Merge branch 'x86-mce-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 */
101 static DEFINE_MUTEX(reg_mutex);
102
103 static inline void assert_reg_lock(void)
104 {
105 lockdep_assert_held(&reg_mutex);
106 }
107
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list);
110 static spinlock_t reg_requests_lock;
111
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons);
114 static spinlock_t reg_pending_beacons_lock;
115
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list);
118
119 struct reg_beacon {
120 struct list_head list;
121 struct ieee80211_channel chan;
122 };
123
124 static void reg_todo(struct work_struct *work);
125 static DECLARE_WORK(reg_work, reg_todo);
126
127 static void reg_timeout_work(struct work_struct *work);
128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
129
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom = {
132 .n_reg_rules = 5,
133 .alpha2 = "00",
134 .reg_rules = {
135 /* IEEE 802.11b/g, channels 1..11 */
136 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 /* IEEE 802.11b/g, channels 12..13. No HT40
138 * channel fits here. */
139 REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 NL80211_RRF_PASSIVE_SCAN |
141 NL80211_RRF_NO_IBSS),
142 /* IEEE 802.11 channel 14 - Only JP enables
143 * this and for 802.11b only */
144 REG_RULE(2484-10, 2484+10, 20, 6, 20,
145 NL80211_RRF_PASSIVE_SCAN |
146 NL80211_RRF_NO_IBSS |
147 NL80211_RRF_NO_OFDM),
148 /* IEEE 802.11a, channel 36..48 */
149 REG_RULE(5180-10, 5240+10, 40, 6, 20,
150 NL80211_RRF_PASSIVE_SCAN |
151 NL80211_RRF_NO_IBSS),
152
153 /* NB: 5260 MHz - 5700 MHz requies DFS */
154
155 /* IEEE 802.11a, channel 149..165 */
156 REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS),
159 }
160 };
161
162 static const struct ieee80211_regdomain *cfg80211_world_regdom =
163 &world_regdom;
164
165 static char *ieee80211_regdom = "00";
166 static char user_alpha2[2];
167
168 module_param(ieee80211_regdom, charp, 0444);
169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
170
171 static void reset_regdomains(bool full_reset)
172 {
173 /* avoid freeing static information or freeing something twice */
174 if (cfg80211_regdomain == cfg80211_world_regdom)
175 cfg80211_regdomain = NULL;
176 if (cfg80211_world_regdom == &world_regdom)
177 cfg80211_world_regdom = NULL;
178 if (cfg80211_regdomain == &world_regdom)
179 cfg80211_regdomain = NULL;
180
181 kfree(cfg80211_regdomain);
182 kfree(cfg80211_world_regdom);
183
184 cfg80211_world_regdom = &world_regdom;
185 cfg80211_regdomain = NULL;
186
187 if (!full_reset)
188 return;
189
190 if (last_request != &core_request_world)
191 kfree(last_request);
192 last_request = &core_request_world;
193 }
194
195 /*
196 * Dynamic world regulatory domain requested by the wireless
197 * core upon initialization
198 */
199 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200 {
201 BUG_ON(!last_request);
202
203 reset_regdomains(false);
204
205 cfg80211_world_regdom = rd;
206 cfg80211_regdomain = rd;
207 }
208
209 bool is_world_regdom(const char *alpha2)
210 {
211 if (!alpha2)
212 return false;
213 if (alpha2[0] == '0' && alpha2[1] == '0')
214 return true;
215 return false;
216 }
217
218 static bool is_alpha2_set(const char *alpha2)
219 {
220 if (!alpha2)
221 return false;
222 if (alpha2[0] != 0 && alpha2[1] != 0)
223 return true;
224 return false;
225 }
226
227 static bool is_unknown_alpha2(const char *alpha2)
228 {
229 if (!alpha2)
230 return false;
231 /*
232 * Special case where regulatory domain was built by driver
233 * but a specific alpha2 cannot be determined
234 */
235 if (alpha2[0] == '9' && alpha2[1] == '9')
236 return true;
237 return false;
238 }
239
240 static bool is_intersected_alpha2(const char *alpha2)
241 {
242 if (!alpha2)
243 return false;
244 /*
245 * Special case where regulatory domain is the
246 * result of an intersection between two regulatory domain
247 * structures
248 */
249 if (alpha2[0] == '9' && alpha2[1] == '8')
250 return true;
251 return false;
252 }
253
254 static bool is_an_alpha2(const char *alpha2)
255 {
256 if (!alpha2)
257 return false;
258 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259 return true;
260 return false;
261 }
262
263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 {
265 if (!alpha2_x || !alpha2_y)
266 return false;
267 if (alpha2_x[0] == alpha2_y[0] &&
268 alpha2_x[1] == alpha2_y[1])
269 return true;
270 return false;
271 }
272
273 static bool regdom_changes(const char *alpha2)
274 {
275 assert_cfg80211_lock();
276
277 if (!cfg80211_regdomain)
278 return true;
279 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
280 return false;
281 return true;
282 }
283
284 /*
285 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287 * has ever been issued.
288 */
289 static bool is_user_regdom_saved(void)
290 {
291 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292 return false;
293
294 /* This would indicate a mistake on the design */
295 if (WARN((!is_world_regdom(user_alpha2) &&
296 !is_an_alpha2(user_alpha2)),
297 "Unexpected user alpha2: %c%c\n",
298 user_alpha2[0],
299 user_alpha2[1]))
300 return false;
301
302 return true;
303 }
304
305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
306 const struct ieee80211_regdomain *src_regd)
307 {
308 struct ieee80211_regdomain *regd;
309 int size_of_regd = 0;
310 unsigned int i;
311
312 size_of_regd = sizeof(struct ieee80211_regdomain) +
313 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
314
315 regd = kzalloc(size_of_regd, GFP_KERNEL);
316 if (!regd)
317 return -ENOMEM;
318
319 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
320
321 for (i = 0; i < src_regd->n_reg_rules; i++)
322 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
323 sizeof(struct ieee80211_reg_rule));
324
325 *dst_regd = regd;
326 return 0;
327 }
328
329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
330 struct reg_regdb_search_request {
331 char alpha2[2];
332 struct list_head list;
333 };
334
335 static LIST_HEAD(reg_regdb_search_list);
336 static DEFINE_MUTEX(reg_regdb_search_mutex);
337
338 static void reg_regdb_search(struct work_struct *work)
339 {
340 struct reg_regdb_search_request *request;
341 const struct ieee80211_regdomain *curdom, *regdom;
342 int i, r;
343
344 mutex_lock(&reg_regdb_search_mutex);
345 while (!list_empty(&reg_regdb_search_list)) {
346 request = list_first_entry(&reg_regdb_search_list,
347 struct reg_regdb_search_request,
348 list);
349 list_del(&request->list);
350
351 for (i=0; i<reg_regdb_size; i++) {
352 curdom = reg_regdb[i];
353
354 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
355 r = reg_copy_regd(&regdom, curdom);
356 if (r)
357 break;
358 mutex_lock(&cfg80211_mutex);
359 set_regdom(regdom);
360 mutex_unlock(&cfg80211_mutex);
361 break;
362 }
363 }
364
365 kfree(request);
366 }
367 mutex_unlock(&reg_regdb_search_mutex);
368 }
369
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371
372 static void reg_regdb_query(const char *alpha2)
373 {
374 struct reg_regdb_search_request *request;
375
376 if (!alpha2)
377 return;
378
379 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380 if (!request)
381 return;
382
383 memcpy(request->alpha2, alpha2, 2);
384
385 mutex_lock(&reg_regdb_search_mutex);
386 list_add_tail(&request->list, &reg_regdb_search_list);
387 mutex_unlock(&reg_regdb_search_mutex);
388
389 schedule_work(&reg_regdb_work);
390 }
391 #else
392 static inline void reg_regdb_query(const char *alpha2) {}
393 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
394
395 /*
396 * This lets us keep regulatory code which is updated on a regulatory
397 * basis in userspace. Country information is filled in by
398 * reg_device_uevent
399 */
400 static int call_crda(const char *alpha2)
401 {
402 if (!is_world_regdom((char *) alpha2))
403 pr_info("Calling CRDA for country: %c%c\n",
404 alpha2[0], alpha2[1]);
405 else
406 pr_info("Calling CRDA to update world regulatory domain\n");
407
408 /* query internal regulatory database (if it exists) */
409 reg_regdb_query(alpha2);
410
411 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
412 }
413
414 /* Used by nl80211 before kmalloc'ing our regulatory domain */
415 bool reg_is_valid_request(const char *alpha2)
416 {
417 assert_cfg80211_lock();
418
419 if (!last_request)
420 return false;
421
422 return alpha2_equal(last_request->alpha2, alpha2);
423 }
424
425 /* Sanity check on a regulatory rule */
426 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
427 {
428 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
429 u32 freq_diff;
430
431 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
432 return false;
433
434 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
435 return false;
436
437 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
438
439 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
440 freq_range->max_bandwidth_khz > freq_diff)
441 return false;
442
443 return true;
444 }
445
446 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
447 {
448 const struct ieee80211_reg_rule *reg_rule = NULL;
449 unsigned int i;
450
451 if (!rd->n_reg_rules)
452 return false;
453
454 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
455 return false;
456
457 for (i = 0; i < rd->n_reg_rules; i++) {
458 reg_rule = &rd->reg_rules[i];
459 if (!is_valid_reg_rule(reg_rule))
460 return false;
461 }
462
463 return true;
464 }
465
466 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
467 u32 center_freq_khz,
468 u32 bw_khz)
469 {
470 u32 start_freq_khz, end_freq_khz;
471
472 start_freq_khz = center_freq_khz - (bw_khz/2);
473 end_freq_khz = center_freq_khz + (bw_khz/2);
474
475 if (start_freq_khz >= freq_range->start_freq_khz &&
476 end_freq_khz <= freq_range->end_freq_khz)
477 return true;
478
479 return false;
480 }
481
482 /**
483 * freq_in_rule_band - tells us if a frequency is in a frequency band
484 * @freq_range: frequency rule we want to query
485 * @freq_khz: frequency we are inquiring about
486 *
487 * This lets us know if a specific frequency rule is or is not relevant to
488 * a specific frequency's band. Bands are device specific and artificial
489 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
490 * safe for now to assume that a frequency rule should not be part of a
491 * frequency's band if the start freq or end freq are off by more than 2 GHz.
492 * This resolution can be lowered and should be considered as we add
493 * regulatory rule support for other "bands".
494 **/
495 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
496 u32 freq_khz)
497 {
498 #define ONE_GHZ_IN_KHZ 1000000
499 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
500 return true;
501 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
502 return true;
503 return false;
504 #undef ONE_GHZ_IN_KHZ
505 }
506
507 /*
508 * Helper for regdom_intersect(), this does the real
509 * mathematical intersection fun
510 */
511 static int reg_rules_intersect(
512 const struct ieee80211_reg_rule *rule1,
513 const struct ieee80211_reg_rule *rule2,
514 struct ieee80211_reg_rule *intersected_rule)
515 {
516 const struct ieee80211_freq_range *freq_range1, *freq_range2;
517 struct ieee80211_freq_range *freq_range;
518 const struct ieee80211_power_rule *power_rule1, *power_rule2;
519 struct ieee80211_power_rule *power_rule;
520 u32 freq_diff;
521
522 freq_range1 = &rule1->freq_range;
523 freq_range2 = &rule2->freq_range;
524 freq_range = &intersected_rule->freq_range;
525
526 power_rule1 = &rule1->power_rule;
527 power_rule2 = &rule2->power_rule;
528 power_rule = &intersected_rule->power_rule;
529
530 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
531 freq_range2->start_freq_khz);
532 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
533 freq_range2->end_freq_khz);
534 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
535 freq_range2->max_bandwidth_khz);
536
537 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
538 if (freq_range->max_bandwidth_khz > freq_diff)
539 freq_range->max_bandwidth_khz = freq_diff;
540
541 power_rule->max_eirp = min(power_rule1->max_eirp,
542 power_rule2->max_eirp);
543 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
544 power_rule2->max_antenna_gain);
545
546 intersected_rule->flags = (rule1->flags | rule2->flags);
547
548 if (!is_valid_reg_rule(intersected_rule))
549 return -EINVAL;
550
551 return 0;
552 }
553
554 /**
555 * regdom_intersect - do the intersection between two regulatory domains
556 * @rd1: first regulatory domain
557 * @rd2: second regulatory domain
558 *
559 * Use this function to get the intersection between two regulatory domains.
560 * Once completed we will mark the alpha2 for the rd as intersected, "98",
561 * as no one single alpha2 can represent this regulatory domain.
562 *
563 * Returns a pointer to the regulatory domain structure which will hold the
564 * resulting intersection of rules between rd1 and rd2. We will
565 * kzalloc() this structure for you.
566 */
567 static struct ieee80211_regdomain *regdom_intersect(
568 const struct ieee80211_regdomain *rd1,
569 const struct ieee80211_regdomain *rd2)
570 {
571 int r, size_of_regd;
572 unsigned int x, y;
573 unsigned int num_rules = 0, rule_idx = 0;
574 const struct ieee80211_reg_rule *rule1, *rule2;
575 struct ieee80211_reg_rule *intersected_rule;
576 struct ieee80211_regdomain *rd;
577 /* This is just a dummy holder to help us count */
578 struct ieee80211_reg_rule irule;
579
580 /* Uses the stack temporarily for counter arithmetic */
581 intersected_rule = &irule;
582
583 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
584
585 if (!rd1 || !rd2)
586 return NULL;
587
588 /*
589 * First we get a count of the rules we'll need, then we actually
590 * build them. This is to so we can malloc() and free() a
591 * regdomain once. The reason we use reg_rules_intersect() here
592 * is it will return -EINVAL if the rule computed makes no sense.
593 * All rules that do check out OK are valid.
594 */
595
596 for (x = 0; x < rd1->n_reg_rules; x++) {
597 rule1 = &rd1->reg_rules[x];
598 for (y = 0; y < rd2->n_reg_rules; y++) {
599 rule2 = &rd2->reg_rules[y];
600 if (!reg_rules_intersect(rule1, rule2,
601 intersected_rule))
602 num_rules++;
603 memset(intersected_rule, 0,
604 sizeof(struct ieee80211_reg_rule));
605 }
606 }
607
608 if (!num_rules)
609 return NULL;
610
611 size_of_regd = sizeof(struct ieee80211_regdomain) +
612 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
613
614 rd = kzalloc(size_of_regd, GFP_KERNEL);
615 if (!rd)
616 return NULL;
617
618 for (x = 0; x < rd1->n_reg_rules; x++) {
619 rule1 = &rd1->reg_rules[x];
620 for (y = 0; y < rd2->n_reg_rules; y++) {
621 rule2 = &rd2->reg_rules[y];
622 /*
623 * This time around instead of using the stack lets
624 * write to the target rule directly saving ourselves
625 * a memcpy()
626 */
627 intersected_rule = &rd->reg_rules[rule_idx];
628 r = reg_rules_intersect(rule1, rule2,
629 intersected_rule);
630 /*
631 * No need to memset here the intersected rule here as
632 * we're not using the stack anymore
633 */
634 if (r)
635 continue;
636 rule_idx++;
637 }
638 }
639
640 if (rule_idx != num_rules) {
641 kfree(rd);
642 return NULL;
643 }
644
645 rd->n_reg_rules = num_rules;
646 rd->alpha2[0] = '9';
647 rd->alpha2[1] = '8';
648
649 return rd;
650 }
651
652 /*
653 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
654 * want to just have the channel structure use these
655 */
656 static u32 map_regdom_flags(u32 rd_flags)
657 {
658 u32 channel_flags = 0;
659 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
660 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
661 if (rd_flags & NL80211_RRF_NO_IBSS)
662 channel_flags |= IEEE80211_CHAN_NO_IBSS;
663 if (rd_flags & NL80211_RRF_DFS)
664 channel_flags |= IEEE80211_CHAN_RADAR;
665 return channel_flags;
666 }
667
668 static int freq_reg_info_regd(struct wiphy *wiphy,
669 u32 center_freq,
670 u32 desired_bw_khz,
671 const struct ieee80211_reg_rule **reg_rule,
672 const struct ieee80211_regdomain *custom_regd)
673 {
674 int i;
675 bool band_rule_found = false;
676 const struct ieee80211_regdomain *regd;
677 bool bw_fits = false;
678
679 if (!desired_bw_khz)
680 desired_bw_khz = MHZ_TO_KHZ(20);
681
682 regd = custom_regd ? custom_regd : cfg80211_regdomain;
683
684 /*
685 * Follow the driver's regulatory domain, if present, unless a country
686 * IE has been processed or a user wants to help complaince further
687 */
688 if (!custom_regd &&
689 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
690 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
691 wiphy->regd)
692 regd = wiphy->regd;
693
694 if (!regd)
695 return -EINVAL;
696
697 for (i = 0; i < regd->n_reg_rules; i++) {
698 const struct ieee80211_reg_rule *rr;
699 const struct ieee80211_freq_range *fr = NULL;
700
701 rr = &regd->reg_rules[i];
702 fr = &rr->freq_range;
703
704 /*
705 * We only need to know if one frequency rule was
706 * was in center_freq's band, that's enough, so lets
707 * not overwrite it once found
708 */
709 if (!band_rule_found)
710 band_rule_found = freq_in_rule_band(fr, center_freq);
711
712 bw_fits = reg_does_bw_fit(fr,
713 center_freq,
714 desired_bw_khz);
715
716 if (band_rule_found && bw_fits) {
717 *reg_rule = rr;
718 return 0;
719 }
720 }
721
722 if (!band_rule_found)
723 return -ERANGE;
724
725 return -EINVAL;
726 }
727
728 int freq_reg_info(struct wiphy *wiphy,
729 u32 center_freq,
730 u32 desired_bw_khz,
731 const struct ieee80211_reg_rule **reg_rule)
732 {
733 assert_cfg80211_lock();
734 return freq_reg_info_regd(wiphy,
735 center_freq,
736 desired_bw_khz,
737 reg_rule,
738 NULL);
739 }
740 EXPORT_SYMBOL(freq_reg_info);
741
742 #ifdef CONFIG_CFG80211_REG_DEBUG
743 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
744 {
745 switch (initiator) {
746 case NL80211_REGDOM_SET_BY_CORE:
747 return "Set by core";
748 case NL80211_REGDOM_SET_BY_USER:
749 return "Set by user";
750 case NL80211_REGDOM_SET_BY_DRIVER:
751 return "Set by driver";
752 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
753 return "Set by country IE";
754 default:
755 WARN_ON(1);
756 return "Set by bug";
757 }
758 }
759
760 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
761 u32 desired_bw_khz,
762 const struct ieee80211_reg_rule *reg_rule)
763 {
764 const struct ieee80211_power_rule *power_rule;
765 const struct ieee80211_freq_range *freq_range;
766 char max_antenna_gain[32];
767
768 power_rule = &reg_rule->power_rule;
769 freq_range = &reg_rule->freq_range;
770
771 if (!power_rule->max_antenna_gain)
772 snprintf(max_antenna_gain, 32, "N/A");
773 else
774 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
775
776 REG_DBG_PRINT("Updating information on frequency %d MHz "
777 "for a %d MHz width channel with regulatory rule:\n",
778 chan->center_freq,
779 KHZ_TO_MHZ(desired_bw_khz));
780
781 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
782 freq_range->start_freq_khz,
783 freq_range->end_freq_khz,
784 freq_range->max_bandwidth_khz,
785 max_antenna_gain,
786 power_rule->max_eirp);
787 }
788 #else
789 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
790 u32 desired_bw_khz,
791 const struct ieee80211_reg_rule *reg_rule)
792 {
793 return;
794 }
795 #endif
796
797 /*
798 * Note that right now we assume the desired channel bandwidth
799 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
800 * per channel, the primary and the extension channel). To support
801 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
802 * new ieee80211_channel.target_bw and re run the regulatory check
803 * on the wiphy with the target_bw specified. Then we can simply use
804 * that below for the desired_bw_khz below.
805 */
806 static void handle_channel(struct wiphy *wiphy,
807 enum nl80211_reg_initiator initiator,
808 enum ieee80211_band band,
809 unsigned int chan_idx)
810 {
811 int r;
812 u32 flags, bw_flags = 0;
813 u32 desired_bw_khz = MHZ_TO_KHZ(20);
814 const struct ieee80211_reg_rule *reg_rule = NULL;
815 const struct ieee80211_power_rule *power_rule = NULL;
816 const struct ieee80211_freq_range *freq_range = NULL;
817 struct ieee80211_supported_band *sband;
818 struct ieee80211_channel *chan;
819 struct wiphy *request_wiphy = NULL;
820
821 assert_cfg80211_lock();
822
823 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
824
825 sband = wiphy->bands[band];
826 BUG_ON(chan_idx >= sband->n_channels);
827 chan = &sband->channels[chan_idx];
828
829 flags = chan->orig_flags;
830
831 r = freq_reg_info(wiphy,
832 MHZ_TO_KHZ(chan->center_freq),
833 desired_bw_khz,
834 &reg_rule);
835
836 if (r) {
837 /*
838 * We will disable all channels that do not match our
839 * received regulatory rule unless the hint is coming
840 * from a Country IE and the Country IE had no information
841 * about a band. The IEEE 802.11 spec allows for an AP
842 * to send only a subset of the regulatory rules allowed,
843 * so an AP in the US that only supports 2.4 GHz may only send
844 * a country IE with information for the 2.4 GHz band
845 * while 5 GHz is still supported.
846 */
847 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
848 r == -ERANGE)
849 return;
850
851 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
852 chan->flags = IEEE80211_CHAN_DISABLED;
853 return;
854 }
855
856 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
857
858 power_rule = &reg_rule->power_rule;
859 freq_range = &reg_rule->freq_range;
860
861 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
862 bw_flags = IEEE80211_CHAN_NO_HT40;
863
864 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
865 request_wiphy && request_wiphy == wiphy &&
866 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
867 /*
868 * This guarantees the driver's requested regulatory domain
869 * will always be used as a base for further regulatory
870 * settings
871 */
872 chan->flags = chan->orig_flags =
873 map_regdom_flags(reg_rule->flags) | bw_flags;
874 chan->max_antenna_gain = chan->orig_mag =
875 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
876 chan->max_power = chan->orig_mpwr =
877 (int) MBM_TO_DBM(power_rule->max_eirp);
878 return;
879 }
880
881 chan->beacon_found = false;
882 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
883 chan->max_antenna_gain = min(chan->orig_mag,
884 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
885 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
886 chan->max_power = min(chan->max_power, chan->max_reg_power);
887 }
888
889 static void handle_band(struct wiphy *wiphy,
890 enum ieee80211_band band,
891 enum nl80211_reg_initiator initiator)
892 {
893 unsigned int i;
894 struct ieee80211_supported_band *sband;
895
896 BUG_ON(!wiphy->bands[band]);
897 sband = wiphy->bands[band];
898
899 for (i = 0; i < sband->n_channels; i++)
900 handle_channel(wiphy, initiator, band, i);
901 }
902
903 static bool ignore_reg_update(struct wiphy *wiphy,
904 enum nl80211_reg_initiator initiator)
905 {
906 if (!last_request) {
907 REG_DBG_PRINT("Ignoring regulatory request %s since "
908 "last_request is not set\n",
909 reg_initiator_name(initiator));
910 return true;
911 }
912
913 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
914 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
915 REG_DBG_PRINT("Ignoring regulatory request %s "
916 "since the driver uses its own custom "
917 "regulatory domain\n",
918 reg_initiator_name(initiator));
919 return true;
920 }
921
922 /*
923 * wiphy->regd will be set once the device has its own
924 * desired regulatory domain set
925 */
926 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
927 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
928 !is_world_regdom(last_request->alpha2)) {
929 REG_DBG_PRINT("Ignoring regulatory request %s "
930 "since the driver requires its own regulatory "
931 "domain to be set first\n",
932 reg_initiator_name(initiator));
933 return true;
934 }
935
936 return false;
937 }
938
939 static void handle_reg_beacon(struct wiphy *wiphy,
940 unsigned int chan_idx,
941 struct reg_beacon *reg_beacon)
942 {
943 struct ieee80211_supported_band *sband;
944 struct ieee80211_channel *chan;
945 bool channel_changed = false;
946 struct ieee80211_channel chan_before;
947
948 assert_cfg80211_lock();
949
950 sband = wiphy->bands[reg_beacon->chan.band];
951 chan = &sband->channels[chan_idx];
952
953 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
954 return;
955
956 if (chan->beacon_found)
957 return;
958
959 chan->beacon_found = true;
960
961 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
962 return;
963
964 chan_before.center_freq = chan->center_freq;
965 chan_before.flags = chan->flags;
966
967 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
968 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
969 channel_changed = true;
970 }
971
972 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
973 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
974 channel_changed = true;
975 }
976
977 if (channel_changed)
978 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
979 }
980
981 /*
982 * Called when a scan on a wiphy finds a beacon on
983 * new channel
984 */
985 static void wiphy_update_new_beacon(struct wiphy *wiphy,
986 struct reg_beacon *reg_beacon)
987 {
988 unsigned int i;
989 struct ieee80211_supported_band *sband;
990
991 assert_cfg80211_lock();
992
993 if (!wiphy->bands[reg_beacon->chan.band])
994 return;
995
996 sband = wiphy->bands[reg_beacon->chan.band];
997
998 for (i = 0; i < sband->n_channels; i++)
999 handle_reg_beacon(wiphy, i, reg_beacon);
1000 }
1001
1002 /*
1003 * Called upon reg changes or a new wiphy is added
1004 */
1005 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1006 {
1007 unsigned int i;
1008 struct ieee80211_supported_band *sband;
1009 struct reg_beacon *reg_beacon;
1010
1011 assert_cfg80211_lock();
1012
1013 if (list_empty(&reg_beacon_list))
1014 return;
1015
1016 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1017 if (!wiphy->bands[reg_beacon->chan.band])
1018 continue;
1019 sband = wiphy->bands[reg_beacon->chan.band];
1020 for (i = 0; i < sband->n_channels; i++)
1021 handle_reg_beacon(wiphy, i, reg_beacon);
1022 }
1023 }
1024
1025 static bool reg_is_world_roaming(struct wiphy *wiphy)
1026 {
1027 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1028 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1029 return true;
1030 if (last_request &&
1031 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1032 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1033 return true;
1034 return false;
1035 }
1036
1037 /* Reap the advantages of previously found beacons */
1038 static void reg_process_beacons(struct wiphy *wiphy)
1039 {
1040 /*
1041 * Means we are just firing up cfg80211, so no beacons would
1042 * have been processed yet.
1043 */
1044 if (!last_request)
1045 return;
1046 if (!reg_is_world_roaming(wiphy))
1047 return;
1048 wiphy_update_beacon_reg(wiphy);
1049 }
1050
1051 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1052 {
1053 if (!chan)
1054 return true;
1055 if (chan->flags & IEEE80211_CHAN_DISABLED)
1056 return true;
1057 /* This would happen when regulatory rules disallow HT40 completely */
1058 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1059 return true;
1060 return false;
1061 }
1062
1063 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1064 enum ieee80211_band band,
1065 unsigned int chan_idx)
1066 {
1067 struct ieee80211_supported_band *sband;
1068 struct ieee80211_channel *channel;
1069 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1070 unsigned int i;
1071
1072 assert_cfg80211_lock();
1073
1074 sband = wiphy->bands[band];
1075 BUG_ON(chan_idx >= sband->n_channels);
1076 channel = &sband->channels[chan_idx];
1077
1078 if (is_ht40_not_allowed(channel)) {
1079 channel->flags |= IEEE80211_CHAN_NO_HT40;
1080 return;
1081 }
1082
1083 /*
1084 * We need to ensure the extension channels exist to
1085 * be able to use HT40- or HT40+, this finds them (or not)
1086 */
1087 for (i = 0; i < sband->n_channels; i++) {
1088 struct ieee80211_channel *c = &sband->channels[i];
1089 if (c->center_freq == (channel->center_freq - 20))
1090 channel_before = c;
1091 if (c->center_freq == (channel->center_freq + 20))
1092 channel_after = c;
1093 }
1094
1095 /*
1096 * Please note that this assumes target bandwidth is 20 MHz,
1097 * if that ever changes we also need to change the below logic
1098 * to include that as well.
1099 */
1100 if (is_ht40_not_allowed(channel_before))
1101 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1102 else
1103 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1104
1105 if (is_ht40_not_allowed(channel_after))
1106 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1107 else
1108 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1109 }
1110
1111 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1112 enum ieee80211_band band)
1113 {
1114 unsigned int i;
1115 struct ieee80211_supported_band *sband;
1116
1117 BUG_ON(!wiphy->bands[band]);
1118 sband = wiphy->bands[band];
1119
1120 for (i = 0; i < sband->n_channels; i++)
1121 reg_process_ht_flags_channel(wiphy, band, i);
1122 }
1123
1124 static void reg_process_ht_flags(struct wiphy *wiphy)
1125 {
1126 enum ieee80211_band band;
1127
1128 if (!wiphy)
1129 return;
1130
1131 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1132 if (wiphy->bands[band])
1133 reg_process_ht_flags_band(wiphy, band);
1134 }
1135
1136 }
1137
1138 static void wiphy_update_regulatory(struct wiphy *wiphy,
1139 enum nl80211_reg_initiator initiator)
1140 {
1141 enum ieee80211_band band;
1142
1143 assert_reg_lock();
1144
1145 if (ignore_reg_update(wiphy, initiator))
1146 return;
1147
1148 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1149
1150 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1151 if (wiphy->bands[band])
1152 handle_band(wiphy, band, initiator);
1153 }
1154
1155 reg_process_beacons(wiphy);
1156 reg_process_ht_flags(wiphy);
1157 if (wiphy->reg_notifier)
1158 wiphy->reg_notifier(wiphy, last_request);
1159 }
1160
1161 void regulatory_update(struct wiphy *wiphy,
1162 enum nl80211_reg_initiator setby)
1163 {
1164 mutex_lock(&reg_mutex);
1165 wiphy_update_regulatory(wiphy, setby);
1166 mutex_unlock(&reg_mutex);
1167 }
1168
1169 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1170 {
1171 struct cfg80211_registered_device *rdev;
1172 struct wiphy *wiphy;
1173
1174 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1175 wiphy = &rdev->wiphy;
1176 wiphy_update_regulatory(wiphy, initiator);
1177 /*
1178 * Regulatory updates set by CORE are ignored for custom
1179 * regulatory cards. Let us notify the changes to the driver,
1180 * as some drivers used this to restore its orig_* reg domain.
1181 */
1182 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1183 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1184 wiphy->reg_notifier)
1185 wiphy->reg_notifier(wiphy, last_request);
1186 }
1187 }
1188
1189 static void handle_channel_custom(struct wiphy *wiphy,
1190 enum ieee80211_band band,
1191 unsigned int chan_idx,
1192 const struct ieee80211_regdomain *regd)
1193 {
1194 int r;
1195 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1196 u32 bw_flags = 0;
1197 const struct ieee80211_reg_rule *reg_rule = NULL;
1198 const struct ieee80211_power_rule *power_rule = NULL;
1199 const struct ieee80211_freq_range *freq_range = NULL;
1200 struct ieee80211_supported_band *sband;
1201 struct ieee80211_channel *chan;
1202
1203 assert_reg_lock();
1204
1205 sband = wiphy->bands[band];
1206 BUG_ON(chan_idx >= sband->n_channels);
1207 chan = &sband->channels[chan_idx];
1208
1209 r = freq_reg_info_regd(wiphy,
1210 MHZ_TO_KHZ(chan->center_freq),
1211 desired_bw_khz,
1212 &reg_rule,
1213 regd);
1214
1215 if (r) {
1216 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1217 "regd has no rule that fits a %d MHz "
1218 "wide channel\n",
1219 chan->center_freq,
1220 KHZ_TO_MHZ(desired_bw_khz));
1221 chan->flags = IEEE80211_CHAN_DISABLED;
1222 return;
1223 }
1224
1225 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1226
1227 power_rule = &reg_rule->power_rule;
1228 freq_range = &reg_rule->freq_range;
1229
1230 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1231 bw_flags = IEEE80211_CHAN_NO_HT40;
1232
1233 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1234 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1235 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1236 }
1237
1238 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1239 const struct ieee80211_regdomain *regd)
1240 {
1241 unsigned int i;
1242 struct ieee80211_supported_band *sband;
1243
1244 BUG_ON(!wiphy->bands[band]);
1245 sband = wiphy->bands[band];
1246
1247 for (i = 0; i < sband->n_channels; i++)
1248 handle_channel_custom(wiphy, band, i, regd);
1249 }
1250
1251 /* Used by drivers prior to wiphy registration */
1252 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1253 const struct ieee80211_regdomain *regd)
1254 {
1255 enum ieee80211_band band;
1256 unsigned int bands_set = 0;
1257
1258 mutex_lock(&reg_mutex);
1259 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1260 if (!wiphy->bands[band])
1261 continue;
1262 handle_band_custom(wiphy, band, regd);
1263 bands_set++;
1264 }
1265 mutex_unlock(&reg_mutex);
1266
1267 /*
1268 * no point in calling this if it won't have any effect
1269 * on your device's supportd bands.
1270 */
1271 WARN_ON(!bands_set);
1272 }
1273 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1274
1275 /*
1276 * Return value which can be used by ignore_request() to indicate
1277 * it has been determined we should intersect two regulatory domains
1278 */
1279 #define REG_INTERSECT 1
1280
1281 /* This has the logic which determines when a new request
1282 * should be ignored. */
1283 static int ignore_request(struct wiphy *wiphy,
1284 struct regulatory_request *pending_request)
1285 {
1286 struct wiphy *last_wiphy = NULL;
1287
1288 assert_cfg80211_lock();
1289
1290 /* All initial requests are respected */
1291 if (!last_request)
1292 return 0;
1293
1294 switch (pending_request->initiator) {
1295 case NL80211_REGDOM_SET_BY_CORE:
1296 return 0;
1297 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1298
1299 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1300
1301 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1302 return -EINVAL;
1303 if (last_request->initiator ==
1304 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1305 if (last_wiphy != wiphy) {
1306 /*
1307 * Two cards with two APs claiming different
1308 * Country IE alpha2s. We could
1309 * intersect them, but that seems unlikely
1310 * to be correct. Reject second one for now.
1311 */
1312 if (regdom_changes(pending_request->alpha2))
1313 return -EOPNOTSUPP;
1314 return -EALREADY;
1315 }
1316 /*
1317 * Two consecutive Country IE hints on the same wiphy.
1318 * This should be picked up early by the driver/stack
1319 */
1320 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1321 return 0;
1322 return -EALREADY;
1323 }
1324 return 0;
1325 case NL80211_REGDOM_SET_BY_DRIVER:
1326 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1327 if (regdom_changes(pending_request->alpha2))
1328 return 0;
1329 return -EALREADY;
1330 }
1331
1332 /*
1333 * This would happen if you unplug and plug your card
1334 * back in or if you add a new device for which the previously
1335 * loaded card also agrees on the regulatory domain.
1336 */
1337 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1338 !regdom_changes(pending_request->alpha2))
1339 return -EALREADY;
1340
1341 return REG_INTERSECT;
1342 case NL80211_REGDOM_SET_BY_USER:
1343 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1344 return REG_INTERSECT;
1345 /*
1346 * If the user knows better the user should set the regdom
1347 * to their country before the IE is picked up
1348 */
1349 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1350 last_request->intersect)
1351 return -EOPNOTSUPP;
1352 /*
1353 * Process user requests only after previous user/driver/core
1354 * requests have been processed
1355 */
1356 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1357 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1358 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1359 if (regdom_changes(last_request->alpha2))
1360 return -EAGAIN;
1361 }
1362
1363 if (!regdom_changes(pending_request->alpha2))
1364 return -EALREADY;
1365
1366 return 0;
1367 }
1368
1369 return -EINVAL;
1370 }
1371
1372 static void reg_set_request_processed(void)
1373 {
1374 bool need_more_processing = false;
1375
1376 last_request->processed = true;
1377
1378 spin_lock(&reg_requests_lock);
1379 if (!list_empty(&reg_requests_list))
1380 need_more_processing = true;
1381 spin_unlock(&reg_requests_lock);
1382
1383 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1384 cancel_delayed_work_sync(&reg_timeout);
1385
1386 if (need_more_processing)
1387 schedule_work(&reg_work);
1388 }
1389
1390 /**
1391 * __regulatory_hint - hint to the wireless core a regulatory domain
1392 * @wiphy: if the hint comes from country information from an AP, this
1393 * is required to be set to the wiphy that received the information
1394 * @pending_request: the regulatory request currently being processed
1395 *
1396 * The Wireless subsystem can use this function to hint to the wireless core
1397 * what it believes should be the current regulatory domain.
1398 *
1399 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1400 * already been set or other standard error codes.
1401 *
1402 * Caller must hold &cfg80211_mutex and &reg_mutex
1403 */
1404 static int __regulatory_hint(struct wiphy *wiphy,
1405 struct regulatory_request *pending_request)
1406 {
1407 bool intersect = false;
1408 int r = 0;
1409
1410 assert_cfg80211_lock();
1411
1412 r = ignore_request(wiphy, pending_request);
1413
1414 if (r == REG_INTERSECT) {
1415 if (pending_request->initiator ==
1416 NL80211_REGDOM_SET_BY_DRIVER) {
1417 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1418 if (r) {
1419 kfree(pending_request);
1420 return r;
1421 }
1422 }
1423 intersect = true;
1424 } else if (r) {
1425 /*
1426 * If the regulatory domain being requested by the
1427 * driver has already been set just copy it to the
1428 * wiphy
1429 */
1430 if (r == -EALREADY &&
1431 pending_request->initiator ==
1432 NL80211_REGDOM_SET_BY_DRIVER) {
1433 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1434 if (r) {
1435 kfree(pending_request);
1436 return r;
1437 }
1438 r = -EALREADY;
1439 goto new_request;
1440 }
1441 kfree(pending_request);
1442 return r;
1443 }
1444
1445 new_request:
1446 if (last_request != &core_request_world)
1447 kfree(last_request);
1448
1449 last_request = pending_request;
1450 last_request->intersect = intersect;
1451
1452 pending_request = NULL;
1453
1454 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1455 user_alpha2[0] = last_request->alpha2[0];
1456 user_alpha2[1] = last_request->alpha2[1];
1457 }
1458
1459 /* When r == REG_INTERSECT we do need to call CRDA */
1460 if (r < 0) {
1461 /*
1462 * Since CRDA will not be called in this case as we already
1463 * have applied the requested regulatory domain before we just
1464 * inform userspace we have processed the request
1465 */
1466 if (r == -EALREADY) {
1467 nl80211_send_reg_change_event(last_request);
1468 reg_set_request_processed();
1469 }
1470 return r;
1471 }
1472
1473 return call_crda(last_request->alpha2);
1474 }
1475
1476 /* This processes *all* regulatory hints */
1477 static void reg_process_hint(struct regulatory_request *reg_request,
1478 enum nl80211_reg_initiator reg_initiator)
1479 {
1480 int r = 0;
1481 struct wiphy *wiphy = NULL;
1482
1483 BUG_ON(!reg_request->alpha2);
1484
1485 if (wiphy_idx_valid(reg_request->wiphy_idx))
1486 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1487
1488 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1489 !wiphy) {
1490 kfree(reg_request);
1491 return;
1492 }
1493
1494 r = __regulatory_hint(wiphy, reg_request);
1495 /* This is required so that the orig_* parameters are saved */
1496 if (r == -EALREADY && wiphy &&
1497 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1498 wiphy_update_regulatory(wiphy, reg_initiator);
1499 return;
1500 }
1501
1502 /*
1503 * We only time out user hints, given that they should be the only
1504 * source of bogus requests.
1505 */
1506 if (r != -EALREADY &&
1507 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1508 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1509 }
1510
1511 /*
1512 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1513 * Regulatory hints come on a first come first serve basis and we
1514 * must process each one atomically.
1515 */
1516 static void reg_process_pending_hints(void)
1517 {
1518 struct regulatory_request *reg_request;
1519
1520 mutex_lock(&cfg80211_mutex);
1521 mutex_lock(&reg_mutex);
1522
1523 /* When last_request->processed becomes true this will be rescheduled */
1524 if (last_request && !last_request->processed) {
1525 REG_DBG_PRINT("Pending regulatory request, waiting "
1526 "for it to be processed...\n");
1527 goto out;
1528 }
1529
1530 spin_lock(&reg_requests_lock);
1531
1532 if (list_empty(&reg_requests_list)) {
1533 spin_unlock(&reg_requests_lock);
1534 goto out;
1535 }
1536
1537 reg_request = list_first_entry(&reg_requests_list,
1538 struct regulatory_request,
1539 list);
1540 list_del_init(&reg_request->list);
1541
1542 spin_unlock(&reg_requests_lock);
1543
1544 reg_process_hint(reg_request, reg_request->initiator);
1545
1546 out:
1547 mutex_unlock(&reg_mutex);
1548 mutex_unlock(&cfg80211_mutex);
1549 }
1550
1551 /* Processes beacon hints -- this has nothing to do with country IEs */
1552 static void reg_process_pending_beacon_hints(void)
1553 {
1554 struct cfg80211_registered_device *rdev;
1555 struct reg_beacon *pending_beacon, *tmp;
1556
1557 /*
1558 * No need to hold the reg_mutex here as we just touch wiphys
1559 * and do not read or access regulatory variables.
1560 */
1561 mutex_lock(&cfg80211_mutex);
1562
1563 /* This goes through the _pending_ beacon list */
1564 spin_lock_bh(&reg_pending_beacons_lock);
1565
1566 if (list_empty(&reg_pending_beacons)) {
1567 spin_unlock_bh(&reg_pending_beacons_lock);
1568 goto out;
1569 }
1570
1571 list_for_each_entry_safe(pending_beacon, tmp,
1572 &reg_pending_beacons, list) {
1573
1574 list_del_init(&pending_beacon->list);
1575
1576 /* Applies the beacon hint to current wiphys */
1577 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1578 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1579
1580 /* Remembers the beacon hint for new wiphys or reg changes */
1581 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1582 }
1583
1584 spin_unlock_bh(&reg_pending_beacons_lock);
1585 out:
1586 mutex_unlock(&cfg80211_mutex);
1587 }
1588
1589 static void reg_todo(struct work_struct *work)
1590 {
1591 reg_process_pending_hints();
1592 reg_process_pending_beacon_hints();
1593 }
1594
1595 static void queue_regulatory_request(struct regulatory_request *request)
1596 {
1597 if (isalpha(request->alpha2[0]))
1598 request->alpha2[0] = toupper(request->alpha2[0]);
1599 if (isalpha(request->alpha2[1]))
1600 request->alpha2[1] = toupper(request->alpha2[1]);
1601
1602 spin_lock(&reg_requests_lock);
1603 list_add_tail(&request->list, &reg_requests_list);
1604 spin_unlock(&reg_requests_lock);
1605
1606 schedule_work(&reg_work);
1607 }
1608
1609 /*
1610 * Core regulatory hint -- happens during cfg80211_init()
1611 * and when we restore regulatory settings.
1612 */
1613 static int regulatory_hint_core(const char *alpha2)
1614 {
1615 struct regulatory_request *request;
1616
1617 request = kzalloc(sizeof(struct regulatory_request),
1618 GFP_KERNEL);
1619 if (!request)
1620 return -ENOMEM;
1621
1622 request->alpha2[0] = alpha2[0];
1623 request->alpha2[1] = alpha2[1];
1624 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1625
1626 queue_regulatory_request(request);
1627
1628 return 0;
1629 }
1630
1631 /* User hints */
1632 int regulatory_hint_user(const char *alpha2)
1633 {
1634 struct regulatory_request *request;
1635
1636 BUG_ON(!alpha2);
1637
1638 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1639 if (!request)
1640 return -ENOMEM;
1641
1642 request->wiphy_idx = WIPHY_IDX_STALE;
1643 request->alpha2[0] = alpha2[0];
1644 request->alpha2[1] = alpha2[1];
1645 request->initiator = NL80211_REGDOM_SET_BY_USER;
1646
1647 queue_regulatory_request(request);
1648
1649 return 0;
1650 }
1651
1652 /* Driver hints */
1653 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1654 {
1655 struct regulatory_request *request;
1656
1657 BUG_ON(!alpha2);
1658 BUG_ON(!wiphy);
1659
1660 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1661 if (!request)
1662 return -ENOMEM;
1663
1664 request->wiphy_idx = get_wiphy_idx(wiphy);
1665
1666 /* Must have registered wiphy first */
1667 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1668
1669 request->alpha2[0] = alpha2[0];
1670 request->alpha2[1] = alpha2[1];
1671 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1672
1673 queue_regulatory_request(request);
1674
1675 return 0;
1676 }
1677 EXPORT_SYMBOL(regulatory_hint);
1678
1679 /*
1680 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1681 * therefore cannot iterate over the rdev list here.
1682 */
1683 void regulatory_hint_11d(struct wiphy *wiphy,
1684 enum ieee80211_band band,
1685 u8 *country_ie,
1686 u8 country_ie_len)
1687 {
1688 char alpha2[2];
1689 enum environment_cap env = ENVIRON_ANY;
1690 struct regulatory_request *request;
1691
1692 mutex_lock(&reg_mutex);
1693
1694 if (unlikely(!last_request))
1695 goto out;
1696
1697 /* IE len must be evenly divisible by 2 */
1698 if (country_ie_len & 0x01)
1699 goto out;
1700
1701 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1702 goto out;
1703
1704 alpha2[0] = country_ie[0];
1705 alpha2[1] = country_ie[1];
1706
1707 if (country_ie[2] == 'I')
1708 env = ENVIRON_INDOOR;
1709 else if (country_ie[2] == 'O')
1710 env = ENVIRON_OUTDOOR;
1711
1712 /*
1713 * We will run this only upon a successful connection on cfg80211.
1714 * We leave conflict resolution to the workqueue, where can hold
1715 * cfg80211_mutex.
1716 */
1717 if (likely(last_request->initiator ==
1718 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1719 wiphy_idx_valid(last_request->wiphy_idx)))
1720 goto out;
1721
1722 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1723 if (!request)
1724 goto out;
1725
1726 request->wiphy_idx = get_wiphy_idx(wiphy);
1727 request->alpha2[0] = alpha2[0];
1728 request->alpha2[1] = alpha2[1];
1729 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1730 request->country_ie_env = env;
1731
1732 mutex_unlock(&reg_mutex);
1733
1734 queue_regulatory_request(request);
1735
1736 return;
1737
1738 out:
1739 mutex_unlock(&reg_mutex);
1740 }
1741
1742 static void restore_alpha2(char *alpha2, bool reset_user)
1743 {
1744 /* indicates there is no alpha2 to consider for restoration */
1745 alpha2[0] = '9';
1746 alpha2[1] = '7';
1747
1748 /* The user setting has precedence over the module parameter */
1749 if (is_user_regdom_saved()) {
1750 /* Unless we're asked to ignore it and reset it */
1751 if (reset_user) {
1752 REG_DBG_PRINT("Restoring regulatory settings "
1753 "including user preference\n");
1754 user_alpha2[0] = '9';
1755 user_alpha2[1] = '7';
1756
1757 /*
1758 * If we're ignoring user settings, we still need to
1759 * check the module parameter to ensure we put things
1760 * back as they were for a full restore.
1761 */
1762 if (!is_world_regdom(ieee80211_regdom)) {
1763 REG_DBG_PRINT("Keeping preference on "
1764 "module parameter ieee80211_regdom: %c%c\n",
1765 ieee80211_regdom[0],
1766 ieee80211_regdom[1]);
1767 alpha2[0] = ieee80211_regdom[0];
1768 alpha2[1] = ieee80211_regdom[1];
1769 }
1770 } else {
1771 REG_DBG_PRINT("Restoring regulatory settings "
1772 "while preserving user preference for: %c%c\n",
1773 user_alpha2[0],
1774 user_alpha2[1]);
1775 alpha2[0] = user_alpha2[0];
1776 alpha2[1] = user_alpha2[1];
1777 }
1778 } else if (!is_world_regdom(ieee80211_regdom)) {
1779 REG_DBG_PRINT("Keeping preference on "
1780 "module parameter ieee80211_regdom: %c%c\n",
1781 ieee80211_regdom[0],
1782 ieee80211_regdom[1]);
1783 alpha2[0] = ieee80211_regdom[0];
1784 alpha2[1] = ieee80211_regdom[1];
1785 } else
1786 REG_DBG_PRINT("Restoring regulatory settings\n");
1787 }
1788
1789 static void restore_custom_reg_settings(struct wiphy *wiphy)
1790 {
1791 struct ieee80211_supported_band *sband;
1792 enum ieee80211_band band;
1793 struct ieee80211_channel *chan;
1794 int i;
1795
1796 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1797 sband = wiphy->bands[band];
1798 if (!sband)
1799 continue;
1800 for (i = 0; i < sband->n_channels; i++) {
1801 chan = &sband->channels[i];
1802 chan->flags = chan->orig_flags;
1803 chan->max_antenna_gain = chan->orig_mag;
1804 chan->max_power = chan->orig_mpwr;
1805 }
1806 }
1807 }
1808
1809 /*
1810 * Restoring regulatory settings involves ingoring any
1811 * possibly stale country IE information and user regulatory
1812 * settings if so desired, this includes any beacon hints
1813 * learned as we could have traveled outside to another country
1814 * after disconnection. To restore regulatory settings we do
1815 * exactly what we did at bootup:
1816 *
1817 * - send a core regulatory hint
1818 * - send a user regulatory hint if applicable
1819 *
1820 * Device drivers that send a regulatory hint for a specific country
1821 * keep their own regulatory domain on wiphy->regd so that does does
1822 * not need to be remembered.
1823 */
1824 static void restore_regulatory_settings(bool reset_user)
1825 {
1826 char alpha2[2];
1827 char world_alpha2[2];
1828 struct reg_beacon *reg_beacon, *btmp;
1829 struct regulatory_request *reg_request, *tmp;
1830 LIST_HEAD(tmp_reg_req_list);
1831 struct cfg80211_registered_device *rdev;
1832
1833 mutex_lock(&cfg80211_mutex);
1834 mutex_lock(&reg_mutex);
1835
1836 reset_regdomains(true);
1837 restore_alpha2(alpha2, reset_user);
1838
1839 /*
1840 * If there's any pending requests we simply
1841 * stash them to a temporary pending queue and
1842 * add then after we've restored regulatory
1843 * settings.
1844 */
1845 spin_lock(&reg_requests_lock);
1846 if (!list_empty(&reg_requests_list)) {
1847 list_for_each_entry_safe(reg_request, tmp,
1848 &reg_requests_list, list) {
1849 if (reg_request->initiator !=
1850 NL80211_REGDOM_SET_BY_USER)
1851 continue;
1852 list_del(&reg_request->list);
1853 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1854 }
1855 }
1856 spin_unlock(&reg_requests_lock);
1857
1858 /* Clear beacon hints */
1859 spin_lock_bh(&reg_pending_beacons_lock);
1860 if (!list_empty(&reg_pending_beacons)) {
1861 list_for_each_entry_safe(reg_beacon, btmp,
1862 &reg_pending_beacons, list) {
1863 list_del(&reg_beacon->list);
1864 kfree(reg_beacon);
1865 }
1866 }
1867 spin_unlock_bh(&reg_pending_beacons_lock);
1868
1869 if (!list_empty(&reg_beacon_list)) {
1870 list_for_each_entry_safe(reg_beacon, btmp,
1871 &reg_beacon_list, list) {
1872 list_del(&reg_beacon->list);
1873 kfree(reg_beacon);
1874 }
1875 }
1876
1877 /* First restore to the basic regulatory settings */
1878 cfg80211_regdomain = cfg80211_world_regdom;
1879 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1880 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1881
1882 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1883 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1884 restore_custom_reg_settings(&rdev->wiphy);
1885 }
1886
1887 mutex_unlock(&reg_mutex);
1888 mutex_unlock(&cfg80211_mutex);
1889
1890 regulatory_hint_core(world_alpha2);
1891
1892 /*
1893 * This restores the ieee80211_regdom module parameter
1894 * preference or the last user requested regulatory
1895 * settings, user regulatory settings takes precedence.
1896 */
1897 if (is_an_alpha2(alpha2))
1898 regulatory_hint_user(user_alpha2);
1899
1900 if (list_empty(&tmp_reg_req_list))
1901 return;
1902
1903 mutex_lock(&cfg80211_mutex);
1904 mutex_lock(&reg_mutex);
1905
1906 spin_lock(&reg_requests_lock);
1907 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1908 REG_DBG_PRINT("Adding request for country %c%c back "
1909 "into the queue\n",
1910 reg_request->alpha2[0],
1911 reg_request->alpha2[1]);
1912 list_del(&reg_request->list);
1913 list_add_tail(&reg_request->list, &reg_requests_list);
1914 }
1915 spin_unlock(&reg_requests_lock);
1916
1917 mutex_unlock(&reg_mutex);
1918 mutex_unlock(&cfg80211_mutex);
1919
1920 REG_DBG_PRINT("Kicking the queue\n");
1921
1922 schedule_work(&reg_work);
1923 }
1924
1925 void regulatory_hint_disconnect(void)
1926 {
1927 REG_DBG_PRINT("All devices are disconnected, going to "
1928 "restore regulatory settings\n");
1929 restore_regulatory_settings(false);
1930 }
1931
1932 static bool freq_is_chan_12_13_14(u16 freq)
1933 {
1934 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1935 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1936 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1937 return true;
1938 return false;
1939 }
1940
1941 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1942 struct ieee80211_channel *beacon_chan,
1943 gfp_t gfp)
1944 {
1945 struct reg_beacon *reg_beacon;
1946
1947 if (likely((beacon_chan->beacon_found ||
1948 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1949 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1950 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1951 return 0;
1952
1953 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1954 if (!reg_beacon)
1955 return -ENOMEM;
1956
1957 REG_DBG_PRINT("Found new beacon on "
1958 "frequency: %d MHz (Ch %d) on %s\n",
1959 beacon_chan->center_freq,
1960 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1961 wiphy_name(wiphy));
1962
1963 memcpy(&reg_beacon->chan, beacon_chan,
1964 sizeof(struct ieee80211_channel));
1965
1966
1967 /*
1968 * Since we can be called from BH or and non-BH context
1969 * we must use spin_lock_bh()
1970 */
1971 spin_lock_bh(&reg_pending_beacons_lock);
1972 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1973 spin_unlock_bh(&reg_pending_beacons_lock);
1974
1975 schedule_work(&reg_work);
1976
1977 return 0;
1978 }
1979
1980 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1981 {
1982 unsigned int i;
1983 const struct ieee80211_reg_rule *reg_rule = NULL;
1984 const struct ieee80211_freq_range *freq_range = NULL;
1985 const struct ieee80211_power_rule *power_rule = NULL;
1986
1987 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1988
1989 for (i = 0; i < rd->n_reg_rules; i++) {
1990 reg_rule = &rd->reg_rules[i];
1991 freq_range = &reg_rule->freq_range;
1992 power_rule = &reg_rule->power_rule;
1993
1994 /*
1995 * There may not be documentation for max antenna gain
1996 * in certain regions
1997 */
1998 if (power_rule->max_antenna_gain)
1999 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2000 freq_range->start_freq_khz,
2001 freq_range->end_freq_khz,
2002 freq_range->max_bandwidth_khz,
2003 power_rule->max_antenna_gain,
2004 power_rule->max_eirp);
2005 else
2006 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2007 freq_range->start_freq_khz,
2008 freq_range->end_freq_khz,
2009 freq_range->max_bandwidth_khz,
2010 power_rule->max_eirp);
2011 }
2012 }
2013
2014 bool reg_supported_dfs_region(u8 dfs_region)
2015 {
2016 switch (dfs_region) {
2017 case NL80211_DFS_UNSET:
2018 case NL80211_DFS_FCC:
2019 case NL80211_DFS_ETSI:
2020 case NL80211_DFS_JP:
2021 return true;
2022 default:
2023 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2024 dfs_region);
2025 return false;
2026 }
2027 }
2028
2029 static void print_dfs_region(u8 dfs_region)
2030 {
2031 if (!dfs_region)
2032 return;
2033
2034 switch (dfs_region) {
2035 case NL80211_DFS_FCC:
2036 pr_info(" DFS Master region FCC");
2037 break;
2038 case NL80211_DFS_ETSI:
2039 pr_info(" DFS Master region ETSI");
2040 break;
2041 case NL80211_DFS_JP:
2042 pr_info(" DFS Master region JP");
2043 break;
2044 default:
2045 pr_info(" DFS Master region Uknown");
2046 break;
2047 }
2048 }
2049
2050 static void print_regdomain(const struct ieee80211_regdomain *rd)
2051 {
2052
2053 if (is_intersected_alpha2(rd->alpha2)) {
2054
2055 if (last_request->initiator ==
2056 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2057 struct cfg80211_registered_device *rdev;
2058 rdev = cfg80211_rdev_by_wiphy_idx(
2059 last_request->wiphy_idx);
2060 if (rdev) {
2061 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2062 rdev->country_ie_alpha2[0],
2063 rdev->country_ie_alpha2[1]);
2064 } else
2065 pr_info("Current regulatory domain intersected:\n");
2066 } else
2067 pr_info("Current regulatory domain intersected:\n");
2068 } else if (is_world_regdom(rd->alpha2))
2069 pr_info("World regulatory domain updated:\n");
2070 else {
2071 if (is_unknown_alpha2(rd->alpha2))
2072 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2073 else
2074 pr_info("Regulatory domain changed to country: %c%c\n",
2075 rd->alpha2[0], rd->alpha2[1]);
2076 }
2077 print_dfs_region(rd->dfs_region);
2078 print_rd_rules(rd);
2079 }
2080
2081 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2082 {
2083 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2084 print_rd_rules(rd);
2085 }
2086
2087 /* Takes ownership of rd only if it doesn't fail */
2088 static int __set_regdom(const struct ieee80211_regdomain *rd)
2089 {
2090 const struct ieee80211_regdomain *intersected_rd = NULL;
2091 struct cfg80211_registered_device *rdev = NULL;
2092 struct wiphy *request_wiphy;
2093 /* Some basic sanity checks first */
2094
2095 if (is_world_regdom(rd->alpha2)) {
2096 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2097 return -EINVAL;
2098 update_world_regdomain(rd);
2099 return 0;
2100 }
2101
2102 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2103 !is_unknown_alpha2(rd->alpha2))
2104 return -EINVAL;
2105
2106 if (!last_request)
2107 return -EINVAL;
2108
2109 /*
2110 * Lets only bother proceeding on the same alpha2 if the current
2111 * rd is non static (it means CRDA was present and was used last)
2112 * and the pending request came in from a country IE
2113 */
2114 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2115 /*
2116 * If someone else asked us to change the rd lets only bother
2117 * checking if the alpha2 changes if CRDA was already called
2118 */
2119 if (!regdom_changes(rd->alpha2))
2120 return -EINVAL;
2121 }
2122
2123 /*
2124 * Now lets set the regulatory domain, update all driver channels
2125 * and finally inform them of what we have done, in case they want
2126 * to review or adjust their own settings based on their own
2127 * internal EEPROM data
2128 */
2129
2130 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2131 return -EINVAL;
2132
2133 if (!is_valid_rd(rd)) {
2134 pr_err("Invalid regulatory domain detected:\n");
2135 print_regdomain_info(rd);
2136 return -EINVAL;
2137 }
2138
2139 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2140 if (!request_wiphy &&
2141 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2142 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2143 schedule_delayed_work(&reg_timeout, 0);
2144 return -ENODEV;
2145 }
2146
2147 if (!last_request->intersect) {
2148 int r;
2149
2150 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2151 reset_regdomains(false);
2152 cfg80211_regdomain = rd;
2153 return 0;
2154 }
2155
2156 /*
2157 * For a driver hint, lets copy the regulatory domain the
2158 * driver wanted to the wiphy to deal with conflicts
2159 */
2160
2161 /*
2162 * Userspace could have sent two replies with only
2163 * one kernel request.
2164 */
2165 if (request_wiphy->regd)
2166 return -EALREADY;
2167
2168 r = reg_copy_regd(&request_wiphy->regd, rd);
2169 if (r)
2170 return r;
2171
2172 reset_regdomains(false);
2173 cfg80211_regdomain = rd;
2174 return 0;
2175 }
2176
2177 /* Intersection requires a bit more work */
2178
2179 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2180
2181 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2182 if (!intersected_rd)
2183 return -EINVAL;
2184
2185 /*
2186 * We can trash what CRDA provided now.
2187 * However if a driver requested this specific regulatory
2188 * domain we keep it for its private use
2189 */
2190 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2191 request_wiphy->regd = rd;
2192 else
2193 kfree(rd);
2194
2195 rd = NULL;
2196
2197 reset_regdomains(false);
2198 cfg80211_regdomain = intersected_rd;
2199
2200 return 0;
2201 }
2202
2203 if (!intersected_rd)
2204 return -EINVAL;
2205
2206 rdev = wiphy_to_dev(request_wiphy);
2207
2208 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2209 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2210 rdev->env = last_request->country_ie_env;
2211
2212 BUG_ON(intersected_rd == rd);
2213
2214 kfree(rd);
2215 rd = NULL;
2216
2217 reset_regdomains(false);
2218 cfg80211_regdomain = intersected_rd;
2219
2220 return 0;
2221 }
2222
2223
2224 /*
2225 * Use this call to set the current regulatory domain. Conflicts with
2226 * multiple drivers can be ironed out later. Caller must've already
2227 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2228 */
2229 int set_regdom(const struct ieee80211_regdomain *rd)
2230 {
2231 int r;
2232
2233 assert_cfg80211_lock();
2234
2235 mutex_lock(&reg_mutex);
2236
2237 /* Note that this doesn't update the wiphys, this is done below */
2238 r = __set_regdom(rd);
2239 if (r) {
2240 kfree(rd);
2241 mutex_unlock(&reg_mutex);
2242 return r;
2243 }
2244
2245 /* This would make this whole thing pointless */
2246 if (!last_request->intersect)
2247 BUG_ON(rd != cfg80211_regdomain);
2248
2249 /* update all wiphys now with the new established regulatory domain */
2250 update_all_wiphy_regulatory(last_request->initiator);
2251
2252 print_regdomain(cfg80211_regdomain);
2253
2254 nl80211_send_reg_change_event(last_request);
2255
2256 reg_set_request_processed();
2257
2258 mutex_unlock(&reg_mutex);
2259
2260 return r;
2261 }
2262
2263 #ifdef CONFIG_HOTPLUG
2264 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2265 {
2266 if (last_request && !last_request->processed) {
2267 if (add_uevent_var(env, "COUNTRY=%c%c",
2268 last_request->alpha2[0],
2269 last_request->alpha2[1]))
2270 return -ENOMEM;
2271 }
2272
2273 return 0;
2274 }
2275 #else
2276 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2277 {
2278 return -ENODEV;
2279 }
2280 #endif /* CONFIG_HOTPLUG */
2281
2282 /* Caller must hold cfg80211_mutex */
2283 void reg_device_remove(struct wiphy *wiphy)
2284 {
2285 struct wiphy *request_wiphy = NULL;
2286
2287 assert_cfg80211_lock();
2288
2289 mutex_lock(&reg_mutex);
2290
2291 kfree(wiphy->regd);
2292
2293 if (last_request)
2294 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2295
2296 if (!request_wiphy || request_wiphy != wiphy)
2297 goto out;
2298
2299 last_request->wiphy_idx = WIPHY_IDX_STALE;
2300 last_request->country_ie_env = ENVIRON_ANY;
2301 out:
2302 mutex_unlock(&reg_mutex);
2303 }
2304
2305 static void reg_timeout_work(struct work_struct *work)
2306 {
2307 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2308 "restoring regulatory settings\n");
2309 restore_regulatory_settings(true);
2310 }
2311
2312 int __init regulatory_init(void)
2313 {
2314 int err = 0;
2315
2316 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2317 if (IS_ERR(reg_pdev))
2318 return PTR_ERR(reg_pdev);
2319
2320 reg_pdev->dev.type = &reg_device_type;
2321
2322 spin_lock_init(&reg_requests_lock);
2323 spin_lock_init(&reg_pending_beacons_lock);
2324
2325 cfg80211_regdomain = cfg80211_world_regdom;
2326
2327 user_alpha2[0] = '9';
2328 user_alpha2[1] = '7';
2329
2330 /* We always try to get an update for the static regdomain */
2331 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2332 if (err) {
2333 if (err == -ENOMEM)
2334 return err;
2335 /*
2336 * N.B. kobject_uevent_env() can fail mainly for when we're out
2337 * memory which is handled and propagated appropriately above
2338 * but it can also fail during a netlink_broadcast() or during
2339 * early boot for call_usermodehelper(). For now treat these
2340 * errors as non-fatal.
2341 */
2342 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2343 #ifdef CONFIG_CFG80211_REG_DEBUG
2344 /* We want to find out exactly why when debugging */
2345 WARN_ON(err);
2346 #endif
2347 }
2348
2349 /*
2350 * Finally, if the user set the module parameter treat it
2351 * as a user hint.
2352 */
2353 if (!is_world_regdom(ieee80211_regdom))
2354 regulatory_hint_user(ieee80211_regdom);
2355
2356 return 0;
2357 }
2358
2359 void /* __init_or_exit */ regulatory_exit(void)
2360 {
2361 struct regulatory_request *reg_request, *tmp;
2362 struct reg_beacon *reg_beacon, *btmp;
2363
2364 cancel_work_sync(&reg_work);
2365 cancel_delayed_work_sync(&reg_timeout);
2366
2367 mutex_lock(&cfg80211_mutex);
2368 mutex_lock(&reg_mutex);
2369
2370 reset_regdomains(true);
2371
2372 dev_set_uevent_suppress(&reg_pdev->dev, true);
2373
2374 platform_device_unregister(reg_pdev);
2375
2376 spin_lock_bh(&reg_pending_beacons_lock);
2377 if (!list_empty(&reg_pending_beacons)) {
2378 list_for_each_entry_safe(reg_beacon, btmp,
2379 &reg_pending_beacons, list) {
2380 list_del(&reg_beacon->list);
2381 kfree(reg_beacon);
2382 }
2383 }
2384 spin_unlock_bh(&reg_pending_beacons_lock);
2385
2386 if (!list_empty(&reg_beacon_list)) {
2387 list_for_each_entry_safe(reg_beacon, btmp,
2388 &reg_beacon_list, list) {
2389 list_del(&reg_beacon->list);
2390 kfree(reg_beacon);
2391 }
2392 }
2393
2394 spin_lock(&reg_requests_lock);
2395 if (!list_empty(&reg_requests_list)) {
2396 list_for_each_entry_safe(reg_request, tmp,
2397 &reg_requests_list, list) {
2398 list_del(&reg_request->list);
2399 kfree(reg_request);
2400 }
2401 }
2402 spin_unlock(&reg_requests_lock);
2403
2404 mutex_unlock(&reg_mutex);
2405 mutex_unlock(&cfg80211_mutex);
2406 }