[ARM] Merge AT91 and devel branches
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / xfrm / xfrm_policy.c
1 /*
2 * xfrm_policy.c
3 *
4 * Changes:
5 * Mitsuru KANDA @USAGI
6 * Kazunori MIYAZAWA @USAGI
7 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
8 * IPv6 support
9 * Kazunori MIYAZAWA @USAGI
10 * YOSHIFUJI Hideaki
11 * Split up af-specific portion
12 * Derek Atkins <derek@ihtfp.com> Add the post_input processor
13 *
14 */
15
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
21 #include <linux/notifier.h>
22 #include <linux/netdevice.h>
23 #include <linux/netfilter.h>
24 #include <linux/module.h>
25 #include <linux/cache.h>
26 #include <net/xfrm.h>
27 #include <net/ip.h>
28 #include <linux/audit.h>
29
30 #include "xfrm_hash.h"
31
32 DEFINE_MUTEX(xfrm_cfg_mutex);
33 EXPORT_SYMBOL(xfrm_cfg_mutex);
34
35 static DEFINE_RWLOCK(xfrm_policy_lock);
36
37 unsigned int xfrm_policy_count[XFRM_POLICY_MAX*2];
38 EXPORT_SYMBOL(xfrm_policy_count);
39
40 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock);
41 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO];
42
43 static struct kmem_cache *xfrm_dst_cache __read_mostly;
44
45 static struct work_struct xfrm_policy_gc_work;
46 static HLIST_HEAD(xfrm_policy_gc_list);
47 static DEFINE_SPINLOCK(xfrm_policy_gc_lock);
48
49 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family);
50 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo);
51 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family);
52 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo);
53
54 static inline int
55 __xfrm4_selector_match(struct xfrm_selector *sel, struct flowi *fl)
56 {
57 return addr_match(&fl->fl4_dst, &sel->daddr, sel->prefixlen_d) &&
58 addr_match(&fl->fl4_src, &sel->saddr, sel->prefixlen_s) &&
59 !((xfrm_flowi_dport(fl) ^ sel->dport) & sel->dport_mask) &&
60 !((xfrm_flowi_sport(fl) ^ sel->sport) & sel->sport_mask) &&
61 (fl->proto == sel->proto || !sel->proto) &&
62 (fl->oif == sel->ifindex || !sel->ifindex);
63 }
64
65 static inline int
66 __xfrm6_selector_match(struct xfrm_selector *sel, struct flowi *fl)
67 {
68 return addr_match(&fl->fl6_dst, &sel->daddr, sel->prefixlen_d) &&
69 addr_match(&fl->fl6_src, &sel->saddr, sel->prefixlen_s) &&
70 !((xfrm_flowi_dport(fl) ^ sel->dport) & sel->dport_mask) &&
71 !((xfrm_flowi_sport(fl) ^ sel->sport) & sel->sport_mask) &&
72 (fl->proto == sel->proto || !sel->proto) &&
73 (fl->oif == sel->ifindex || !sel->ifindex);
74 }
75
76 int xfrm_selector_match(struct xfrm_selector *sel, struct flowi *fl,
77 unsigned short family)
78 {
79 switch (family) {
80 case AF_INET:
81 return __xfrm4_selector_match(sel, fl);
82 case AF_INET6:
83 return __xfrm6_selector_match(sel, fl);
84 }
85 return 0;
86 }
87
88 int xfrm_register_type(struct xfrm_type *type, unsigned short family)
89 {
90 struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
91 struct xfrm_type **typemap;
92 int err = 0;
93
94 if (unlikely(afinfo == NULL))
95 return -EAFNOSUPPORT;
96 typemap = afinfo->type_map;
97
98 if (likely(typemap[type->proto] == NULL))
99 typemap[type->proto] = type;
100 else
101 err = -EEXIST;
102 xfrm_policy_unlock_afinfo(afinfo);
103 return err;
104 }
105 EXPORT_SYMBOL(xfrm_register_type);
106
107 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family)
108 {
109 struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
110 struct xfrm_type **typemap;
111 int err = 0;
112
113 if (unlikely(afinfo == NULL))
114 return -EAFNOSUPPORT;
115 typemap = afinfo->type_map;
116
117 if (unlikely(typemap[type->proto] != type))
118 err = -ENOENT;
119 else
120 typemap[type->proto] = NULL;
121 xfrm_policy_unlock_afinfo(afinfo);
122 return err;
123 }
124 EXPORT_SYMBOL(xfrm_unregister_type);
125
126 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
127 {
128 struct xfrm_policy_afinfo *afinfo;
129 struct xfrm_type **typemap;
130 struct xfrm_type *type;
131 int modload_attempted = 0;
132
133 retry:
134 afinfo = xfrm_policy_get_afinfo(family);
135 if (unlikely(afinfo == NULL))
136 return NULL;
137 typemap = afinfo->type_map;
138
139 type = typemap[proto];
140 if (unlikely(type && !try_module_get(type->owner)))
141 type = NULL;
142 if (!type && !modload_attempted) {
143 xfrm_policy_put_afinfo(afinfo);
144 request_module("xfrm-type-%d-%d",
145 (int) family, (int) proto);
146 modload_attempted = 1;
147 goto retry;
148 }
149
150 xfrm_policy_put_afinfo(afinfo);
151 return type;
152 }
153
154 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl,
155 unsigned short family)
156 {
157 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
158 int err = 0;
159
160 if (unlikely(afinfo == NULL))
161 return -EAFNOSUPPORT;
162
163 if (likely(afinfo->dst_lookup != NULL))
164 err = afinfo->dst_lookup(dst, fl);
165 else
166 err = -EINVAL;
167 xfrm_policy_put_afinfo(afinfo);
168 return err;
169 }
170 EXPORT_SYMBOL(xfrm_dst_lookup);
171
172 void xfrm_put_type(struct xfrm_type *type)
173 {
174 module_put(type->owner);
175 }
176
177 int xfrm_register_mode(struct xfrm_mode *mode, int family)
178 {
179 struct xfrm_policy_afinfo *afinfo;
180 struct xfrm_mode **modemap;
181 int err;
182
183 if (unlikely(mode->encap >= XFRM_MODE_MAX))
184 return -EINVAL;
185
186 afinfo = xfrm_policy_lock_afinfo(family);
187 if (unlikely(afinfo == NULL))
188 return -EAFNOSUPPORT;
189
190 err = -EEXIST;
191 modemap = afinfo->mode_map;
192 if (likely(modemap[mode->encap] == NULL)) {
193 modemap[mode->encap] = mode;
194 err = 0;
195 }
196
197 xfrm_policy_unlock_afinfo(afinfo);
198 return err;
199 }
200 EXPORT_SYMBOL(xfrm_register_mode);
201
202 int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
203 {
204 struct xfrm_policy_afinfo *afinfo;
205 struct xfrm_mode **modemap;
206 int err;
207
208 if (unlikely(mode->encap >= XFRM_MODE_MAX))
209 return -EINVAL;
210
211 afinfo = xfrm_policy_lock_afinfo(family);
212 if (unlikely(afinfo == NULL))
213 return -EAFNOSUPPORT;
214
215 err = -ENOENT;
216 modemap = afinfo->mode_map;
217 if (likely(modemap[mode->encap] == mode)) {
218 modemap[mode->encap] = NULL;
219 err = 0;
220 }
221
222 xfrm_policy_unlock_afinfo(afinfo);
223 return err;
224 }
225 EXPORT_SYMBOL(xfrm_unregister_mode);
226
227 struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
228 {
229 struct xfrm_policy_afinfo *afinfo;
230 struct xfrm_mode *mode;
231 int modload_attempted = 0;
232
233 if (unlikely(encap >= XFRM_MODE_MAX))
234 return NULL;
235
236 retry:
237 afinfo = xfrm_policy_get_afinfo(family);
238 if (unlikely(afinfo == NULL))
239 return NULL;
240
241 mode = afinfo->mode_map[encap];
242 if (unlikely(mode && !try_module_get(mode->owner)))
243 mode = NULL;
244 if (!mode && !modload_attempted) {
245 xfrm_policy_put_afinfo(afinfo);
246 request_module("xfrm-mode-%d-%d", family, encap);
247 modload_attempted = 1;
248 goto retry;
249 }
250
251 xfrm_policy_put_afinfo(afinfo);
252 return mode;
253 }
254
255 void xfrm_put_mode(struct xfrm_mode *mode)
256 {
257 module_put(mode->owner);
258 }
259
260 static inline unsigned long make_jiffies(long secs)
261 {
262 if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
263 return MAX_SCHEDULE_TIMEOUT-1;
264 else
265 return secs*HZ;
266 }
267
268 static void xfrm_policy_timer(unsigned long data)
269 {
270 struct xfrm_policy *xp = (struct xfrm_policy*)data;
271 unsigned long now = (unsigned long)xtime.tv_sec;
272 long next = LONG_MAX;
273 int warn = 0;
274 int dir;
275
276 read_lock(&xp->lock);
277
278 if (xp->dead)
279 goto out;
280
281 dir = xfrm_policy_id2dir(xp->index);
282
283 if (xp->lft.hard_add_expires_seconds) {
284 long tmo = xp->lft.hard_add_expires_seconds +
285 xp->curlft.add_time - now;
286 if (tmo <= 0)
287 goto expired;
288 if (tmo < next)
289 next = tmo;
290 }
291 if (xp->lft.hard_use_expires_seconds) {
292 long tmo = xp->lft.hard_use_expires_seconds +
293 (xp->curlft.use_time ? : xp->curlft.add_time) - now;
294 if (tmo <= 0)
295 goto expired;
296 if (tmo < next)
297 next = tmo;
298 }
299 if (xp->lft.soft_add_expires_seconds) {
300 long tmo = xp->lft.soft_add_expires_seconds +
301 xp->curlft.add_time - now;
302 if (tmo <= 0) {
303 warn = 1;
304 tmo = XFRM_KM_TIMEOUT;
305 }
306 if (tmo < next)
307 next = tmo;
308 }
309 if (xp->lft.soft_use_expires_seconds) {
310 long tmo = xp->lft.soft_use_expires_seconds +
311 (xp->curlft.use_time ? : xp->curlft.add_time) - now;
312 if (tmo <= 0) {
313 warn = 1;
314 tmo = XFRM_KM_TIMEOUT;
315 }
316 if (tmo < next)
317 next = tmo;
318 }
319
320 if (warn)
321 km_policy_expired(xp, dir, 0, 0);
322 if (next != LONG_MAX &&
323 !mod_timer(&xp->timer, jiffies + make_jiffies(next)))
324 xfrm_pol_hold(xp);
325
326 out:
327 read_unlock(&xp->lock);
328 xfrm_pol_put(xp);
329 return;
330
331 expired:
332 read_unlock(&xp->lock);
333 if (!xfrm_policy_delete(xp, dir))
334 km_policy_expired(xp, dir, 1, 0);
335 xfrm_pol_put(xp);
336 }
337
338
339 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2
340 * SPD calls.
341 */
342
343 struct xfrm_policy *xfrm_policy_alloc(gfp_t gfp)
344 {
345 struct xfrm_policy *policy;
346
347 policy = kzalloc(sizeof(struct xfrm_policy), gfp);
348
349 if (policy) {
350 INIT_HLIST_NODE(&policy->bydst);
351 INIT_HLIST_NODE(&policy->byidx);
352 rwlock_init(&policy->lock);
353 atomic_set(&policy->refcnt, 1);
354 init_timer(&policy->timer);
355 policy->timer.data = (unsigned long)policy;
356 policy->timer.function = xfrm_policy_timer;
357 }
358 return policy;
359 }
360 EXPORT_SYMBOL(xfrm_policy_alloc);
361
362 /* Destroy xfrm_policy: descendant resources must be released to this moment. */
363
364 void __xfrm_policy_destroy(struct xfrm_policy *policy)
365 {
366 BUG_ON(!policy->dead);
367
368 BUG_ON(policy->bundles);
369
370 if (del_timer(&policy->timer))
371 BUG();
372
373 security_xfrm_policy_free(policy);
374 kfree(policy);
375 }
376 EXPORT_SYMBOL(__xfrm_policy_destroy);
377
378 static void xfrm_policy_gc_kill(struct xfrm_policy *policy)
379 {
380 struct dst_entry *dst;
381
382 while ((dst = policy->bundles) != NULL) {
383 policy->bundles = dst->next;
384 dst_free(dst);
385 }
386
387 if (del_timer(&policy->timer))
388 atomic_dec(&policy->refcnt);
389
390 if (atomic_read(&policy->refcnt) > 1)
391 flow_cache_flush();
392
393 xfrm_pol_put(policy);
394 }
395
396 static void xfrm_policy_gc_task(struct work_struct *work)
397 {
398 struct xfrm_policy *policy;
399 struct hlist_node *entry, *tmp;
400 struct hlist_head gc_list;
401
402 spin_lock_bh(&xfrm_policy_gc_lock);
403 gc_list.first = xfrm_policy_gc_list.first;
404 INIT_HLIST_HEAD(&xfrm_policy_gc_list);
405 spin_unlock_bh(&xfrm_policy_gc_lock);
406
407 hlist_for_each_entry_safe(policy, entry, tmp, &gc_list, bydst)
408 xfrm_policy_gc_kill(policy);
409 }
410
411 /* Rule must be locked. Release descentant resources, announce
412 * entry dead. The rule must be unlinked from lists to the moment.
413 */
414
415 static void xfrm_policy_kill(struct xfrm_policy *policy)
416 {
417 int dead;
418
419 write_lock_bh(&policy->lock);
420 dead = policy->dead;
421 policy->dead = 1;
422 write_unlock_bh(&policy->lock);
423
424 if (unlikely(dead)) {
425 WARN_ON(1);
426 return;
427 }
428
429 spin_lock(&xfrm_policy_gc_lock);
430 hlist_add_head(&policy->bydst, &xfrm_policy_gc_list);
431 spin_unlock(&xfrm_policy_gc_lock);
432
433 schedule_work(&xfrm_policy_gc_work);
434 }
435
436 struct xfrm_policy_hash {
437 struct hlist_head *table;
438 unsigned int hmask;
439 };
440
441 static struct hlist_head xfrm_policy_inexact[XFRM_POLICY_MAX*2];
442 static struct xfrm_policy_hash xfrm_policy_bydst[XFRM_POLICY_MAX*2] __read_mostly;
443 static struct hlist_head *xfrm_policy_byidx __read_mostly;
444 static unsigned int xfrm_idx_hmask __read_mostly;
445 static unsigned int xfrm_policy_hashmax __read_mostly = 1 * 1024 * 1024;
446
447 static inline unsigned int idx_hash(u32 index)
448 {
449 return __idx_hash(index, xfrm_idx_hmask);
450 }
451
452 static struct hlist_head *policy_hash_bysel(struct xfrm_selector *sel, unsigned short family, int dir)
453 {
454 unsigned int hmask = xfrm_policy_bydst[dir].hmask;
455 unsigned int hash = __sel_hash(sel, family, hmask);
456
457 return (hash == hmask + 1 ?
458 &xfrm_policy_inexact[dir] :
459 xfrm_policy_bydst[dir].table + hash);
460 }
461
462 static struct hlist_head *policy_hash_direct(xfrm_address_t *daddr, xfrm_address_t *saddr, unsigned short family, int dir)
463 {
464 unsigned int hmask = xfrm_policy_bydst[dir].hmask;
465 unsigned int hash = __addr_hash(daddr, saddr, family, hmask);
466
467 return xfrm_policy_bydst[dir].table + hash;
468 }
469
470 static void xfrm_dst_hash_transfer(struct hlist_head *list,
471 struct hlist_head *ndsttable,
472 unsigned int nhashmask)
473 {
474 struct hlist_node *entry, *tmp;
475 struct xfrm_policy *pol;
476
477 hlist_for_each_entry_safe(pol, entry, tmp, list, bydst) {
478 unsigned int h;
479
480 h = __addr_hash(&pol->selector.daddr, &pol->selector.saddr,
481 pol->family, nhashmask);
482 hlist_add_head(&pol->bydst, ndsttable+h);
483 }
484 }
485
486 static void xfrm_idx_hash_transfer(struct hlist_head *list,
487 struct hlist_head *nidxtable,
488 unsigned int nhashmask)
489 {
490 struct hlist_node *entry, *tmp;
491 struct xfrm_policy *pol;
492
493 hlist_for_each_entry_safe(pol, entry, tmp, list, byidx) {
494 unsigned int h;
495
496 h = __idx_hash(pol->index, nhashmask);
497 hlist_add_head(&pol->byidx, nidxtable+h);
498 }
499 }
500
501 static unsigned long xfrm_new_hash_mask(unsigned int old_hmask)
502 {
503 return ((old_hmask + 1) << 1) - 1;
504 }
505
506 static void xfrm_bydst_resize(int dir)
507 {
508 unsigned int hmask = xfrm_policy_bydst[dir].hmask;
509 unsigned int nhashmask = xfrm_new_hash_mask(hmask);
510 unsigned int nsize = (nhashmask + 1) * sizeof(struct hlist_head);
511 struct hlist_head *odst = xfrm_policy_bydst[dir].table;
512 struct hlist_head *ndst = xfrm_hash_alloc(nsize);
513 int i;
514
515 if (!ndst)
516 return;
517
518 write_lock_bh(&xfrm_policy_lock);
519
520 for (i = hmask; i >= 0; i--)
521 xfrm_dst_hash_transfer(odst + i, ndst, nhashmask);
522
523 xfrm_policy_bydst[dir].table = ndst;
524 xfrm_policy_bydst[dir].hmask = nhashmask;
525
526 write_unlock_bh(&xfrm_policy_lock);
527
528 xfrm_hash_free(odst, (hmask + 1) * sizeof(struct hlist_head));
529 }
530
531 static void xfrm_byidx_resize(int total)
532 {
533 unsigned int hmask = xfrm_idx_hmask;
534 unsigned int nhashmask = xfrm_new_hash_mask(hmask);
535 unsigned int nsize = (nhashmask + 1) * sizeof(struct hlist_head);
536 struct hlist_head *oidx = xfrm_policy_byidx;
537 struct hlist_head *nidx = xfrm_hash_alloc(nsize);
538 int i;
539
540 if (!nidx)
541 return;
542
543 write_lock_bh(&xfrm_policy_lock);
544
545 for (i = hmask; i >= 0; i--)
546 xfrm_idx_hash_transfer(oidx + i, nidx, nhashmask);
547
548 xfrm_policy_byidx = nidx;
549 xfrm_idx_hmask = nhashmask;
550
551 write_unlock_bh(&xfrm_policy_lock);
552
553 xfrm_hash_free(oidx, (hmask + 1) * sizeof(struct hlist_head));
554 }
555
556 static inline int xfrm_bydst_should_resize(int dir, int *total)
557 {
558 unsigned int cnt = xfrm_policy_count[dir];
559 unsigned int hmask = xfrm_policy_bydst[dir].hmask;
560
561 if (total)
562 *total += cnt;
563
564 if ((hmask + 1) < xfrm_policy_hashmax &&
565 cnt > hmask)
566 return 1;
567
568 return 0;
569 }
570
571 static inline int xfrm_byidx_should_resize(int total)
572 {
573 unsigned int hmask = xfrm_idx_hmask;
574
575 if ((hmask + 1) < xfrm_policy_hashmax &&
576 total > hmask)
577 return 1;
578
579 return 0;
580 }
581
582 static DEFINE_MUTEX(hash_resize_mutex);
583
584 static void xfrm_hash_resize(struct work_struct *__unused)
585 {
586 int dir, total;
587
588 mutex_lock(&hash_resize_mutex);
589
590 total = 0;
591 for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) {
592 if (xfrm_bydst_should_resize(dir, &total))
593 xfrm_bydst_resize(dir);
594 }
595 if (xfrm_byidx_should_resize(total))
596 xfrm_byidx_resize(total);
597
598 mutex_unlock(&hash_resize_mutex);
599 }
600
601 static DECLARE_WORK(xfrm_hash_work, xfrm_hash_resize);
602
603 /* Generate new index... KAME seems to generate them ordered by cost
604 * of an absolute inpredictability of ordering of rules. This will not pass. */
605 static u32 xfrm_gen_index(u8 type, int dir)
606 {
607 static u32 idx_generator;
608
609 for (;;) {
610 struct hlist_node *entry;
611 struct hlist_head *list;
612 struct xfrm_policy *p;
613 u32 idx;
614 int found;
615
616 idx = (idx_generator | dir);
617 idx_generator += 8;
618 if (idx == 0)
619 idx = 8;
620 list = xfrm_policy_byidx + idx_hash(idx);
621 found = 0;
622 hlist_for_each_entry(p, entry, list, byidx) {
623 if (p->index == idx) {
624 found = 1;
625 break;
626 }
627 }
628 if (!found)
629 return idx;
630 }
631 }
632
633 static inline int selector_cmp(struct xfrm_selector *s1, struct xfrm_selector *s2)
634 {
635 u32 *p1 = (u32 *) s1;
636 u32 *p2 = (u32 *) s2;
637 int len = sizeof(struct xfrm_selector) / sizeof(u32);
638 int i;
639
640 for (i = 0; i < len; i++) {
641 if (p1[i] != p2[i])
642 return 1;
643 }
644
645 return 0;
646 }
647
648 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl)
649 {
650 struct xfrm_policy *pol;
651 struct xfrm_policy *delpol;
652 struct hlist_head *chain;
653 struct hlist_node *entry, *newpos, *last;
654 struct dst_entry *gc_list;
655
656 write_lock_bh(&xfrm_policy_lock);
657 chain = policy_hash_bysel(&policy->selector, policy->family, dir);
658 delpol = NULL;
659 newpos = NULL;
660 last = NULL;
661 hlist_for_each_entry(pol, entry, chain, bydst) {
662 if (!delpol &&
663 pol->type == policy->type &&
664 !selector_cmp(&pol->selector, &policy->selector) &&
665 xfrm_sec_ctx_match(pol->security, policy->security)) {
666 if (excl) {
667 write_unlock_bh(&xfrm_policy_lock);
668 return -EEXIST;
669 }
670 delpol = pol;
671 if (policy->priority > pol->priority)
672 continue;
673 } else if (policy->priority >= pol->priority) {
674 last = &pol->bydst;
675 continue;
676 }
677 if (!newpos)
678 newpos = &pol->bydst;
679 if (delpol)
680 break;
681 last = &pol->bydst;
682 }
683 if (!newpos)
684 newpos = last;
685 if (newpos)
686 hlist_add_after(newpos, &policy->bydst);
687 else
688 hlist_add_head(&policy->bydst, chain);
689 xfrm_pol_hold(policy);
690 xfrm_policy_count[dir]++;
691 atomic_inc(&flow_cache_genid);
692 if (delpol) {
693 hlist_del(&delpol->bydst);
694 hlist_del(&delpol->byidx);
695 xfrm_policy_count[dir]--;
696 }
697 policy->index = delpol ? delpol->index : xfrm_gen_index(policy->type, dir);
698 hlist_add_head(&policy->byidx, xfrm_policy_byidx+idx_hash(policy->index));
699 policy->curlft.add_time = (unsigned long)xtime.tv_sec;
700 policy->curlft.use_time = 0;
701 if (!mod_timer(&policy->timer, jiffies + HZ))
702 xfrm_pol_hold(policy);
703 write_unlock_bh(&xfrm_policy_lock);
704
705 if (delpol)
706 xfrm_policy_kill(delpol);
707 else if (xfrm_bydst_should_resize(dir, NULL))
708 schedule_work(&xfrm_hash_work);
709
710 read_lock_bh(&xfrm_policy_lock);
711 gc_list = NULL;
712 entry = &policy->bydst;
713 hlist_for_each_entry_continue(policy, entry, bydst) {
714 struct dst_entry *dst;
715
716 write_lock(&policy->lock);
717 dst = policy->bundles;
718 if (dst) {
719 struct dst_entry *tail = dst;
720 while (tail->next)
721 tail = tail->next;
722 tail->next = gc_list;
723 gc_list = dst;
724
725 policy->bundles = NULL;
726 }
727 write_unlock(&policy->lock);
728 }
729 read_unlock_bh(&xfrm_policy_lock);
730
731 while (gc_list) {
732 struct dst_entry *dst = gc_list;
733
734 gc_list = dst->next;
735 dst_free(dst);
736 }
737
738 return 0;
739 }
740 EXPORT_SYMBOL(xfrm_policy_insert);
741
742 struct xfrm_policy *xfrm_policy_bysel_ctx(u8 type, int dir,
743 struct xfrm_selector *sel,
744 struct xfrm_sec_ctx *ctx, int delete)
745 {
746 struct xfrm_policy *pol, *ret;
747 struct hlist_head *chain;
748 struct hlist_node *entry;
749
750 write_lock_bh(&xfrm_policy_lock);
751 chain = policy_hash_bysel(sel, sel->family, dir);
752 ret = NULL;
753 hlist_for_each_entry(pol, entry, chain, bydst) {
754 if (pol->type == type &&
755 !selector_cmp(sel, &pol->selector) &&
756 xfrm_sec_ctx_match(ctx, pol->security)) {
757 xfrm_pol_hold(pol);
758 if (delete) {
759 hlist_del(&pol->bydst);
760 hlist_del(&pol->byidx);
761 xfrm_policy_count[dir]--;
762 }
763 ret = pol;
764 break;
765 }
766 }
767 write_unlock_bh(&xfrm_policy_lock);
768
769 if (ret && delete) {
770 atomic_inc(&flow_cache_genid);
771 xfrm_policy_kill(ret);
772 }
773 return ret;
774 }
775 EXPORT_SYMBOL(xfrm_policy_bysel_ctx);
776
777 struct xfrm_policy *xfrm_policy_byid(u8 type, int dir, u32 id, int delete)
778 {
779 struct xfrm_policy *pol, *ret;
780 struct hlist_head *chain;
781 struct hlist_node *entry;
782
783 write_lock_bh(&xfrm_policy_lock);
784 chain = xfrm_policy_byidx + idx_hash(id);
785 ret = NULL;
786 hlist_for_each_entry(pol, entry, chain, byidx) {
787 if (pol->type == type && pol->index == id) {
788 xfrm_pol_hold(pol);
789 if (delete) {
790 hlist_del(&pol->bydst);
791 hlist_del(&pol->byidx);
792 xfrm_policy_count[dir]--;
793 }
794 ret = pol;
795 break;
796 }
797 }
798 write_unlock_bh(&xfrm_policy_lock);
799
800 if (ret && delete) {
801 atomic_inc(&flow_cache_genid);
802 xfrm_policy_kill(ret);
803 }
804 return ret;
805 }
806 EXPORT_SYMBOL(xfrm_policy_byid);
807
808 void xfrm_policy_flush(u8 type, struct xfrm_audit *audit_info)
809 {
810 int dir;
811
812 write_lock_bh(&xfrm_policy_lock);
813 for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
814 struct xfrm_policy *pol;
815 struct hlist_node *entry;
816 int i, killed;
817
818 killed = 0;
819 again1:
820 hlist_for_each_entry(pol, entry,
821 &xfrm_policy_inexact[dir], bydst) {
822 if (pol->type != type)
823 continue;
824 hlist_del(&pol->bydst);
825 hlist_del(&pol->byidx);
826 write_unlock_bh(&xfrm_policy_lock);
827
828 xfrm_audit_log(audit_info->loginuid, audit_info->secid,
829 AUDIT_MAC_IPSEC_DELSPD, 1, pol, NULL);
830
831 xfrm_policy_kill(pol);
832 killed++;
833
834 write_lock_bh(&xfrm_policy_lock);
835 goto again1;
836 }
837
838 for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
839 again2:
840 hlist_for_each_entry(pol, entry,
841 xfrm_policy_bydst[dir].table + i,
842 bydst) {
843 if (pol->type != type)
844 continue;
845 hlist_del(&pol->bydst);
846 hlist_del(&pol->byidx);
847 write_unlock_bh(&xfrm_policy_lock);
848
849 xfrm_audit_log(audit_info->loginuid,
850 audit_info->secid,
851 AUDIT_MAC_IPSEC_DELSPD, 1,
852 pol, NULL);
853
854 xfrm_policy_kill(pol);
855 killed++;
856
857 write_lock_bh(&xfrm_policy_lock);
858 goto again2;
859 }
860 }
861
862 xfrm_policy_count[dir] -= killed;
863 }
864 atomic_inc(&flow_cache_genid);
865 write_unlock_bh(&xfrm_policy_lock);
866 }
867 EXPORT_SYMBOL(xfrm_policy_flush);
868
869 int xfrm_policy_walk(u8 type, int (*func)(struct xfrm_policy *, int, int, void*),
870 void *data)
871 {
872 struct xfrm_policy *pol, *last = NULL;
873 struct hlist_node *entry;
874 int dir, last_dir = 0, count, error;
875
876 read_lock_bh(&xfrm_policy_lock);
877 count = 0;
878
879 for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
880 struct hlist_head *table = xfrm_policy_bydst[dir].table;
881 int i;
882
883 hlist_for_each_entry(pol, entry,
884 &xfrm_policy_inexact[dir], bydst) {
885 if (pol->type != type)
886 continue;
887 if (last) {
888 error = func(last, last_dir % XFRM_POLICY_MAX,
889 count, data);
890 if (error)
891 goto out;
892 }
893 last = pol;
894 last_dir = dir;
895 count++;
896 }
897 for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
898 hlist_for_each_entry(pol, entry, table + i, bydst) {
899 if (pol->type != type)
900 continue;
901 if (last) {
902 error = func(last, last_dir % XFRM_POLICY_MAX,
903 count, data);
904 if (error)
905 goto out;
906 }
907 last = pol;
908 last_dir = dir;
909 count++;
910 }
911 }
912 }
913 if (count == 0) {
914 error = -ENOENT;
915 goto out;
916 }
917 error = func(last, last_dir % XFRM_POLICY_MAX, 0, data);
918 out:
919 read_unlock_bh(&xfrm_policy_lock);
920 return error;
921 }
922 EXPORT_SYMBOL(xfrm_policy_walk);
923
924 /*
925 * Find policy to apply to this flow.
926 *
927 * Returns 0 if policy found, else an -errno.
928 */
929 static int xfrm_policy_match(struct xfrm_policy *pol, struct flowi *fl,
930 u8 type, u16 family, int dir)
931 {
932 struct xfrm_selector *sel = &pol->selector;
933 int match, ret = -ESRCH;
934
935 if (pol->family != family ||
936 pol->type != type)
937 return ret;
938
939 match = xfrm_selector_match(sel, fl, family);
940 if (match)
941 ret = security_xfrm_policy_lookup(pol, fl->secid, dir);
942
943 return ret;
944 }
945
946 static struct xfrm_policy *xfrm_policy_lookup_bytype(u8 type, struct flowi *fl,
947 u16 family, u8 dir)
948 {
949 int err;
950 struct xfrm_policy *pol, *ret;
951 xfrm_address_t *daddr, *saddr;
952 struct hlist_node *entry;
953 struct hlist_head *chain;
954 u32 priority = ~0U;
955
956 daddr = xfrm_flowi_daddr(fl, family);
957 saddr = xfrm_flowi_saddr(fl, family);
958 if (unlikely(!daddr || !saddr))
959 return NULL;
960
961 read_lock_bh(&xfrm_policy_lock);
962 chain = policy_hash_direct(daddr, saddr, family, dir);
963 ret = NULL;
964 hlist_for_each_entry(pol, entry, chain, bydst) {
965 err = xfrm_policy_match(pol, fl, type, family, dir);
966 if (err) {
967 if (err == -ESRCH)
968 continue;
969 else {
970 ret = ERR_PTR(err);
971 goto fail;
972 }
973 } else {
974 ret = pol;
975 priority = ret->priority;
976 break;
977 }
978 }
979 chain = &xfrm_policy_inexact[dir];
980 hlist_for_each_entry(pol, entry, chain, bydst) {
981 err = xfrm_policy_match(pol, fl, type, family, dir);
982 if (err) {
983 if (err == -ESRCH)
984 continue;
985 else {
986 ret = ERR_PTR(err);
987 goto fail;
988 }
989 } else if (pol->priority < priority) {
990 ret = pol;
991 break;
992 }
993 }
994 if (ret)
995 xfrm_pol_hold(ret);
996 fail:
997 read_unlock_bh(&xfrm_policy_lock);
998
999 return ret;
1000 }
1001
1002 static int xfrm_policy_lookup(struct flowi *fl, u16 family, u8 dir,
1003 void **objp, atomic_t **obj_refp)
1004 {
1005 struct xfrm_policy *pol;
1006 int err = 0;
1007
1008 #ifdef CONFIG_XFRM_SUB_POLICY
1009 pol = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_SUB, fl, family, dir);
1010 if (IS_ERR(pol)) {
1011 err = PTR_ERR(pol);
1012 pol = NULL;
1013 }
1014 if (pol || err)
1015 goto end;
1016 #endif
1017 pol = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN, fl, family, dir);
1018 if (IS_ERR(pol)) {
1019 err = PTR_ERR(pol);
1020 pol = NULL;
1021 }
1022 #ifdef CONFIG_XFRM_SUB_POLICY
1023 end:
1024 #endif
1025 if ((*objp = (void *) pol) != NULL)
1026 *obj_refp = &pol->refcnt;
1027 return err;
1028 }
1029
1030 static inline int policy_to_flow_dir(int dir)
1031 {
1032 if (XFRM_POLICY_IN == FLOW_DIR_IN &&
1033 XFRM_POLICY_OUT == FLOW_DIR_OUT &&
1034 XFRM_POLICY_FWD == FLOW_DIR_FWD)
1035 return dir;
1036 switch (dir) {
1037 default:
1038 case XFRM_POLICY_IN:
1039 return FLOW_DIR_IN;
1040 case XFRM_POLICY_OUT:
1041 return FLOW_DIR_OUT;
1042 case XFRM_POLICY_FWD:
1043 return FLOW_DIR_FWD;
1044 };
1045 }
1046
1047 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl)
1048 {
1049 struct xfrm_policy *pol;
1050
1051 read_lock_bh(&xfrm_policy_lock);
1052 if ((pol = sk->sk_policy[dir]) != NULL) {
1053 int match = xfrm_selector_match(&pol->selector, fl,
1054 sk->sk_family);
1055 int err = 0;
1056
1057 if (match) {
1058 err = security_xfrm_policy_lookup(pol, fl->secid,
1059 policy_to_flow_dir(dir));
1060 if (!err)
1061 xfrm_pol_hold(pol);
1062 else if (err == -ESRCH)
1063 pol = NULL;
1064 else
1065 pol = ERR_PTR(err);
1066 } else
1067 pol = NULL;
1068 }
1069 read_unlock_bh(&xfrm_policy_lock);
1070 return pol;
1071 }
1072
1073 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir)
1074 {
1075 struct hlist_head *chain = policy_hash_bysel(&pol->selector,
1076 pol->family, dir);
1077
1078 hlist_add_head(&pol->bydst, chain);
1079 hlist_add_head(&pol->byidx, xfrm_policy_byidx+idx_hash(pol->index));
1080 xfrm_policy_count[dir]++;
1081 xfrm_pol_hold(pol);
1082
1083 if (xfrm_bydst_should_resize(dir, NULL))
1084 schedule_work(&xfrm_hash_work);
1085 }
1086
1087 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol,
1088 int dir)
1089 {
1090 if (hlist_unhashed(&pol->bydst))
1091 return NULL;
1092
1093 hlist_del(&pol->bydst);
1094 hlist_del(&pol->byidx);
1095 xfrm_policy_count[dir]--;
1096
1097 return pol;
1098 }
1099
1100 int xfrm_policy_delete(struct xfrm_policy *pol, int dir)
1101 {
1102 write_lock_bh(&xfrm_policy_lock);
1103 pol = __xfrm_policy_unlink(pol, dir);
1104 write_unlock_bh(&xfrm_policy_lock);
1105 if (pol) {
1106 if (dir < XFRM_POLICY_MAX)
1107 atomic_inc(&flow_cache_genid);
1108 xfrm_policy_kill(pol);
1109 return 0;
1110 }
1111 return -ENOENT;
1112 }
1113 EXPORT_SYMBOL(xfrm_policy_delete);
1114
1115 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol)
1116 {
1117 struct xfrm_policy *old_pol;
1118
1119 #ifdef CONFIG_XFRM_SUB_POLICY
1120 if (pol && pol->type != XFRM_POLICY_TYPE_MAIN)
1121 return -EINVAL;
1122 #endif
1123
1124 write_lock_bh(&xfrm_policy_lock);
1125 old_pol = sk->sk_policy[dir];
1126 sk->sk_policy[dir] = pol;
1127 if (pol) {
1128 pol->curlft.add_time = (unsigned long)xtime.tv_sec;
1129 pol->index = xfrm_gen_index(pol->type, XFRM_POLICY_MAX+dir);
1130 __xfrm_policy_link(pol, XFRM_POLICY_MAX+dir);
1131 }
1132 if (old_pol)
1133 __xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir);
1134 write_unlock_bh(&xfrm_policy_lock);
1135
1136 if (old_pol) {
1137 xfrm_policy_kill(old_pol);
1138 }
1139 return 0;
1140 }
1141
1142 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir)
1143 {
1144 struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC);
1145
1146 if (newp) {
1147 newp->selector = old->selector;
1148 if (security_xfrm_policy_clone(old, newp)) {
1149 kfree(newp);
1150 return NULL; /* ENOMEM */
1151 }
1152 newp->lft = old->lft;
1153 newp->curlft = old->curlft;
1154 newp->action = old->action;
1155 newp->flags = old->flags;
1156 newp->xfrm_nr = old->xfrm_nr;
1157 newp->index = old->index;
1158 newp->type = old->type;
1159 memcpy(newp->xfrm_vec, old->xfrm_vec,
1160 newp->xfrm_nr*sizeof(struct xfrm_tmpl));
1161 write_lock_bh(&xfrm_policy_lock);
1162 __xfrm_policy_link(newp, XFRM_POLICY_MAX+dir);
1163 write_unlock_bh(&xfrm_policy_lock);
1164 xfrm_pol_put(newp);
1165 }
1166 return newp;
1167 }
1168
1169 int __xfrm_sk_clone_policy(struct sock *sk)
1170 {
1171 struct xfrm_policy *p0 = sk->sk_policy[0],
1172 *p1 = sk->sk_policy[1];
1173
1174 sk->sk_policy[0] = sk->sk_policy[1] = NULL;
1175 if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL)
1176 return -ENOMEM;
1177 if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL)
1178 return -ENOMEM;
1179 return 0;
1180 }
1181
1182 static int
1183 xfrm_get_saddr(xfrm_address_t *local, xfrm_address_t *remote,
1184 unsigned short family)
1185 {
1186 int err;
1187 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1188
1189 if (unlikely(afinfo == NULL))
1190 return -EINVAL;
1191 err = afinfo->get_saddr(local, remote);
1192 xfrm_policy_put_afinfo(afinfo);
1193 return err;
1194 }
1195
1196 /* Resolve list of templates for the flow, given policy. */
1197
1198 static int
1199 xfrm_tmpl_resolve_one(struct xfrm_policy *policy, struct flowi *fl,
1200 struct xfrm_state **xfrm,
1201 unsigned short family)
1202 {
1203 int nx;
1204 int i, error;
1205 xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family);
1206 xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family);
1207 xfrm_address_t tmp;
1208
1209 for (nx=0, i = 0; i < policy->xfrm_nr; i++) {
1210 struct xfrm_state *x;
1211 xfrm_address_t *remote = daddr;
1212 xfrm_address_t *local = saddr;
1213 struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i];
1214
1215 if (tmpl->mode == XFRM_MODE_TUNNEL) {
1216 remote = &tmpl->id.daddr;
1217 local = &tmpl->saddr;
1218 family = tmpl->encap_family;
1219 if (xfrm_addr_any(local, family)) {
1220 error = xfrm_get_saddr(&tmp, remote, family);
1221 if (error)
1222 goto fail;
1223 local = &tmp;
1224 }
1225 }
1226
1227 x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family);
1228
1229 if (x && x->km.state == XFRM_STATE_VALID) {
1230 xfrm[nx++] = x;
1231 daddr = remote;
1232 saddr = local;
1233 continue;
1234 }
1235 if (x) {
1236 error = (x->km.state == XFRM_STATE_ERROR ?
1237 -EINVAL : -EAGAIN);
1238 xfrm_state_put(x);
1239 }
1240
1241 if (!tmpl->optional)
1242 goto fail;
1243 }
1244 return nx;
1245
1246 fail:
1247 for (nx--; nx>=0; nx--)
1248 xfrm_state_put(xfrm[nx]);
1249 return error;
1250 }
1251
1252 static int
1253 xfrm_tmpl_resolve(struct xfrm_policy **pols, int npols, struct flowi *fl,
1254 struct xfrm_state **xfrm,
1255 unsigned short family)
1256 {
1257 struct xfrm_state *tp[XFRM_MAX_DEPTH];
1258 struct xfrm_state **tpp = (npols > 1) ? tp : xfrm;
1259 int cnx = 0;
1260 int error;
1261 int ret;
1262 int i;
1263
1264 for (i = 0; i < npols; i++) {
1265 if (cnx + pols[i]->xfrm_nr >= XFRM_MAX_DEPTH) {
1266 error = -ENOBUFS;
1267 goto fail;
1268 }
1269
1270 ret = xfrm_tmpl_resolve_one(pols[i], fl, &tpp[cnx], family);
1271 if (ret < 0) {
1272 error = ret;
1273 goto fail;
1274 } else
1275 cnx += ret;
1276 }
1277
1278 /* found states are sorted for outbound processing */
1279 if (npols > 1)
1280 xfrm_state_sort(xfrm, tpp, cnx, family);
1281
1282 return cnx;
1283
1284 fail:
1285 for (cnx--; cnx>=0; cnx--)
1286 xfrm_state_put(tpp[cnx]);
1287 return error;
1288
1289 }
1290
1291 /* Check that the bundle accepts the flow and its components are
1292 * still valid.
1293 */
1294
1295 static struct dst_entry *
1296 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family)
1297 {
1298 struct dst_entry *x;
1299 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1300 if (unlikely(afinfo == NULL))
1301 return ERR_PTR(-EINVAL);
1302 x = afinfo->find_bundle(fl, policy);
1303 xfrm_policy_put_afinfo(afinfo);
1304 return x;
1305 }
1306
1307 /* Allocate chain of dst_entry's, attach known xfrm's, calculate
1308 * all the metrics... Shortly, bundle a bundle.
1309 */
1310
1311 static int
1312 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx,
1313 struct flowi *fl, struct dst_entry **dst_p,
1314 unsigned short family)
1315 {
1316 int err;
1317 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1318 if (unlikely(afinfo == NULL))
1319 return -EINVAL;
1320 err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p);
1321 xfrm_policy_put_afinfo(afinfo);
1322 return err;
1323 }
1324
1325
1326 static int stale_bundle(struct dst_entry *dst);
1327
1328 /* Main function: finds/creates a bundle for given flow.
1329 *
1330 * At the moment we eat a raw IP route. Mostly to speed up lookups
1331 * on interfaces with disabled IPsec.
1332 */
1333 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
1334 struct sock *sk, int flags)
1335 {
1336 struct xfrm_policy *policy;
1337 struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX];
1338 int npols;
1339 int pol_dead;
1340 int xfrm_nr;
1341 int pi;
1342 struct xfrm_state *xfrm[XFRM_MAX_DEPTH];
1343 struct dst_entry *dst, *dst_orig = *dst_p;
1344 int nx = 0;
1345 int err;
1346 u32 genid;
1347 u16 family;
1348 u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT);
1349
1350 restart:
1351 genid = atomic_read(&flow_cache_genid);
1352 policy = NULL;
1353 for (pi = 0; pi < ARRAY_SIZE(pols); pi++)
1354 pols[pi] = NULL;
1355 npols = 0;
1356 pol_dead = 0;
1357 xfrm_nr = 0;
1358
1359 if (sk && sk->sk_policy[1]) {
1360 policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl);
1361 if (IS_ERR(policy))
1362 return PTR_ERR(policy);
1363 }
1364
1365 if (!policy) {
1366 /* To accelerate a bit... */
1367 if ((dst_orig->flags & DST_NOXFRM) ||
1368 !xfrm_policy_count[XFRM_POLICY_OUT])
1369 return 0;
1370
1371 policy = flow_cache_lookup(fl, dst_orig->ops->family,
1372 dir, xfrm_policy_lookup);
1373 if (IS_ERR(policy))
1374 return PTR_ERR(policy);
1375 }
1376
1377 if (!policy)
1378 return 0;
1379
1380 family = dst_orig->ops->family;
1381 policy->curlft.use_time = (unsigned long)xtime.tv_sec;
1382 pols[0] = policy;
1383 npols ++;
1384 xfrm_nr += pols[0]->xfrm_nr;
1385
1386 switch (policy->action) {
1387 case XFRM_POLICY_BLOCK:
1388 /* Prohibit the flow */
1389 err = -EPERM;
1390 goto error;
1391
1392 case XFRM_POLICY_ALLOW:
1393 #ifndef CONFIG_XFRM_SUB_POLICY
1394 if (policy->xfrm_nr == 0) {
1395 /* Flow passes not transformed. */
1396 xfrm_pol_put(policy);
1397 return 0;
1398 }
1399 #endif
1400
1401 /* Try to find matching bundle.
1402 *
1403 * LATER: help from flow cache. It is optional, this
1404 * is required only for output policy.
1405 */
1406 dst = xfrm_find_bundle(fl, policy, family);
1407 if (IS_ERR(dst)) {
1408 err = PTR_ERR(dst);
1409 goto error;
1410 }
1411
1412 if (dst)
1413 break;
1414
1415 #ifdef CONFIG_XFRM_SUB_POLICY
1416 if (pols[0]->type != XFRM_POLICY_TYPE_MAIN) {
1417 pols[1] = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN,
1418 fl, family,
1419 XFRM_POLICY_OUT);
1420 if (pols[1]) {
1421 if (IS_ERR(pols[1])) {
1422 err = PTR_ERR(pols[1]);
1423 goto error;
1424 }
1425 if (pols[1]->action == XFRM_POLICY_BLOCK) {
1426 err = -EPERM;
1427 goto error;
1428 }
1429 npols ++;
1430 xfrm_nr += pols[1]->xfrm_nr;
1431 }
1432 }
1433
1434 /*
1435 * Because neither flowi nor bundle information knows about
1436 * transformation template size. On more than one policy usage
1437 * we can realize whether all of them is bypass or not after
1438 * they are searched. See above not-transformed bypass
1439 * is surrounded by non-sub policy configuration, too.
1440 */
1441 if (xfrm_nr == 0) {
1442 /* Flow passes not transformed. */
1443 xfrm_pols_put(pols, npols);
1444 return 0;
1445 }
1446
1447 #endif
1448 nx = xfrm_tmpl_resolve(pols, npols, fl, xfrm, family);
1449
1450 if (unlikely(nx<0)) {
1451 err = nx;
1452 if (err == -EAGAIN && flags) {
1453 DECLARE_WAITQUEUE(wait, current);
1454
1455 add_wait_queue(&km_waitq, &wait);
1456 set_current_state(TASK_INTERRUPTIBLE);
1457 schedule();
1458 set_current_state(TASK_RUNNING);
1459 remove_wait_queue(&km_waitq, &wait);
1460
1461 nx = xfrm_tmpl_resolve(pols, npols, fl, xfrm, family);
1462
1463 if (nx == -EAGAIN && signal_pending(current)) {
1464 err = -ERESTART;
1465 goto error;
1466 }
1467 if (nx == -EAGAIN ||
1468 genid != atomic_read(&flow_cache_genid)) {
1469 xfrm_pols_put(pols, npols);
1470 goto restart;
1471 }
1472 err = nx;
1473 }
1474 if (err < 0)
1475 goto error;
1476 }
1477 if (nx == 0) {
1478 /* Flow passes not transformed. */
1479 xfrm_pols_put(pols, npols);
1480 return 0;
1481 }
1482
1483 dst = dst_orig;
1484 err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family);
1485
1486 if (unlikely(err)) {
1487 int i;
1488 for (i=0; i<nx; i++)
1489 xfrm_state_put(xfrm[i]);
1490 goto error;
1491 }
1492
1493 for (pi = 0; pi < npols; pi++) {
1494 read_lock_bh(&pols[pi]->lock);
1495 pol_dead |= pols[pi]->dead;
1496 read_unlock_bh(&pols[pi]->lock);
1497 }
1498
1499 write_lock_bh(&policy->lock);
1500 if (unlikely(pol_dead || stale_bundle(dst))) {
1501 /* Wow! While we worked on resolving, this
1502 * policy has gone. Retry. It is not paranoia,
1503 * we just cannot enlist new bundle to dead object.
1504 * We can't enlist stable bundles either.
1505 */
1506 write_unlock_bh(&policy->lock);
1507 if (dst)
1508 dst_free(dst);
1509
1510 err = -EHOSTUNREACH;
1511 goto error;
1512 }
1513 dst->next = policy->bundles;
1514 policy->bundles = dst;
1515 dst_hold(dst);
1516 write_unlock_bh(&policy->lock);
1517 }
1518 *dst_p = dst;
1519 dst_release(dst_orig);
1520 xfrm_pols_put(pols, npols);
1521 return 0;
1522
1523 error:
1524 dst_release(dst_orig);
1525 xfrm_pols_put(pols, npols);
1526 *dst_p = NULL;
1527 return err;
1528 }
1529 EXPORT_SYMBOL(xfrm_lookup);
1530
1531 static inline int
1532 xfrm_secpath_reject(int idx, struct sk_buff *skb, struct flowi *fl)
1533 {
1534 struct xfrm_state *x;
1535 int err;
1536
1537 if (!skb->sp || idx < 0 || idx >= skb->sp->len)
1538 return 0;
1539 x = skb->sp->xvec[idx];
1540 if (!x->type->reject)
1541 return 0;
1542 xfrm_state_hold(x);
1543 err = x->type->reject(x, skb, fl);
1544 xfrm_state_put(x);
1545 return err;
1546 }
1547
1548 /* When skb is transformed back to its "native" form, we have to
1549 * check policy restrictions. At the moment we make this in maximally
1550 * stupid way. Shame on me. :-) Of course, connected sockets must
1551 * have policy cached at them.
1552 */
1553
1554 static inline int
1555 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x,
1556 unsigned short family)
1557 {
1558 if (xfrm_state_kern(x))
1559 return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, family);
1560 return x->id.proto == tmpl->id.proto &&
1561 (x->id.spi == tmpl->id.spi || !tmpl->id.spi) &&
1562 (x->props.reqid == tmpl->reqid || !tmpl->reqid) &&
1563 x->props.mode == tmpl->mode &&
1564 ((tmpl->aalgos & (1<<x->props.aalgo)) ||
1565 !(xfrm_id_proto_match(tmpl->id.proto, IPSEC_PROTO_ANY))) &&
1566 !(x->props.mode != XFRM_MODE_TRANSPORT &&
1567 xfrm_state_addr_cmp(tmpl, x, family));
1568 }
1569
1570 /*
1571 * 0 or more than 0 is returned when validation is succeeded (either bypass
1572 * because of optional transport mode, or next index of the mathced secpath
1573 * state with the template.
1574 * -1 is returned when no matching template is found.
1575 * Otherwise "-2 - errored_index" is returned.
1576 */
1577 static inline int
1578 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start,
1579 unsigned short family)
1580 {
1581 int idx = start;
1582
1583 if (tmpl->optional) {
1584 if (tmpl->mode == XFRM_MODE_TRANSPORT)
1585 return start;
1586 } else
1587 start = -1;
1588 for (; idx < sp->len; idx++) {
1589 if (xfrm_state_ok(tmpl, sp->xvec[idx], family))
1590 return ++idx;
1591 if (sp->xvec[idx]->props.mode != XFRM_MODE_TRANSPORT) {
1592 if (start == -1)
1593 start = -2-idx;
1594 break;
1595 }
1596 }
1597 return start;
1598 }
1599
1600 int
1601 xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family)
1602 {
1603 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1604 int err;
1605
1606 if (unlikely(afinfo == NULL))
1607 return -EAFNOSUPPORT;
1608
1609 afinfo->decode_session(skb, fl);
1610 err = security_xfrm_decode_session(skb, &fl->secid);
1611 xfrm_policy_put_afinfo(afinfo);
1612 return err;
1613 }
1614 EXPORT_SYMBOL(xfrm_decode_session);
1615
1616 static inline int secpath_has_nontransport(struct sec_path *sp, int k, int *idxp)
1617 {
1618 for (; k < sp->len; k++) {
1619 if (sp->xvec[k]->props.mode != XFRM_MODE_TRANSPORT) {
1620 *idxp = k;
1621 return 1;
1622 }
1623 }
1624
1625 return 0;
1626 }
1627
1628 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb,
1629 unsigned short family)
1630 {
1631 struct xfrm_policy *pol;
1632 struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX];
1633 int npols = 0;
1634 int xfrm_nr;
1635 int pi;
1636 struct flowi fl;
1637 u8 fl_dir = policy_to_flow_dir(dir);
1638 int xerr_idx = -1;
1639
1640 if (xfrm_decode_session(skb, &fl, family) < 0)
1641 return 0;
1642 nf_nat_decode_session(skb, &fl, family);
1643
1644 /* First, check used SA against their selectors. */
1645 if (skb->sp) {
1646 int i;
1647
1648 for (i=skb->sp->len-1; i>=0; i--) {
1649 struct xfrm_state *x = skb->sp->xvec[i];
1650 if (!xfrm_selector_match(&x->sel, &fl, family))
1651 return 0;
1652 }
1653 }
1654
1655 pol = NULL;
1656 if (sk && sk->sk_policy[dir]) {
1657 pol = xfrm_sk_policy_lookup(sk, dir, &fl);
1658 if (IS_ERR(pol))
1659 return 0;
1660 }
1661
1662 if (!pol)
1663 pol = flow_cache_lookup(&fl, family, fl_dir,
1664 xfrm_policy_lookup);
1665
1666 if (IS_ERR(pol))
1667 return 0;
1668
1669 if (!pol) {
1670 if (skb->sp && secpath_has_nontransport(skb->sp, 0, &xerr_idx)) {
1671 xfrm_secpath_reject(xerr_idx, skb, &fl);
1672 return 0;
1673 }
1674 return 1;
1675 }
1676
1677 pol->curlft.use_time = (unsigned long)xtime.tv_sec;
1678
1679 pols[0] = pol;
1680 npols ++;
1681 #ifdef CONFIG_XFRM_SUB_POLICY
1682 if (pols[0]->type != XFRM_POLICY_TYPE_MAIN) {
1683 pols[1] = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN,
1684 &fl, family,
1685 XFRM_POLICY_IN);
1686 if (pols[1]) {
1687 if (IS_ERR(pols[1]))
1688 return 0;
1689 pols[1]->curlft.use_time = (unsigned long)xtime.tv_sec;
1690 npols ++;
1691 }
1692 }
1693 #endif
1694
1695 if (pol->action == XFRM_POLICY_ALLOW) {
1696 struct sec_path *sp;
1697 static struct sec_path dummy;
1698 struct xfrm_tmpl *tp[XFRM_MAX_DEPTH];
1699 struct xfrm_tmpl *stp[XFRM_MAX_DEPTH];
1700 struct xfrm_tmpl **tpp = tp;
1701 int ti = 0;
1702 int i, k;
1703
1704 if ((sp = skb->sp) == NULL)
1705 sp = &dummy;
1706
1707 for (pi = 0; pi < npols; pi++) {
1708 if (pols[pi] != pol &&
1709 pols[pi]->action != XFRM_POLICY_ALLOW)
1710 goto reject;
1711 if (ti + pols[pi]->xfrm_nr >= XFRM_MAX_DEPTH)
1712 goto reject_error;
1713 for (i = 0; i < pols[pi]->xfrm_nr; i++)
1714 tpp[ti++] = &pols[pi]->xfrm_vec[i];
1715 }
1716 xfrm_nr = ti;
1717 if (npols > 1) {
1718 xfrm_tmpl_sort(stp, tpp, xfrm_nr, family);
1719 tpp = stp;
1720 }
1721
1722 /* For each tunnel xfrm, find the first matching tmpl.
1723 * For each tmpl before that, find corresponding xfrm.
1724 * Order is _important_. Later we will implement
1725 * some barriers, but at the moment barriers
1726 * are implied between each two transformations.
1727 */
1728 for (i = xfrm_nr-1, k = 0; i >= 0; i--) {
1729 k = xfrm_policy_ok(tpp[i], sp, k, family);
1730 if (k < 0) {
1731 if (k < -1)
1732 /* "-2 - errored_index" returned */
1733 xerr_idx = -(2+k);
1734 goto reject;
1735 }
1736 }
1737
1738 if (secpath_has_nontransport(sp, k, &xerr_idx))
1739 goto reject;
1740
1741 xfrm_pols_put(pols, npols);
1742 return 1;
1743 }
1744
1745 reject:
1746 xfrm_secpath_reject(xerr_idx, skb, &fl);
1747 reject_error:
1748 xfrm_pols_put(pols, npols);
1749 return 0;
1750 }
1751 EXPORT_SYMBOL(__xfrm_policy_check);
1752
1753 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family)
1754 {
1755 struct flowi fl;
1756
1757 if (xfrm_decode_session(skb, &fl, family) < 0)
1758 return 0;
1759
1760 return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0;
1761 }
1762 EXPORT_SYMBOL(__xfrm_route_forward);
1763
1764 /* Optimize later using cookies and generation ids. */
1765
1766 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie)
1767 {
1768 /* Code (such as __xfrm4_bundle_create()) sets dst->obsolete
1769 * to "-1" to force all XFRM destinations to get validated by
1770 * dst_ops->check on every use. We do this because when a
1771 * normal route referenced by an XFRM dst is obsoleted we do
1772 * not go looking around for all parent referencing XFRM dsts
1773 * so that we can invalidate them. It is just too much work.
1774 * Instead we make the checks here on every use. For example:
1775 *
1776 * XFRM dst A --> IPv4 dst X
1777 *
1778 * X is the "xdst->route" of A (X is also the "dst->path" of A
1779 * in this example). If X is marked obsolete, "A" will not
1780 * notice. That's what we are validating here via the
1781 * stale_bundle() check.
1782 *
1783 * When a policy's bundle is pruned, we dst_free() the XFRM
1784 * dst which causes it's ->obsolete field to be set to a
1785 * positive non-zero integer. If an XFRM dst has been pruned
1786 * like this, we want to force a new route lookup.
1787 */
1788 if (dst->obsolete < 0 && !stale_bundle(dst))
1789 return dst;
1790
1791 return NULL;
1792 }
1793
1794 static int stale_bundle(struct dst_entry *dst)
1795 {
1796 return !xfrm_bundle_ok(NULL, (struct xfrm_dst *)dst, NULL, AF_UNSPEC, 0);
1797 }
1798
1799 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev)
1800 {
1801 while ((dst = dst->child) && dst->xfrm && dst->dev == dev) {
1802 dst->dev = &loopback_dev;
1803 dev_hold(&loopback_dev);
1804 dev_put(dev);
1805 }
1806 }
1807 EXPORT_SYMBOL(xfrm_dst_ifdown);
1808
1809 static void xfrm_link_failure(struct sk_buff *skb)
1810 {
1811 /* Impossible. Such dst must be popped before reaches point of failure. */
1812 return;
1813 }
1814
1815 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst)
1816 {
1817 if (dst) {
1818 if (dst->obsolete) {
1819 dst_release(dst);
1820 dst = NULL;
1821 }
1822 }
1823 return dst;
1824 }
1825
1826 static void prune_one_bundle(struct xfrm_policy *pol, int (*func)(struct dst_entry *), struct dst_entry **gc_list_p)
1827 {
1828 struct dst_entry *dst, **dstp;
1829
1830 write_lock(&pol->lock);
1831 dstp = &pol->bundles;
1832 while ((dst=*dstp) != NULL) {
1833 if (func(dst)) {
1834 *dstp = dst->next;
1835 dst->next = *gc_list_p;
1836 *gc_list_p = dst;
1837 } else {
1838 dstp = &dst->next;
1839 }
1840 }
1841 write_unlock(&pol->lock);
1842 }
1843
1844 static void xfrm_prune_bundles(int (*func)(struct dst_entry *))
1845 {
1846 struct dst_entry *gc_list = NULL;
1847 int dir;
1848
1849 read_lock_bh(&xfrm_policy_lock);
1850 for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) {
1851 struct xfrm_policy *pol;
1852 struct hlist_node *entry;
1853 struct hlist_head *table;
1854 int i;
1855
1856 hlist_for_each_entry(pol, entry,
1857 &xfrm_policy_inexact[dir], bydst)
1858 prune_one_bundle(pol, func, &gc_list);
1859
1860 table = xfrm_policy_bydst[dir].table;
1861 for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
1862 hlist_for_each_entry(pol, entry, table + i, bydst)
1863 prune_one_bundle(pol, func, &gc_list);
1864 }
1865 }
1866 read_unlock_bh(&xfrm_policy_lock);
1867
1868 while (gc_list) {
1869 struct dst_entry *dst = gc_list;
1870 gc_list = dst->next;
1871 dst_free(dst);
1872 }
1873 }
1874
1875 static int unused_bundle(struct dst_entry *dst)
1876 {
1877 return !atomic_read(&dst->__refcnt);
1878 }
1879
1880 static void __xfrm_garbage_collect(void)
1881 {
1882 xfrm_prune_bundles(unused_bundle);
1883 }
1884
1885 static int xfrm_flush_bundles(void)
1886 {
1887 xfrm_prune_bundles(stale_bundle);
1888 return 0;
1889 }
1890
1891 void xfrm_init_pmtu(struct dst_entry *dst)
1892 {
1893 do {
1894 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1895 u32 pmtu, route_mtu_cached;
1896
1897 pmtu = dst_mtu(dst->child);
1898 xdst->child_mtu_cached = pmtu;
1899
1900 pmtu = xfrm_state_mtu(dst->xfrm, pmtu);
1901
1902 route_mtu_cached = dst_mtu(xdst->route);
1903 xdst->route_mtu_cached = route_mtu_cached;
1904
1905 if (pmtu > route_mtu_cached)
1906 pmtu = route_mtu_cached;
1907
1908 dst->metrics[RTAX_MTU-1] = pmtu;
1909 } while ((dst = dst->next));
1910 }
1911
1912 EXPORT_SYMBOL(xfrm_init_pmtu);
1913
1914 /* Check that the bundle accepts the flow and its components are
1915 * still valid.
1916 */
1917
1918 int xfrm_bundle_ok(struct xfrm_policy *pol, struct xfrm_dst *first,
1919 struct flowi *fl, int family, int strict)
1920 {
1921 struct dst_entry *dst = &first->u.dst;
1922 struct xfrm_dst *last;
1923 u32 mtu;
1924
1925 if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) ||
1926 (dst->dev && !netif_running(dst->dev)))
1927 return 0;
1928
1929 last = NULL;
1930
1931 do {
1932 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1933
1934 if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family))
1935 return 0;
1936 if (fl && pol &&
1937 !security_xfrm_state_pol_flow_match(dst->xfrm, pol, fl))
1938 return 0;
1939 if (dst->xfrm->km.state != XFRM_STATE_VALID)
1940 return 0;
1941 if (xdst->genid != dst->xfrm->genid)
1942 return 0;
1943
1944 if (strict && fl && dst->xfrm->props.mode != XFRM_MODE_TUNNEL &&
1945 !xfrm_state_addr_flow_check(dst->xfrm, fl, family))
1946 return 0;
1947
1948 mtu = dst_mtu(dst->child);
1949 if (xdst->child_mtu_cached != mtu) {
1950 last = xdst;
1951 xdst->child_mtu_cached = mtu;
1952 }
1953
1954 if (!dst_check(xdst->route, xdst->route_cookie))
1955 return 0;
1956 mtu = dst_mtu(xdst->route);
1957 if (xdst->route_mtu_cached != mtu) {
1958 last = xdst;
1959 xdst->route_mtu_cached = mtu;
1960 }
1961
1962 dst = dst->child;
1963 } while (dst->xfrm);
1964
1965 if (likely(!last))
1966 return 1;
1967
1968 mtu = last->child_mtu_cached;
1969 for (;;) {
1970 dst = &last->u.dst;
1971
1972 mtu = xfrm_state_mtu(dst->xfrm, mtu);
1973 if (mtu > last->route_mtu_cached)
1974 mtu = last->route_mtu_cached;
1975 dst->metrics[RTAX_MTU-1] = mtu;
1976
1977 if (last == first)
1978 break;
1979
1980 last = last->u.next;
1981 last->child_mtu_cached = mtu;
1982 }
1983
1984 return 1;
1985 }
1986
1987 EXPORT_SYMBOL(xfrm_bundle_ok);
1988
1989 #ifdef CONFIG_AUDITSYSCALL
1990 /* Audit addition and deletion of SAs and ipsec policy */
1991
1992 void xfrm_audit_log(uid_t auid, u32 sid, int type, int result,
1993 struct xfrm_policy *xp, struct xfrm_state *x)
1994 {
1995
1996 char *secctx;
1997 u32 secctx_len;
1998 struct xfrm_sec_ctx *sctx = NULL;
1999 struct audit_buffer *audit_buf;
2000 int family;
2001 extern int audit_enabled;
2002
2003 if (audit_enabled == 0)
2004 return;
2005
2006 audit_buf = audit_log_start(current->audit_context, GFP_ATOMIC, type);
2007 if (audit_buf == NULL)
2008 return;
2009
2010 switch(type) {
2011 case AUDIT_MAC_IPSEC_ADDSA:
2012 audit_log_format(audit_buf, "SAD add: auid=%u", auid);
2013 break;
2014 case AUDIT_MAC_IPSEC_DELSA:
2015 audit_log_format(audit_buf, "SAD delete: auid=%u", auid);
2016 break;
2017 case AUDIT_MAC_IPSEC_ADDSPD:
2018 audit_log_format(audit_buf, "SPD add: auid=%u", auid);
2019 break;
2020 case AUDIT_MAC_IPSEC_DELSPD:
2021 audit_log_format(audit_buf, "SPD delete: auid=%u", auid);
2022 break;
2023 default:
2024 return;
2025 }
2026
2027 if (sid != 0 &&
2028 security_secid_to_secctx(sid, &secctx, &secctx_len) == 0)
2029 audit_log_format(audit_buf, " subj=%s", secctx);
2030 else
2031 audit_log_task_context(audit_buf);
2032
2033 if (xp) {
2034 family = xp->selector.family;
2035 if (xp->security)
2036 sctx = xp->security;
2037 } else {
2038 family = x->props.family;
2039 if (x->security)
2040 sctx = x->security;
2041 }
2042
2043 if (sctx)
2044 audit_log_format(audit_buf,
2045 " sec_alg=%u sec_doi=%u sec_obj=%s",
2046 sctx->ctx_alg, sctx->ctx_doi, sctx->ctx_str);
2047
2048 switch(family) {
2049 case AF_INET:
2050 {
2051 struct in_addr saddr, daddr;
2052 if (xp) {
2053 saddr.s_addr = xp->selector.saddr.a4;
2054 daddr.s_addr = xp->selector.daddr.a4;
2055 } else {
2056 saddr.s_addr = x->props.saddr.a4;
2057 daddr.s_addr = x->id.daddr.a4;
2058 }
2059 audit_log_format(audit_buf,
2060 " src=%u.%u.%u.%u dst=%u.%u.%u.%u",
2061 NIPQUAD(saddr), NIPQUAD(daddr));
2062 }
2063 break;
2064 case AF_INET6:
2065 {
2066 struct in6_addr saddr6, daddr6;
2067 if (xp) {
2068 memcpy(&saddr6, xp->selector.saddr.a6,
2069 sizeof(struct in6_addr));
2070 memcpy(&daddr6, xp->selector.daddr.a6,
2071 sizeof(struct in6_addr));
2072 } else {
2073 memcpy(&saddr6, x->props.saddr.a6,
2074 sizeof(struct in6_addr));
2075 memcpy(&daddr6, x->id.daddr.a6,
2076 sizeof(struct in6_addr));
2077 }
2078 audit_log_format(audit_buf,
2079 " src=" NIP6_FMT "dst=" NIP6_FMT,
2080 NIP6(saddr6), NIP6(daddr6));
2081 }
2082 break;
2083 }
2084
2085 if (x)
2086 audit_log_format(audit_buf, " spi=%lu(0x%lx) protocol=%s",
2087 (unsigned long)ntohl(x->id.spi),
2088 (unsigned long)ntohl(x->id.spi),
2089 x->id.proto == IPPROTO_AH ? "AH" :
2090 (x->id.proto == IPPROTO_ESP ?
2091 "ESP" : "IPCOMP"));
2092
2093 audit_log_format(audit_buf, " res=%u", result);
2094 audit_log_end(audit_buf);
2095 }
2096
2097 EXPORT_SYMBOL(xfrm_audit_log);
2098 #endif /* CONFIG_AUDITSYSCALL */
2099
2100 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo)
2101 {
2102 int err = 0;
2103 if (unlikely(afinfo == NULL))
2104 return -EINVAL;
2105 if (unlikely(afinfo->family >= NPROTO))
2106 return -EAFNOSUPPORT;
2107 write_lock_bh(&xfrm_policy_afinfo_lock);
2108 if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL))
2109 err = -ENOBUFS;
2110 else {
2111 struct dst_ops *dst_ops = afinfo->dst_ops;
2112 if (likely(dst_ops->kmem_cachep == NULL))
2113 dst_ops->kmem_cachep = xfrm_dst_cache;
2114 if (likely(dst_ops->check == NULL))
2115 dst_ops->check = xfrm_dst_check;
2116 if (likely(dst_ops->negative_advice == NULL))
2117 dst_ops->negative_advice = xfrm_negative_advice;
2118 if (likely(dst_ops->link_failure == NULL))
2119 dst_ops->link_failure = xfrm_link_failure;
2120 if (likely(afinfo->garbage_collect == NULL))
2121 afinfo->garbage_collect = __xfrm_garbage_collect;
2122 xfrm_policy_afinfo[afinfo->family] = afinfo;
2123 }
2124 write_unlock_bh(&xfrm_policy_afinfo_lock);
2125 return err;
2126 }
2127 EXPORT_SYMBOL(xfrm_policy_register_afinfo);
2128
2129 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo)
2130 {
2131 int err = 0;
2132 if (unlikely(afinfo == NULL))
2133 return -EINVAL;
2134 if (unlikely(afinfo->family >= NPROTO))
2135 return -EAFNOSUPPORT;
2136 write_lock_bh(&xfrm_policy_afinfo_lock);
2137 if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) {
2138 if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo))
2139 err = -EINVAL;
2140 else {
2141 struct dst_ops *dst_ops = afinfo->dst_ops;
2142 xfrm_policy_afinfo[afinfo->family] = NULL;
2143 dst_ops->kmem_cachep = NULL;
2144 dst_ops->check = NULL;
2145 dst_ops->negative_advice = NULL;
2146 dst_ops->link_failure = NULL;
2147 afinfo->garbage_collect = NULL;
2148 }
2149 }
2150 write_unlock_bh(&xfrm_policy_afinfo_lock);
2151 return err;
2152 }
2153 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo);
2154
2155 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family)
2156 {
2157 struct xfrm_policy_afinfo *afinfo;
2158 if (unlikely(family >= NPROTO))
2159 return NULL;
2160 read_lock(&xfrm_policy_afinfo_lock);
2161 afinfo = xfrm_policy_afinfo[family];
2162 if (unlikely(!afinfo))
2163 read_unlock(&xfrm_policy_afinfo_lock);
2164 return afinfo;
2165 }
2166
2167 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo)
2168 {
2169 read_unlock(&xfrm_policy_afinfo_lock);
2170 }
2171
2172 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family)
2173 {
2174 struct xfrm_policy_afinfo *afinfo;
2175 if (unlikely(family >= NPROTO))
2176 return NULL;
2177 write_lock_bh(&xfrm_policy_afinfo_lock);
2178 afinfo = xfrm_policy_afinfo[family];
2179 if (unlikely(!afinfo))
2180 write_unlock_bh(&xfrm_policy_afinfo_lock);
2181 return afinfo;
2182 }
2183
2184 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo)
2185 {
2186 write_unlock_bh(&xfrm_policy_afinfo_lock);
2187 }
2188
2189 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
2190 {
2191 switch (event) {
2192 case NETDEV_DOWN:
2193 xfrm_flush_bundles();
2194 }
2195 return NOTIFY_DONE;
2196 }
2197
2198 static struct notifier_block xfrm_dev_notifier = {
2199 xfrm_dev_event,
2200 NULL,
2201 0
2202 };
2203
2204 static void __init xfrm_policy_init(void)
2205 {
2206 unsigned int hmask, sz;
2207 int dir;
2208
2209 xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache",
2210 sizeof(struct xfrm_dst),
2211 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2212 NULL, NULL);
2213
2214 hmask = 8 - 1;
2215 sz = (hmask+1) * sizeof(struct hlist_head);
2216
2217 xfrm_policy_byidx = xfrm_hash_alloc(sz);
2218 xfrm_idx_hmask = hmask;
2219 if (!xfrm_policy_byidx)
2220 panic("XFRM: failed to allocate byidx hash\n");
2221
2222 for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) {
2223 struct xfrm_policy_hash *htab;
2224
2225 INIT_HLIST_HEAD(&xfrm_policy_inexact[dir]);
2226
2227 htab = &xfrm_policy_bydst[dir];
2228 htab->table = xfrm_hash_alloc(sz);
2229 htab->hmask = hmask;
2230 if (!htab->table)
2231 panic("XFRM: failed to allocate bydst hash\n");
2232 }
2233
2234 INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task);
2235 register_netdevice_notifier(&xfrm_dev_notifier);
2236 }
2237
2238 void __init xfrm_init(void)
2239 {
2240 xfrm_state_init();
2241 xfrm_policy_init();
2242 xfrm_input_init();
2243 }
2244