battery: sec_battery: export {CURRENT/VOLTAGE}_MAX to sysfs
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include "core.h"
14 #include "rdev-ops.h"
15
16
17 struct ieee80211_rate *
18 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
19 u32 basic_rates, int bitrate)
20 {
21 struct ieee80211_rate *result = &sband->bitrates[0];
22 int i;
23
24 for (i = 0; i < sband->n_bitrates; i++) {
25 if (!(basic_rates & BIT(i)))
26 continue;
27 if (sband->bitrates[i].bitrate > bitrate)
28 continue;
29 result = &sband->bitrates[i];
30 }
31
32 return result;
33 }
34 EXPORT_SYMBOL(ieee80211_get_response_rate);
35
36 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
37 {
38 /* see 802.11 17.3.8.3.2 and Annex J
39 * there are overlapping channel numbers in 5GHz and 2GHz bands */
40 if (chan <= 0)
41 return 0; /* not supported */
42 switch (band) {
43 case IEEE80211_BAND_2GHZ:
44 if (chan == 14)
45 return 2484;
46 else if (chan < 14)
47 return 2407 + chan * 5;
48 break;
49 case IEEE80211_BAND_5GHZ:
50 if (chan >= 182 && chan <= 196)
51 return 4000 + chan * 5;
52 else
53 return 5000 + chan * 5;
54 break;
55 case IEEE80211_BAND_60GHZ:
56 if (chan < 5)
57 return 56160 + chan * 2160;
58 break;
59 default:
60 ;
61 }
62 return 0; /* not supported */
63 }
64 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
65
66 int ieee80211_frequency_to_channel(int freq)
67 {
68 /* see 802.11 17.3.8.3.2 and Annex J */
69 if (freq == 2484)
70 return 14;
71 else if (freq < 2484)
72 return (freq - 2407) / 5;
73 else if (freq >= 4910 && freq <= 4980)
74 return (freq - 4000) / 5;
75 else if (freq <= 45000) /* DMG band lower limit */
76 return (freq - 5000) / 5;
77 else if (freq >= 58320 && freq <= 64800)
78 return (freq - 56160) / 2160;
79 else
80 return 0;
81 }
82 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
83
84 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
85 int freq)
86 {
87 enum ieee80211_band band;
88 struct ieee80211_supported_band *sband;
89 int i;
90
91 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
92 sband = wiphy->bands[band];
93
94 if (!sband)
95 continue;
96
97 for (i = 0; i < sband->n_channels; i++) {
98 if (sband->channels[i].center_freq == freq)
99 return &sband->channels[i];
100 }
101 }
102
103 return NULL;
104 }
105 EXPORT_SYMBOL(__ieee80211_get_channel);
106
107 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
108 enum ieee80211_band band)
109 {
110 int i, want;
111
112 switch (band) {
113 case IEEE80211_BAND_5GHZ:
114 want = 3;
115 for (i = 0; i < sband->n_bitrates; i++) {
116 if (sband->bitrates[i].bitrate == 60 ||
117 sband->bitrates[i].bitrate == 120 ||
118 sband->bitrates[i].bitrate == 240) {
119 sband->bitrates[i].flags |=
120 IEEE80211_RATE_MANDATORY_A;
121 want--;
122 }
123 }
124 WARN_ON(want);
125 break;
126 case IEEE80211_BAND_2GHZ:
127 want = 7;
128 for (i = 0; i < sband->n_bitrates; i++) {
129 if (sband->bitrates[i].bitrate == 10) {
130 sband->bitrates[i].flags |=
131 IEEE80211_RATE_MANDATORY_B |
132 IEEE80211_RATE_MANDATORY_G;
133 want--;
134 }
135
136 if (sband->bitrates[i].bitrate == 20 ||
137 sband->bitrates[i].bitrate == 55 ||
138 sband->bitrates[i].bitrate == 110 ||
139 sband->bitrates[i].bitrate == 60 ||
140 sband->bitrates[i].bitrate == 120 ||
141 sband->bitrates[i].bitrate == 240) {
142 sband->bitrates[i].flags |=
143 IEEE80211_RATE_MANDATORY_G;
144 want--;
145 }
146
147 if (sband->bitrates[i].bitrate != 10 &&
148 sband->bitrates[i].bitrate != 20 &&
149 sband->bitrates[i].bitrate != 55 &&
150 sband->bitrates[i].bitrate != 110)
151 sband->bitrates[i].flags |=
152 IEEE80211_RATE_ERP_G;
153 }
154 WARN_ON(want != 0 && want != 3 && want != 6);
155 break;
156 case IEEE80211_BAND_60GHZ:
157 /* check for mandatory HT MCS 1..4 */
158 WARN_ON(!sband->ht_cap.ht_supported);
159 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
160 break;
161 case IEEE80211_NUM_BANDS:
162 WARN_ON(1);
163 break;
164 }
165 }
166
167 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
168 {
169 enum ieee80211_band band;
170
171 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
172 if (wiphy->bands[band])
173 set_mandatory_flags_band(wiphy->bands[band], band);
174 }
175
176 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
177 {
178 int i;
179 for (i = 0; i < wiphy->n_cipher_suites; i++)
180 if (cipher == wiphy->cipher_suites[i])
181 return true;
182 return false;
183 }
184
185 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
186 struct key_params *params, int key_idx,
187 bool pairwise, const u8 *mac_addr)
188 {
189 if (key_idx > 5)
190 return -EINVAL;
191
192 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
193 return -EINVAL;
194
195 if (pairwise && !mac_addr)
196 return -EINVAL;
197
198 /*
199 * Disallow pairwise keys with non-zero index unless it's WEP
200 * or a vendor specific cipher (because current deployments use
201 * pairwise WEP keys with non-zero indices and for vendor specific
202 * ciphers this should be validated in the driver or hardware level
203 * - but 802.11i clearly specifies to use zero)
204 */
205 if (pairwise && key_idx &&
206 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
207 (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
208 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
209 return -EINVAL;
210
211 switch (params->cipher) {
212 case WLAN_CIPHER_SUITE_WEP40:
213 if (params->key_len != WLAN_KEY_LEN_WEP40)
214 return -EINVAL;
215 break;
216 case WLAN_CIPHER_SUITE_TKIP:
217 if (params->key_len != WLAN_KEY_LEN_TKIP)
218 return -EINVAL;
219 break;
220 case WLAN_CIPHER_SUITE_CCMP:
221 if (params->key_len != WLAN_KEY_LEN_CCMP)
222 return -EINVAL;
223 break;
224 case WLAN_CIPHER_SUITE_WEP104:
225 if (params->key_len != WLAN_KEY_LEN_WEP104)
226 return -EINVAL;
227 break;
228 case WLAN_CIPHER_SUITE_AES_CMAC:
229 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
230 return -EINVAL;
231 break;
232 default:
233 /*
234 * We don't know anything about this algorithm,
235 * allow using it -- but the driver must check
236 * all parameters! We still check below whether
237 * or not the driver supports this algorithm,
238 * of course.
239 */
240 break;
241 }
242
243 if (params->seq) {
244 switch (params->cipher) {
245 case WLAN_CIPHER_SUITE_WEP40:
246 case WLAN_CIPHER_SUITE_WEP104:
247 /* These ciphers do not use key sequence */
248 return -EINVAL;
249 case WLAN_CIPHER_SUITE_TKIP:
250 case WLAN_CIPHER_SUITE_CCMP:
251 case WLAN_CIPHER_SUITE_AES_CMAC:
252 if (params->seq_len != 6)
253 return -EINVAL;
254 break;
255 }
256 }
257
258 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
259 return -EINVAL;
260
261 return 0;
262 }
263
264 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
265 {
266 unsigned int hdrlen = 24;
267
268 if (ieee80211_is_data(fc)) {
269 if (ieee80211_has_a4(fc))
270 hdrlen = 30;
271 if (ieee80211_is_data_qos(fc)) {
272 hdrlen += IEEE80211_QOS_CTL_LEN;
273 if (ieee80211_has_order(fc))
274 hdrlen += IEEE80211_HT_CTL_LEN;
275 }
276 goto out;
277 }
278
279 if (ieee80211_is_ctl(fc)) {
280 /*
281 * ACK and CTS are 10 bytes, all others 16. To see how
282 * to get this condition consider
283 * subtype mask: 0b0000000011110000 (0x00F0)
284 * ACK subtype: 0b0000000011010000 (0x00D0)
285 * CTS subtype: 0b0000000011000000 (0x00C0)
286 * bits that matter: ^^^ (0x00E0)
287 * value of those: 0b0000000011000000 (0x00C0)
288 */
289 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
290 hdrlen = 10;
291 else
292 hdrlen = 16;
293 }
294 out:
295 return hdrlen;
296 }
297 EXPORT_SYMBOL(ieee80211_hdrlen);
298
299 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
300 {
301 const struct ieee80211_hdr *hdr =
302 (const struct ieee80211_hdr *)skb->data;
303 unsigned int hdrlen;
304
305 if (unlikely(skb->len < 10))
306 return 0;
307 hdrlen = ieee80211_hdrlen(hdr->frame_control);
308 if (unlikely(hdrlen > skb->len))
309 return 0;
310 return hdrlen;
311 }
312 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
313
314 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
315 {
316 int ae = meshhdr->flags & MESH_FLAGS_AE;
317 /* 802.11-2012, 8.2.4.7.3 */
318 switch (ae) {
319 default:
320 case 0:
321 return 6;
322 case MESH_FLAGS_AE_A4:
323 return 12;
324 case MESH_FLAGS_AE_A5_A6:
325 return 18;
326 }
327 }
328 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
329
330 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
331 enum nl80211_iftype iftype)
332 {
333 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
334 u16 hdrlen, ethertype;
335 u8 *payload;
336 u8 dst[ETH_ALEN];
337 u8 src[ETH_ALEN] __aligned(2);
338
339 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
340 return -1;
341
342 hdrlen = ieee80211_hdrlen(hdr->frame_control);
343
344 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
345 * header
346 * IEEE 802.11 address fields:
347 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
348 * 0 0 DA SA BSSID n/a
349 * 0 1 DA BSSID SA n/a
350 * 1 0 BSSID SA DA n/a
351 * 1 1 RA TA DA SA
352 */
353 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
354 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
355
356 switch (hdr->frame_control &
357 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
358 case cpu_to_le16(IEEE80211_FCTL_TODS):
359 if (unlikely(iftype != NL80211_IFTYPE_AP &&
360 iftype != NL80211_IFTYPE_AP_VLAN &&
361 iftype != NL80211_IFTYPE_P2P_GO))
362 return -1;
363 break;
364 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
365 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
366 iftype != NL80211_IFTYPE_MESH_POINT &&
367 iftype != NL80211_IFTYPE_AP_VLAN &&
368 iftype != NL80211_IFTYPE_STATION))
369 return -1;
370 if (iftype == NL80211_IFTYPE_MESH_POINT) {
371 struct ieee80211s_hdr *meshdr =
372 (struct ieee80211s_hdr *) (skb->data + hdrlen);
373 /* make sure meshdr->flags is on the linear part */
374 if (!pskb_may_pull(skb, hdrlen + 1))
375 return -1;
376 if (meshdr->flags & MESH_FLAGS_AE_A4)
377 return -1;
378 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
379 skb_copy_bits(skb, hdrlen +
380 offsetof(struct ieee80211s_hdr, eaddr1),
381 dst, ETH_ALEN);
382 skb_copy_bits(skb, hdrlen +
383 offsetof(struct ieee80211s_hdr, eaddr2),
384 src, ETH_ALEN);
385 }
386 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
387 }
388 break;
389 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
390 if ((iftype != NL80211_IFTYPE_STATION &&
391 iftype != NL80211_IFTYPE_P2P_CLIENT &&
392 iftype != NL80211_IFTYPE_MESH_POINT) ||
393 (is_multicast_ether_addr(dst) &&
394 ether_addr_equal(src, addr)))
395 return -1;
396 if (iftype == NL80211_IFTYPE_MESH_POINT) {
397 struct ieee80211s_hdr *meshdr =
398 (struct ieee80211s_hdr *) (skb->data + hdrlen);
399 /* make sure meshdr->flags is on the linear part */
400 if (!pskb_may_pull(skb, hdrlen + 1))
401 return -1;
402 if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
403 return -1;
404 if (meshdr->flags & MESH_FLAGS_AE_A4)
405 skb_copy_bits(skb, hdrlen +
406 offsetof(struct ieee80211s_hdr, eaddr1),
407 src, ETH_ALEN);
408 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
409 }
410 break;
411 case cpu_to_le16(0):
412 if (iftype != NL80211_IFTYPE_ADHOC &&
413 iftype != NL80211_IFTYPE_STATION)
414 return -1;
415 break;
416 }
417
418 if (!pskb_may_pull(skb, hdrlen + 8))
419 return -1;
420
421 payload = skb->data + hdrlen;
422 ethertype = (payload[6] << 8) | payload[7];
423
424 if (likely((ether_addr_equal(payload, rfc1042_header) &&
425 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
426 ether_addr_equal(payload, bridge_tunnel_header))) {
427 /* remove RFC1042 or Bridge-Tunnel encapsulation and
428 * replace EtherType */
429 skb_pull(skb, hdrlen + 6);
430 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
431 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
432 } else {
433 struct ethhdr *ehdr;
434 __be16 len;
435
436 skb_pull(skb, hdrlen);
437 len = htons(skb->len);
438 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
439 memcpy(ehdr->h_dest, dst, ETH_ALEN);
440 memcpy(ehdr->h_source, src, ETH_ALEN);
441 ehdr->h_proto = len;
442 }
443 return 0;
444 }
445 EXPORT_SYMBOL(ieee80211_data_to_8023);
446
447 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
448 enum nl80211_iftype iftype, u8 *bssid, bool qos)
449 {
450 struct ieee80211_hdr hdr;
451 u16 hdrlen, ethertype;
452 __le16 fc;
453 const u8 *encaps_data;
454 int encaps_len, skip_header_bytes;
455 int nh_pos, h_pos;
456 int head_need;
457
458 if (unlikely(skb->len < ETH_HLEN))
459 return -EINVAL;
460
461 nh_pos = skb_network_header(skb) - skb->data;
462 h_pos = skb_transport_header(skb) - skb->data;
463
464 /* convert Ethernet header to proper 802.11 header (based on
465 * operation mode) */
466 ethertype = (skb->data[12] << 8) | skb->data[13];
467 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
468
469 switch (iftype) {
470 case NL80211_IFTYPE_AP:
471 case NL80211_IFTYPE_AP_VLAN:
472 case NL80211_IFTYPE_P2P_GO:
473 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
474 /* DA BSSID SA */
475 memcpy(hdr.addr1, skb->data, ETH_ALEN);
476 memcpy(hdr.addr2, addr, ETH_ALEN);
477 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
478 hdrlen = 24;
479 break;
480 case NL80211_IFTYPE_STATION:
481 case NL80211_IFTYPE_P2P_CLIENT:
482 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
483 /* BSSID SA DA */
484 memcpy(hdr.addr1, bssid, ETH_ALEN);
485 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
486 memcpy(hdr.addr3, skb->data, ETH_ALEN);
487 hdrlen = 24;
488 break;
489 case NL80211_IFTYPE_ADHOC:
490 /* DA SA BSSID */
491 memcpy(hdr.addr1, skb->data, ETH_ALEN);
492 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
493 memcpy(hdr.addr3, bssid, ETH_ALEN);
494 hdrlen = 24;
495 break;
496 default:
497 return -EOPNOTSUPP;
498 }
499
500 if (qos) {
501 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
502 hdrlen += 2;
503 }
504
505 hdr.frame_control = fc;
506 hdr.duration_id = 0;
507 hdr.seq_ctrl = 0;
508
509 skip_header_bytes = ETH_HLEN;
510 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
511 encaps_data = bridge_tunnel_header;
512 encaps_len = sizeof(bridge_tunnel_header);
513 skip_header_bytes -= 2;
514 } else if (ethertype >= ETH_P_802_3_MIN) {
515 encaps_data = rfc1042_header;
516 encaps_len = sizeof(rfc1042_header);
517 skip_header_bytes -= 2;
518 } else {
519 encaps_data = NULL;
520 encaps_len = 0;
521 }
522
523 skb_pull(skb, skip_header_bytes);
524 nh_pos -= skip_header_bytes;
525 h_pos -= skip_header_bytes;
526
527 head_need = hdrlen + encaps_len - skb_headroom(skb);
528
529 if (head_need > 0 || skb_cloned(skb)) {
530 head_need = max(head_need, 0);
531 if (head_need)
532 skb_orphan(skb);
533
534 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
535 return -ENOMEM;
536
537 skb->truesize += head_need;
538 }
539
540 if (encaps_data) {
541 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
542 nh_pos += encaps_len;
543 h_pos += encaps_len;
544 }
545
546 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
547
548 nh_pos += hdrlen;
549 h_pos += hdrlen;
550
551 /* Update skb pointers to various headers since this modified frame
552 * is going to go through Linux networking code that may potentially
553 * need things like pointer to IP header. */
554 skb_set_mac_header(skb, 0);
555 skb_set_network_header(skb, nh_pos);
556 skb_set_transport_header(skb, h_pos);
557
558 return 0;
559 }
560 EXPORT_SYMBOL(ieee80211_data_from_8023);
561
562
563 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
564 const u8 *addr, enum nl80211_iftype iftype,
565 const unsigned int extra_headroom,
566 bool has_80211_header)
567 {
568 struct sk_buff *frame = NULL;
569 u16 ethertype;
570 u8 *payload;
571 const struct ethhdr *eth;
572 int remaining, err;
573 u8 dst[ETH_ALEN], src[ETH_ALEN];
574
575 if (has_80211_header) {
576 err = ieee80211_data_to_8023(skb, addr, iftype);
577 if (err)
578 goto out;
579
580 /* skip the wrapping header */
581 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
582 if (!eth)
583 goto out;
584 } else {
585 eth = (struct ethhdr *) skb->data;
586 }
587
588 while (skb != frame) {
589 u8 padding;
590 __be16 len = eth->h_proto;
591 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
592
593 remaining = skb->len;
594 memcpy(dst, eth->h_dest, ETH_ALEN);
595 memcpy(src, eth->h_source, ETH_ALEN);
596
597 padding = (4 - subframe_len) & 0x3;
598 /* the last MSDU has no padding */
599 if (subframe_len > remaining)
600 goto purge;
601
602 skb_pull(skb, sizeof(struct ethhdr));
603 /* reuse skb for the last subframe */
604 if (remaining <= subframe_len + padding)
605 frame = skb;
606 else {
607 unsigned int hlen = ALIGN(extra_headroom, 4);
608 /*
609 * Allocate and reserve two bytes more for payload
610 * alignment since sizeof(struct ethhdr) is 14.
611 */
612 frame = dev_alloc_skb(hlen + subframe_len + 2);
613 if (!frame)
614 goto purge;
615
616 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
617 memcpy(skb_put(frame, ntohs(len)), skb->data,
618 ntohs(len));
619
620 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
621 padding);
622 if (!eth) {
623 dev_kfree_skb(frame);
624 goto purge;
625 }
626 }
627
628 skb_reset_network_header(frame);
629 frame->dev = skb->dev;
630 frame->priority = skb->priority;
631
632 payload = frame->data;
633 ethertype = (payload[6] << 8) | payload[7];
634
635 if (likely((ether_addr_equal(payload, rfc1042_header) &&
636 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
637 ether_addr_equal(payload, bridge_tunnel_header))) {
638 /* remove RFC1042 or Bridge-Tunnel
639 * encapsulation and replace EtherType */
640 skb_pull(frame, 6);
641 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
642 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
643 } else {
644 memcpy(skb_push(frame, sizeof(__be16)), &len,
645 sizeof(__be16));
646 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
647 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
648 }
649 __skb_queue_tail(list, frame);
650 }
651
652 return;
653
654 purge:
655 __skb_queue_purge(list);
656 out:
657 dev_kfree_skb(skb);
658 }
659 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
660
661 /* Given a data frame determine the 802.1p/1d tag to use. */
662 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
663 {
664 unsigned int dscp;
665
666 /* skb->priority values from 256->263 are magic values to
667 * directly indicate a specific 802.1d priority. This is used
668 * to allow 802.1d priority to be passed directly in from VLAN
669 * tags, etc.
670 */
671 if (skb->priority >= 256 && skb->priority <= 263)
672 return skb->priority - 256;
673
674 switch (skb->protocol) {
675 case htons(ETH_P_IP):
676 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
677 break;
678 case htons(ETH_P_IPV6):
679 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
680 break;
681 default:
682 return 0;
683 }
684
685 return dscp >> 5;
686 }
687 EXPORT_SYMBOL(cfg80211_classify8021d);
688
689 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
690 {
691 const struct cfg80211_bss_ies *ies;
692
693 ies = rcu_dereference(bss->ies);
694 if (!ies)
695 return NULL;
696
697 return cfg80211_find_ie(ie, ies->data, ies->len);
698 }
699 EXPORT_SYMBOL(ieee80211_bss_get_ie);
700
701 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
702 {
703 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
704 struct net_device *dev = wdev->netdev;
705 int i;
706
707 if (!wdev->connect_keys)
708 return;
709
710 for (i = 0; i < 6; i++) {
711 if (!wdev->connect_keys->params[i].cipher)
712 continue;
713 if (rdev_add_key(rdev, dev, i, false, NULL,
714 &wdev->connect_keys->params[i])) {
715 netdev_err(dev, "failed to set key %d\n", i);
716 continue;
717 }
718 if (wdev->connect_keys->def == i)
719 if (rdev_set_default_key(rdev, dev, i, true, true)) {
720 netdev_err(dev, "failed to set defkey %d\n", i);
721 continue;
722 }
723 if (wdev->connect_keys->defmgmt == i)
724 if (rdev_set_default_mgmt_key(rdev, dev, i))
725 netdev_err(dev, "failed to set mgtdef %d\n", i);
726 }
727
728 kfree(wdev->connect_keys);
729 wdev->connect_keys = NULL;
730 }
731
732 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
733 {
734 struct cfg80211_event *ev;
735 unsigned long flags;
736 const u8 *bssid = NULL;
737
738 spin_lock_irqsave(&wdev->event_lock, flags);
739 while (!list_empty(&wdev->event_list)) {
740 ev = list_first_entry(&wdev->event_list,
741 struct cfg80211_event, list);
742 list_del(&ev->list);
743 spin_unlock_irqrestore(&wdev->event_lock, flags);
744
745 wdev_lock(wdev);
746 switch (ev->type) {
747 case EVENT_CONNECT_RESULT:
748 if (!is_zero_ether_addr(ev->cr.bssid))
749 bssid = ev->cr.bssid;
750 __cfg80211_connect_result(
751 wdev->netdev, bssid,
752 ev->cr.req_ie, ev->cr.req_ie_len,
753 ev->cr.resp_ie, ev->cr.resp_ie_len,
754 ev->cr.status,
755 ev->cr.status == WLAN_STATUS_SUCCESS,
756 NULL);
757 break;
758 case EVENT_ROAMED:
759 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
760 ev->rm.req_ie_len, ev->rm.resp_ie,
761 ev->rm.resp_ie_len);
762 break;
763 case EVENT_DISCONNECTED:
764 __cfg80211_disconnected(wdev->netdev,
765 ev->dc.ie, ev->dc.ie_len,
766 ev->dc.reason, true);
767 break;
768 case EVENT_IBSS_JOINED:
769 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
770 break;
771 }
772 wdev_unlock(wdev);
773
774 kfree(ev);
775
776 spin_lock_irqsave(&wdev->event_lock, flags);
777 }
778 spin_unlock_irqrestore(&wdev->event_lock, flags);
779 }
780
781 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
782 {
783 struct wireless_dev *wdev;
784
785 ASSERT_RTNL();
786 ASSERT_RDEV_LOCK(rdev);
787
788 mutex_lock(&rdev->devlist_mtx);
789
790 list_for_each_entry(wdev, &rdev->wdev_list, list)
791 cfg80211_process_wdev_events(wdev);
792
793 mutex_unlock(&rdev->devlist_mtx);
794 }
795
796 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
797 struct net_device *dev, enum nl80211_iftype ntype,
798 u32 *flags, struct vif_params *params)
799 {
800 int err;
801 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
802
803 ASSERT_RDEV_LOCK(rdev);
804
805 /* don't support changing VLANs, you just re-create them */
806 if (otype == NL80211_IFTYPE_AP_VLAN)
807 return -EOPNOTSUPP;
808
809 /* cannot change into P2P device type */
810 if (ntype == NL80211_IFTYPE_P2P_DEVICE)
811 return -EOPNOTSUPP;
812
813 if (!rdev->ops->change_virtual_intf ||
814 !(rdev->wiphy.interface_modes & (1 << ntype)))
815 return -EOPNOTSUPP;
816
817 /* if it's part of a bridge, reject changing type to station/ibss */
818 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
819 (ntype == NL80211_IFTYPE_ADHOC ||
820 ntype == NL80211_IFTYPE_STATION ||
821 ntype == NL80211_IFTYPE_P2P_CLIENT))
822 return -EBUSY;
823
824 if (ntype != otype && netif_running(dev)) {
825 mutex_lock(&rdev->devlist_mtx);
826 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
827 ntype);
828 mutex_unlock(&rdev->devlist_mtx);
829 if (err)
830 return err;
831
832 dev->ieee80211_ptr->use_4addr = false;
833 dev->ieee80211_ptr->mesh_id_up_len = 0;
834
835 switch (otype) {
836 case NL80211_IFTYPE_AP:
837 cfg80211_stop_ap(rdev, dev);
838 break;
839 case NL80211_IFTYPE_ADHOC:
840 cfg80211_leave_ibss(rdev, dev, false);
841 break;
842 case NL80211_IFTYPE_STATION:
843 case NL80211_IFTYPE_P2P_CLIENT:
844 cfg80211_disconnect(rdev, dev,
845 WLAN_REASON_DEAUTH_LEAVING, true);
846 break;
847 case NL80211_IFTYPE_MESH_POINT:
848 /* mesh should be handled? */
849 break;
850 default:
851 break;
852 }
853
854 cfg80211_process_rdev_events(rdev);
855 }
856
857 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
858
859 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
860
861 if (!err && params && params->use_4addr != -1)
862 dev->ieee80211_ptr->use_4addr = params->use_4addr;
863
864 if (!err) {
865 dev->priv_flags &= ~IFF_DONT_BRIDGE;
866 switch (ntype) {
867 case NL80211_IFTYPE_STATION:
868 if (dev->ieee80211_ptr->use_4addr)
869 break;
870 /* fall through */
871 case NL80211_IFTYPE_P2P_CLIENT:
872 case NL80211_IFTYPE_ADHOC:
873 dev->priv_flags |= IFF_DONT_BRIDGE;
874 break;
875 case NL80211_IFTYPE_P2P_GO:
876 case NL80211_IFTYPE_AP:
877 case NL80211_IFTYPE_AP_VLAN:
878 case NL80211_IFTYPE_WDS:
879 case NL80211_IFTYPE_MESH_POINT:
880 /* bridging OK */
881 break;
882 case NL80211_IFTYPE_MONITOR:
883 /* monitor can't bridge anyway */
884 break;
885 case NL80211_IFTYPE_UNSPECIFIED:
886 case NUM_NL80211_IFTYPES:
887 /* not happening */
888 break;
889 case NL80211_IFTYPE_P2P_DEVICE:
890 WARN_ON(1);
891 break;
892 }
893 }
894
895 if (!err && ntype != otype && netif_running(dev)) {
896 cfg80211_update_iface_num(rdev, ntype, 1);
897 cfg80211_update_iface_num(rdev, otype, -1);
898 }
899
900 return err;
901 }
902
903 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
904 {
905 static const u32 __mcs2bitrate[] = {
906 /* control PHY */
907 [0] = 275,
908 /* SC PHY */
909 [1] = 3850,
910 [2] = 7700,
911 [3] = 9625,
912 [4] = 11550,
913 [5] = 12512, /* 1251.25 mbps */
914 [6] = 15400,
915 [7] = 19250,
916 [8] = 23100,
917 [9] = 25025,
918 [10] = 30800,
919 [11] = 38500,
920 [12] = 46200,
921 /* OFDM PHY */
922 [13] = 6930,
923 [14] = 8662, /* 866.25 mbps */
924 [15] = 13860,
925 [16] = 17325,
926 [17] = 20790,
927 [18] = 27720,
928 [19] = 34650,
929 [20] = 41580,
930 [21] = 45045,
931 [22] = 51975,
932 [23] = 62370,
933 [24] = 67568, /* 6756.75 mbps */
934 /* LP-SC PHY */
935 [25] = 6260,
936 [26] = 8340,
937 [27] = 11120,
938 [28] = 12510,
939 [29] = 16680,
940 [30] = 22240,
941 [31] = 25030,
942 };
943
944 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
945 return 0;
946
947 return __mcs2bitrate[rate->mcs];
948 }
949
950 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
951 {
952 static const u32 base[4][10] = {
953 { 6500000,
954 13000000,
955 19500000,
956 26000000,
957 39000000,
958 52000000,
959 58500000,
960 65000000,
961 78000000,
962 0,
963 },
964 { 13500000,
965 27000000,
966 40500000,
967 54000000,
968 81000000,
969 108000000,
970 121500000,
971 135000000,
972 162000000,
973 180000000,
974 },
975 { 29300000,
976 58500000,
977 87800000,
978 117000000,
979 175500000,
980 234000000,
981 263300000,
982 292500000,
983 351000000,
984 390000000,
985 },
986 { 58500000,
987 117000000,
988 175500000,
989 234000000,
990 351000000,
991 468000000,
992 526500000,
993 585000000,
994 702000000,
995 780000000,
996 },
997 };
998 u32 bitrate;
999 int idx;
1000
1001 if (WARN_ON_ONCE(rate->mcs > 9))
1002 return 0;
1003
1004 idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1005 RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1006 rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1007 rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1008
1009 bitrate = base[idx][rate->mcs];
1010 bitrate *= rate->nss;
1011
1012 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1013 bitrate = (bitrate / 9) * 10;
1014
1015 /* do NOT round down here */
1016 return (bitrate + 50000) / 100000;
1017 }
1018
1019 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1020 {
1021 int modulation, streams, bitrate;
1022
1023 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1024 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1025 return rate->legacy;
1026 if (rate->flags & RATE_INFO_FLAGS_60G)
1027 return cfg80211_calculate_bitrate_60g(rate);
1028 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1029 return cfg80211_calculate_bitrate_vht(rate);
1030
1031 /* the formula below does only work for MCS values smaller than 32 */
1032 if (WARN_ON_ONCE(rate->mcs >= 32))
1033 return 0;
1034
1035 modulation = rate->mcs & 7;
1036 streams = (rate->mcs >> 3) + 1;
1037
1038 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1039 13500000 : 6500000;
1040
1041 if (modulation < 4)
1042 bitrate *= (modulation + 1);
1043 else if (modulation == 4)
1044 bitrate *= (modulation + 2);
1045 else
1046 bitrate *= (modulation + 3);
1047
1048 bitrate *= streams;
1049
1050 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1051 bitrate = (bitrate / 9) * 10;
1052
1053 /* do NOT round down here */
1054 return (bitrate + 50000) / 100000;
1055 }
1056 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1057
1058 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1059 enum ieee80211_p2p_attr_id attr,
1060 u8 *buf, unsigned int bufsize)
1061 {
1062 u8 *out = buf;
1063 u16 attr_remaining = 0;
1064 bool desired_attr = false;
1065 u16 desired_len = 0;
1066
1067 while (len > 0) {
1068 unsigned int iedatalen;
1069 unsigned int copy;
1070 const u8 *iedata;
1071
1072 if (len < 2)
1073 return -EILSEQ;
1074 iedatalen = ies[1];
1075 if (iedatalen + 2 > len)
1076 return -EILSEQ;
1077
1078 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1079 goto cont;
1080
1081 if (iedatalen < 4)
1082 goto cont;
1083
1084 iedata = ies + 2;
1085
1086 /* check WFA OUI, P2P subtype */
1087 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1088 iedata[2] != 0x9a || iedata[3] != 0x09)
1089 goto cont;
1090
1091 iedatalen -= 4;
1092 iedata += 4;
1093
1094 /* check attribute continuation into this IE */
1095 copy = min_t(unsigned int, attr_remaining, iedatalen);
1096 if (copy && desired_attr) {
1097 desired_len += copy;
1098 if (out) {
1099 memcpy(out, iedata, min(bufsize, copy));
1100 out += min(bufsize, copy);
1101 bufsize -= min(bufsize, copy);
1102 }
1103
1104
1105 if (copy == attr_remaining)
1106 return desired_len;
1107 }
1108
1109 attr_remaining -= copy;
1110 if (attr_remaining)
1111 goto cont;
1112
1113 iedatalen -= copy;
1114 iedata += copy;
1115
1116 while (iedatalen > 0) {
1117 u16 attr_len;
1118
1119 /* P2P attribute ID & size must fit */
1120 if (iedatalen < 3)
1121 return -EILSEQ;
1122 desired_attr = iedata[0] == attr;
1123 attr_len = get_unaligned_le16(iedata + 1);
1124 iedatalen -= 3;
1125 iedata += 3;
1126
1127 copy = min_t(unsigned int, attr_len, iedatalen);
1128
1129 if (desired_attr) {
1130 desired_len += copy;
1131 if (out) {
1132 memcpy(out, iedata, min(bufsize, copy));
1133 out += min(bufsize, copy);
1134 bufsize -= min(bufsize, copy);
1135 }
1136
1137 if (copy == attr_len)
1138 return desired_len;
1139 }
1140
1141 iedata += copy;
1142 iedatalen -= copy;
1143 attr_remaining = attr_len - copy;
1144 }
1145
1146 cont:
1147 len -= ies[1] + 2;
1148 ies += ies[1] + 2;
1149 }
1150
1151 if (attr_remaining && desired_attr)
1152 return -EILSEQ;
1153
1154 return -ENOENT;
1155 }
1156 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1157
1158 bool ieee80211_operating_class_to_band(u8 operating_class,
1159 enum ieee80211_band *band)
1160 {
1161 switch (operating_class) {
1162 case 112:
1163 case 115 ... 127:
1164 *band = IEEE80211_BAND_5GHZ;
1165 return true;
1166 case 81:
1167 case 82:
1168 case 83:
1169 case 84:
1170 *band = IEEE80211_BAND_2GHZ;
1171 return true;
1172 }
1173
1174 return false;
1175 }
1176 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1177
1178 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1179 u32 beacon_int)
1180 {
1181 struct wireless_dev *wdev;
1182 int res = 0;
1183
1184 if (!beacon_int)
1185 return -EINVAL;
1186
1187 mutex_lock(&rdev->devlist_mtx);
1188
1189 list_for_each_entry(wdev, &rdev->wdev_list, list) {
1190 if (!wdev->beacon_interval)
1191 continue;
1192 if (wdev->beacon_interval != beacon_int) {
1193 res = -EINVAL;
1194 break;
1195 }
1196 }
1197
1198 mutex_unlock(&rdev->devlist_mtx);
1199
1200 return res;
1201 }
1202
1203 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1204 struct wireless_dev *wdev,
1205 enum nl80211_iftype iftype,
1206 struct ieee80211_channel *chan,
1207 enum cfg80211_chan_mode chanmode,
1208 u8 radar_detect)
1209 {
1210 struct wireless_dev *wdev_iter;
1211 u32 used_iftypes = BIT(iftype);
1212 int num[NUM_NL80211_IFTYPES];
1213 struct ieee80211_channel
1214 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1215 struct ieee80211_channel *ch;
1216 enum cfg80211_chan_mode chmode;
1217 int num_different_channels = 0;
1218 int total = 1;
1219 bool radar_required;
1220 int i, j;
1221
1222 ASSERT_RTNL();
1223 lockdep_assert_held(&rdev->devlist_mtx);
1224
1225 if (WARN_ON(hweight32(radar_detect) > 1))
1226 return -EINVAL;
1227
1228 switch (iftype) {
1229 case NL80211_IFTYPE_ADHOC:
1230 case NL80211_IFTYPE_AP:
1231 case NL80211_IFTYPE_AP_VLAN:
1232 case NL80211_IFTYPE_MESH_POINT:
1233 case NL80211_IFTYPE_P2P_GO:
1234 case NL80211_IFTYPE_WDS:
1235 radar_required = !!(chan &&
1236 (chan->flags & IEEE80211_CHAN_RADAR));
1237 break;
1238 case NL80211_IFTYPE_P2P_CLIENT:
1239 case NL80211_IFTYPE_STATION:
1240 case NL80211_IFTYPE_P2P_DEVICE:
1241 case NL80211_IFTYPE_MONITOR:
1242 radar_required = false;
1243 break;
1244 case NUM_NL80211_IFTYPES:
1245 case NL80211_IFTYPE_UNSPECIFIED:
1246 default:
1247 return -EINVAL;
1248 }
1249
1250 if (radar_required && !radar_detect)
1251 return -EINVAL;
1252
1253 /* Always allow software iftypes */
1254 if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1255 if (radar_detect)
1256 return -EINVAL;
1257 return 0;
1258 }
1259
1260 memset(num, 0, sizeof(num));
1261 memset(used_channels, 0, sizeof(used_channels));
1262
1263 num[iftype] = 1;
1264
1265 switch (chanmode) {
1266 case CHAN_MODE_UNDEFINED:
1267 break;
1268 case CHAN_MODE_SHARED:
1269 WARN_ON(!chan);
1270 used_channels[0] = chan;
1271 num_different_channels++;
1272 break;
1273 case CHAN_MODE_EXCLUSIVE:
1274 num_different_channels++;
1275 break;
1276 }
1277
1278 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1279 if (wdev_iter == wdev)
1280 continue;
1281 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1282 if (!wdev_iter->p2p_started)
1283 continue;
1284 } else if (wdev_iter->netdev) {
1285 if (!netif_running(wdev_iter->netdev))
1286 continue;
1287 } else {
1288 WARN_ON(1);
1289 }
1290
1291 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1292 continue;
1293
1294 /*
1295 * We may be holding the "wdev" mutex, but now need to lock
1296 * wdev_iter. This is OK because once we get here wdev_iter
1297 * is not wdev (tested above), but we need to use the nested
1298 * locking for lockdep.
1299 */
1300 mutex_lock_nested(&wdev_iter->mtx, 1);
1301 __acquire(wdev_iter->mtx);
1302 cfg80211_get_chan_state(wdev_iter, &ch, &chmode);
1303 wdev_unlock(wdev_iter);
1304
1305 switch (chmode) {
1306 case CHAN_MODE_UNDEFINED:
1307 break;
1308 case CHAN_MODE_SHARED:
1309 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1310 if (!used_channels[i] || used_channels[i] == ch)
1311 break;
1312
1313 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1314 return -EBUSY;
1315
1316 if (used_channels[i] == NULL) {
1317 used_channels[i] = ch;
1318 num_different_channels++;
1319 }
1320 break;
1321 case CHAN_MODE_EXCLUSIVE:
1322 num_different_channels++;
1323 break;
1324 }
1325
1326 num[wdev_iter->iftype]++;
1327 total++;
1328 used_iftypes |= BIT(wdev_iter->iftype);
1329 }
1330
1331 if (total == 1 && !radar_detect)
1332 return 0;
1333
1334 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
1335 const struct ieee80211_iface_combination *c;
1336 struct ieee80211_iface_limit *limits;
1337 u32 all_iftypes = 0;
1338
1339 c = &rdev->wiphy.iface_combinations[i];
1340
1341 if (total > c->max_interfaces)
1342 continue;
1343 if (num_different_channels > c->num_different_channels)
1344 continue;
1345
1346 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1347 GFP_KERNEL);
1348 if (!limits)
1349 return -ENOMEM;
1350
1351 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1352 if (rdev->wiphy.software_iftypes & BIT(iftype))
1353 continue;
1354 for (j = 0; j < c->n_limits; j++) {
1355 all_iftypes |= limits[j].types;
1356 if (!(limits[j].types & BIT(iftype)))
1357 continue;
1358 if (limits[j].max < num[iftype])
1359 goto cont;
1360 limits[j].max -= num[iftype];
1361 }
1362 }
1363
1364 if (radar_detect && !(c->radar_detect_widths & radar_detect))
1365 goto cont;
1366
1367 /*
1368 * Finally check that all iftypes that we're currently
1369 * using are actually part of this combination. If they
1370 * aren't then we can't use this combination and have
1371 * to continue to the next.
1372 */
1373 if ((all_iftypes & used_iftypes) != used_iftypes)
1374 goto cont;
1375
1376 /*
1377 * This combination covered all interface types and
1378 * supported the requested numbers, so we're good.
1379 */
1380 kfree(limits);
1381 return 0;
1382 cont:
1383 kfree(limits);
1384 }
1385
1386 return -EBUSY;
1387 }
1388
1389 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1390 const u8 *rates, unsigned int n_rates,
1391 u32 *mask)
1392 {
1393 int i, j;
1394
1395 if (!sband)
1396 return -EINVAL;
1397
1398 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1399 return -EINVAL;
1400
1401 *mask = 0;
1402
1403 for (i = 0; i < n_rates; i++) {
1404 int rate = (rates[i] & 0x7f) * 5;
1405 bool found = false;
1406
1407 for (j = 0; j < sband->n_bitrates; j++) {
1408 if (sband->bitrates[j].bitrate == rate) {
1409 found = true;
1410 *mask |= BIT(j);
1411 break;
1412 }
1413 }
1414 if (!found)
1415 return -EINVAL;
1416 }
1417
1418 /*
1419 * mask must have at least one bit set here since we
1420 * didn't accept a 0-length rates array nor allowed
1421 * entries in the array that didn't exist
1422 */
1423
1424 return 0;
1425 }
1426
1427 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1428 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1429 const unsigned char rfc1042_header[] __aligned(2) =
1430 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1431 EXPORT_SYMBOL(rfc1042_header);
1432
1433 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1434 const unsigned char bridge_tunnel_header[] __aligned(2) =
1435 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1436 EXPORT_SYMBOL(bridge_tunnel_header);