[PATCH] knfsd: Fixed handling of lockd fail when adding nfsd socket
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <net/sock.h>
36 #include <net/checksum.h>
37 #include <net/ip.h>
38 #include <net/tcp_states.h>
39 #include <asm/uaccess.h>
40 #include <asm/ioctls.h>
41
42 #include <linux/sunrpc/types.h>
43 #include <linux/sunrpc/xdr.h>
44 #include <linux/sunrpc/svcsock.h>
45 #include <linux/sunrpc/stats.h>
46
47 /* SMP locking strategy:
48 *
49 * svc_pool->sp_lock protects most of the fields of that pool.
50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51 * when both need to be taken (rare), svc_serv->sv_lock is first.
52 * BKL protects svc_serv->sv_nrthread.
53 * svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
54 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
55 *
56 * Some flags can be set to certain values at any time
57 * providing that certain rules are followed:
58 *
59 * SK_CONN, SK_DATA, can be set or cleared at any time.
60 * after a set, svc_sock_enqueue must be called.
61 * after a clear, the socket must be read/accepted
62 * if this succeeds, it must be set again.
63 * SK_CLOSE can set at any time. It is never cleared.
64 *
65 */
66
67 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
68
69
70 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
71 int *errp, int pmap_reg);
72 static void svc_udp_data_ready(struct sock *, int);
73 static int svc_udp_recvfrom(struct svc_rqst *);
74 static int svc_udp_sendto(struct svc_rqst *);
75
76 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
77 static int svc_deferred_recv(struct svc_rqst *rqstp);
78 static struct cache_deferred_req *svc_defer(struct cache_req *req);
79
80 /* apparently the "standard" is that clients close
81 * idle connections after 5 minutes, servers after
82 * 6 minutes
83 * http://www.connectathon.org/talks96/nfstcp.pdf
84 */
85 static int svc_conn_age_period = 6*60;
86
87 /*
88 * Queue up an idle server thread. Must have pool->sp_lock held.
89 * Note: this is really a stack rather than a queue, so that we only
90 * use as many different threads as we need, and the rest don't pollute
91 * the cache.
92 */
93 static inline void
94 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
95 {
96 list_add(&rqstp->rq_list, &pool->sp_threads);
97 }
98
99 /*
100 * Dequeue an nfsd thread. Must have pool->sp_lock held.
101 */
102 static inline void
103 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
104 {
105 list_del(&rqstp->rq_list);
106 }
107
108 /*
109 * Release an skbuff after use
110 */
111 static inline void
112 svc_release_skb(struct svc_rqst *rqstp)
113 {
114 struct sk_buff *skb = rqstp->rq_skbuff;
115 struct svc_deferred_req *dr = rqstp->rq_deferred;
116
117 if (skb) {
118 rqstp->rq_skbuff = NULL;
119
120 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
121 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
122 }
123 if (dr) {
124 rqstp->rq_deferred = NULL;
125 kfree(dr);
126 }
127 }
128
129 /*
130 * Any space to write?
131 */
132 static inline unsigned long
133 svc_sock_wspace(struct svc_sock *svsk)
134 {
135 int wspace;
136
137 if (svsk->sk_sock->type == SOCK_STREAM)
138 wspace = sk_stream_wspace(svsk->sk_sk);
139 else
140 wspace = sock_wspace(svsk->sk_sk);
141
142 return wspace;
143 }
144
145 /*
146 * Queue up a socket with data pending. If there are idle nfsd
147 * processes, wake 'em up.
148 *
149 */
150 static void
151 svc_sock_enqueue(struct svc_sock *svsk)
152 {
153 struct svc_serv *serv = svsk->sk_server;
154 struct svc_pool *pool;
155 struct svc_rqst *rqstp;
156 int cpu;
157
158 if (!(svsk->sk_flags &
159 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
160 return;
161 if (test_bit(SK_DEAD, &svsk->sk_flags))
162 return;
163
164 cpu = get_cpu();
165 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
166 put_cpu();
167
168 spin_lock_bh(&pool->sp_lock);
169
170 if (!list_empty(&pool->sp_threads) &&
171 !list_empty(&pool->sp_sockets))
172 printk(KERN_ERR
173 "svc_sock_enqueue: threads and sockets both waiting??\n");
174
175 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
176 /* Don't enqueue dead sockets */
177 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
178 goto out_unlock;
179 }
180
181 /* Mark socket as busy. It will remain in this state until the
182 * server has processed all pending data and put the socket back
183 * on the idle list. We update SK_BUSY atomically because
184 * it also guards against trying to enqueue the svc_sock twice.
185 */
186 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
187 /* Don't enqueue socket while already enqueued */
188 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
189 goto out_unlock;
190 }
191 BUG_ON(svsk->sk_pool != NULL);
192 svsk->sk_pool = pool;
193
194 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
195 if (((atomic_read(&svsk->sk_reserved) + serv->sv_bufsz)*2
196 > svc_sock_wspace(svsk))
197 && !test_bit(SK_CLOSE, &svsk->sk_flags)
198 && !test_bit(SK_CONN, &svsk->sk_flags)) {
199 /* Don't enqueue while not enough space for reply */
200 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
201 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_bufsz,
202 svc_sock_wspace(svsk));
203 svsk->sk_pool = NULL;
204 clear_bit(SK_BUSY, &svsk->sk_flags);
205 goto out_unlock;
206 }
207 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
208
209
210 if (!list_empty(&pool->sp_threads)) {
211 rqstp = list_entry(pool->sp_threads.next,
212 struct svc_rqst,
213 rq_list);
214 dprintk("svc: socket %p served by daemon %p\n",
215 svsk->sk_sk, rqstp);
216 svc_thread_dequeue(pool, rqstp);
217 if (rqstp->rq_sock)
218 printk(KERN_ERR
219 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
220 rqstp, rqstp->rq_sock);
221 rqstp->rq_sock = svsk;
222 atomic_inc(&svsk->sk_inuse);
223 rqstp->rq_reserved = serv->sv_bufsz;
224 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
225 BUG_ON(svsk->sk_pool != pool);
226 wake_up(&rqstp->rq_wait);
227 } else {
228 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
229 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
230 BUG_ON(svsk->sk_pool != pool);
231 }
232
233 out_unlock:
234 spin_unlock_bh(&pool->sp_lock);
235 }
236
237 /*
238 * Dequeue the first socket. Must be called with the pool->sp_lock held.
239 */
240 static inline struct svc_sock *
241 svc_sock_dequeue(struct svc_pool *pool)
242 {
243 struct svc_sock *svsk;
244
245 if (list_empty(&pool->sp_sockets))
246 return NULL;
247
248 svsk = list_entry(pool->sp_sockets.next,
249 struct svc_sock, sk_ready);
250 list_del_init(&svsk->sk_ready);
251
252 dprintk("svc: socket %p dequeued, inuse=%d\n",
253 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
254
255 return svsk;
256 }
257
258 /*
259 * Having read something from a socket, check whether it
260 * needs to be re-enqueued.
261 * Note: SK_DATA only gets cleared when a read-attempt finds
262 * no (or insufficient) data.
263 */
264 static inline void
265 svc_sock_received(struct svc_sock *svsk)
266 {
267 svsk->sk_pool = NULL;
268 clear_bit(SK_BUSY, &svsk->sk_flags);
269 svc_sock_enqueue(svsk);
270 }
271
272
273 /**
274 * svc_reserve - change the space reserved for the reply to a request.
275 * @rqstp: The request in question
276 * @space: new max space to reserve
277 *
278 * Each request reserves some space on the output queue of the socket
279 * to make sure the reply fits. This function reduces that reserved
280 * space to be the amount of space used already, plus @space.
281 *
282 */
283 void svc_reserve(struct svc_rqst *rqstp, int space)
284 {
285 space += rqstp->rq_res.head[0].iov_len;
286
287 if (space < rqstp->rq_reserved) {
288 struct svc_sock *svsk = rqstp->rq_sock;
289 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
290 rqstp->rq_reserved = space;
291
292 svc_sock_enqueue(svsk);
293 }
294 }
295
296 /*
297 * Release a socket after use.
298 */
299 static inline void
300 svc_sock_put(struct svc_sock *svsk)
301 {
302 if (atomic_dec_and_test(&svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) {
303 dprintk("svc: releasing dead socket\n");
304 sock_release(svsk->sk_sock);
305 kfree(svsk);
306 }
307 }
308
309 static void
310 svc_sock_release(struct svc_rqst *rqstp)
311 {
312 struct svc_sock *svsk = rqstp->rq_sock;
313
314 svc_release_skb(rqstp);
315
316 svc_free_allpages(rqstp);
317 rqstp->rq_res.page_len = 0;
318 rqstp->rq_res.page_base = 0;
319
320
321 /* Reset response buffer and release
322 * the reservation.
323 * But first, check that enough space was reserved
324 * for the reply, otherwise we have a bug!
325 */
326 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
327 printk(KERN_ERR "RPC request reserved %d but used %d\n",
328 rqstp->rq_reserved,
329 rqstp->rq_res.len);
330
331 rqstp->rq_res.head[0].iov_len = 0;
332 svc_reserve(rqstp, 0);
333 rqstp->rq_sock = NULL;
334
335 svc_sock_put(svsk);
336 }
337
338 /*
339 * External function to wake up a server waiting for data
340 * This really only makes sense for services like lockd
341 * which have exactly one thread anyway.
342 */
343 void
344 svc_wake_up(struct svc_serv *serv)
345 {
346 struct svc_rqst *rqstp;
347 unsigned int i;
348 struct svc_pool *pool;
349
350 for (i = 0; i < serv->sv_nrpools; i++) {
351 pool = &serv->sv_pools[i];
352
353 spin_lock_bh(&pool->sp_lock);
354 if (!list_empty(&pool->sp_threads)) {
355 rqstp = list_entry(pool->sp_threads.next,
356 struct svc_rqst,
357 rq_list);
358 dprintk("svc: daemon %p woken up.\n", rqstp);
359 /*
360 svc_thread_dequeue(pool, rqstp);
361 rqstp->rq_sock = NULL;
362 */
363 wake_up(&rqstp->rq_wait);
364 }
365 spin_unlock_bh(&pool->sp_lock);
366 }
367 }
368
369 /*
370 * Generic sendto routine
371 */
372 static int
373 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
374 {
375 struct svc_sock *svsk = rqstp->rq_sock;
376 struct socket *sock = svsk->sk_sock;
377 int slen;
378 char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
379 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
380 struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
381 int len = 0;
382 int result;
383 int size;
384 struct page **ppage = xdr->pages;
385 size_t base = xdr->page_base;
386 unsigned int pglen = xdr->page_len;
387 unsigned int flags = MSG_MORE;
388
389 slen = xdr->len;
390
391 if (rqstp->rq_prot == IPPROTO_UDP) {
392 /* set the source and destination */
393 struct msghdr msg;
394 msg.msg_name = &rqstp->rq_addr;
395 msg.msg_namelen = sizeof(rqstp->rq_addr);
396 msg.msg_iov = NULL;
397 msg.msg_iovlen = 0;
398 msg.msg_flags = MSG_MORE;
399
400 msg.msg_control = cmh;
401 msg.msg_controllen = sizeof(buffer);
402 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
403 cmh->cmsg_level = SOL_IP;
404 cmh->cmsg_type = IP_PKTINFO;
405 pki->ipi_ifindex = 0;
406 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
407
408 if (sock_sendmsg(sock, &msg, 0) < 0)
409 goto out;
410 }
411
412 /* send head */
413 if (slen == xdr->head[0].iov_len)
414 flags = 0;
415 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags);
416 if (len != xdr->head[0].iov_len)
417 goto out;
418 slen -= xdr->head[0].iov_len;
419 if (slen == 0)
420 goto out;
421
422 /* send page data */
423 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
424 while (pglen > 0) {
425 if (slen == size)
426 flags = 0;
427 result = kernel_sendpage(sock, *ppage, base, size, flags);
428 if (result > 0)
429 len += result;
430 if (result != size)
431 goto out;
432 slen -= size;
433 pglen -= size;
434 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
435 base = 0;
436 ppage++;
437 }
438 /* send tail */
439 if (xdr->tail[0].iov_len) {
440 result = kernel_sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage],
441 ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1),
442 xdr->tail[0].iov_len, 0);
443
444 if (result > 0)
445 len += result;
446 }
447 out:
448 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
449 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
450 rqstp->rq_addr.sin_addr.s_addr);
451
452 return len;
453 }
454
455 /*
456 * Report socket names for nfsdfs
457 */
458 static int one_sock_name(char *buf, struct svc_sock *svsk)
459 {
460 int len;
461
462 switch(svsk->sk_sk->sk_family) {
463 case AF_INET:
464 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
465 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
466 "udp" : "tcp",
467 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
468 inet_sk(svsk->sk_sk)->num);
469 break;
470 default:
471 len = sprintf(buf, "*unknown-%d*\n",
472 svsk->sk_sk->sk_family);
473 }
474 return len;
475 }
476
477 int
478 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
479 {
480 struct svc_sock *svsk, *closesk = NULL;
481 int len = 0;
482
483 if (!serv)
484 return 0;
485 spin_lock(&serv->sv_lock);
486 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
487 int onelen = one_sock_name(buf+len, svsk);
488 if (toclose && strcmp(toclose, buf+len) == 0)
489 closesk = svsk;
490 else
491 len += onelen;
492 }
493 spin_unlock(&serv->sv_lock);
494 if (closesk)
495 /* Should unregister with portmap, but you cannot
496 * unregister just one protocol...
497 */
498 svc_delete_socket(closesk);
499 else if (toclose)
500 return -ENOENT;
501 return len;
502 }
503 EXPORT_SYMBOL(svc_sock_names);
504
505 /*
506 * Check input queue length
507 */
508 static int
509 svc_recv_available(struct svc_sock *svsk)
510 {
511 struct socket *sock = svsk->sk_sock;
512 int avail, err;
513
514 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
515
516 return (err >= 0)? avail : err;
517 }
518
519 /*
520 * Generic recvfrom routine.
521 */
522 static int
523 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
524 {
525 struct msghdr msg;
526 struct socket *sock;
527 int len, alen;
528
529 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
530 sock = rqstp->rq_sock->sk_sock;
531
532 msg.msg_name = &rqstp->rq_addr;
533 msg.msg_namelen = sizeof(rqstp->rq_addr);
534 msg.msg_control = NULL;
535 msg.msg_controllen = 0;
536
537 msg.msg_flags = MSG_DONTWAIT;
538
539 len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
540
541 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
542 * possibly we should cache this in the svc_sock structure
543 * at accept time. FIXME
544 */
545 alen = sizeof(rqstp->rq_addr);
546 kernel_getpeername(sock, (struct sockaddr *)&rqstp->rq_addr, &alen);
547
548 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
549 rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
550
551 return len;
552 }
553
554 /*
555 * Set socket snd and rcv buffer lengths
556 */
557 static inline void
558 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
559 {
560 #if 0
561 mm_segment_t oldfs;
562 oldfs = get_fs(); set_fs(KERNEL_DS);
563 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
564 (char*)&snd, sizeof(snd));
565 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
566 (char*)&rcv, sizeof(rcv));
567 #else
568 /* sock_setsockopt limits use to sysctl_?mem_max,
569 * which isn't acceptable. Until that is made conditional
570 * on not having CAP_SYS_RESOURCE or similar, we go direct...
571 * DaveM said I could!
572 */
573 lock_sock(sock->sk);
574 sock->sk->sk_sndbuf = snd * 2;
575 sock->sk->sk_rcvbuf = rcv * 2;
576 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
577 release_sock(sock->sk);
578 #endif
579 }
580 /*
581 * INET callback when data has been received on the socket.
582 */
583 static void
584 svc_udp_data_ready(struct sock *sk, int count)
585 {
586 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
587
588 if (svsk) {
589 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
590 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
591 set_bit(SK_DATA, &svsk->sk_flags);
592 svc_sock_enqueue(svsk);
593 }
594 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
595 wake_up_interruptible(sk->sk_sleep);
596 }
597
598 /*
599 * INET callback when space is newly available on the socket.
600 */
601 static void
602 svc_write_space(struct sock *sk)
603 {
604 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
605
606 if (svsk) {
607 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
608 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
609 svc_sock_enqueue(svsk);
610 }
611
612 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
613 dprintk("RPC svc_write_space: someone sleeping on %p\n",
614 svsk);
615 wake_up_interruptible(sk->sk_sleep);
616 }
617 }
618
619 /*
620 * Receive a datagram from a UDP socket.
621 */
622 static int
623 svc_udp_recvfrom(struct svc_rqst *rqstp)
624 {
625 struct svc_sock *svsk = rqstp->rq_sock;
626 struct svc_serv *serv = svsk->sk_server;
627 struct sk_buff *skb;
628 int err, len;
629
630 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
631 /* udp sockets need large rcvbuf as all pending
632 * requests are still in that buffer. sndbuf must
633 * also be large enough that there is enough space
634 * for one reply per thread. We count all threads
635 * rather than threads in a particular pool, which
636 * provides an upper bound on the number of threads
637 * which will access the socket.
638 */
639 svc_sock_setbufsize(svsk->sk_sock,
640 (serv->sv_nrthreads+3) * serv->sv_bufsz,
641 (serv->sv_nrthreads+3) * serv->sv_bufsz);
642
643 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
644 svc_sock_received(svsk);
645 return svc_deferred_recv(rqstp);
646 }
647
648 clear_bit(SK_DATA, &svsk->sk_flags);
649 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
650 if (err == -EAGAIN) {
651 svc_sock_received(svsk);
652 return err;
653 }
654 /* possibly an icmp error */
655 dprintk("svc: recvfrom returned error %d\n", -err);
656 }
657 if (skb->tstamp.off_sec == 0) {
658 struct timeval tv;
659
660 tv.tv_sec = xtime.tv_sec;
661 tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
662 skb_set_timestamp(skb, &tv);
663 /* Don't enable netstamp, sunrpc doesn't
664 need that much accuracy */
665 }
666 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
667 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
668
669 /*
670 * Maybe more packets - kick another thread ASAP.
671 */
672 svc_sock_received(svsk);
673
674 len = skb->len - sizeof(struct udphdr);
675 rqstp->rq_arg.len = len;
676
677 rqstp->rq_prot = IPPROTO_UDP;
678
679 /* Get sender address */
680 rqstp->rq_addr.sin_family = AF_INET;
681 rqstp->rq_addr.sin_port = skb->h.uh->source;
682 rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
683 rqstp->rq_daddr = skb->nh.iph->daddr;
684
685 if (skb_is_nonlinear(skb)) {
686 /* we have to copy */
687 local_bh_disable();
688 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
689 local_bh_enable();
690 /* checksum error */
691 skb_free_datagram(svsk->sk_sk, skb);
692 return 0;
693 }
694 local_bh_enable();
695 skb_free_datagram(svsk->sk_sk, skb);
696 } else {
697 /* we can use it in-place */
698 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
699 rqstp->rq_arg.head[0].iov_len = len;
700 if (skb_checksum_complete(skb)) {
701 skb_free_datagram(svsk->sk_sk, skb);
702 return 0;
703 }
704 rqstp->rq_skbuff = skb;
705 }
706
707 rqstp->rq_arg.page_base = 0;
708 if (len <= rqstp->rq_arg.head[0].iov_len) {
709 rqstp->rq_arg.head[0].iov_len = len;
710 rqstp->rq_arg.page_len = 0;
711 } else {
712 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
713 rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
714 }
715
716 if (serv->sv_stats)
717 serv->sv_stats->netudpcnt++;
718
719 return len;
720 }
721
722 static int
723 svc_udp_sendto(struct svc_rqst *rqstp)
724 {
725 int error;
726
727 error = svc_sendto(rqstp, &rqstp->rq_res);
728 if (error == -ECONNREFUSED)
729 /* ICMP error on earlier request. */
730 error = svc_sendto(rqstp, &rqstp->rq_res);
731
732 return error;
733 }
734
735 static void
736 svc_udp_init(struct svc_sock *svsk)
737 {
738 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
739 svsk->sk_sk->sk_write_space = svc_write_space;
740 svsk->sk_recvfrom = svc_udp_recvfrom;
741 svsk->sk_sendto = svc_udp_sendto;
742
743 /* initialise setting must have enough space to
744 * receive and respond to one request.
745 * svc_udp_recvfrom will re-adjust if necessary
746 */
747 svc_sock_setbufsize(svsk->sk_sock,
748 3 * svsk->sk_server->sv_bufsz,
749 3 * svsk->sk_server->sv_bufsz);
750
751 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
752 set_bit(SK_CHNGBUF, &svsk->sk_flags);
753 }
754
755 /*
756 * A data_ready event on a listening socket means there's a connection
757 * pending. Do not use state_change as a substitute for it.
758 */
759 static void
760 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
761 {
762 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
763
764 dprintk("svc: socket %p TCP (listen) state change %d\n",
765 sk, sk->sk_state);
766
767 /*
768 * This callback may called twice when a new connection
769 * is established as a child socket inherits everything
770 * from a parent LISTEN socket.
771 * 1) data_ready method of the parent socket will be called
772 * when one of child sockets become ESTABLISHED.
773 * 2) data_ready method of the child socket may be called
774 * when it receives data before the socket is accepted.
775 * In case of 2, we should ignore it silently.
776 */
777 if (sk->sk_state == TCP_LISTEN) {
778 if (svsk) {
779 set_bit(SK_CONN, &svsk->sk_flags);
780 svc_sock_enqueue(svsk);
781 } else
782 printk("svc: socket %p: no user data\n", sk);
783 }
784
785 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
786 wake_up_interruptible_all(sk->sk_sleep);
787 }
788
789 /*
790 * A state change on a connected socket means it's dying or dead.
791 */
792 static void
793 svc_tcp_state_change(struct sock *sk)
794 {
795 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
796
797 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
798 sk, sk->sk_state, sk->sk_user_data);
799
800 if (!svsk)
801 printk("svc: socket %p: no user data\n", sk);
802 else {
803 set_bit(SK_CLOSE, &svsk->sk_flags);
804 svc_sock_enqueue(svsk);
805 }
806 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
807 wake_up_interruptible_all(sk->sk_sleep);
808 }
809
810 static void
811 svc_tcp_data_ready(struct sock *sk, int count)
812 {
813 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
814
815 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
816 sk, sk->sk_user_data);
817 if (svsk) {
818 set_bit(SK_DATA, &svsk->sk_flags);
819 svc_sock_enqueue(svsk);
820 }
821 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
822 wake_up_interruptible(sk->sk_sleep);
823 }
824
825 /*
826 * Accept a TCP connection
827 */
828 static void
829 svc_tcp_accept(struct svc_sock *svsk)
830 {
831 struct sockaddr_in sin;
832 struct svc_serv *serv = svsk->sk_server;
833 struct socket *sock = svsk->sk_sock;
834 struct socket *newsock;
835 struct svc_sock *newsvsk;
836 int err, slen;
837
838 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
839 if (!sock)
840 return;
841
842 clear_bit(SK_CONN, &svsk->sk_flags);
843 err = kernel_accept(sock, &newsock, O_NONBLOCK);
844 if (err < 0) {
845 if (err == -ENOMEM)
846 printk(KERN_WARNING "%s: no more sockets!\n",
847 serv->sv_name);
848 else if (err != -EAGAIN && net_ratelimit())
849 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
850 serv->sv_name, -err);
851 return;
852 }
853
854 set_bit(SK_CONN, &svsk->sk_flags);
855 svc_sock_enqueue(svsk);
856
857 slen = sizeof(sin);
858 err = kernel_getpeername(newsock, (struct sockaddr *) &sin, &slen);
859 if (err < 0) {
860 if (net_ratelimit())
861 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
862 serv->sv_name, -err);
863 goto failed; /* aborted connection or whatever */
864 }
865
866 /* Ideally, we would want to reject connections from unauthorized
867 * hosts here, but when we get encription, the IP of the host won't
868 * tell us anything. For now just warn about unpriv connections.
869 */
870 if (ntohs(sin.sin_port) >= 1024) {
871 dprintk(KERN_WARNING
872 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
873 serv->sv_name,
874 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
875 }
876
877 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
878 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
879
880 /* make sure that a write doesn't block forever when
881 * low on memory
882 */
883 newsock->sk->sk_sndtimeo = HZ*30;
884
885 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
886 goto failed;
887
888
889 /* make sure that we don't have too many active connections.
890 * If we have, something must be dropped.
891 *
892 * There's no point in trying to do random drop here for
893 * DoS prevention. The NFS clients does 1 reconnect in 15
894 * seconds. An attacker can easily beat that.
895 *
896 * The only somewhat efficient mechanism would be if drop
897 * old connections from the same IP first. But right now
898 * we don't even record the client IP in svc_sock.
899 */
900 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
901 struct svc_sock *svsk = NULL;
902 spin_lock_bh(&serv->sv_lock);
903 if (!list_empty(&serv->sv_tempsocks)) {
904 if (net_ratelimit()) {
905 /* Try to help the admin */
906 printk(KERN_NOTICE "%s: too many open TCP "
907 "sockets, consider increasing the "
908 "number of nfsd threads\n",
909 serv->sv_name);
910 printk(KERN_NOTICE "%s: last TCP connect from "
911 "%u.%u.%u.%u:%d\n",
912 serv->sv_name,
913 NIPQUAD(sin.sin_addr.s_addr),
914 ntohs(sin.sin_port));
915 }
916 /*
917 * Always select the oldest socket. It's not fair,
918 * but so is life
919 */
920 svsk = list_entry(serv->sv_tempsocks.prev,
921 struct svc_sock,
922 sk_list);
923 set_bit(SK_CLOSE, &svsk->sk_flags);
924 atomic_inc(&svsk->sk_inuse);
925 }
926 spin_unlock_bh(&serv->sv_lock);
927
928 if (svsk) {
929 svc_sock_enqueue(svsk);
930 svc_sock_put(svsk);
931 }
932
933 }
934
935 if (serv->sv_stats)
936 serv->sv_stats->nettcpconn++;
937
938 return;
939
940 failed:
941 sock_release(newsock);
942 return;
943 }
944
945 /*
946 * Receive data from a TCP socket.
947 */
948 static int
949 svc_tcp_recvfrom(struct svc_rqst *rqstp)
950 {
951 struct svc_sock *svsk = rqstp->rq_sock;
952 struct svc_serv *serv = svsk->sk_server;
953 int len;
954 struct kvec vec[RPCSVC_MAXPAGES];
955 int pnum, vlen;
956
957 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
958 svsk, test_bit(SK_DATA, &svsk->sk_flags),
959 test_bit(SK_CONN, &svsk->sk_flags),
960 test_bit(SK_CLOSE, &svsk->sk_flags));
961
962 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
963 svc_sock_received(svsk);
964 return svc_deferred_recv(rqstp);
965 }
966
967 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
968 svc_delete_socket(svsk);
969 return 0;
970 }
971
972 if (test_bit(SK_CONN, &svsk->sk_flags)) {
973 svc_tcp_accept(svsk);
974 svc_sock_received(svsk);
975 return 0;
976 }
977
978 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
979 /* sndbuf needs to have room for one request
980 * per thread, otherwise we can stall even when the
981 * network isn't a bottleneck.
982 *
983 * We count all threads rather than threads in a
984 * particular pool, which provides an upper bound
985 * on the number of threads which will access the socket.
986 *
987 * rcvbuf just needs to be able to hold a few requests.
988 * Normally they will be removed from the queue
989 * as soon a a complete request arrives.
990 */
991 svc_sock_setbufsize(svsk->sk_sock,
992 (serv->sv_nrthreads+3) * serv->sv_bufsz,
993 3 * serv->sv_bufsz);
994
995 clear_bit(SK_DATA, &svsk->sk_flags);
996
997 /* Receive data. If we haven't got the record length yet, get
998 * the next four bytes. Otherwise try to gobble up as much as
999 * possible up to the complete record length.
1000 */
1001 if (svsk->sk_tcplen < 4) {
1002 unsigned long want = 4 - svsk->sk_tcplen;
1003 struct kvec iov;
1004
1005 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1006 iov.iov_len = want;
1007 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1008 goto error;
1009 svsk->sk_tcplen += len;
1010
1011 if (len < want) {
1012 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1013 len, want);
1014 svc_sock_received(svsk);
1015 return -EAGAIN; /* record header not complete */
1016 }
1017
1018 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1019 if (!(svsk->sk_reclen & 0x80000000)) {
1020 /* FIXME: technically, a record can be fragmented,
1021 * and non-terminal fragments will not have the top
1022 * bit set in the fragment length header.
1023 * But apparently no known nfs clients send fragmented
1024 * records. */
1025 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n",
1026 (unsigned long) svsk->sk_reclen);
1027 goto err_delete;
1028 }
1029 svsk->sk_reclen &= 0x7fffffff;
1030 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1031 if (svsk->sk_reclen > serv->sv_bufsz) {
1032 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n",
1033 (unsigned long) svsk->sk_reclen);
1034 goto err_delete;
1035 }
1036 }
1037
1038 /* Check whether enough data is available */
1039 len = svc_recv_available(svsk);
1040 if (len < 0)
1041 goto error;
1042
1043 if (len < svsk->sk_reclen) {
1044 dprintk("svc: incomplete TCP record (%d of %d)\n",
1045 len, svsk->sk_reclen);
1046 svc_sock_received(svsk);
1047 return -EAGAIN; /* record not complete */
1048 }
1049 len = svsk->sk_reclen;
1050 set_bit(SK_DATA, &svsk->sk_flags);
1051
1052 vec[0] = rqstp->rq_arg.head[0];
1053 vlen = PAGE_SIZE;
1054 pnum = 1;
1055 while (vlen < len) {
1056 vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]);
1057 vec[pnum].iov_len = PAGE_SIZE;
1058 pnum++;
1059 vlen += PAGE_SIZE;
1060 }
1061
1062 /* Now receive data */
1063 len = svc_recvfrom(rqstp, vec, pnum, len);
1064 if (len < 0)
1065 goto error;
1066
1067 dprintk("svc: TCP complete record (%d bytes)\n", len);
1068 rqstp->rq_arg.len = len;
1069 rqstp->rq_arg.page_base = 0;
1070 if (len <= rqstp->rq_arg.head[0].iov_len) {
1071 rqstp->rq_arg.head[0].iov_len = len;
1072 rqstp->rq_arg.page_len = 0;
1073 } else {
1074 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1075 }
1076
1077 rqstp->rq_skbuff = NULL;
1078 rqstp->rq_prot = IPPROTO_TCP;
1079
1080 /* Reset TCP read info */
1081 svsk->sk_reclen = 0;
1082 svsk->sk_tcplen = 0;
1083
1084 svc_sock_received(svsk);
1085 if (serv->sv_stats)
1086 serv->sv_stats->nettcpcnt++;
1087
1088 return len;
1089
1090 err_delete:
1091 svc_delete_socket(svsk);
1092 return -EAGAIN;
1093
1094 error:
1095 if (len == -EAGAIN) {
1096 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1097 svc_sock_received(svsk);
1098 } else {
1099 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1100 svsk->sk_server->sv_name, -len);
1101 goto err_delete;
1102 }
1103
1104 return len;
1105 }
1106
1107 /*
1108 * Send out data on TCP socket.
1109 */
1110 static int
1111 svc_tcp_sendto(struct svc_rqst *rqstp)
1112 {
1113 struct xdr_buf *xbufp = &rqstp->rq_res;
1114 int sent;
1115 __be32 reclen;
1116
1117 /* Set up the first element of the reply kvec.
1118 * Any other kvecs that may be in use have been taken
1119 * care of by the server implementation itself.
1120 */
1121 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1122 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1123
1124 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1125 return -ENOTCONN;
1126
1127 sent = svc_sendto(rqstp, &rqstp->rq_res);
1128 if (sent != xbufp->len) {
1129 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1130 rqstp->rq_sock->sk_server->sv_name,
1131 (sent<0)?"got error":"sent only",
1132 sent, xbufp->len);
1133 svc_delete_socket(rqstp->rq_sock);
1134 sent = -EAGAIN;
1135 }
1136 return sent;
1137 }
1138
1139 static void
1140 svc_tcp_init(struct svc_sock *svsk)
1141 {
1142 struct sock *sk = svsk->sk_sk;
1143 struct tcp_sock *tp = tcp_sk(sk);
1144
1145 svsk->sk_recvfrom = svc_tcp_recvfrom;
1146 svsk->sk_sendto = svc_tcp_sendto;
1147
1148 if (sk->sk_state == TCP_LISTEN) {
1149 dprintk("setting up TCP socket for listening\n");
1150 sk->sk_data_ready = svc_tcp_listen_data_ready;
1151 set_bit(SK_CONN, &svsk->sk_flags);
1152 } else {
1153 dprintk("setting up TCP socket for reading\n");
1154 sk->sk_state_change = svc_tcp_state_change;
1155 sk->sk_data_ready = svc_tcp_data_ready;
1156 sk->sk_write_space = svc_write_space;
1157
1158 svsk->sk_reclen = 0;
1159 svsk->sk_tcplen = 0;
1160
1161 tp->nonagle = 1; /* disable Nagle's algorithm */
1162
1163 /* initialise setting must have enough space to
1164 * receive and respond to one request.
1165 * svc_tcp_recvfrom will re-adjust if necessary
1166 */
1167 svc_sock_setbufsize(svsk->sk_sock,
1168 3 * svsk->sk_server->sv_bufsz,
1169 3 * svsk->sk_server->sv_bufsz);
1170
1171 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1172 set_bit(SK_DATA, &svsk->sk_flags);
1173 if (sk->sk_state != TCP_ESTABLISHED)
1174 set_bit(SK_CLOSE, &svsk->sk_flags);
1175 }
1176 }
1177
1178 void
1179 svc_sock_update_bufs(struct svc_serv *serv)
1180 {
1181 /*
1182 * The number of server threads has changed. Update
1183 * rcvbuf and sndbuf accordingly on all sockets
1184 */
1185 struct list_head *le;
1186
1187 spin_lock_bh(&serv->sv_lock);
1188 list_for_each(le, &serv->sv_permsocks) {
1189 struct svc_sock *svsk =
1190 list_entry(le, struct svc_sock, sk_list);
1191 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1192 }
1193 list_for_each(le, &serv->sv_tempsocks) {
1194 struct svc_sock *svsk =
1195 list_entry(le, struct svc_sock, sk_list);
1196 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1197 }
1198 spin_unlock_bh(&serv->sv_lock);
1199 }
1200
1201 /*
1202 * Receive the next request on any socket. This code is carefully
1203 * organised not to touch any cachelines in the shared svc_serv
1204 * structure, only cachelines in the local svc_pool.
1205 */
1206 int
1207 svc_recv(struct svc_rqst *rqstp, long timeout)
1208 {
1209 struct svc_sock *svsk =NULL;
1210 struct svc_serv *serv = rqstp->rq_server;
1211 struct svc_pool *pool = rqstp->rq_pool;
1212 int len;
1213 int pages;
1214 struct xdr_buf *arg;
1215 DECLARE_WAITQUEUE(wait, current);
1216
1217 dprintk("svc: server %p waiting for data (to = %ld)\n",
1218 rqstp, timeout);
1219
1220 if (rqstp->rq_sock)
1221 printk(KERN_ERR
1222 "svc_recv: service %p, socket not NULL!\n",
1223 rqstp);
1224 if (waitqueue_active(&rqstp->rq_wait))
1225 printk(KERN_ERR
1226 "svc_recv: service %p, wait queue active!\n",
1227 rqstp);
1228
1229 /* Initialize the buffers */
1230 /* first reclaim pages that were moved to response list */
1231 svc_pushback_allpages(rqstp);
1232
1233 /* now allocate needed pages. If we get a failure, sleep briefly */
1234 pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE;
1235 while (rqstp->rq_arghi < pages) {
1236 struct page *p = alloc_page(GFP_KERNEL);
1237 if (!p) {
1238 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1239 continue;
1240 }
1241 rqstp->rq_argpages[rqstp->rq_arghi++] = p;
1242 }
1243
1244 /* Make arg->head point to first page and arg->pages point to rest */
1245 arg = &rqstp->rq_arg;
1246 arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]);
1247 arg->head[0].iov_len = PAGE_SIZE;
1248 rqstp->rq_argused = 1;
1249 arg->pages = rqstp->rq_argpages + 1;
1250 arg->page_base = 0;
1251 /* save at least one page for response */
1252 arg->page_len = (pages-2)*PAGE_SIZE;
1253 arg->len = (pages-1)*PAGE_SIZE;
1254 arg->tail[0].iov_len = 0;
1255
1256 try_to_freeze();
1257 cond_resched();
1258 if (signalled())
1259 return -EINTR;
1260
1261 spin_lock_bh(&pool->sp_lock);
1262 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1263 rqstp->rq_sock = svsk;
1264 atomic_inc(&svsk->sk_inuse);
1265 rqstp->rq_reserved = serv->sv_bufsz;
1266 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1267 } else {
1268 /* No data pending. Go to sleep */
1269 svc_thread_enqueue(pool, rqstp);
1270
1271 /*
1272 * We have to be able to interrupt this wait
1273 * to bring down the daemons ...
1274 */
1275 set_current_state(TASK_INTERRUPTIBLE);
1276 add_wait_queue(&rqstp->rq_wait, &wait);
1277 spin_unlock_bh(&pool->sp_lock);
1278
1279 schedule_timeout(timeout);
1280
1281 try_to_freeze();
1282
1283 spin_lock_bh(&pool->sp_lock);
1284 remove_wait_queue(&rqstp->rq_wait, &wait);
1285
1286 if (!(svsk = rqstp->rq_sock)) {
1287 svc_thread_dequeue(pool, rqstp);
1288 spin_unlock_bh(&pool->sp_lock);
1289 dprintk("svc: server %p, no data yet\n", rqstp);
1290 return signalled()? -EINTR : -EAGAIN;
1291 }
1292 }
1293 spin_unlock_bh(&pool->sp_lock);
1294
1295 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1296 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1297 len = svsk->sk_recvfrom(rqstp);
1298 dprintk("svc: got len=%d\n", len);
1299
1300 /* No data, incomplete (TCP) read, or accept() */
1301 if (len == 0 || len == -EAGAIN) {
1302 rqstp->rq_res.len = 0;
1303 svc_sock_release(rqstp);
1304 return -EAGAIN;
1305 }
1306 svsk->sk_lastrecv = get_seconds();
1307 clear_bit(SK_OLD, &svsk->sk_flags);
1308
1309 rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024;
1310 rqstp->rq_chandle.defer = svc_defer;
1311
1312 if (serv->sv_stats)
1313 serv->sv_stats->netcnt++;
1314 return len;
1315 }
1316
1317 /*
1318 * Drop request
1319 */
1320 void
1321 svc_drop(struct svc_rqst *rqstp)
1322 {
1323 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1324 svc_sock_release(rqstp);
1325 }
1326
1327 /*
1328 * Return reply to client.
1329 */
1330 int
1331 svc_send(struct svc_rqst *rqstp)
1332 {
1333 struct svc_sock *svsk;
1334 int len;
1335 struct xdr_buf *xb;
1336
1337 if ((svsk = rqstp->rq_sock) == NULL) {
1338 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1339 __FILE__, __LINE__);
1340 return -EFAULT;
1341 }
1342
1343 /* release the receive skb before sending the reply */
1344 svc_release_skb(rqstp);
1345
1346 /* calculate over-all length */
1347 xb = & rqstp->rq_res;
1348 xb->len = xb->head[0].iov_len +
1349 xb->page_len +
1350 xb->tail[0].iov_len;
1351
1352 /* Grab svsk->sk_mutex to serialize outgoing data. */
1353 mutex_lock(&svsk->sk_mutex);
1354 if (test_bit(SK_DEAD, &svsk->sk_flags))
1355 len = -ENOTCONN;
1356 else
1357 len = svsk->sk_sendto(rqstp);
1358 mutex_unlock(&svsk->sk_mutex);
1359 svc_sock_release(rqstp);
1360
1361 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1362 return 0;
1363 return len;
1364 }
1365
1366 /*
1367 * Timer function to close old temporary sockets, using
1368 * a mark-and-sweep algorithm.
1369 */
1370 static void
1371 svc_age_temp_sockets(unsigned long closure)
1372 {
1373 struct svc_serv *serv = (struct svc_serv *)closure;
1374 struct svc_sock *svsk;
1375 struct list_head *le, *next;
1376 LIST_HEAD(to_be_aged);
1377
1378 dprintk("svc_age_temp_sockets\n");
1379
1380 if (!spin_trylock_bh(&serv->sv_lock)) {
1381 /* busy, try again 1 sec later */
1382 dprintk("svc_age_temp_sockets: busy\n");
1383 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1384 return;
1385 }
1386
1387 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1388 svsk = list_entry(le, struct svc_sock, sk_list);
1389
1390 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1391 continue;
1392 if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1393 continue;
1394 atomic_inc(&svsk->sk_inuse);
1395 list_move(le, &to_be_aged);
1396 set_bit(SK_CLOSE, &svsk->sk_flags);
1397 set_bit(SK_DETACHED, &svsk->sk_flags);
1398 }
1399 spin_unlock_bh(&serv->sv_lock);
1400
1401 while (!list_empty(&to_be_aged)) {
1402 le = to_be_aged.next;
1403 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1404 list_del_init(le);
1405 svsk = list_entry(le, struct svc_sock, sk_list);
1406
1407 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1408 svsk, get_seconds() - svsk->sk_lastrecv);
1409
1410 /* a thread will dequeue and close it soon */
1411 svc_sock_enqueue(svsk);
1412 svc_sock_put(svsk);
1413 }
1414
1415 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1416 }
1417
1418 /*
1419 * Initialize socket for RPC use and create svc_sock struct
1420 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1421 */
1422 static struct svc_sock *
1423 svc_setup_socket(struct svc_serv *serv, struct socket *sock,
1424 int *errp, int pmap_register)
1425 {
1426 struct svc_sock *svsk;
1427 struct sock *inet;
1428
1429 dprintk("svc: svc_setup_socket %p\n", sock);
1430 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1431 *errp = -ENOMEM;
1432 return NULL;
1433 }
1434
1435 inet = sock->sk;
1436
1437 /* Register socket with portmapper */
1438 if (*errp >= 0 && pmap_register)
1439 *errp = svc_register(serv, inet->sk_protocol,
1440 ntohs(inet_sk(inet)->sport));
1441
1442 if (*errp < 0) {
1443 kfree(svsk);
1444 return NULL;
1445 }
1446
1447 set_bit(SK_BUSY, &svsk->sk_flags);
1448 inet->sk_user_data = svsk;
1449 svsk->sk_sock = sock;
1450 svsk->sk_sk = inet;
1451 svsk->sk_ostate = inet->sk_state_change;
1452 svsk->sk_odata = inet->sk_data_ready;
1453 svsk->sk_owspace = inet->sk_write_space;
1454 svsk->sk_server = serv;
1455 atomic_set(&svsk->sk_inuse, 0);
1456 svsk->sk_lastrecv = get_seconds();
1457 spin_lock_init(&svsk->sk_defer_lock);
1458 INIT_LIST_HEAD(&svsk->sk_deferred);
1459 INIT_LIST_HEAD(&svsk->sk_ready);
1460 mutex_init(&svsk->sk_mutex);
1461
1462 /* Initialize the socket */
1463 if (sock->type == SOCK_DGRAM)
1464 svc_udp_init(svsk);
1465 else
1466 svc_tcp_init(svsk);
1467
1468 spin_lock_bh(&serv->sv_lock);
1469 if (!pmap_register) {
1470 set_bit(SK_TEMP, &svsk->sk_flags);
1471 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1472 serv->sv_tmpcnt++;
1473 if (serv->sv_temptimer.function == NULL) {
1474 /* setup timer to age temp sockets */
1475 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1476 (unsigned long)serv);
1477 mod_timer(&serv->sv_temptimer,
1478 jiffies + svc_conn_age_period * HZ);
1479 }
1480 } else {
1481 clear_bit(SK_TEMP, &svsk->sk_flags);
1482 list_add(&svsk->sk_list, &serv->sv_permsocks);
1483 }
1484 spin_unlock_bh(&serv->sv_lock);
1485
1486 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1487 svsk, svsk->sk_sk);
1488
1489 clear_bit(SK_BUSY, &svsk->sk_flags);
1490 svc_sock_enqueue(svsk);
1491 return svsk;
1492 }
1493
1494 int svc_addsock(struct svc_serv *serv,
1495 int fd,
1496 char *name_return,
1497 int *proto)
1498 {
1499 int err = 0;
1500 struct socket *so = sockfd_lookup(fd, &err);
1501 struct svc_sock *svsk = NULL;
1502
1503 if (!so)
1504 return err;
1505 if (so->sk->sk_family != AF_INET)
1506 err = -EAFNOSUPPORT;
1507 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1508 so->sk->sk_protocol != IPPROTO_UDP)
1509 err = -EPROTONOSUPPORT;
1510 else if (so->state > SS_UNCONNECTED)
1511 err = -EISCONN;
1512 else {
1513 svsk = svc_setup_socket(serv, so, &err, 1);
1514 if (svsk)
1515 err = 0;
1516 }
1517 if (err) {
1518 sockfd_put(so);
1519 return err;
1520 }
1521 if (proto) *proto = so->sk->sk_protocol;
1522 return one_sock_name(name_return, svsk);
1523 }
1524 EXPORT_SYMBOL_GPL(svc_addsock);
1525
1526 /*
1527 * Create socket for RPC service.
1528 */
1529 static int
1530 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
1531 {
1532 struct svc_sock *svsk;
1533 struct socket *sock;
1534 int error;
1535 int type;
1536
1537 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
1538 serv->sv_program->pg_name, protocol,
1539 NIPQUAD(sin->sin_addr.s_addr),
1540 ntohs(sin->sin_port));
1541
1542 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1543 printk(KERN_WARNING "svc: only UDP and TCP "
1544 "sockets supported\n");
1545 return -EINVAL;
1546 }
1547 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1548
1549 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
1550 return error;
1551
1552 if (type == SOCK_STREAM)
1553 sock->sk->sk_reuse = 1; /* allow address reuse */
1554 error = kernel_bind(sock, (struct sockaddr *) sin,
1555 sizeof(*sin));
1556 if (error < 0)
1557 goto bummer;
1558
1559 if (protocol == IPPROTO_TCP) {
1560 if ((error = kernel_listen(sock, 64)) < 0)
1561 goto bummer;
1562 }
1563
1564 if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
1565 return 0;
1566
1567 bummer:
1568 dprintk("svc: svc_create_socket error = %d\n", -error);
1569 sock_release(sock);
1570 return error;
1571 }
1572
1573 /*
1574 * Remove a dead socket
1575 */
1576 void
1577 svc_delete_socket(struct svc_sock *svsk)
1578 {
1579 struct svc_serv *serv;
1580 struct sock *sk;
1581
1582 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1583
1584 serv = svsk->sk_server;
1585 sk = svsk->sk_sk;
1586
1587 sk->sk_state_change = svsk->sk_ostate;
1588 sk->sk_data_ready = svsk->sk_odata;
1589 sk->sk_write_space = svsk->sk_owspace;
1590
1591 spin_lock_bh(&serv->sv_lock);
1592
1593 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1594 list_del_init(&svsk->sk_list);
1595 /*
1596 * We used to delete the svc_sock from whichever list
1597 * it's sk_ready node was on, but we don't actually
1598 * need to. This is because the only time we're called
1599 * while still attached to a queue, the queue itself
1600 * is about to be destroyed (in svc_destroy).
1601 */
1602 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags))
1603 if (test_bit(SK_TEMP, &svsk->sk_flags))
1604 serv->sv_tmpcnt--;
1605
1606 if (!atomic_read(&svsk->sk_inuse)) {
1607 spin_unlock_bh(&serv->sv_lock);
1608 if (svsk->sk_sock->file)
1609 sockfd_put(svsk->sk_sock);
1610 else
1611 sock_release(svsk->sk_sock);
1612 kfree(svsk);
1613 } else {
1614 spin_unlock_bh(&serv->sv_lock);
1615 dprintk(KERN_NOTICE "svc: server socket destroy delayed\n");
1616 /* svsk->sk_server = NULL; */
1617 }
1618 }
1619
1620 /*
1621 * Make a socket for nfsd and lockd
1622 */
1623 int
1624 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
1625 {
1626 struct sockaddr_in sin;
1627
1628 dprintk("svc: creating socket proto = %d\n", protocol);
1629 sin.sin_family = AF_INET;
1630 sin.sin_addr.s_addr = INADDR_ANY;
1631 sin.sin_port = htons(port);
1632 return svc_create_socket(serv, protocol, &sin);
1633 }
1634
1635 /*
1636 * Handle defer and revisit of requests
1637 */
1638
1639 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1640 {
1641 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1642 struct svc_sock *svsk;
1643
1644 if (too_many) {
1645 svc_sock_put(dr->svsk);
1646 kfree(dr);
1647 return;
1648 }
1649 dprintk("revisit queued\n");
1650 svsk = dr->svsk;
1651 dr->svsk = NULL;
1652 spin_lock_bh(&svsk->sk_defer_lock);
1653 list_add(&dr->handle.recent, &svsk->sk_deferred);
1654 spin_unlock_bh(&svsk->sk_defer_lock);
1655 set_bit(SK_DEFERRED, &svsk->sk_flags);
1656 svc_sock_enqueue(svsk);
1657 svc_sock_put(svsk);
1658 }
1659
1660 static struct cache_deferred_req *
1661 svc_defer(struct cache_req *req)
1662 {
1663 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1664 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1665 struct svc_deferred_req *dr;
1666
1667 if (rqstp->rq_arg.page_len)
1668 return NULL; /* if more than a page, give up FIXME */
1669 if (rqstp->rq_deferred) {
1670 dr = rqstp->rq_deferred;
1671 rqstp->rq_deferred = NULL;
1672 } else {
1673 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1674 /* FIXME maybe discard if size too large */
1675 dr = kmalloc(size, GFP_KERNEL);
1676 if (dr == NULL)
1677 return NULL;
1678
1679 dr->handle.owner = rqstp->rq_server;
1680 dr->prot = rqstp->rq_prot;
1681 dr->addr = rqstp->rq_addr;
1682 dr->daddr = rqstp->rq_daddr;
1683 dr->argslen = rqstp->rq_arg.len >> 2;
1684 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1685 }
1686 atomic_inc(&rqstp->rq_sock->sk_inuse);
1687 dr->svsk = rqstp->rq_sock;
1688
1689 dr->handle.revisit = svc_revisit;
1690 return &dr->handle;
1691 }
1692
1693 /*
1694 * recv data from a deferred request into an active one
1695 */
1696 static int svc_deferred_recv(struct svc_rqst *rqstp)
1697 {
1698 struct svc_deferred_req *dr = rqstp->rq_deferred;
1699
1700 rqstp->rq_arg.head[0].iov_base = dr->args;
1701 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1702 rqstp->rq_arg.page_len = 0;
1703 rqstp->rq_arg.len = dr->argslen<<2;
1704 rqstp->rq_prot = dr->prot;
1705 rqstp->rq_addr = dr->addr;
1706 rqstp->rq_daddr = dr->daddr;
1707 return dr->argslen<<2;
1708 }
1709
1710
1711 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1712 {
1713 struct svc_deferred_req *dr = NULL;
1714
1715 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1716 return NULL;
1717 spin_lock_bh(&svsk->sk_defer_lock);
1718 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1719 if (!list_empty(&svsk->sk_deferred)) {
1720 dr = list_entry(svsk->sk_deferred.next,
1721 struct svc_deferred_req,
1722 handle.recent);
1723 list_del_init(&dr->handle.recent);
1724 set_bit(SK_DEFERRED, &svsk->sk_flags);
1725 }
1726 spin_unlock_bh(&svsk->sk_defer_lock);
1727 return dr;
1728 }