sgid = new->fsgid = new->egid;
507
508 /* For init, we want to retain the capabilities set in the initial
509 * task. Thus we skip the usual capability rules
510 */
511 if (!is_global_init(current)) {
512 if (effective)
513 new->cap_effective = new->cap_permitted;
514 else
515 cap_clear(new->cap_effective);
516 }
517 bprm->cap_effective = effective;
518
519 /*
520 * Audit candidate if current->cap_effective is set
521 *
522 * We do not bother to audit if 3 things are true:
523 * 1) cap_effective has all caps
524 * 2) we are root
525 * 3) root is supposed to have all caps (SECURE_NOROOT)
526 * Since this is just a normal root execing a process.
527 *
528 * Number 1 above might fail if you don't have a full bset, but I think
529 * that is interesting information to audit.
530 */
531 if (!cap_isclear(new->cap_effective)) {
532 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
533 new->euid != 0 || new->uid != 0 ||
534 issecure(SECURE_NOROOT)) {
535 ret = audit_log_bprm_fcaps(bprm, new, old);
536 if (ret < 0)
537 return ret;
538 }
539 }
540
541 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
542 return 0;
543 }
544
545 /**
546 * cap_bprm_secureexec - Determine whether a secure execution is required
547 * @bprm: The execution parameters
548 *
549 * Determine whether a secure execution is required, return 1 if it is, and 0
550 * if it is not.
551 *
552 * The credentials have been committed by this point, and so are no longer
553 * available through @bprm->cred.
554 */
555 int cap_bprm_secureexec(struct linux_binprm *bprm)
556 {
557 const struct cred *cred = current_cred();
558
559 if (cred->uid != 0) {
560 if (bprm->cap_effective)
561 return 1;
562 if (!cap_isclear(cred->cap_permitted))
563 return 1;
564 }
565
566 return (cred->euid != cred->uid ||
567 cred->egid != cred->gid);
568 }
569
570 /**
571 * cap_inode_setxattr - Determine whether an xattr may be altered
572 * @dentry: The inode/dentry being altered
573 * @name: The name of the xattr to be changed
574 * @value: The value that the xattr will be changed to
575 * @size: The size of value
576 * @flags: The replacement flag
577 *
578 * Determine whether an xattr may be altered or set on an inode, returning 0 if
579 * permission is granted, -ve if denied.
580 *
581 * This is used to make sure security xattrs don't get updated or set by those
582 * who aren't privileged to do so.
583 */
584 int cap_inode_setxattr(struct dentry *dentry, const char *name,
585 const void *value, size_t size, int flags)
586 {
587 if (!strcmp(name, XATTR_NAME_CAPS)) {
588 if (!capable(CAP_SETFCAP))
589 return -EPERM;
590 return 0;
591 }
592
593 if (!strncmp(name, XATTR_SECURITY_PREFIX,
594 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
595 !capable(CAP_SYS_ADMIN))
596 return -EPERM;
597 return 0;
598 }
599
600 /**
601 * cap_inode_removexattr - Determine whether an xattr may be removed
602 * @dentry: The inode/dentry being altered
603 * @name: The name of the xattr to be changed
604 *
605 * Determine whether an xattr may be removed from an inode, returning 0 if
606 * permission is granted, -ve if denied.
607 *
608 * This is used to make sure security xattrs don't get removed by those who
609 * aren't privileged to remove them.
610 */
611 int cap_inode_removexattr(struct dentry *dentry, const char *name)
612 {
613 if (!strcmp(name, XATTR_NAME_CAPS)) {
614 if (!capable(CAP_SETFCAP))
615 return -EPERM;
616 return 0;
617 }
618
619 if (!strncmp(name, XATTR_SECURITY_PREFIX,
620 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
621 !capable(CAP_SYS_ADMIN))
622 return -EPERM;
623 return 0;
624 }
625
626 /*
627 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
628 * a process after a call to setuid, setreuid, or setresuid.
629 *
630 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
631 * {r,e,s}uid != 0, the permitted and effective capabilities are
632 * cleared.
633 *
634 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
635 * capabilities of the process are cleared.
636 *
637 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
638 * capabilities are set to the permitted capabilities.
639 *
640 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
641 * never happen.
642 *
643 * -astor
644 *
645 * cevans - New behaviour, Oct '99
646 * A process may, via prctl(), elect to keep its capabilities when it
647 * calls setuid() and switches away from uid==0. Both permitted and
648 * effective sets will be retained.
649 * Without this change, it was impossible for a daemon to drop only some
650 * of its privilege. The call to setuid(!=0) would drop all privileges!
651 * Keeping uid 0 is not an option because uid 0 owns too many vital
652 * files..
653 * Thanks to Olaf Kirch and Peter Benie for spotting this.
654 */
655 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
656 {
657 if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
658 (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
659 !issecure(SECURE_KEEP_CAPS)) {
660 cap_clear(new->cap_permitted);
661 cap_clear(new->cap_effective);
662 }
663 if (old->euid == 0 && new->euid != 0)
664 cap_clear(new->cap_effective);
665 if (old->euid != 0 && new->euid == 0)
666 new->cap_effective = new->cap_permitted;
667 }
668
669 /**
670 * cap_task_fix_setuid - Fix up the results of setuid() call
671 * @new: The proposed credentials
672 * @old: The current task's current credentials
673 * @flags: Indications of what has changed
674 *
675 * Fix up the results of setuid() call before the credential changes are
676 * actually applied, returning 0 to grant the changes, -ve to deny them.
677 */
678 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
679 {
680 switch (flags) {
681 case LSM_SETID_RE:
682 case LSM_SETID_ID:
683 case LSM_SETID_RES:
684 /* juggle the capabilities to follow [RES]UID changes unless
685 * otherwise suppressed */
686 if (!issecure(SECURE_NO_SETUID_FIXUP))
687 cap_emulate_setxuid(new, old);
688 break;
689
690 case LSM_SETID_FS:
691 /* juggle the capabilties to follow FSUID changes, unless
692 * otherwise suppressed
693 *
694 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
695 * if not, we might be a bit too harsh here.
696 */
697 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
698 if (old->fsuid == 0 && new->fsuid != 0)
699 new->cap_effective =
700 cap_drop_fs_set(new->cap_effective);
701
702 if (old->fsuid != 0 && new->fsuid == 0)
703 new->cap_effective =
704 cap_raise_fs_set(new->cap_effective,
705 new->cap_permitted);
706 }
707 break;
708
709 default:
710 return -EINVAL;
711 }
712
713 return 0;
714 }
715
716 /*
717 * Rationale: code calling task_setscheduler, task_setioprio, and
718 * task_setnice, assumes that
719 * . if capable(cap_sys_nice), then those actions should be allowed
720 * . if not capable(cap_sys_nice), but acting on your own processes,
721 * then those actions should be allowed
722 * This is insufficient now since you can call code without suid, but
723 * yet with increased caps.
724 * So we check for increased caps on the target process.
725 */
726 static int cap_safe_nice(struct task_struct *p)
727 {
728 int is_subset;
729
730 rcu_read_lock();
731 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
732 current_cred()->cap_permitted);
733 rcu_read_unlock();
734
735 if (!is_subset && !capable(CAP_SYS_NICE))
736 return -EPERM;
737 return 0;
738 }
739
740 /**
741 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
742 * @p: The task to affect
743 *
744 * Detemine if the requested scheduler policy change is permitted for the
745 * specified task, returning 0 if permission is granted, -ve if denied.
746 */
747 int cap_task_setscheduler(struct task_struct *p)
748 {
749 return cap_safe_nice(p);
750 }
751
752 /**
753 * cap_task_ioprio - Detemine if I/O priority change is permitted
754 * @p: The task to affect
755 * @ioprio: The I/O priority to set
756 *
757 * Detemine if the requested I/O priority change is permitted for the specified
758 * task, returning 0 if permission is granted, -ve if denied.
759 */
760 int cap_task_setioprio(struct task_struct *p, int ioprio)
761 {
762 return cap_safe_nice(p);
763 }
764
765 /**
766 * cap_task_ioprio - Detemine if task priority change is permitted
767 * @p: The task to affect
768 * @nice: The nice value to set
769 *
770 * Detemine if the requested task priority change is permitted for the
771 * specified task, returning 0 if permission is granted, -ve if denied.
772 */
773 int cap_task_setnice(struct task_struct *p, int nice)
774 {
775 return cap_safe_nice(p);
776 }
777
778 /*
779 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
780 * the current task's bounding set. Returns 0 on success, -ve on error.
781 */
782 static long cap_prctl_drop(struct cred *new, unsigned long cap)
783 {
784 if (!capable(CAP_SETPCAP))
785 return -EPERM;
786 if (!cap_valid(cap))
787 return -EINVAL;
788
789 cap_lower(new->cap_bset, cap);
790 return 0;
791 }
792
793 /**
794 * cap_task_prctl - Implement process control functions for this security module
795 * @option: The process control function requested
796 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
797 *
798 * Allow process control functions (sys_prctl()) to alter capabilities; may
799 * also deny access to other functions not otherwise implemented here.
800 *
801 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
802 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
803 * modules will consider performing the function.
804 */
805 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
806 unsigned long arg4, unsigned long arg5)
807 {
808 struct cred *new;
809 long error = 0;
810
811 new = prepare_creds();
812 if (!new)
813 return -ENOMEM;
814
815 switch (option) {
816 case PR_CAPBSET_READ:
817 error = -EINVAL;
818 if (!cap_valid(arg2))
819 goto error;
820 error = !!cap_raised(new->cap_bset, arg2);
821 goto no_change;
822
823 case PR_CAPBSET_DROP:
824 error = cap_prctl_drop(new, arg2);
825 if (error < 0)
826 goto error;
827 goto changed;
828
829 /*
830 * The next four prctl's remain to assist with transitioning a
831 * system from legacy UID=0 based privilege (when filesystem
832 * capabilities are not in use) to a system using filesystem
833 * capabilities only - as the POSIX.1e draft intended.
834 *
835 * Note:
836 *
837 * PR_SET_SECUREBITS =
838 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
839 * | issecure_mask(SECURE_NOROOT)
840 * | issecure_mask(SECURE_NOROOT_LOCKED)
841 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
842 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
843 *
844 * will ensure that the current process and all of its
845 * children will be locked into a pure
846 * capability-based-privilege environment.
847 */
848 case PR_SET_SECUREBITS:
849 error = -EPERM;
850 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
851 & (new->securebits ^ arg2)) /*[1]*/
852 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
853 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
854 || (cap_capable(current, current_cred(),
855 current_cred()->user->user_ns, CAP_SETPCAP,
856 SECURITY_CAP_AUDIT) != 0) /*[4]*/
857 /*
858 * [1] no changing of bits that are locked
859 * [2] no unlocking of locks
860 * [3] no setting of unsupported bits
861 * [4] doing anything requires privilege (go read about
862 * the "sendmail capabilities bug")
863 */
864 )
865 /* cannot change a locked bit */
866 goto error;
867 new->securebits = arg2;
868 goto changed;
869
870 case PR_GET_SECUREBITS:
871 error = new->securebits;
872 goto no_change;
873
874 case PR_GET_KEEPCAPS:
875 if (issecure(SECURE_KEEP_CAPS))
876 error = 1;
877 goto no_change;
878
879 case PR_SET_KEEPCAPS:
880 error = -EINVAL;
881 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
882 goto error;
883 error = -EPERM;
884 if (issecure(SECURE_KEEP_CAPS_LOCKED))
885 goto error;
886 if (arg2)
887 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
888 else
889 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
890 goto changed;
891
892 default:
893 /* No functionality available - continue with default */
894 error = -ENOSYS;
895 goto error;
896 }
897
898 /* Functionality provided */
899 changed:
900 return commit_creds(new);
901
902 no_change:
903 error:
904 abort_creds(new);
905 return error;
906 }
907
908 /**
909 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
910 * @mm: The VM space in which the new mapping is to be made
911 * @pages: The size of the mapping
912 *
913 * Determine whether the allocation of a new virtual mapping by the current
914 * task is permitted, returning 0 if permission is granted, -ve if not.
915 */
916 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
917 {
918 int cap_sys_admin = 0;
919
920 if (cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_ADMIN,
921 SECURITY_CAP_NOAUDIT) == 0)
922 cap_sys_admin = 1;
923 return __vm_enough_memory(mm, pages, cap_sys_admin);
924 }
925
926 /*
927 * cap_file_mmap - check if able to map given addr
928 * @file: unused
929 * @reqprot: unused
930 * @prot: unused
931 * @flags: unused
932 * @addr: address attempting to be mapped
933 * @addr_only: unused
934 *
935 * If the process is attempting to map memory below dac_mmap_min_addr they need
936 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
937 * capability security module. Returns 0 if this mapping should be allowed
938 * -EPERM if not.
939 */
940 int cap_file_mmap(struct file *file, unsigned long reqprot,
941 unsigned long prot, unsigned long flags,
942 unsigned long addr, unsigned long addr_only)
943 {
944 int ret = 0;
945
946 if (addr < dac_mmap_min_addr) {
947 ret = cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_RAWIO,
948 SECURITY_CAP_AUDIT);
949 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
950 if (ret == 0)
951 current->flags |= PF_SUPERPRIV;
952 }
953 return ret;
954 }