Merge tag 'rtc-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 *
9 * Permission to use, copy, modify, and/or distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22
23 /**
24 * DOC: Wireless regulatory infrastructure
25 *
26 * The usual implementation is for a driver to read a device EEPROM to
27 * determine which regulatory domain it should be operating under, then
28 * looking up the allowable channels in a driver-local table and finally
29 * registering those channels in the wiphy structure.
30 *
31 * Another set of compliance enforcement is for drivers to use their
32 * own compliance limits which can be stored on the EEPROM. The host
33 * driver or firmware may ensure these are used.
34 *
35 * In addition to all this we provide an extra layer of regulatory
36 * conformance. For drivers which do not have any regulatory
37 * information CRDA provides the complete regulatory solution.
38 * For others it provides a community effort on further restrictions
39 * to enhance compliance.
40 *
41 * Note: When number of rules --> infinity we will not be able to
42 * index on alpha2 any more, instead we'll probably have to
43 * rely on some SHA1 checksum of the regdomain for example.
44 *
45 */
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/kernel.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/ctype.h>
54 #include <linux/nl80211.h>
55 #include <linux/platform_device.h>
56 #include <linux/moduleparam.h>
57 #include <net/cfg80211.h>
58 #include "core.h"
59 #include "reg.h"
60 #include "rdev-ops.h"
61 #include "regdb.h"
62 #include "nl80211.h"
63
64 /*
65 * Grace period we give before making sure all current interfaces reside on
66 * channels allowed by the current regulatory domain.
67 */
68 #define REG_ENFORCE_GRACE_MS 60000
69
70 /**
71 * enum reg_request_treatment - regulatory request treatment
72 *
73 * @REG_REQ_OK: continue processing the regulatory request
74 * @REG_REQ_IGNORE: ignore the regulatory request
75 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
76 * be intersected with the current one.
77 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
78 * regulatory settings, and no further processing is required.
79 */
80 enum reg_request_treatment {
81 REG_REQ_OK,
82 REG_REQ_IGNORE,
83 REG_REQ_INTERSECT,
84 REG_REQ_ALREADY_SET,
85 };
86
87 static struct regulatory_request core_request_world = {
88 .initiator = NL80211_REGDOM_SET_BY_CORE,
89 .alpha2[0] = '0',
90 .alpha2[1] = '0',
91 .intersect = false,
92 .processed = true,
93 .country_ie_env = ENVIRON_ANY,
94 };
95
96 /*
97 * Receipt of information from last regulatory request,
98 * protected by RTNL (and can be accessed with RCU protection)
99 */
100 static struct regulatory_request __rcu *last_request =
101 (void __force __rcu *)&core_request_world;
102
103 /* To trigger userspace events */
104 static struct platform_device *reg_pdev;
105
106 /*
107 * Central wireless core regulatory domains, we only need two,
108 * the current one and a world regulatory domain in case we have no
109 * information to give us an alpha2.
110 * (protected by RTNL, can be read under RCU)
111 */
112 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
113
114 /*
115 * Number of devices that registered to the core
116 * that support cellular base station regulatory hints
117 * (protected by RTNL)
118 */
119 static int reg_num_devs_support_basehint;
120
121 /*
122 * State variable indicating if the platform on which the devices
123 * are attached is operating in an indoor environment. The state variable
124 * is relevant for all registered devices.
125 */
126 static bool reg_is_indoor;
127 static spinlock_t reg_indoor_lock;
128
129 /* Used to track the userspace process controlling the indoor setting */
130 static u32 reg_is_indoor_portid;
131
132 static void restore_regulatory_settings(bool reset_user);
133
134 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
135 {
136 return rtnl_dereference(cfg80211_regdomain);
137 }
138
139 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
140 {
141 return rtnl_dereference(wiphy->regd);
142 }
143
144 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
145 {
146 switch (dfs_region) {
147 case NL80211_DFS_UNSET:
148 return "unset";
149 case NL80211_DFS_FCC:
150 return "FCC";
151 case NL80211_DFS_ETSI:
152 return "ETSI";
153 case NL80211_DFS_JP:
154 return "JP";
155 }
156 return "Unknown";
157 }
158
159 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
160 {
161 const struct ieee80211_regdomain *regd = NULL;
162 const struct ieee80211_regdomain *wiphy_regd = NULL;
163
164 regd = get_cfg80211_regdom();
165 if (!wiphy)
166 goto out;
167
168 wiphy_regd = get_wiphy_regdom(wiphy);
169 if (!wiphy_regd)
170 goto out;
171
172 if (wiphy_regd->dfs_region == regd->dfs_region)
173 goto out;
174
175 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
176 dev_name(&wiphy->dev),
177 reg_dfs_region_str(wiphy_regd->dfs_region),
178 reg_dfs_region_str(regd->dfs_region));
179
180 out:
181 return regd->dfs_region;
182 }
183
184 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
185 {
186 if (!r)
187 return;
188 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
189 }
190
191 static struct regulatory_request *get_last_request(void)
192 {
193 return rcu_dereference_rtnl(last_request);
194 }
195
196 /* Used to queue up regulatory hints */
197 static LIST_HEAD(reg_requests_list);
198 static spinlock_t reg_requests_lock;
199
200 /* Used to queue up beacon hints for review */
201 static LIST_HEAD(reg_pending_beacons);
202 static spinlock_t reg_pending_beacons_lock;
203
204 /* Used to keep track of processed beacon hints */
205 static LIST_HEAD(reg_beacon_list);
206
207 struct reg_beacon {
208 struct list_head list;
209 struct ieee80211_channel chan;
210 };
211
212 static void reg_check_chans_work(struct work_struct *work);
213 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
214
215 static void reg_todo(struct work_struct *work);
216 static DECLARE_WORK(reg_work, reg_todo);
217
218 /* We keep a static world regulatory domain in case of the absence of CRDA */
219 static const struct ieee80211_regdomain world_regdom = {
220 .n_reg_rules = 8,
221 .alpha2 = "00",
222 .reg_rules = {
223 /* IEEE 802.11b/g, channels 1..11 */
224 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
225 /* IEEE 802.11b/g, channels 12..13. */
226 REG_RULE(2467-10, 2472+10, 20, 6, 20,
227 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
228 /* IEEE 802.11 channel 14 - Only JP enables
229 * this and for 802.11b only */
230 REG_RULE(2484-10, 2484+10, 20, 6, 20,
231 NL80211_RRF_NO_IR |
232 NL80211_RRF_NO_OFDM),
233 /* IEEE 802.11a, channel 36..48 */
234 REG_RULE(5180-10, 5240+10, 80, 6, 20,
235 NL80211_RRF_NO_IR |
236 NL80211_RRF_AUTO_BW),
237
238 /* IEEE 802.11a, channel 52..64 - DFS required */
239 REG_RULE(5260-10, 5320+10, 80, 6, 20,
240 NL80211_RRF_NO_IR |
241 NL80211_RRF_AUTO_BW |
242 NL80211_RRF_DFS),
243
244 /* IEEE 802.11a, channel 100..144 - DFS required */
245 REG_RULE(5500-10, 5720+10, 160, 6, 20,
246 NL80211_RRF_NO_IR |
247 NL80211_RRF_DFS),
248
249 /* IEEE 802.11a, channel 149..165 */
250 REG_RULE(5745-10, 5825+10, 80, 6, 20,
251 NL80211_RRF_NO_IR),
252
253 /* IEEE 802.11ad (60GHz), channels 1..3 */
254 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
255 }
256 };
257
258 /* protected by RTNL */
259 static const struct ieee80211_regdomain *cfg80211_world_regdom =
260 &world_regdom;
261
262 static char *ieee80211_regdom = "00";
263 static char user_alpha2[2];
264
265 module_param(ieee80211_regdom, charp, 0444);
266 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
267
268 static void reg_free_request(struct regulatory_request *request)
269 {
270 if (request == &core_request_world)
271 return;
272
273 if (request != get_last_request())
274 kfree(request);
275 }
276
277 static void reg_free_last_request(void)
278 {
279 struct regulatory_request *lr = get_last_request();
280
281 if (lr != &core_request_world && lr)
282 kfree_rcu(lr, rcu_head);
283 }
284
285 static void reg_update_last_request(struct regulatory_request *request)
286 {
287 struct regulatory_request *lr;
288
289 lr = get_last_request();
290 if (lr == request)
291 return;
292
293 reg_free_last_request();
294 rcu_assign_pointer(last_request, request);
295 }
296
297 static void reset_regdomains(bool full_reset,
298 const struct ieee80211_regdomain *new_regdom)
299 {
300 const struct ieee80211_regdomain *r;
301
302 ASSERT_RTNL();
303
304 r = get_cfg80211_regdom();
305
306 /* avoid freeing static information or freeing something twice */
307 if (r == cfg80211_world_regdom)
308 r = NULL;
309 if (cfg80211_world_regdom == &world_regdom)
310 cfg80211_world_regdom = NULL;
311 if (r == &world_regdom)
312 r = NULL;
313
314 rcu_free_regdom(r);
315 rcu_free_regdom(cfg80211_world_regdom);
316
317 cfg80211_world_regdom = &world_regdom;
318 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
319
320 if (!full_reset)
321 return;
322
323 reg_update_last_request(&core_request_world);
324 }
325
326 /*
327 * Dynamic world regulatory domain requested by the wireless
328 * core upon initialization
329 */
330 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
331 {
332 struct regulatory_request *lr;
333
334 lr = get_last_request();
335
336 WARN_ON(!lr);
337
338 reset_regdomains(false, rd);
339
340 cfg80211_world_regdom = rd;
341 }
342
343 bool is_world_regdom(const char *alpha2)
344 {
345 if (!alpha2)
346 return false;
347 return alpha2[0] == '0' && alpha2[1] == '0';
348 }
349
350 static bool is_alpha2_set(const char *alpha2)
351 {
352 if (!alpha2)
353 return false;
354 return alpha2[0] && alpha2[1];
355 }
356
357 static bool is_unknown_alpha2(const char *alpha2)
358 {
359 if (!alpha2)
360 return false;
361 /*
362 * Special case where regulatory domain was built by driver
363 * but a specific alpha2 cannot be determined
364 */
365 return alpha2[0] == '9' && alpha2[1] == '9';
366 }
367
368 static bool is_intersected_alpha2(const char *alpha2)
369 {
370 if (!alpha2)
371 return false;
372 /*
373 * Special case where regulatory domain is the
374 * result of an intersection between two regulatory domain
375 * structures
376 */
377 return alpha2[0] == '9' && alpha2[1] == '8';
378 }
379
380 static bool is_an_alpha2(const char *alpha2)
381 {
382 if (!alpha2)
383 return false;
384 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
385 }
386
387 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
388 {
389 if (!alpha2_x || !alpha2_y)
390 return false;
391 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
392 }
393
394 static bool regdom_changes(const char *alpha2)
395 {
396 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
397
398 if (!r)
399 return true;
400 return !alpha2_equal(r->alpha2, alpha2);
401 }
402
403 /*
404 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
405 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
406 * has ever been issued.
407 */
408 static bool is_user_regdom_saved(void)
409 {
410 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
411 return false;
412
413 /* This would indicate a mistake on the design */
414 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
415 "Unexpected user alpha2: %c%c\n",
416 user_alpha2[0], user_alpha2[1]))
417 return false;
418
419 return true;
420 }
421
422 static const struct ieee80211_regdomain *
423 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
424 {
425 struct ieee80211_regdomain *regd;
426 int size_of_regd;
427 unsigned int i;
428
429 size_of_regd =
430 sizeof(struct ieee80211_regdomain) +
431 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
432
433 regd = kzalloc(size_of_regd, GFP_KERNEL);
434 if (!regd)
435 return ERR_PTR(-ENOMEM);
436
437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439 for (i = 0; i < src_regd->n_reg_rules; i++)
440 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441 sizeof(struct ieee80211_reg_rule));
442
443 return regd;
444 }
445
446 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
447 struct reg_regdb_apply_request {
448 struct list_head list;
449 const struct ieee80211_regdomain *regdom;
450 };
451
452 static LIST_HEAD(reg_regdb_apply_list);
453 static DEFINE_MUTEX(reg_regdb_apply_mutex);
454
455 static void reg_regdb_apply(struct work_struct *work)
456 {
457 struct reg_regdb_apply_request *request;
458
459 rtnl_lock();
460
461 mutex_lock(&reg_regdb_apply_mutex);
462 while (!list_empty(&reg_regdb_apply_list)) {
463 request = list_first_entry(&reg_regdb_apply_list,
464 struct reg_regdb_apply_request,
465 list);
466 list_del(&request->list);
467
468 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
469 kfree(request);
470 }
471 mutex_unlock(&reg_regdb_apply_mutex);
472
473 rtnl_unlock();
474 }
475
476 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
477
478 static int reg_query_builtin(const char *alpha2)
479 {
480 const struct ieee80211_regdomain *regdom = NULL;
481 struct reg_regdb_apply_request *request;
482 unsigned int i;
483
484 for (i = 0; i < reg_regdb_size; i++) {
485 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
486 regdom = reg_regdb[i];
487 break;
488 }
489 }
490
491 if (!regdom)
492 return -ENODATA;
493
494 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
495 if (!request)
496 return -ENOMEM;
497
498 request->regdom = reg_copy_regd(regdom);
499 if (IS_ERR_OR_NULL(request->regdom)) {
500 kfree(request);
501 return -ENOMEM;
502 }
503
504 mutex_lock(&reg_regdb_apply_mutex);
505 list_add_tail(&request->list, &reg_regdb_apply_list);
506 mutex_unlock(&reg_regdb_apply_mutex);
507
508 schedule_work(&reg_regdb_work);
509
510 return 0;
511 }
512
513 /* Feel free to add any other sanity checks here */
514 static void reg_regdb_size_check(void)
515 {
516 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
517 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
518 }
519 #else
520 static inline void reg_regdb_size_check(void) {}
521 static inline int reg_query_builtin(const char *alpha2)
522 {
523 return -ENODATA;
524 }
525 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
526
527 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
528 /* Max number of consecutive attempts to communicate with CRDA */
529 #define REG_MAX_CRDA_TIMEOUTS 10
530
531 static u32 reg_crda_timeouts;
532
533 static void crda_timeout_work(struct work_struct *work);
534 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
535
536 static void crda_timeout_work(struct work_struct *work)
537 {
538 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
539 rtnl_lock();
540 reg_crda_timeouts++;
541 restore_regulatory_settings(true);
542 rtnl_unlock();
543 }
544
545 static void cancel_crda_timeout(void)
546 {
547 cancel_delayed_work(&crda_timeout);
548 }
549
550 static void cancel_crda_timeout_sync(void)
551 {
552 cancel_delayed_work_sync(&crda_timeout);
553 }
554
555 static void reset_crda_timeouts(void)
556 {
557 reg_crda_timeouts = 0;
558 }
559
560 /*
561 * This lets us keep regulatory code which is updated on a regulatory
562 * basis in userspace.
563 */
564 static int call_crda(const char *alpha2)
565 {
566 char country[12];
567 char *env[] = { country, NULL };
568 int ret;
569
570 snprintf(country, sizeof(country), "COUNTRY=%c%c",
571 alpha2[0], alpha2[1]);
572
573 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
574 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
575 return -EINVAL;
576 }
577
578 if (!is_world_regdom((char *) alpha2))
579 pr_debug("Calling CRDA for country: %c%c\n",
580 alpha2[0], alpha2[1]);
581 else
582 pr_debug("Calling CRDA to update world regulatory domain\n");
583
584 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
585 if (ret)
586 return ret;
587
588 queue_delayed_work(system_power_efficient_wq,
589 &crda_timeout, msecs_to_jiffies(3142));
590 return 0;
591 }
592 #else
593 static inline void cancel_crda_timeout(void) {}
594 static inline void cancel_crda_timeout_sync(void) {}
595 static inline void reset_crda_timeouts(void) {}
596 static inline int call_crda(const char *alpha2)
597 {
598 return -ENODATA;
599 }
600 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
601
602 static bool reg_query_database(struct regulatory_request *request)
603 {
604 /* query internal regulatory database (if it exists) */
605 if (reg_query_builtin(request->alpha2) == 0)
606 return true;
607
608 if (call_crda(request->alpha2) == 0)
609 return true;
610
611 return false;
612 }
613
614 bool reg_is_valid_request(const char *alpha2)
615 {
616 struct regulatory_request *lr = get_last_request();
617
618 if (!lr || lr->processed)
619 return false;
620
621 return alpha2_equal(lr->alpha2, alpha2);
622 }
623
624 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
625 {
626 struct regulatory_request *lr = get_last_request();
627
628 /*
629 * Follow the driver's regulatory domain, if present, unless a country
630 * IE has been processed or a user wants to help complaince further
631 */
632 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
633 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
634 wiphy->regd)
635 return get_wiphy_regdom(wiphy);
636
637 return get_cfg80211_regdom();
638 }
639
640 static unsigned int
641 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
642 const struct ieee80211_reg_rule *rule)
643 {
644 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
645 const struct ieee80211_freq_range *freq_range_tmp;
646 const struct ieee80211_reg_rule *tmp;
647 u32 start_freq, end_freq, idx, no;
648
649 for (idx = 0; idx < rd->n_reg_rules; idx++)
650 if (rule == &rd->reg_rules[idx])
651 break;
652
653 if (idx == rd->n_reg_rules)
654 return 0;
655
656 /* get start_freq */
657 no = idx;
658
659 while (no) {
660 tmp = &rd->reg_rules[--no];
661 freq_range_tmp = &tmp->freq_range;
662
663 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
664 break;
665
666 freq_range = freq_range_tmp;
667 }
668
669 start_freq = freq_range->start_freq_khz;
670
671 /* get end_freq */
672 freq_range = &rule->freq_range;
673 no = idx;
674
675 while (no < rd->n_reg_rules - 1) {
676 tmp = &rd->reg_rules[++no];
677 freq_range_tmp = &tmp->freq_range;
678
679 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
680 break;
681
682 freq_range = freq_range_tmp;
683 }
684
685 end_freq = freq_range->end_freq_khz;
686
687 return end_freq - start_freq;
688 }
689
690 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
691 const struct ieee80211_reg_rule *rule)
692 {
693 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
694
695 if (rule->flags & NL80211_RRF_NO_160MHZ)
696 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
697 if (rule->flags & NL80211_RRF_NO_80MHZ)
698 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
699
700 /*
701 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
702 * are not allowed.
703 */
704 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
705 rule->flags & NL80211_RRF_NO_HT40PLUS)
706 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
707
708 return bw;
709 }
710
711 /* Sanity check on a regulatory rule */
712 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
713 {
714 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
715 u32 freq_diff;
716
717 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
718 return false;
719
720 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
721 return false;
722
723 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
724
725 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
726 freq_range->max_bandwidth_khz > freq_diff)
727 return false;
728
729 return true;
730 }
731
732 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
733 {
734 const struct ieee80211_reg_rule *reg_rule = NULL;
735 unsigned int i;
736
737 if (!rd->n_reg_rules)
738 return false;
739
740 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
741 return false;
742
743 for (i = 0; i < rd->n_reg_rules; i++) {
744 reg_rule = &rd->reg_rules[i];
745 if (!is_valid_reg_rule(reg_rule))
746 return false;
747 }
748
749 return true;
750 }
751
752 /**
753 * freq_in_rule_band - tells us if a frequency is in a frequency band
754 * @freq_range: frequency rule we want to query
755 * @freq_khz: frequency we are inquiring about
756 *
757 * This lets us know if a specific frequency rule is or is not relevant to
758 * a specific frequency's band. Bands are device specific and artificial
759 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
760 * however it is safe for now to assume that a frequency rule should not be
761 * part of a frequency's band if the start freq or end freq are off by more
762 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
763 * 60 GHz band.
764 * This resolution can be lowered and should be considered as we add
765 * regulatory rule support for other "bands".
766 **/
767 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
768 u32 freq_khz)
769 {
770 #define ONE_GHZ_IN_KHZ 1000000
771 /*
772 * From 802.11ad: directional multi-gigabit (DMG):
773 * Pertaining to operation in a frequency band containing a channel
774 * with the Channel starting frequency above 45 GHz.
775 */
776 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
777 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
778 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
779 return true;
780 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
781 return true;
782 return false;
783 #undef ONE_GHZ_IN_KHZ
784 }
785
786 /*
787 * Later on we can perhaps use the more restrictive DFS
788 * region but we don't have information for that yet so
789 * for now simply disallow conflicts.
790 */
791 static enum nl80211_dfs_regions
792 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
793 const enum nl80211_dfs_regions dfs_region2)
794 {
795 if (dfs_region1 != dfs_region2)
796 return NL80211_DFS_UNSET;
797 return dfs_region1;
798 }
799
800 /*
801 * Helper for regdom_intersect(), this does the real
802 * mathematical intersection fun
803 */
804 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
805 const struct ieee80211_regdomain *rd2,
806 const struct ieee80211_reg_rule *rule1,
807 const struct ieee80211_reg_rule *rule2,
808 struct ieee80211_reg_rule *intersected_rule)
809 {
810 const struct ieee80211_freq_range *freq_range1, *freq_range2;
811 struct ieee80211_freq_range *freq_range;
812 const struct ieee80211_power_rule *power_rule1, *power_rule2;
813 struct ieee80211_power_rule *power_rule;
814 u32 freq_diff, max_bandwidth1, max_bandwidth2;
815
816 freq_range1 = &rule1->freq_range;
817 freq_range2 = &rule2->freq_range;
818 freq_range = &intersected_rule->freq_range;
819
820 power_rule1 = &rule1->power_rule;
821 power_rule2 = &rule2->power_rule;
822 power_rule = &intersected_rule->power_rule;
823
824 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
825 freq_range2->start_freq_khz);
826 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
827 freq_range2->end_freq_khz);
828
829 max_bandwidth1 = freq_range1->max_bandwidth_khz;
830 max_bandwidth2 = freq_range2->max_bandwidth_khz;
831
832 if (rule1->flags & NL80211_RRF_AUTO_BW)
833 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
834 if (rule2->flags & NL80211_RRF_AUTO_BW)
835 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
836
837 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
838
839 intersected_rule->flags = rule1->flags | rule2->flags;
840
841 /*
842 * In case NL80211_RRF_AUTO_BW requested for both rules
843 * set AUTO_BW in intersected rule also. Next we will
844 * calculate BW correctly in handle_channel function.
845 * In other case remove AUTO_BW flag while we calculate
846 * maximum bandwidth correctly and auto calculation is
847 * not required.
848 */
849 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
850 (rule2->flags & NL80211_RRF_AUTO_BW))
851 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
852 else
853 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
854
855 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
856 if (freq_range->max_bandwidth_khz > freq_diff)
857 freq_range->max_bandwidth_khz = freq_diff;
858
859 power_rule->max_eirp = min(power_rule1->max_eirp,
860 power_rule2->max_eirp);
861 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
862 power_rule2->max_antenna_gain);
863
864 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
865 rule2->dfs_cac_ms);
866
867 if (!is_valid_reg_rule(intersected_rule))
868 return -EINVAL;
869
870 return 0;
871 }
872
873 /* check whether old rule contains new rule */
874 static bool rule_contains(struct ieee80211_reg_rule *r1,
875 struct ieee80211_reg_rule *r2)
876 {
877 /* for simplicity, currently consider only same flags */
878 if (r1->flags != r2->flags)
879 return false;
880
881 /* verify r1 is more restrictive */
882 if ((r1->power_rule.max_antenna_gain >
883 r2->power_rule.max_antenna_gain) ||
884 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
885 return false;
886
887 /* make sure r2's range is contained within r1 */
888 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
889 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
890 return false;
891
892 /* and finally verify that r1.max_bw >= r2.max_bw */
893 if (r1->freq_range.max_bandwidth_khz <
894 r2->freq_range.max_bandwidth_khz)
895 return false;
896
897 return true;
898 }
899
900 /* add or extend current rules. do nothing if rule is already contained */
901 static void add_rule(struct ieee80211_reg_rule *rule,
902 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
903 {
904 struct ieee80211_reg_rule *tmp_rule;
905 int i;
906
907 for (i = 0; i < *n_rules; i++) {
908 tmp_rule = &reg_rules[i];
909 /* rule is already contained - do nothing */
910 if (rule_contains(tmp_rule, rule))
911 return;
912
913 /* extend rule if possible */
914 if (rule_contains(rule, tmp_rule)) {
915 memcpy(tmp_rule, rule, sizeof(*rule));
916 return;
917 }
918 }
919
920 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
921 (*n_rules)++;
922 }
923
924 /**
925 * regdom_intersect - do the intersection between two regulatory domains
926 * @rd1: first regulatory domain
927 * @rd2: second regulatory domain
928 *
929 * Use this function to get the intersection between two regulatory domains.
930 * Once completed we will mark the alpha2 for the rd as intersected, "98",
931 * as no one single alpha2 can represent this regulatory domain.
932 *
933 * Returns a pointer to the regulatory domain structure which will hold the
934 * resulting intersection of rules between rd1 and rd2. We will
935 * kzalloc() this structure for you.
936 */
937 static struct ieee80211_regdomain *
938 regdom_intersect(const struct ieee80211_regdomain *rd1,
939 const struct ieee80211_regdomain *rd2)
940 {
941 int r, size_of_regd;
942 unsigned int x, y;
943 unsigned int num_rules = 0;
944 const struct ieee80211_reg_rule *rule1, *rule2;
945 struct ieee80211_reg_rule intersected_rule;
946 struct ieee80211_regdomain *rd;
947
948 if (!rd1 || !rd2)
949 return NULL;
950
951 /*
952 * First we get a count of the rules we'll need, then we actually
953 * build them. This is to so we can malloc() and free() a
954 * regdomain once. The reason we use reg_rules_intersect() here
955 * is it will return -EINVAL if the rule computed makes no sense.
956 * All rules that do check out OK are valid.
957 */
958
959 for (x = 0; x < rd1->n_reg_rules; x++) {
960 rule1 = &rd1->reg_rules[x];
961 for (y = 0; y < rd2->n_reg_rules; y++) {
962 rule2 = &rd2->reg_rules[y];
963 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
964 &intersected_rule))
965 num_rules++;
966 }
967 }
968
969 if (!num_rules)
970 return NULL;
971
972 size_of_regd = sizeof(struct ieee80211_regdomain) +
973 num_rules * sizeof(struct ieee80211_reg_rule);
974
975 rd = kzalloc(size_of_regd, GFP_KERNEL);
976 if (!rd)
977 return NULL;
978
979 for (x = 0; x < rd1->n_reg_rules; x++) {
980 rule1 = &rd1->reg_rules[x];
981 for (y = 0; y < rd2->n_reg_rules; y++) {
982 rule2 = &rd2->reg_rules[y];
983 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
984 &intersected_rule);
985 /*
986 * No need to memset here the intersected rule here as
987 * we're not using the stack anymore
988 */
989 if (r)
990 continue;
991
992 add_rule(&intersected_rule, rd->reg_rules,
993 &rd->n_reg_rules);
994 }
995 }
996
997 rd->alpha2[0] = '9';
998 rd->alpha2[1] = '8';
999 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1000 rd2->dfs_region);
1001
1002 return rd;
1003 }
1004
1005 /*
1006 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1007 * want to just have the channel structure use these
1008 */
1009 static u32 map_regdom_flags(u32 rd_flags)
1010 {
1011 u32 channel_flags = 0;
1012 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1013 channel_flags |= IEEE80211_CHAN_NO_IR;
1014 if (rd_flags & NL80211_RRF_DFS)
1015 channel_flags |= IEEE80211_CHAN_RADAR;
1016 if (rd_flags & NL80211_RRF_NO_OFDM)
1017 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1018 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1019 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1020 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1021 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1022 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1023 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1024 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1025 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1026 if (rd_flags & NL80211_RRF_NO_80MHZ)
1027 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1028 if (rd_flags & NL80211_RRF_NO_160MHZ)
1029 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1030 return channel_flags;
1031 }
1032
1033 static const struct ieee80211_reg_rule *
1034 freq_reg_info_regd(u32 center_freq,
1035 const struct ieee80211_regdomain *regd, u32 bw)
1036 {
1037 int i;
1038 bool band_rule_found = false;
1039 bool bw_fits = false;
1040
1041 if (!regd)
1042 return ERR_PTR(-EINVAL);
1043
1044 for (i = 0; i < regd->n_reg_rules; i++) {
1045 const struct ieee80211_reg_rule *rr;
1046 const struct ieee80211_freq_range *fr = NULL;
1047
1048 rr = &regd->reg_rules[i];
1049 fr = &rr->freq_range;
1050
1051 /*
1052 * We only need to know if one frequency rule was
1053 * was in center_freq's band, that's enough, so lets
1054 * not overwrite it once found
1055 */
1056 if (!band_rule_found)
1057 band_rule_found = freq_in_rule_band(fr, center_freq);
1058
1059 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1060
1061 if (band_rule_found && bw_fits)
1062 return rr;
1063 }
1064
1065 if (!band_rule_found)
1066 return ERR_PTR(-ERANGE);
1067
1068 return ERR_PTR(-EINVAL);
1069 }
1070
1071 static const struct ieee80211_reg_rule *
1072 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1073 {
1074 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1075 const struct ieee80211_reg_rule *reg_rule = NULL;
1076 u32 bw;
1077
1078 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1079 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1080 if (!IS_ERR(reg_rule))
1081 return reg_rule;
1082 }
1083
1084 return reg_rule;
1085 }
1086
1087 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1088 u32 center_freq)
1089 {
1090 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1091 }
1092 EXPORT_SYMBOL(freq_reg_info);
1093
1094 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1095 {
1096 switch (initiator) {
1097 case NL80211_REGDOM_SET_BY_CORE:
1098 return "core";
1099 case NL80211_REGDOM_SET_BY_USER:
1100 return "user";
1101 case NL80211_REGDOM_SET_BY_DRIVER:
1102 return "driver";
1103 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1104 return "country IE";
1105 default:
1106 WARN_ON(1);
1107 return "bug";
1108 }
1109 }
1110 EXPORT_SYMBOL(reg_initiator_name);
1111
1112 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1113 const struct ieee80211_reg_rule *reg_rule,
1114 const struct ieee80211_channel *chan)
1115 {
1116 const struct ieee80211_freq_range *freq_range = NULL;
1117 u32 max_bandwidth_khz, bw_flags = 0;
1118
1119 freq_range = &reg_rule->freq_range;
1120
1121 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1122 /* Check if auto calculation requested */
1123 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1124 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1125
1126 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1127 if (!cfg80211_does_bw_fit_range(freq_range,
1128 MHZ_TO_KHZ(chan->center_freq),
1129 MHZ_TO_KHZ(10)))
1130 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1131 if (!cfg80211_does_bw_fit_range(freq_range,
1132 MHZ_TO_KHZ(chan->center_freq),
1133 MHZ_TO_KHZ(20)))
1134 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1135
1136 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1137 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1138 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1139 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1140 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1141 bw_flags |= IEEE80211_CHAN_NO_HT40;
1142 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1143 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1144 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1145 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1146 return bw_flags;
1147 }
1148
1149 /*
1150 * Note that right now we assume the desired channel bandwidth
1151 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1152 * per channel, the primary and the extension channel).
1153 */
1154 static void handle_channel(struct wiphy *wiphy,
1155 enum nl80211_reg_initiator initiator,
1156 struct ieee80211_channel *chan)
1157 {
1158 u32 flags, bw_flags = 0;
1159 const struct ieee80211_reg_rule *reg_rule = NULL;
1160 const struct ieee80211_power_rule *power_rule = NULL;
1161 struct wiphy *request_wiphy = NULL;
1162 struct regulatory_request *lr = get_last_request();
1163 const struct ieee80211_regdomain *regd;
1164
1165 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1166
1167 flags = chan->orig_flags;
1168
1169 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1170 if (IS_ERR(reg_rule)) {
1171 /*
1172 * We will disable all channels that do not match our
1173 * received regulatory rule unless the hint is coming
1174 * from a Country IE and the Country IE had no information
1175 * about a band. The IEEE 802.11 spec allows for an AP
1176 * to send only a subset of the regulatory rules allowed,
1177 * so an AP in the US that only supports 2.4 GHz may only send
1178 * a country IE with information for the 2.4 GHz band
1179 * while 5 GHz is still supported.
1180 */
1181 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1182 PTR_ERR(reg_rule) == -ERANGE)
1183 return;
1184
1185 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1186 request_wiphy && request_wiphy == wiphy &&
1187 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1188 pr_debug("Disabling freq %d MHz for good\n",
1189 chan->center_freq);
1190 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1191 chan->flags = chan->orig_flags;
1192 } else {
1193 pr_debug("Disabling freq %d MHz\n",
1194 chan->center_freq);
1195 chan->flags |= IEEE80211_CHAN_DISABLED;
1196 }
1197 return;
1198 }
1199
1200 regd = reg_get_regdomain(wiphy);
1201
1202 power_rule = &reg_rule->power_rule;
1203 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1204
1205 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1206 request_wiphy && request_wiphy == wiphy &&
1207 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1208 /*
1209 * This guarantees the driver's requested regulatory domain
1210 * will always be used as a base for further regulatory
1211 * settings
1212 */
1213 chan->flags = chan->orig_flags =
1214 map_regdom_flags(reg_rule->flags) | bw_flags;
1215 chan->max_antenna_gain = chan->orig_mag =
1216 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1217 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1218 (int) MBM_TO_DBM(power_rule->max_eirp);
1219
1220 if (chan->flags & IEEE80211_CHAN_RADAR) {
1221 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1222 if (reg_rule->dfs_cac_ms)
1223 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1224 }
1225
1226 return;
1227 }
1228
1229 chan->dfs_state = NL80211_DFS_USABLE;
1230 chan->dfs_state_entered = jiffies;
1231
1232 chan->beacon_found = false;
1233 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1234 chan->max_antenna_gain =
1235 min_t(int, chan->orig_mag,
1236 MBI_TO_DBI(power_rule->max_antenna_gain));
1237 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1238
1239 if (chan->flags & IEEE80211_CHAN_RADAR) {
1240 if (reg_rule->dfs_cac_ms)
1241 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1242 else
1243 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1244 }
1245
1246 if (chan->orig_mpwr) {
1247 /*
1248 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1249 * will always follow the passed country IE power settings.
1250 */
1251 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1252 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1253 chan->max_power = chan->max_reg_power;
1254 else
1255 chan->max_power = min(chan->orig_mpwr,
1256 chan->max_reg_power);
1257 } else
1258 chan->max_power = chan->max_reg_power;
1259 }
1260
1261 static void handle_band(struct wiphy *wiphy,
1262 enum nl80211_reg_initiator initiator,
1263 struct ieee80211_supported_band *sband)
1264 {
1265 unsigned int i;
1266
1267 if (!sband)
1268 return;
1269
1270 for (i = 0; i < sband->n_channels; i++)
1271 handle_channel(wiphy, initiator, &sband->channels[i]);
1272 }
1273
1274 static bool reg_request_cell_base(struct regulatory_request *request)
1275 {
1276 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1277 return false;
1278 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1279 }
1280
1281 bool reg_last_request_cell_base(void)
1282 {
1283 return reg_request_cell_base(get_last_request());
1284 }
1285
1286 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1287 /* Core specific check */
1288 static enum reg_request_treatment
1289 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1290 {
1291 struct regulatory_request *lr = get_last_request();
1292
1293 if (!reg_num_devs_support_basehint)
1294 return REG_REQ_IGNORE;
1295
1296 if (reg_request_cell_base(lr) &&
1297 !regdom_changes(pending_request->alpha2))
1298 return REG_REQ_ALREADY_SET;
1299
1300 return REG_REQ_OK;
1301 }
1302
1303 /* Device specific check */
1304 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1305 {
1306 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1307 }
1308 #else
1309 static enum reg_request_treatment
1310 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1311 {
1312 return REG_REQ_IGNORE;
1313 }
1314
1315 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1316 {
1317 return true;
1318 }
1319 #endif
1320
1321 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1322 {
1323 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1324 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1325 return true;
1326 return false;
1327 }
1328
1329 static bool ignore_reg_update(struct wiphy *wiphy,
1330 enum nl80211_reg_initiator initiator)
1331 {
1332 struct regulatory_request *lr = get_last_request();
1333
1334 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1335 return true;
1336
1337 if (!lr) {
1338 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1339 reg_initiator_name(initiator));
1340 return true;
1341 }
1342
1343 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1344 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1345 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1346 reg_initiator_name(initiator));
1347 return true;
1348 }
1349
1350 /*
1351 * wiphy->regd will be set once the device has its own
1352 * desired regulatory domain set
1353 */
1354 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1355 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356 !is_world_regdom(lr->alpha2)) {
1357 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1358 reg_initiator_name(initiator));
1359 return true;
1360 }
1361
1362 if (reg_request_cell_base(lr))
1363 return reg_dev_ignore_cell_hint(wiphy);
1364
1365 return false;
1366 }
1367
1368 static bool reg_is_world_roaming(struct wiphy *wiphy)
1369 {
1370 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1371 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1372 struct regulatory_request *lr = get_last_request();
1373
1374 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1375 return true;
1376
1377 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1378 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1379 return true;
1380
1381 return false;
1382 }
1383
1384 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1385 struct reg_beacon *reg_beacon)
1386 {
1387 struct ieee80211_supported_band *sband;
1388 struct ieee80211_channel *chan;
1389 bool channel_changed = false;
1390 struct ieee80211_channel chan_before;
1391
1392 sband = wiphy->bands[reg_beacon->chan.band];
1393 chan = &sband->channels[chan_idx];
1394
1395 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1396 return;
1397
1398 if (chan->beacon_found)
1399 return;
1400
1401 chan->beacon_found = true;
1402
1403 if (!reg_is_world_roaming(wiphy))
1404 return;
1405
1406 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1407 return;
1408
1409 chan_before.center_freq = chan->center_freq;
1410 chan_before.flags = chan->flags;
1411
1412 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1413 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1414 channel_changed = true;
1415 }
1416
1417 if (channel_changed)
1418 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1419 }
1420
1421 /*
1422 * Called when a scan on a wiphy finds a beacon on
1423 * new channel
1424 */
1425 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1426 struct reg_beacon *reg_beacon)
1427 {
1428 unsigned int i;
1429 struct ieee80211_supported_band *sband;
1430
1431 if (!wiphy->bands[reg_beacon->chan.band])
1432 return;
1433
1434 sband = wiphy->bands[reg_beacon->chan.band];
1435
1436 for (i = 0; i < sband->n_channels; i++)
1437 handle_reg_beacon(wiphy, i, reg_beacon);
1438 }
1439
1440 /*
1441 * Called upon reg changes or a new wiphy is added
1442 */
1443 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1444 {
1445 unsigned int i;
1446 struct ieee80211_supported_band *sband;
1447 struct reg_beacon *reg_beacon;
1448
1449 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1450 if (!wiphy->bands[reg_beacon->chan.band])
1451 continue;
1452 sband = wiphy->bands[reg_beacon->chan.band];
1453 for (i = 0; i < sband->n_channels; i++)
1454 handle_reg_beacon(wiphy, i, reg_beacon);
1455 }
1456 }
1457
1458 /* Reap the advantages of previously found beacons */
1459 static void reg_process_beacons(struct wiphy *wiphy)
1460 {
1461 /*
1462 * Means we are just firing up cfg80211, so no beacons would
1463 * have been processed yet.
1464 */
1465 if (!last_request)
1466 return;
1467 wiphy_update_beacon_reg(wiphy);
1468 }
1469
1470 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1471 {
1472 if (!chan)
1473 return false;
1474 if (chan->flags & IEEE80211_CHAN_DISABLED)
1475 return false;
1476 /* This would happen when regulatory rules disallow HT40 completely */
1477 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1478 return false;
1479 return true;
1480 }
1481
1482 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1483 struct ieee80211_channel *channel)
1484 {
1485 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1486 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1487 const struct ieee80211_regdomain *regd;
1488 unsigned int i;
1489 u32 flags;
1490
1491 if (!is_ht40_allowed(channel)) {
1492 channel->flags |= IEEE80211_CHAN_NO_HT40;
1493 return;
1494 }
1495
1496 /*
1497 * We need to ensure the extension channels exist to
1498 * be able to use HT40- or HT40+, this finds them (or not)
1499 */
1500 for (i = 0; i < sband->n_channels; i++) {
1501 struct ieee80211_channel *c = &sband->channels[i];
1502
1503 if (c->center_freq == (channel->center_freq - 20))
1504 channel_before = c;
1505 if (c->center_freq == (channel->center_freq + 20))
1506 channel_after = c;
1507 }
1508
1509 flags = 0;
1510 regd = get_wiphy_regdom(wiphy);
1511 if (regd) {
1512 const struct ieee80211_reg_rule *reg_rule =
1513 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
1514 regd, MHZ_TO_KHZ(20));
1515
1516 if (!IS_ERR(reg_rule))
1517 flags = reg_rule->flags;
1518 }
1519
1520 /*
1521 * Please note that this assumes target bandwidth is 20 MHz,
1522 * if that ever changes we also need to change the below logic
1523 * to include that as well.
1524 */
1525 if (!is_ht40_allowed(channel_before) ||
1526 flags & NL80211_RRF_NO_HT40MINUS)
1527 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1528 else
1529 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1530
1531 if (!is_ht40_allowed(channel_after) ||
1532 flags & NL80211_RRF_NO_HT40PLUS)
1533 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1534 else
1535 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1536 }
1537
1538 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1539 struct ieee80211_supported_band *sband)
1540 {
1541 unsigned int i;
1542
1543 if (!sband)
1544 return;
1545
1546 for (i = 0; i < sband->n_channels; i++)
1547 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1548 }
1549
1550 static void reg_process_ht_flags(struct wiphy *wiphy)
1551 {
1552 enum nl80211_band band;
1553
1554 if (!wiphy)
1555 return;
1556
1557 for (band = 0; band < NUM_NL80211_BANDS; band++)
1558 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1559 }
1560
1561 static void reg_call_notifier(struct wiphy *wiphy,
1562 struct regulatory_request *request)
1563 {
1564 if (wiphy->reg_notifier)
1565 wiphy->reg_notifier(wiphy, request);
1566 }
1567
1568 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1569 {
1570 struct cfg80211_chan_def chandef;
1571 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1572 enum nl80211_iftype iftype;
1573
1574 wdev_lock(wdev);
1575 iftype = wdev->iftype;
1576
1577 /* make sure the interface is active */
1578 if (!wdev->netdev || !netif_running(wdev->netdev))
1579 goto wdev_inactive_unlock;
1580
1581 switch (iftype) {
1582 case NL80211_IFTYPE_AP:
1583 case NL80211_IFTYPE_P2P_GO:
1584 if (!wdev->beacon_interval)
1585 goto wdev_inactive_unlock;
1586 chandef = wdev->chandef;
1587 break;
1588 case NL80211_IFTYPE_ADHOC:
1589 if (!wdev->ssid_len)
1590 goto wdev_inactive_unlock;
1591 chandef = wdev->chandef;
1592 break;
1593 case NL80211_IFTYPE_STATION:
1594 case NL80211_IFTYPE_P2P_CLIENT:
1595 if (!wdev->current_bss ||
1596 !wdev->current_bss->pub.channel)
1597 goto wdev_inactive_unlock;
1598
1599 if (!rdev->ops->get_channel ||
1600 rdev_get_channel(rdev, wdev, &chandef))
1601 cfg80211_chandef_create(&chandef,
1602 wdev->current_bss->pub.channel,
1603 NL80211_CHAN_NO_HT);
1604 break;
1605 case NL80211_IFTYPE_MONITOR:
1606 case NL80211_IFTYPE_AP_VLAN:
1607 case NL80211_IFTYPE_P2P_DEVICE:
1608 /* no enforcement required */
1609 break;
1610 default:
1611 /* others not implemented for now */
1612 WARN_ON(1);
1613 break;
1614 }
1615
1616 wdev_unlock(wdev);
1617
1618 switch (iftype) {
1619 case NL80211_IFTYPE_AP:
1620 case NL80211_IFTYPE_P2P_GO:
1621 case NL80211_IFTYPE_ADHOC:
1622 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1623 case NL80211_IFTYPE_STATION:
1624 case NL80211_IFTYPE_P2P_CLIENT:
1625 return cfg80211_chandef_usable(wiphy, &chandef,
1626 IEEE80211_CHAN_DISABLED);
1627 default:
1628 break;
1629 }
1630
1631 return true;
1632
1633 wdev_inactive_unlock:
1634 wdev_unlock(wdev);
1635 return true;
1636 }
1637
1638 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1639 {
1640 struct wireless_dev *wdev;
1641 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1642
1643 ASSERT_RTNL();
1644
1645 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1646 if (!reg_wdev_chan_valid(wiphy, wdev))
1647 cfg80211_leave(rdev, wdev);
1648 }
1649
1650 static void reg_check_chans_work(struct work_struct *work)
1651 {
1652 struct cfg80211_registered_device *rdev;
1653
1654 pr_debug("Verifying active interfaces after reg change\n");
1655 rtnl_lock();
1656
1657 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1658 if (!(rdev->wiphy.regulatory_flags &
1659 REGULATORY_IGNORE_STALE_KICKOFF))
1660 reg_leave_invalid_chans(&rdev->wiphy);
1661
1662 rtnl_unlock();
1663 }
1664
1665 static void reg_check_channels(void)
1666 {
1667 /*
1668 * Give usermode a chance to do something nicer (move to another
1669 * channel, orderly disconnection), before forcing a disconnection.
1670 */
1671 mod_delayed_work(system_power_efficient_wq,
1672 &reg_check_chans,
1673 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1674 }
1675
1676 static void wiphy_update_regulatory(struct wiphy *wiphy,
1677 enum nl80211_reg_initiator initiator)
1678 {
1679 enum nl80211_band band;
1680 struct regulatory_request *lr = get_last_request();
1681
1682 if (ignore_reg_update(wiphy, initiator)) {
1683 /*
1684 * Regulatory updates set by CORE are ignored for custom
1685 * regulatory cards. Let us notify the changes to the driver,
1686 * as some drivers used this to restore its orig_* reg domain.
1687 */
1688 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1689 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1690 reg_call_notifier(wiphy, lr);
1691 return;
1692 }
1693
1694 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1695
1696 for (band = 0; band < NUM_NL80211_BANDS; band++)
1697 handle_band(wiphy, initiator, wiphy->bands[band]);
1698
1699 reg_process_beacons(wiphy);
1700 reg_process_ht_flags(wiphy);
1701 reg_call_notifier(wiphy, lr);
1702 }
1703
1704 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1705 {
1706 struct cfg80211_registered_device *rdev;
1707 struct wiphy *wiphy;
1708
1709 ASSERT_RTNL();
1710
1711 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1712 wiphy = &rdev->wiphy;
1713 wiphy_update_regulatory(wiphy, initiator);
1714 }
1715
1716 reg_check_channels();
1717 }
1718
1719 static void handle_channel_custom(struct wiphy *wiphy,
1720 struct ieee80211_channel *chan,
1721 const struct ieee80211_regdomain *regd)
1722 {
1723 u32 bw_flags = 0;
1724 const struct ieee80211_reg_rule *reg_rule = NULL;
1725 const struct ieee80211_power_rule *power_rule = NULL;
1726 u32 bw;
1727
1728 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1729 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1730 regd, bw);
1731 if (!IS_ERR(reg_rule))
1732 break;
1733 }
1734
1735 if (IS_ERR(reg_rule)) {
1736 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1737 chan->center_freq);
1738 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1739 chan->flags |= IEEE80211_CHAN_DISABLED;
1740 } else {
1741 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1742 chan->flags = chan->orig_flags;
1743 }
1744 return;
1745 }
1746
1747 power_rule = &reg_rule->power_rule;
1748 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1749
1750 chan->dfs_state_entered = jiffies;
1751 chan->dfs_state = NL80211_DFS_USABLE;
1752
1753 chan->beacon_found = false;
1754
1755 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1756 chan->flags = chan->orig_flags | bw_flags |
1757 map_regdom_flags(reg_rule->flags);
1758 else
1759 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1760
1761 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1762 chan->max_reg_power = chan->max_power =
1763 (int) MBM_TO_DBM(power_rule->max_eirp);
1764
1765 if (chan->flags & IEEE80211_CHAN_RADAR) {
1766 if (reg_rule->dfs_cac_ms)
1767 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1768 else
1769 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1770 }
1771
1772 chan->max_power = chan->max_reg_power;
1773 }
1774
1775 static void handle_band_custom(struct wiphy *wiphy,
1776 struct ieee80211_supported_band *sband,
1777 const struct ieee80211_regdomain *regd)
1778 {
1779 unsigned int i;
1780
1781 if (!sband)
1782 return;
1783
1784 for (i = 0; i < sband->n_channels; i++)
1785 handle_channel_custom(wiphy, &sband->channels[i], regd);
1786 }
1787
1788 /* Used by drivers prior to wiphy registration */
1789 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1790 const struct ieee80211_regdomain *regd)
1791 {
1792 enum nl80211_band band;
1793 unsigned int bands_set = 0;
1794
1795 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1796 "wiphy should have REGULATORY_CUSTOM_REG\n");
1797 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1798
1799 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1800 if (!wiphy->bands[band])
1801 continue;
1802 handle_band_custom(wiphy, wiphy->bands[band], regd);
1803 bands_set++;
1804 }
1805
1806 /*
1807 * no point in calling this if it won't have any effect
1808 * on your device's supported bands.
1809 */
1810 WARN_ON(!bands_set);
1811 }
1812 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1813
1814 static void reg_set_request_processed(void)
1815 {
1816 bool need_more_processing = false;
1817 struct regulatory_request *lr = get_last_request();
1818
1819 lr->processed = true;
1820
1821 spin_lock(&reg_requests_lock);
1822 if (!list_empty(&reg_requests_list))
1823 need_more_processing = true;
1824 spin_unlock(&reg_requests_lock);
1825
1826 cancel_crda_timeout();
1827
1828 if (need_more_processing)
1829 schedule_work(&reg_work);
1830 }
1831
1832 /**
1833 * reg_process_hint_core - process core regulatory requests
1834 * @pending_request: a pending core regulatory request
1835 *
1836 * The wireless subsystem can use this function to process
1837 * a regulatory request issued by the regulatory core.
1838 */
1839 static enum reg_request_treatment
1840 reg_process_hint_core(struct regulatory_request *core_request)
1841 {
1842 if (reg_query_database(core_request)) {
1843 core_request->intersect = false;
1844 core_request->processed = false;
1845 reg_update_last_request(core_request);
1846 return REG_REQ_OK;
1847 }
1848
1849 return REG_REQ_IGNORE;
1850 }
1851
1852 static enum reg_request_treatment
1853 __reg_process_hint_user(struct regulatory_request *user_request)
1854 {
1855 struct regulatory_request *lr = get_last_request();
1856
1857 if (reg_request_cell_base(user_request))
1858 return reg_ignore_cell_hint(user_request);
1859
1860 if (reg_request_cell_base(lr))
1861 return REG_REQ_IGNORE;
1862
1863 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1864 return REG_REQ_INTERSECT;
1865 /*
1866 * If the user knows better the user should set the regdom
1867 * to their country before the IE is picked up
1868 */
1869 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1870 lr->intersect)
1871 return REG_REQ_IGNORE;
1872 /*
1873 * Process user requests only after previous user/driver/core
1874 * requests have been processed
1875 */
1876 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1877 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1878 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1879 regdom_changes(lr->alpha2))
1880 return REG_REQ_IGNORE;
1881
1882 if (!regdom_changes(user_request->alpha2))
1883 return REG_REQ_ALREADY_SET;
1884
1885 return REG_REQ_OK;
1886 }
1887
1888 /**
1889 * reg_process_hint_user - process user regulatory requests
1890 * @user_request: a pending user regulatory request
1891 *
1892 * The wireless subsystem can use this function to process
1893 * a regulatory request initiated by userspace.
1894 */
1895 static enum reg_request_treatment
1896 reg_process_hint_user(struct regulatory_request *user_request)
1897 {
1898 enum reg_request_treatment treatment;
1899
1900 treatment = __reg_process_hint_user(user_request);
1901 if (treatment == REG_REQ_IGNORE ||
1902 treatment == REG_REQ_ALREADY_SET)
1903 return REG_REQ_IGNORE;
1904
1905 user_request->intersect = treatment == REG_REQ_INTERSECT;
1906 user_request->processed = false;
1907
1908 if (reg_query_database(user_request)) {
1909 reg_update_last_request(user_request);
1910 user_alpha2[0] = user_request->alpha2[0];
1911 user_alpha2[1] = user_request->alpha2[1];
1912 return REG_REQ_OK;
1913 }
1914
1915 return REG_REQ_IGNORE;
1916 }
1917
1918 static enum reg_request_treatment
1919 __reg_process_hint_driver(struct regulatory_request *driver_request)
1920 {
1921 struct regulatory_request *lr = get_last_request();
1922
1923 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1924 if (regdom_changes(driver_request->alpha2))
1925 return REG_REQ_OK;
1926 return REG_REQ_ALREADY_SET;
1927 }
1928
1929 /*
1930 * This would happen if you unplug and plug your card
1931 * back in or if you add a new device for which the previously
1932 * loaded card also agrees on the regulatory domain.
1933 */
1934 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1935 !regdom_changes(driver_request->alpha2))
1936 return REG_REQ_ALREADY_SET;
1937
1938 return REG_REQ_INTERSECT;
1939 }
1940
1941 /**
1942 * reg_process_hint_driver - process driver regulatory requests
1943 * @driver_request: a pending driver regulatory request
1944 *
1945 * The wireless subsystem can use this function to process
1946 * a regulatory request issued by an 802.11 driver.
1947 *
1948 * Returns one of the different reg request treatment values.
1949 */
1950 static enum reg_request_treatment
1951 reg_process_hint_driver(struct wiphy *wiphy,
1952 struct regulatory_request *driver_request)
1953 {
1954 const struct ieee80211_regdomain *regd, *tmp;
1955 enum reg_request_treatment treatment;
1956
1957 treatment = __reg_process_hint_driver(driver_request);
1958
1959 switch (treatment) {
1960 case REG_REQ_OK:
1961 break;
1962 case REG_REQ_IGNORE:
1963 return REG_REQ_IGNORE;
1964 case REG_REQ_INTERSECT:
1965 case REG_REQ_ALREADY_SET:
1966 regd = reg_copy_regd(get_cfg80211_regdom());
1967 if (IS_ERR(regd))
1968 return REG_REQ_IGNORE;
1969
1970 tmp = get_wiphy_regdom(wiphy);
1971 rcu_assign_pointer(wiphy->regd, regd);
1972 rcu_free_regdom(tmp);
1973 }
1974
1975
1976 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1977 driver_request->processed = false;
1978
1979 /*
1980 * Since CRDA will not be called in this case as we already
1981 * have applied the requested regulatory domain before we just
1982 * inform userspace we have processed the request
1983 */
1984 if (treatment == REG_REQ_ALREADY_SET) {
1985 nl80211_send_reg_change_event(driver_request);
1986 reg_update_last_request(driver_request);
1987 reg_set_request_processed();
1988 return REG_REQ_ALREADY_SET;
1989 }
1990
1991 if (reg_query_database(driver_request)) {
1992 reg_update_last_request(driver_request);
1993 return REG_REQ_OK;
1994 }
1995
1996 return REG_REQ_IGNORE;
1997 }
1998
1999 static enum reg_request_treatment
2000 __reg_process_hint_country_ie(struct wiphy *wiphy,
2001 struct regulatory_request *country_ie_request)
2002 {
2003 struct wiphy *last_wiphy = NULL;
2004 struct regulatory_request *lr = get_last_request();
2005
2006 if (reg_request_cell_base(lr)) {
2007 /* Trust a Cell base station over the AP's country IE */
2008 if (regdom_changes(country_ie_request->alpha2))
2009 return REG_REQ_IGNORE;
2010 return REG_REQ_ALREADY_SET;
2011 } else {
2012 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2013 return REG_REQ_IGNORE;
2014 }
2015
2016 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2017 return -EINVAL;
2018
2019 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2020 return REG_REQ_OK;
2021
2022 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2023
2024 if (last_wiphy != wiphy) {
2025 /*
2026 * Two cards with two APs claiming different
2027 * Country IE alpha2s. We could
2028 * intersect them, but that seems unlikely
2029 * to be correct. Reject second one for now.
2030 */
2031 if (regdom_changes(country_ie_request->alpha2))
2032 return REG_REQ_IGNORE;
2033 return REG_REQ_ALREADY_SET;
2034 }
2035
2036 if (regdom_changes(country_ie_request->alpha2))
2037 return REG_REQ_OK;
2038 return REG_REQ_ALREADY_SET;
2039 }
2040
2041 /**
2042 * reg_process_hint_country_ie - process regulatory requests from country IEs
2043 * @country_ie_request: a regulatory request from a country IE
2044 *
2045 * The wireless subsystem can use this function to process
2046 * a regulatory request issued by a country Information Element.
2047 *
2048 * Returns one of the different reg request treatment values.
2049 */
2050 static enum reg_request_treatment
2051 reg_process_hint_country_ie(struct wiphy *wiphy,
2052 struct regulatory_request *country_ie_request)
2053 {
2054 enum reg_request_treatment treatment;
2055
2056 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2057
2058 switch (treatment) {
2059 case REG_REQ_OK:
2060 break;
2061 case REG_REQ_IGNORE:
2062 return REG_REQ_IGNORE;
2063 case REG_REQ_ALREADY_SET:
2064 reg_free_request(country_ie_request);
2065 return REG_REQ_ALREADY_SET;
2066 case REG_REQ_INTERSECT:
2067 /*
2068 * This doesn't happen yet, not sure we
2069 * ever want to support it for this case.
2070 */
2071 WARN_ONCE(1, "Unexpected intersection for country IEs");
2072 return REG_REQ_IGNORE;
2073 }
2074
2075 country_ie_request->intersect = false;
2076 country_ie_request->processed = false;
2077
2078 if (reg_query_database(country_ie_request)) {
2079 reg_update_last_request(country_ie_request);
2080 return REG_REQ_OK;
2081 }
2082
2083 return REG_REQ_IGNORE;
2084 }
2085
2086 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2087 {
2088 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2089 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2090 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2091 bool dfs_domain_same;
2092
2093 rcu_read_lock();
2094
2095 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2096 wiphy1_regd = rcu_dereference(wiphy1->regd);
2097 if (!wiphy1_regd)
2098 wiphy1_regd = cfg80211_regd;
2099
2100 wiphy2_regd = rcu_dereference(wiphy2->regd);
2101 if (!wiphy2_regd)
2102 wiphy2_regd = cfg80211_regd;
2103
2104 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2105
2106 rcu_read_unlock();
2107
2108 return dfs_domain_same;
2109 }
2110
2111 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2112 struct ieee80211_channel *src_chan)
2113 {
2114 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2115 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2116 return;
2117
2118 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2119 src_chan->flags & IEEE80211_CHAN_DISABLED)
2120 return;
2121
2122 if (src_chan->center_freq == dst_chan->center_freq &&
2123 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2124 dst_chan->dfs_state = src_chan->dfs_state;
2125 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2126 }
2127 }
2128
2129 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2130 struct wiphy *src_wiphy)
2131 {
2132 struct ieee80211_supported_band *src_sband, *dst_sband;
2133 struct ieee80211_channel *src_chan, *dst_chan;
2134 int i, j, band;
2135
2136 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2137 return;
2138
2139 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2140 dst_sband = dst_wiphy->bands[band];
2141 src_sband = src_wiphy->bands[band];
2142 if (!dst_sband || !src_sband)
2143 continue;
2144
2145 for (i = 0; i < dst_sband->n_channels; i++) {
2146 dst_chan = &dst_sband->channels[i];
2147 for (j = 0; j < src_sband->n_channels; j++) {
2148 src_chan = &src_sband->channels[j];
2149 reg_copy_dfs_chan_state(dst_chan, src_chan);
2150 }
2151 }
2152 }
2153 }
2154
2155 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2156 {
2157 struct cfg80211_registered_device *rdev;
2158
2159 ASSERT_RTNL();
2160
2161 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2162 if (wiphy == &rdev->wiphy)
2163 continue;
2164 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2165 }
2166 }
2167
2168 /* This processes *all* regulatory hints */
2169 static void reg_process_hint(struct regulatory_request *reg_request)
2170 {
2171 struct wiphy *wiphy = NULL;
2172 enum reg_request_treatment treatment;
2173
2174 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2175 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2176
2177 switch (reg_request->initiator) {
2178 case NL80211_REGDOM_SET_BY_CORE:
2179 treatment = reg_process_hint_core(reg_request);
2180 break;
2181 case NL80211_REGDOM_SET_BY_USER:
2182 treatment = reg_process_hint_user(reg_request);
2183 break;
2184 case NL80211_REGDOM_SET_BY_DRIVER:
2185 if (!wiphy)
2186 goto out_free;
2187 treatment = reg_process_hint_driver(wiphy, reg_request);
2188 break;
2189 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2190 if (!wiphy)
2191 goto out_free;
2192 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2193 break;
2194 default:
2195 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2196 goto out_free;
2197 }
2198
2199 if (treatment == REG_REQ_IGNORE)
2200 goto out_free;
2201
2202 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2203 "unexpected treatment value %d\n", treatment);
2204
2205 /* This is required so that the orig_* parameters are saved.
2206 * NOTE: treatment must be set for any case that reaches here!
2207 */
2208 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2209 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2210 wiphy_update_regulatory(wiphy, reg_request->initiator);
2211 wiphy_all_share_dfs_chan_state(wiphy);
2212 reg_check_channels();
2213 }
2214
2215 return;
2216
2217 out_free:
2218 reg_free_request(reg_request);
2219 }
2220
2221 static bool reg_only_self_managed_wiphys(void)
2222 {
2223 struct cfg80211_registered_device *rdev;
2224 struct wiphy *wiphy;
2225 bool self_managed_found = false;
2226
2227 ASSERT_RTNL();
2228
2229 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2230 wiphy = &rdev->wiphy;
2231 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2232 self_managed_found = true;
2233 else
2234 return false;
2235 }
2236
2237 /* make sure at least one self-managed wiphy exists */
2238 return self_managed_found;
2239 }
2240
2241 /*
2242 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2243 * Regulatory hints come on a first come first serve basis and we
2244 * must process each one atomically.
2245 */
2246 static void reg_process_pending_hints(void)
2247 {
2248 struct regulatory_request *reg_request, *lr;
2249
2250 lr = get_last_request();
2251
2252 /* When last_request->processed becomes true this will be rescheduled */
2253 if (lr && !lr->processed) {
2254 reg_process_hint(lr);
2255 return;
2256 }
2257
2258 spin_lock(&reg_requests_lock);
2259
2260 if (list_empty(&reg_requests_list)) {
2261 spin_unlock(&reg_requests_lock);
2262 return;
2263 }
2264
2265 reg_request = list_first_entry(&reg_requests_list,
2266 struct regulatory_request,
2267 list);
2268 list_del_init(&reg_request->list);
2269
2270 spin_unlock(&reg_requests_lock);
2271
2272 if (reg_only_self_managed_wiphys()) {
2273 reg_free_request(reg_request);
2274 return;
2275 }
2276
2277 reg_process_hint(reg_request);
2278
2279 lr = get_last_request();
2280
2281 spin_lock(&reg_requests_lock);
2282 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2283 schedule_work(&reg_work);
2284 spin_unlock(&reg_requests_lock);
2285 }
2286
2287 /* Processes beacon hints -- this has nothing to do with country IEs */
2288 static void reg_process_pending_beacon_hints(void)
2289 {
2290 struct cfg80211_registered_device *rdev;
2291 struct reg_beacon *pending_beacon, *tmp;
2292
2293 /* This goes through the _pending_ beacon list */
2294 spin_lock_bh(&reg_pending_beacons_lock);
2295
2296 list_for_each_entry_safe(pending_beacon, tmp,
2297 &reg_pending_beacons, list) {
2298 list_del_init(&pending_beacon->list);
2299
2300 /* Applies the beacon hint to current wiphys */
2301 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2302 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2303
2304 /* Remembers the beacon hint for new wiphys or reg changes */
2305 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2306 }
2307
2308 spin_unlock_bh(&reg_pending_beacons_lock);
2309 }
2310
2311 static void reg_process_self_managed_hints(void)
2312 {
2313 struct cfg80211_registered_device *rdev;
2314 struct wiphy *wiphy;
2315 const struct ieee80211_regdomain *tmp;
2316 const struct ieee80211_regdomain *regd;
2317 enum nl80211_band band;
2318 struct regulatory_request request = {};
2319
2320 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2321 wiphy = &rdev->wiphy;
2322
2323 spin_lock(&reg_requests_lock);
2324 regd = rdev->requested_regd;
2325 rdev->requested_regd = NULL;
2326 spin_unlock(&reg_requests_lock);
2327
2328 if (regd == NULL)
2329 continue;
2330
2331 tmp = get_wiphy_regdom(wiphy);
2332 rcu_assign_pointer(wiphy->regd, regd);
2333 rcu_free_regdom(tmp);
2334
2335 for (band = 0; band < NUM_NL80211_BANDS; band++)
2336 handle_band_custom(wiphy, wiphy->bands[band], regd);
2337
2338 reg_process_ht_flags(wiphy);
2339
2340 request.wiphy_idx = get_wiphy_idx(wiphy);
2341 request.alpha2[0] = regd->alpha2[0];
2342 request.alpha2[1] = regd->alpha2[1];
2343 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2344
2345 nl80211_send_wiphy_reg_change_event(&request);
2346 }
2347
2348 reg_check_channels();
2349 }
2350
2351 static void reg_todo(struct work_struct *work)
2352 {
2353 rtnl_lock();
2354 reg_process_pending_hints();
2355 reg_process_pending_beacon_hints();
2356 reg_process_self_managed_hints();
2357 rtnl_unlock();
2358 }
2359
2360 static void queue_regulatory_request(struct regulatory_request *request)
2361 {
2362 request->alpha2[0] = toupper(request->alpha2[0]);
2363 request->alpha2[1] = toupper(request->alpha2[1]);
2364
2365 spin_lock(&reg_requests_lock);
2366 list_add_tail(&request->list, &reg_requests_list);
2367 spin_unlock(&reg_requests_lock);
2368
2369 schedule_work(&reg_work);
2370 }
2371
2372 /*
2373 * Core regulatory hint -- happens during cfg80211_init()
2374 * and when we restore regulatory settings.
2375 */
2376 static int regulatory_hint_core(const char *alpha2)
2377 {
2378 struct regulatory_request *request;
2379
2380 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2381 if (!request)
2382 return -ENOMEM;
2383
2384 request->alpha2[0] = alpha2[0];
2385 request->alpha2[1] = alpha2[1];
2386 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2387
2388 queue_regulatory_request(request);
2389
2390 return 0;
2391 }
2392
2393 /* User hints */
2394 int regulatory_hint_user(const char *alpha2,
2395 enum nl80211_user_reg_hint_type user_reg_hint_type)
2396 {
2397 struct regulatory_request *request;
2398
2399 if (WARN_ON(!alpha2))
2400 return -EINVAL;
2401
2402 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2403 if (!request)
2404 return -ENOMEM;
2405
2406 request->wiphy_idx = WIPHY_IDX_INVALID;
2407 request->alpha2[0] = alpha2[0];
2408 request->alpha2[1] = alpha2[1];
2409 request->initiator = NL80211_REGDOM_SET_BY_USER;
2410 request->user_reg_hint_type = user_reg_hint_type;
2411
2412 /* Allow calling CRDA again */
2413 reset_crda_timeouts();
2414
2415 queue_regulatory_request(request);
2416
2417 return 0;
2418 }
2419
2420 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2421 {
2422 spin_lock(&reg_indoor_lock);
2423
2424 /* It is possible that more than one user space process is trying to
2425 * configure the indoor setting. To handle such cases, clear the indoor
2426 * setting in case that some process does not think that the device
2427 * is operating in an indoor environment. In addition, if a user space
2428 * process indicates that it is controlling the indoor setting, save its
2429 * portid, i.e., make it the owner.
2430 */
2431 reg_is_indoor = is_indoor;
2432 if (reg_is_indoor) {
2433 if (!reg_is_indoor_portid)
2434 reg_is_indoor_portid = portid;
2435 } else {
2436 reg_is_indoor_portid = 0;
2437 }
2438
2439 spin_unlock(&reg_indoor_lock);
2440
2441 if (!is_indoor)
2442 reg_check_channels();
2443
2444 return 0;
2445 }
2446
2447 void regulatory_netlink_notify(u32 portid)
2448 {
2449 spin_lock(&reg_indoor_lock);
2450
2451 if (reg_is_indoor_portid != portid) {
2452 spin_unlock(&reg_indoor_lock);
2453 return;
2454 }
2455
2456 reg_is_indoor = false;
2457 reg_is_indoor_portid = 0;
2458
2459 spin_unlock(&reg_indoor_lock);
2460
2461 reg_check_channels();
2462 }
2463
2464 /* Driver hints */
2465 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2466 {
2467 struct regulatory_request *request;
2468
2469 if (WARN_ON(!alpha2 || !wiphy))
2470 return -EINVAL;
2471
2472 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2473
2474 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2475 if (!request)
2476 return -ENOMEM;
2477
2478 request->wiphy_idx = get_wiphy_idx(wiphy);
2479
2480 request->alpha2[0] = alpha2[0];
2481 request->alpha2[1] = alpha2[1];
2482 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2483
2484 /* Allow calling CRDA again */
2485 reset_crda_timeouts();
2486
2487 queue_regulatory_request(request);
2488
2489 return 0;
2490 }
2491 EXPORT_SYMBOL(regulatory_hint);
2492
2493 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2494 const u8 *country_ie, u8 country_ie_len)
2495 {
2496 char alpha2[2];
2497 enum environment_cap env = ENVIRON_ANY;
2498 struct regulatory_request *request = NULL, *lr;
2499
2500 /* IE len must be evenly divisible by 2 */
2501 if (country_ie_len & 0x01)
2502 return;
2503
2504 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2505 return;
2506
2507 request = kzalloc(sizeof(*request), GFP_KERNEL);
2508 if (!request)
2509 return;
2510
2511 alpha2[0] = country_ie[0];
2512 alpha2[1] = country_ie[1];
2513
2514 if (country_ie[2] == 'I')
2515 env = ENVIRON_INDOOR;
2516 else if (country_ie[2] == 'O')
2517 env = ENVIRON_OUTDOOR;
2518
2519 rcu_read_lock();
2520 lr = get_last_request();
2521
2522 if (unlikely(!lr))
2523 goto out;
2524
2525 /*
2526 * We will run this only upon a successful connection on cfg80211.
2527 * We leave conflict resolution to the workqueue, where can hold
2528 * the RTNL.
2529 */
2530 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2531 lr->wiphy_idx != WIPHY_IDX_INVALID)
2532 goto out;
2533
2534 request->wiphy_idx = get_wiphy_idx(wiphy);
2535 request->alpha2[0] = alpha2[0];
2536 request->alpha2[1] = alpha2[1];
2537 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2538 request->country_ie_env = env;
2539
2540 /* Allow calling CRDA again */
2541 reset_crda_timeouts();
2542
2543 queue_regulatory_request(request);
2544 request = NULL;
2545 out:
2546 kfree(request);
2547 rcu_read_unlock();
2548 }
2549
2550 static void restore_alpha2(char *alpha2, bool reset_user)
2551 {
2552 /* indicates there is no alpha2 to consider for restoration */
2553 alpha2[0] = '9';
2554 alpha2[1] = '7';
2555
2556 /* The user setting has precedence over the module parameter */
2557 if (is_user_regdom_saved()) {
2558 /* Unless we're asked to ignore it and reset it */
2559 if (reset_user) {
2560 pr_debug("Restoring regulatory settings including user preference\n");
2561 user_alpha2[0] = '9';
2562 user_alpha2[1] = '7';
2563
2564 /*
2565 * If we're ignoring user settings, we still need to
2566 * check the module parameter to ensure we put things
2567 * back as they were for a full restore.
2568 */
2569 if (!is_world_regdom(ieee80211_regdom)) {
2570 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2571 ieee80211_regdom[0], ieee80211_regdom[1]);
2572 alpha2[0] = ieee80211_regdom[0];
2573 alpha2[1] = ieee80211_regdom[1];
2574 }
2575 } else {
2576 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2577 user_alpha2[0], user_alpha2[1]);
2578 alpha2[0] = user_alpha2[0];
2579 alpha2[1] = user_alpha2[1];
2580 }
2581 } else if (!is_world_regdom(ieee80211_regdom)) {
2582 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2583 ieee80211_regdom[0], ieee80211_regdom[1]);
2584 alpha2[0] = ieee80211_regdom[0];
2585 alpha2[1] = ieee80211_regdom[1];
2586 } else
2587 pr_debug("Restoring regulatory settings\n");
2588 }
2589
2590 static void restore_custom_reg_settings(struct wiphy *wiphy)
2591 {
2592 struct ieee80211_supported_band *sband;
2593 enum nl80211_band band;
2594 struct ieee80211_channel *chan;
2595 int i;
2596
2597 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2598 sband = wiphy->bands[band];
2599 if (!sband)
2600 continue;
2601 for (i = 0; i < sband->n_channels; i++) {
2602 chan = &sband->channels[i];
2603 chan->flags = chan->orig_flags;
2604 chan->max_antenna_gain = chan->orig_mag;
2605 chan->max_power = chan->orig_mpwr;
2606 chan->beacon_found = false;
2607 }
2608 }
2609 }
2610
2611 /*
2612 * Restoring regulatory settings involves ingoring any
2613 * possibly stale country IE information and user regulatory
2614 * settings if so desired, this includes any beacon hints
2615 * learned as we could have traveled outside to another country
2616 * after disconnection. To restore regulatory settings we do
2617 * exactly what we did at bootup:
2618 *
2619 * - send a core regulatory hint
2620 * - send a user regulatory hint if applicable
2621 *
2622 * Device drivers that send a regulatory hint for a specific country
2623 * keep their own regulatory domain on wiphy->regd so that does does
2624 * not need to be remembered.
2625 */
2626 static void restore_regulatory_settings(bool reset_user)
2627 {
2628 char alpha2[2];
2629 char world_alpha2[2];
2630 struct reg_beacon *reg_beacon, *btmp;
2631 LIST_HEAD(tmp_reg_req_list);
2632 struct cfg80211_registered_device *rdev;
2633
2634 ASSERT_RTNL();
2635
2636 /*
2637 * Clear the indoor setting in case that it is not controlled by user
2638 * space, as otherwise there is no guarantee that the device is still
2639 * operating in an indoor environment.
2640 */
2641 spin_lock(&reg_indoor_lock);
2642 if (reg_is_indoor && !reg_is_indoor_portid) {
2643 reg_is_indoor = false;
2644 reg_check_channels();
2645 }
2646 spin_unlock(&reg_indoor_lock);
2647
2648 reset_regdomains(true, &world_regdom);
2649 restore_alpha2(alpha2, reset_user);
2650
2651 /*
2652 * If there's any pending requests we simply
2653 * stash them to a temporary pending queue and
2654 * add then after we've restored regulatory
2655 * settings.
2656 */
2657 spin_lock(&reg_requests_lock);
2658 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2659 spin_unlock(&reg_requests_lock);
2660
2661 /* Clear beacon hints */
2662 spin_lock_bh(&reg_pending_beacons_lock);
2663 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2664 list_del(&reg_beacon->list);
2665 kfree(reg_beacon);
2666 }
2667 spin_unlock_bh(&reg_pending_beacons_lock);
2668
2669 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2670 list_del(&reg_beacon->list);
2671 kfree(reg_beacon);
2672 }
2673
2674 /* First restore to the basic regulatory settings */
2675 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2676 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2677
2678 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2679 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2680 continue;
2681 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2682 restore_custom_reg_settings(&rdev->wiphy);
2683 }
2684
2685 regulatory_hint_core(world_alpha2);
2686
2687 /*
2688 * This restores the ieee80211_regdom module parameter
2689 * preference or the last user requested regulatory
2690 * settings, user regulatory settings takes precedence.
2691 */
2692 if (is_an_alpha2(alpha2))
2693 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2694
2695 spin_lock(&reg_requests_lock);
2696 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2697 spin_unlock(&reg_requests_lock);
2698
2699 pr_debug("Kicking the queue\n");
2700
2701 schedule_work(&reg_work);
2702 }
2703
2704 void regulatory_hint_disconnect(void)
2705 {
2706 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2707 restore_regulatory_settings(false);
2708 }
2709
2710 static bool freq_is_chan_12_13_14(u16 freq)
2711 {
2712 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2713 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2714 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2715 return true;
2716 return false;
2717 }
2718
2719 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2720 {
2721 struct reg_beacon *pending_beacon;
2722
2723 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2724 if (beacon_chan->center_freq ==
2725 pending_beacon->chan.center_freq)
2726 return true;
2727 return false;
2728 }
2729
2730 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2731 struct ieee80211_channel *beacon_chan,
2732 gfp_t gfp)
2733 {
2734 struct reg_beacon *reg_beacon;
2735 bool processing;
2736
2737 if (beacon_chan->beacon_found ||
2738 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2739 (beacon_chan->band == NL80211_BAND_2GHZ &&
2740 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2741 return 0;
2742
2743 spin_lock_bh(&reg_pending_beacons_lock);
2744 processing = pending_reg_beacon(beacon_chan);
2745 spin_unlock_bh(&reg_pending_beacons_lock);
2746
2747 if (processing)
2748 return 0;
2749
2750 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2751 if (!reg_beacon)
2752 return -ENOMEM;
2753
2754 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2755 beacon_chan->center_freq,
2756 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2757 wiphy_name(wiphy));
2758
2759 memcpy(&reg_beacon->chan, beacon_chan,
2760 sizeof(struct ieee80211_channel));
2761
2762 /*
2763 * Since we can be called from BH or and non-BH context
2764 * we must use spin_lock_bh()
2765 */
2766 spin_lock_bh(&reg_pending_beacons_lock);
2767 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2768 spin_unlock_bh(&reg_pending_beacons_lock);
2769
2770 schedule_work(&reg_work);
2771
2772 return 0;
2773 }
2774
2775 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2776 {
2777 unsigned int i;
2778 const struct ieee80211_reg_rule *reg_rule = NULL;
2779 const struct ieee80211_freq_range *freq_range = NULL;
2780 const struct ieee80211_power_rule *power_rule = NULL;
2781 char bw[32], cac_time[32];
2782
2783 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2784
2785 for (i = 0; i < rd->n_reg_rules; i++) {
2786 reg_rule = &rd->reg_rules[i];
2787 freq_range = &reg_rule->freq_range;
2788 power_rule = &reg_rule->power_rule;
2789
2790 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2791 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2792 freq_range->max_bandwidth_khz,
2793 reg_get_max_bandwidth(rd, reg_rule));
2794 else
2795 snprintf(bw, sizeof(bw), "%d KHz",
2796 freq_range->max_bandwidth_khz);
2797
2798 if (reg_rule->flags & NL80211_RRF_DFS)
2799 scnprintf(cac_time, sizeof(cac_time), "%u s",
2800 reg_rule->dfs_cac_ms/1000);
2801 else
2802 scnprintf(cac_time, sizeof(cac_time), "N/A");
2803
2804
2805 /*
2806 * There may not be documentation for max antenna gain
2807 * in certain regions
2808 */
2809 if (power_rule->max_antenna_gain)
2810 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2811 freq_range->start_freq_khz,
2812 freq_range->end_freq_khz,
2813 bw,
2814 power_rule->max_antenna_gain,
2815 power_rule->max_eirp,
2816 cac_time);
2817 else
2818 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2819 freq_range->start_freq_khz,
2820 freq_range->end_freq_khz,
2821 bw,
2822 power_rule->max_eirp,
2823 cac_time);
2824 }
2825 }
2826
2827 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2828 {
2829 switch (dfs_region) {
2830 case NL80211_DFS_UNSET:
2831 case NL80211_DFS_FCC:
2832 case NL80211_DFS_ETSI:
2833 case NL80211_DFS_JP:
2834 return true;
2835 default:
2836 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2837 return false;
2838 }
2839 }
2840
2841 static void print_regdomain(const struct ieee80211_regdomain *rd)
2842 {
2843 struct regulatory_request *lr = get_last_request();
2844
2845 if (is_intersected_alpha2(rd->alpha2)) {
2846 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2847 struct cfg80211_registered_device *rdev;
2848 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2849 if (rdev) {
2850 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2851 rdev->country_ie_alpha2[0],
2852 rdev->country_ie_alpha2[1]);
2853 } else
2854 pr_debug("Current regulatory domain intersected:\n");
2855 } else
2856 pr_debug("Current regulatory domain intersected:\n");
2857 } else if (is_world_regdom(rd->alpha2)) {
2858 pr_debug("World regulatory domain updated:\n");
2859 } else {
2860 if (is_unknown_alpha2(rd->alpha2))
2861 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2862 else {
2863 if (reg_request_cell_base(lr))
2864 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2865 rd->alpha2[0], rd->alpha2[1]);
2866 else
2867 pr_debug("Regulatory domain changed to country: %c%c\n",
2868 rd->alpha2[0], rd->alpha2[1]);
2869 }
2870 }
2871
2872 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2873 print_rd_rules(rd);
2874 }
2875
2876 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2877 {
2878 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2879 print_rd_rules(rd);
2880 }
2881
2882 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2883 {
2884 if (!is_world_regdom(rd->alpha2))
2885 return -EINVAL;
2886 update_world_regdomain(rd);
2887 return 0;
2888 }
2889
2890 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2891 struct regulatory_request *user_request)
2892 {
2893 const struct ieee80211_regdomain *intersected_rd = NULL;
2894
2895 if (!regdom_changes(rd->alpha2))
2896 return -EALREADY;
2897
2898 if (!is_valid_rd(rd)) {
2899 pr_err("Invalid regulatory domain detected: %c%c\n",
2900 rd->alpha2[0], rd->alpha2[1]);
2901 print_regdomain_info(rd);
2902 return -EINVAL;
2903 }
2904
2905 if (!user_request->intersect) {
2906 reset_regdomains(false, rd);
2907 return 0;
2908 }
2909
2910 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2911 if (!intersected_rd)
2912 return -EINVAL;
2913
2914 kfree(rd);
2915 rd = NULL;
2916 reset_regdomains(false, intersected_rd);
2917
2918 return 0;
2919 }
2920
2921 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2922 struct regulatory_request *driver_request)
2923 {
2924 const struct ieee80211_regdomain *regd;
2925 const struct ieee80211_regdomain *intersected_rd = NULL;
2926 const struct ieee80211_regdomain *tmp;
2927 struct wiphy *request_wiphy;
2928
2929 if (is_world_regdom(rd->alpha2))
2930 return -EINVAL;
2931
2932 if (!regdom_changes(rd->alpha2))
2933 return -EALREADY;
2934
2935 if (!is_valid_rd(rd)) {
2936 pr_err("Invalid regulatory domain detected: %c%c\n",
2937 rd->alpha2[0], rd->alpha2[1]);
2938 print_regdomain_info(rd);
2939 return -EINVAL;
2940 }
2941
2942 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2943 if (!request_wiphy)
2944 return -ENODEV;
2945
2946 if (!driver_request->intersect) {
2947 if (request_wiphy->regd)
2948 return -EALREADY;
2949
2950 regd = reg_copy_regd(rd);
2951 if (IS_ERR(regd))
2952 return PTR_ERR(regd);
2953
2954 rcu_assign_pointer(request_wiphy->regd, regd);
2955 reset_regdomains(false, rd);
2956 return 0;
2957 }
2958
2959 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2960 if (!intersected_rd)
2961 return -EINVAL;
2962
2963 /*
2964 * We can trash what CRDA provided now.
2965 * However if a driver requested this specific regulatory
2966 * domain we keep it for its private use
2967 */
2968 tmp = get_wiphy_regdom(request_wiphy);
2969 rcu_assign_pointer(request_wiphy->regd, rd);
2970 rcu_free_regdom(tmp);
2971
2972 rd = NULL;
2973
2974 reset_regdomains(false, intersected_rd);
2975
2976 return 0;
2977 }
2978
2979 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2980 struct regulatory_request *country_ie_request)
2981 {
2982 struct wiphy *request_wiphy;
2983
2984 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2985 !is_unknown_alpha2(rd->alpha2))
2986 return -EINVAL;
2987
2988 /*
2989 * Lets only bother proceeding on the same alpha2 if the current
2990 * rd is non static (it means CRDA was present and was used last)
2991 * and the pending request came in from a country IE
2992 */
2993
2994 if (!is_valid_rd(rd)) {
2995 pr_err("Invalid regulatory domain detected: %c%c\n",
2996 rd->alpha2[0], rd->alpha2[1]);
2997 print_regdomain_info(rd);
2998 return -EINVAL;
2999 }
3000
3001 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3002 if (!request_wiphy)
3003 return -ENODEV;
3004
3005 if (country_ie_request->intersect)
3006 return -EINVAL;
3007
3008 reset_regdomains(false, rd);
3009 return 0;
3010 }
3011
3012 /*
3013 * Use this call to set the current regulatory domain. Conflicts with
3014 * multiple drivers can be ironed out later. Caller must've already
3015 * kmalloc'd the rd structure.
3016 */
3017 int set_regdom(const struct ieee80211_regdomain *rd,
3018 enum ieee80211_regd_source regd_src)
3019 {
3020 struct regulatory_request *lr;
3021 bool user_reset = false;
3022 int r;
3023
3024 if (!reg_is_valid_request(rd->alpha2)) {
3025 kfree(rd);
3026 return -EINVAL;
3027 }
3028
3029 if (regd_src == REGD_SOURCE_CRDA)
3030 reset_crda_timeouts();
3031
3032 lr = get_last_request();
3033
3034 /* Note that this doesn't update the wiphys, this is done below */
3035 switch (lr->initiator) {
3036 case NL80211_REGDOM_SET_BY_CORE:
3037 r = reg_set_rd_core(rd);
3038 break;
3039 case NL80211_REGDOM_SET_BY_USER:
3040 r = reg_set_rd_user(rd, lr);
3041 user_reset = true;
3042 break;
3043 case NL80211_REGDOM_SET_BY_DRIVER:
3044 r = reg_set_rd_driver(rd, lr);
3045 break;
3046 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3047 r = reg_set_rd_country_ie(rd, lr);
3048 break;
3049 default:
3050 WARN(1, "invalid initiator %d\n", lr->initiator);
3051 kfree(rd);
3052 return -EINVAL;
3053 }
3054
3055 if (r) {
3056 switch (r) {
3057 case -EALREADY:
3058 reg_set_request_processed();
3059 break;
3060 default:
3061 /* Back to world regulatory in case of errors */
3062 restore_regulatory_settings(user_reset);
3063 }
3064
3065 kfree(rd);
3066 return r;
3067 }
3068
3069 /* This would make this whole thing pointless */
3070 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3071 return -EINVAL;
3072
3073 /* update all wiphys now with the new established regulatory domain */
3074 update_all_wiphy_regulatory(lr->initiator);
3075
3076 print_regdomain(get_cfg80211_regdom());
3077
3078 nl80211_send_reg_change_event(lr);
3079
3080 reg_set_request_processed();
3081
3082 return 0;
3083 }
3084
3085 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3086 struct ieee80211_regdomain *rd)
3087 {
3088 const struct ieee80211_regdomain *regd;
3089 const struct ieee80211_regdomain *prev_regd;
3090 struct cfg80211_registered_device *rdev;
3091
3092 if (WARN_ON(!wiphy || !rd))
3093 return -EINVAL;
3094
3095 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3096 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3097 return -EPERM;
3098
3099 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3100 print_regdomain_info(rd);
3101 return -EINVAL;
3102 }
3103
3104 regd = reg_copy_regd(rd);
3105 if (IS_ERR(regd))
3106 return PTR_ERR(regd);
3107
3108 rdev = wiphy_to_rdev(wiphy);
3109
3110 spin_lock(&reg_requests_lock);
3111 prev_regd = rdev->requested_regd;
3112 rdev->requested_regd = regd;
3113 spin_unlock(&reg_requests_lock);
3114
3115 kfree(prev_regd);
3116 return 0;
3117 }
3118
3119 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3120 struct ieee80211_regdomain *rd)
3121 {
3122 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3123
3124 if (ret)
3125 return ret;
3126
3127 schedule_work(&reg_work);
3128 return 0;
3129 }
3130 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3131
3132 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3133 struct ieee80211_regdomain *rd)
3134 {
3135 int ret;
3136
3137 ASSERT_RTNL();
3138
3139 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3140 if (ret)
3141 return ret;
3142
3143 /* process the request immediately */
3144 reg_process_self_managed_hints();
3145 return 0;
3146 }
3147 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3148
3149 void wiphy_regulatory_register(struct wiphy *wiphy)
3150 {
3151 struct regulatory_request *lr;
3152
3153 /* self-managed devices ignore external hints */
3154 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3155 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3156 REGULATORY_COUNTRY_IE_IGNORE;
3157
3158 if (!reg_dev_ignore_cell_hint(wiphy))
3159 reg_num_devs_support_basehint++;
3160
3161 lr = get_last_request();
3162 wiphy_update_regulatory(wiphy, lr->initiator);
3163 wiphy_all_share_dfs_chan_state(wiphy);
3164 }
3165
3166 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3167 {
3168 struct wiphy *request_wiphy = NULL;
3169 struct regulatory_request *lr;
3170
3171 lr = get_last_request();
3172
3173 if (!reg_dev_ignore_cell_hint(wiphy))
3174 reg_num_devs_support_basehint--;
3175
3176 rcu_free_regdom(get_wiphy_regdom(wiphy));
3177 RCU_INIT_POINTER(wiphy->regd, NULL);
3178
3179 if (lr)
3180 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3181
3182 if (!request_wiphy || request_wiphy != wiphy)
3183 return;
3184
3185 lr->wiphy_idx = WIPHY_IDX_INVALID;
3186 lr->country_ie_env = ENVIRON_ANY;
3187 }
3188
3189 /*
3190 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3191 * UNII band definitions
3192 */
3193 int cfg80211_get_unii(int freq)
3194 {
3195 /* UNII-1 */
3196 if (freq >= 5150 && freq <= 5250)
3197 return 0;
3198
3199 /* UNII-2A */
3200 if (freq > 5250 && freq <= 5350)
3201 return 1;
3202
3203 /* UNII-2B */
3204 if (freq > 5350 && freq <= 5470)
3205 return 2;
3206
3207 /* UNII-2C */
3208 if (freq > 5470 && freq <= 5725)
3209 return 3;
3210
3211 /* UNII-3 */
3212 if (freq > 5725 && freq <= 5825)
3213 return 4;
3214
3215 return -EINVAL;
3216 }
3217
3218 bool regulatory_indoor_allowed(void)
3219 {
3220 return reg_is_indoor;
3221 }
3222
3223 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3224 {
3225 const struct ieee80211_regdomain *regd = NULL;
3226 const struct ieee80211_regdomain *wiphy_regd = NULL;
3227 bool pre_cac_allowed = false;
3228
3229 rcu_read_lock();
3230
3231 regd = rcu_dereference(cfg80211_regdomain);
3232 wiphy_regd = rcu_dereference(wiphy->regd);
3233 if (!wiphy_regd) {
3234 if (regd->dfs_region == NL80211_DFS_ETSI)
3235 pre_cac_allowed = true;
3236
3237 rcu_read_unlock();
3238
3239 return pre_cac_allowed;
3240 }
3241
3242 if (regd->dfs_region == wiphy_regd->dfs_region &&
3243 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3244 pre_cac_allowed = true;
3245
3246 rcu_read_unlock();
3247
3248 return pre_cac_allowed;
3249 }
3250
3251 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3252 struct cfg80211_chan_def *chandef,
3253 enum nl80211_dfs_state dfs_state,
3254 enum nl80211_radar_event event)
3255 {
3256 struct cfg80211_registered_device *rdev;
3257
3258 ASSERT_RTNL();
3259
3260 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3261 return;
3262
3263 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3264 if (wiphy == &rdev->wiphy)
3265 continue;
3266
3267 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3268 continue;
3269
3270 if (!ieee80211_get_channel(&rdev->wiphy,
3271 chandef->chan->center_freq))
3272 continue;
3273
3274 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3275
3276 if (event == NL80211_RADAR_DETECTED ||
3277 event == NL80211_RADAR_CAC_FINISHED)
3278 cfg80211_sched_dfs_chan_update(rdev);
3279
3280 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3281 }
3282 }
3283
3284 int __init regulatory_init(void)
3285 {
3286 int err = 0;
3287
3288 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3289 if (IS_ERR(reg_pdev))
3290 return PTR_ERR(reg_pdev);
3291
3292 spin_lock_init(&reg_requests_lock);
3293 spin_lock_init(&reg_pending_beacons_lock);
3294 spin_lock_init(&reg_indoor_lock);
3295
3296 reg_regdb_size_check();
3297
3298 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3299
3300 user_alpha2[0] = '9';
3301 user_alpha2[1] = '7';
3302
3303 /* We always try to get an update for the static regdomain */
3304 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3305 if (err) {
3306 if (err == -ENOMEM) {
3307 platform_device_unregister(reg_pdev);
3308 return err;
3309 }
3310 /*
3311 * N.B. kobject_uevent_env() can fail mainly for when we're out
3312 * memory which is handled and propagated appropriately above
3313 * but it can also fail during a netlink_broadcast() or during
3314 * early boot for call_usermodehelper(). For now treat these
3315 * errors as non-fatal.
3316 */
3317 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3318 }
3319
3320 /*
3321 * Finally, if the user set the module parameter treat it
3322 * as a user hint.
3323 */
3324 if (!is_world_regdom(ieee80211_regdom))
3325 regulatory_hint_user(ieee80211_regdom,
3326 NL80211_USER_REG_HINT_USER);
3327
3328 return 0;
3329 }
3330
3331 void regulatory_exit(void)
3332 {
3333 struct regulatory_request *reg_request, *tmp;
3334 struct reg_beacon *reg_beacon, *btmp;
3335
3336 cancel_work_sync(&reg_work);
3337 cancel_crda_timeout_sync();
3338 cancel_delayed_work_sync(&reg_check_chans);
3339
3340 /* Lock to suppress warnings */
3341 rtnl_lock();
3342 reset_regdomains(true, NULL);
3343 rtnl_unlock();
3344
3345 dev_set_uevent_suppress(&reg_pdev->dev, true);
3346
3347 platform_device_unregister(reg_pdev);
3348
3349 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3350 list_del(&reg_beacon->list);
3351 kfree(reg_beacon);
3352 }
3353
3354 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3355 list_del(&reg_beacon->list);
3356 kfree(reg_beacon);
3357 }
3358
3359 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3360 list_del(&reg_request->list);
3361 kfree(reg_request);
3362 }
3363 }