76a380d37de4decb4ee1f4ac16482baef1133367
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_xprt_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp.h>
42 #include <net/tcp_states.h>
43 #include <asm/uaccess.h>
44 #include <asm/ioctls.h>
45
46 #include <linux/sunrpc/types.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <linux/sunrpc/msg_prot.h>
50 #include <linux/sunrpc/svcsock.h>
51 #include <linux/sunrpc/stats.h>
52
53 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
54
55
56 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
57 int *errp, int flags);
58 static void svc_udp_data_ready(struct sock *, int);
59 static int svc_udp_recvfrom(struct svc_rqst *);
60 static int svc_udp_sendto(struct svc_rqst *);
61 static void svc_sock_detach(struct svc_xprt *);
62 static void svc_tcp_sock_detach(struct svc_xprt *);
63 static void svc_sock_free(struct svc_xprt *);
64
65 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
66 struct sockaddr *, int, int);
67 #ifdef CONFIG_DEBUG_LOCK_ALLOC
68 static struct lock_class_key svc_key[2];
69 static struct lock_class_key svc_slock_key[2];
70
71 static void svc_reclassify_socket(struct socket *sock)
72 {
73 struct sock *sk = sock->sk;
74 BUG_ON(sock_owned_by_user(sk));
75 switch (sk->sk_family) {
76 case AF_INET:
77 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
78 &svc_slock_key[0],
79 "sk_xprt.xpt_lock-AF_INET-NFSD",
80 &svc_key[0]);
81 break;
82
83 case AF_INET6:
84 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
85 &svc_slock_key[1],
86 "sk_xprt.xpt_lock-AF_INET6-NFSD",
87 &svc_key[1]);
88 break;
89
90 default:
91 BUG();
92 }
93 }
94 #else
95 static void svc_reclassify_socket(struct socket *sock)
96 {
97 }
98 #endif
99
100 /*
101 * Release an skbuff after use
102 */
103 static void svc_release_skb(struct svc_rqst *rqstp)
104 {
105 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
106
107 if (skb) {
108 struct svc_sock *svsk =
109 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
110 rqstp->rq_xprt_ctxt = NULL;
111
112 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
113 skb_free_datagram(svsk->sk_sk, skb);
114 }
115 }
116
117 union svc_pktinfo_u {
118 struct in_pktinfo pkti;
119 struct in6_pktinfo pkti6;
120 };
121 #define SVC_PKTINFO_SPACE \
122 CMSG_SPACE(sizeof(union svc_pktinfo_u))
123
124 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
125 {
126 struct svc_sock *svsk =
127 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
128 switch (svsk->sk_sk->sk_family) {
129 case AF_INET: {
130 struct in_pktinfo *pki = CMSG_DATA(cmh);
131
132 cmh->cmsg_level = SOL_IP;
133 cmh->cmsg_type = IP_PKTINFO;
134 pki->ipi_ifindex = 0;
135 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
136 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
137 }
138 break;
139
140 case AF_INET6: {
141 struct in6_pktinfo *pki = CMSG_DATA(cmh);
142
143 cmh->cmsg_level = SOL_IPV6;
144 cmh->cmsg_type = IPV6_PKTINFO;
145 pki->ipi6_ifindex = 0;
146 ipv6_addr_copy(&pki->ipi6_addr,
147 &rqstp->rq_daddr.addr6);
148 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
149 }
150 break;
151 }
152 return;
153 }
154
155 /*
156 * Generic sendto routine
157 */
158 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
159 {
160 struct svc_sock *svsk =
161 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
162 struct socket *sock = svsk->sk_sock;
163 int slen;
164 union {
165 struct cmsghdr hdr;
166 long all[SVC_PKTINFO_SPACE / sizeof(long)];
167 } buffer;
168 struct cmsghdr *cmh = &buffer.hdr;
169 int len = 0;
170 int result;
171 int size;
172 struct page **ppage = xdr->pages;
173 size_t base = xdr->page_base;
174 unsigned int pglen = xdr->page_len;
175 unsigned int flags = MSG_MORE;
176 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
177
178 slen = xdr->len;
179
180 if (rqstp->rq_prot == IPPROTO_UDP) {
181 struct msghdr msg = {
182 .msg_name = &rqstp->rq_addr,
183 .msg_namelen = rqstp->rq_addrlen,
184 .msg_control = cmh,
185 .msg_controllen = sizeof(buffer),
186 .msg_flags = MSG_MORE,
187 };
188
189 svc_set_cmsg_data(rqstp, cmh);
190
191 if (sock_sendmsg(sock, &msg, 0) < 0)
192 goto out;
193 }
194
195 /* send head */
196 if (slen == xdr->head[0].iov_len)
197 flags = 0;
198 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
199 xdr->head[0].iov_len, flags);
200 if (len != xdr->head[0].iov_len)
201 goto out;
202 slen -= xdr->head[0].iov_len;
203 if (slen == 0)
204 goto out;
205
206 /* send page data */
207 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
208 while (pglen > 0) {
209 if (slen == size)
210 flags = 0;
211 result = kernel_sendpage(sock, *ppage, base, size, flags);
212 if (result > 0)
213 len += result;
214 if (result != size)
215 goto out;
216 slen -= size;
217 pglen -= size;
218 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
219 base = 0;
220 ppage++;
221 }
222 /* send tail */
223 if (xdr->tail[0].iov_len) {
224 result = kernel_sendpage(sock, rqstp->rq_respages[0],
225 ((unsigned long)xdr->tail[0].iov_base)
226 & (PAGE_SIZE-1),
227 xdr->tail[0].iov_len, 0);
228
229 if (result > 0)
230 len += result;
231 }
232 out:
233 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
234 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
235 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
236
237 return len;
238 }
239
240 /*
241 * Report socket names for nfsdfs
242 */
243 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
244 {
245 const struct sock *sk = svsk->sk_sk;
246 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
247 "udp" : "tcp";
248 int len;
249
250 switch (sk->sk_family) {
251 case PF_INET:
252 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
253 proto_name,
254 &inet_sk(sk)->rcv_saddr,
255 inet_sk(sk)->num);
256 break;
257 case PF_INET6:
258 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
259 proto_name,
260 &inet6_sk(sk)->rcv_saddr,
261 inet_sk(sk)->num);
262 break;
263 default:
264 len = snprintf(buf, remaining, "*unknown-%d*\n",
265 sk->sk_family);
266 }
267
268 if (len >= remaining) {
269 *buf = '\0';
270 return -ENAMETOOLONG;
271 }
272 return len;
273 }
274
275 /**
276 * svc_sock_names - construct a list of listener names in a string
277 * @serv: pointer to RPC service
278 * @buf: pointer to a buffer to fill in with socket names
279 * @buflen: size of the buffer to be filled
280 * @toclose: pointer to '\0'-terminated C string containing the name
281 * of a listener to be closed
282 *
283 * Fills in @buf with a '\n'-separated list of names of listener
284 * sockets. If @toclose is not NULL, the socket named by @toclose
285 * is closed, and is not included in the output list.
286 *
287 * Returns positive length of the socket name string, or a negative
288 * errno value on error.
289 */
290 int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen,
291 const char *toclose)
292 {
293 struct svc_sock *svsk, *closesk = NULL;
294 int len = 0;
295
296 if (!serv)
297 return 0;
298
299 spin_lock_bh(&serv->sv_lock);
300 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
301 int onelen = svc_one_sock_name(svsk, buf + len, buflen - len);
302 if (onelen < 0) {
303 len = onelen;
304 break;
305 }
306 if (toclose && strcmp(toclose, buf + len) == 0)
307 closesk = svsk;
308 else
309 len += onelen;
310 }
311 spin_unlock_bh(&serv->sv_lock);
312
313 if (closesk)
314 /* Should unregister with portmap, but you cannot
315 * unregister just one protocol...
316 */
317 svc_close_xprt(&closesk->sk_xprt);
318 else if (toclose)
319 return -ENOENT;
320 return len;
321 }
322 EXPORT_SYMBOL_GPL(svc_sock_names);
323
324 /*
325 * Check input queue length
326 */
327 static int svc_recv_available(struct svc_sock *svsk)
328 {
329 struct socket *sock = svsk->sk_sock;
330 int avail, err;
331
332 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
333
334 return (err >= 0)? avail : err;
335 }
336
337 /*
338 * Generic recvfrom routine.
339 */
340 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
341 int buflen)
342 {
343 struct svc_sock *svsk =
344 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
345 struct msghdr msg = {
346 .msg_flags = MSG_DONTWAIT,
347 };
348 int len;
349
350 rqstp->rq_xprt_hlen = 0;
351
352 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
353 msg.msg_flags);
354
355 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
356 svsk, iov[0].iov_base, iov[0].iov_len, len);
357 return len;
358 }
359
360 /*
361 * Set socket snd and rcv buffer lengths
362 */
363 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
364 unsigned int rcv)
365 {
366 #if 0
367 mm_segment_t oldfs;
368 oldfs = get_fs(); set_fs(KERNEL_DS);
369 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
370 (char*)&snd, sizeof(snd));
371 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
372 (char*)&rcv, sizeof(rcv));
373 #else
374 /* sock_setsockopt limits use to sysctl_?mem_max,
375 * which isn't acceptable. Until that is made conditional
376 * on not having CAP_SYS_RESOURCE or similar, we go direct...
377 * DaveM said I could!
378 */
379 lock_sock(sock->sk);
380 sock->sk->sk_sndbuf = snd * 2;
381 sock->sk->sk_rcvbuf = rcv * 2;
382 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
383 sock->sk->sk_write_space(sock->sk);
384 release_sock(sock->sk);
385 #endif
386 }
387 /*
388 * INET callback when data has been received on the socket.
389 */
390 static void svc_udp_data_ready(struct sock *sk, int count)
391 {
392 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
393
394 if (svsk) {
395 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
396 svsk, sk, count,
397 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
398 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
399 svc_xprt_enqueue(&svsk->sk_xprt);
400 }
401 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
402 wake_up_interruptible(sk->sk_sleep);
403 }
404
405 /*
406 * INET callback when space is newly available on the socket.
407 */
408 static void svc_write_space(struct sock *sk)
409 {
410 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
411
412 if (svsk) {
413 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
414 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
415 svc_xprt_enqueue(&svsk->sk_xprt);
416 }
417
418 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
419 dprintk("RPC svc_write_space: someone sleeping on %p\n",
420 svsk);
421 wake_up_interruptible(sk->sk_sleep);
422 }
423 }
424
425 static void svc_tcp_write_space(struct sock *sk)
426 {
427 struct socket *sock = sk->sk_socket;
428
429 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock)
430 clear_bit(SOCK_NOSPACE, &sock->flags);
431 svc_write_space(sk);
432 }
433
434 /*
435 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
436 */
437 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
438 struct cmsghdr *cmh)
439 {
440 struct in_pktinfo *pki = CMSG_DATA(cmh);
441 if (cmh->cmsg_type != IP_PKTINFO)
442 return 0;
443 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
444 return 1;
445 }
446
447 /*
448 * See net/ipv6/datagram.c : datagram_recv_ctl
449 */
450 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
451 struct cmsghdr *cmh)
452 {
453 struct in6_pktinfo *pki = CMSG_DATA(cmh);
454 if (cmh->cmsg_type != IPV6_PKTINFO)
455 return 0;
456 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
457 return 1;
458 }
459
460 /*
461 * Copy the UDP datagram's destination address to the rqstp structure.
462 * The 'destination' address in this case is the address to which the
463 * peer sent the datagram, i.e. our local address. For multihomed
464 * hosts, this can change from msg to msg. Note that only the IP
465 * address changes, the port number should remain the same.
466 */
467 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
468 struct cmsghdr *cmh)
469 {
470 switch (cmh->cmsg_level) {
471 case SOL_IP:
472 return svc_udp_get_dest_address4(rqstp, cmh);
473 case SOL_IPV6:
474 return svc_udp_get_dest_address6(rqstp, cmh);
475 }
476
477 return 0;
478 }
479
480 /*
481 * Receive a datagram from a UDP socket.
482 */
483 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
484 {
485 struct svc_sock *svsk =
486 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
487 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
488 struct sk_buff *skb;
489 union {
490 struct cmsghdr hdr;
491 long all[SVC_PKTINFO_SPACE / sizeof(long)];
492 } buffer;
493 struct cmsghdr *cmh = &buffer.hdr;
494 struct msghdr msg = {
495 .msg_name = svc_addr(rqstp),
496 .msg_control = cmh,
497 .msg_controllen = sizeof(buffer),
498 .msg_flags = MSG_DONTWAIT,
499 };
500 size_t len;
501 int err;
502
503 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
504 /* udp sockets need large rcvbuf as all pending
505 * requests are still in that buffer. sndbuf must
506 * also be large enough that there is enough space
507 * for one reply per thread. We count all threads
508 * rather than threads in a particular pool, which
509 * provides an upper bound on the number of threads
510 * which will access the socket.
511 */
512 svc_sock_setbufsize(svsk->sk_sock,
513 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
514 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
515
516 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
517 skb = NULL;
518 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
519 0, 0, MSG_PEEK | MSG_DONTWAIT);
520 if (err >= 0)
521 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
522
523 if (skb == NULL) {
524 if (err != -EAGAIN) {
525 /* possibly an icmp error */
526 dprintk("svc: recvfrom returned error %d\n", -err);
527 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
528 }
529 svc_xprt_received(&svsk->sk_xprt);
530 return -EAGAIN;
531 }
532 len = svc_addr_len(svc_addr(rqstp));
533 if (len == 0)
534 return -EAFNOSUPPORT;
535 rqstp->rq_addrlen = len;
536 if (skb->tstamp.tv64 == 0) {
537 skb->tstamp = ktime_get_real();
538 /* Don't enable netstamp, sunrpc doesn't
539 need that much accuracy */
540 }
541 svsk->sk_sk->sk_stamp = skb->tstamp;
542 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
543
544 /*
545 * Maybe more packets - kick another thread ASAP.
546 */
547 svc_xprt_received(&svsk->sk_xprt);
548
549 len = skb->len - sizeof(struct udphdr);
550 rqstp->rq_arg.len = len;
551
552 rqstp->rq_prot = IPPROTO_UDP;
553
554 if (!svc_udp_get_dest_address(rqstp, cmh)) {
555 if (net_ratelimit())
556 printk(KERN_WARNING
557 "svc: received unknown control message %d/%d; "
558 "dropping RPC reply datagram\n",
559 cmh->cmsg_level, cmh->cmsg_type);
560 skb_free_datagram(svsk->sk_sk, skb);
561 return 0;
562 }
563
564 if (skb_is_nonlinear(skb)) {
565 /* we have to copy */
566 local_bh_disable();
567 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
568 local_bh_enable();
569 /* checksum error */
570 skb_free_datagram(svsk->sk_sk, skb);
571 return 0;
572 }
573 local_bh_enable();
574 skb_free_datagram(svsk->sk_sk, skb);
575 } else {
576 /* we can use it in-place */
577 rqstp->rq_arg.head[0].iov_base = skb->data +
578 sizeof(struct udphdr);
579 rqstp->rq_arg.head[0].iov_len = len;
580 if (skb_checksum_complete(skb)) {
581 skb_free_datagram(svsk->sk_sk, skb);
582 return 0;
583 }
584 rqstp->rq_xprt_ctxt = skb;
585 }
586
587 rqstp->rq_arg.page_base = 0;
588 if (len <= rqstp->rq_arg.head[0].iov_len) {
589 rqstp->rq_arg.head[0].iov_len = len;
590 rqstp->rq_arg.page_len = 0;
591 rqstp->rq_respages = rqstp->rq_pages+1;
592 } else {
593 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
594 rqstp->rq_respages = rqstp->rq_pages + 1 +
595 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
596 }
597
598 if (serv->sv_stats)
599 serv->sv_stats->netudpcnt++;
600
601 return len;
602 }
603
604 static int
605 svc_udp_sendto(struct svc_rqst *rqstp)
606 {
607 int error;
608
609 error = svc_sendto(rqstp, &rqstp->rq_res);
610 if (error == -ECONNREFUSED)
611 /* ICMP error on earlier request. */
612 error = svc_sendto(rqstp, &rqstp->rq_res);
613
614 return error;
615 }
616
617 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
618 {
619 }
620
621 static int svc_udp_has_wspace(struct svc_xprt *xprt)
622 {
623 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
624 struct svc_serv *serv = xprt->xpt_server;
625 unsigned long required;
626
627 /*
628 * Set the SOCK_NOSPACE flag before checking the available
629 * sock space.
630 */
631 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
632 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
633 if (required*2 > sock_wspace(svsk->sk_sk))
634 return 0;
635 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
636 return 1;
637 }
638
639 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
640 {
641 BUG();
642 return NULL;
643 }
644
645 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
646 struct sockaddr *sa, int salen,
647 int flags)
648 {
649 return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
650 }
651
652 static struct svc_xprt_ops svc_udp_ops = {
653 .xpo_create = svc_udp_create,
654 .xpo_recvfrom = svc_udp_recvfrom,
655 .xpo_sendto = svc_udp_sendto,
656 .xpo_release_rqst = svc_release_skb,
657 .xpo_detach = svc_sock_detach,
658 .xpo_free = svc_sock_free,
659 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
660 .xpo_has_wspace = svc_udp_has_wspace,
661 .xpo_accept = svc_udp_accept,
662 };
663
664 static struct svc_xprt_class svc_udp_class = {
665 .xcl_name = "udp",
666 .xcl_owner = THIS_MODULE,
667 .xcl_ops = &svc_udp_ops,
668 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
669 };
670
671 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
672 {
673 int err, level, optname, one = 1;
674
675 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
676 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
677 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
678 svsk->sk_sk->sk_write_space = svc_write_space;
679
680 /* initialise setting must have enough space to
681 * receive and respond to one request.
682 * svc_udp_recvfrom will re-adjust if necessary
683 */
684 svc_sock_setbufsize(svsk->sk_sock,
685 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
686 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
687
688 /* data might have come in before data_ready set up */
689 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
690 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
691
692 /* make sure we get destination address info */
693 switch (svsk->sk_sk->sk_family) {
694 case AF_INET:
695 level = SOL_IP;
696 optname = IP_PKTINFO;
697 break;
698 case AF_INET6:
699 level = SOL_IPV6;
700 optname = IPV6_RECVPKTINFO;
701 break;
702 default:
703 BUG();
704 }
705 err = kernel_setsockopt(svsk->sk_sock, level, optname,
706 (char *)&one, sizeof(one));
707 dprintk("svc: kernel_setsockopt returned %d\n", err);
708 }
709
710 /*
711 * A data_ready event on a listening socket means there's a connection
712 * pending. Do not use state_change as a substitute for it.
713 */
714 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
715 {
716 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
717
718 dprintk("svc: socket %p TCP (listen) state change %d\n",
719 sk, sk->sk_state);
720
721 /*
722 * This callback may called twice when a new connection
723 * is established as a child socket inherits everything
724 * from a parent LISTEN socket.
725 * 1) data_ready method of the parent socket will be called
726 * when one of child sockets become ESTABLISHED.
727 * 2) data_ready method of the child socket may be called
728 * when it receives data before the socket is accepted.
729 * In case of 2, we should ignore it silently.
730 */
731 if (sk->sk_state == TCP_LISTEN) {
732 if (svsk) {
733 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
734 svc_xprt_enqueue(&svsk->sk_xprt);
735 } else
736 printk("svc: socket %p: no user data\n", sk);
737 }
738
739 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
740 wake_up_interruptible_all(sk->sk_sleep);
741 }
742
743 /*
744 * A state change on a connected socket means it's dying or dead.
745 */
746 static void svc_tcp_state_change(struct sock *sk)
747 {
748 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
749
750 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
751 sk, sk->sk_state, sk->sk_user_data);
752
753 if (!svsk)
754 printk("svc: socket %p: no user data\n", sk);
755 else {
756 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
757 svc_xprt_enqueue(&svsk->sk_xprt);
758 }
759 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
760 wake_up_interruptible_all(sk->sk_sleep);
761 }
762
763 static void svc_tcp_data_ready(struct sock *sk, int count)
764 {
765 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
766
767 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
768 sk, sk->sk_user_data);
769 if (svsk) {
770 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
771 svc_xprt_enqueue(&svsk->sk_xprt);
772 }
773 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
774 wake_up_interruptible(sk->sk_sleep);
775 }
776
777 /*
778 * Accept a TCP connection
779 */
780 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
781 {
782 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
783 struct sockaddr_storage addr;
784 struct sockaddr *sin = (struct sockaddr *) &addr;
785 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
786 struct socket *sock = svsk->sk_sock;
787 struct socket *newsock;
788 struct svc_sock *newsvsk;
789 int err, slen;
790 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
791
792 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
793 if (!sock)
794 return NULL;
795
796 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
797 err = kernel_accept(sock, &newsock, O_NONBLOCK);
798 if (err < 0) {
799 if (err == -ENOMEM)
800 printk(KERN_WARNING "%s: no more sockets!\n",
801 serv->sv_name);
802 else if (err != -EAGAIN && net_ratelimit())
803 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
804 serv->sv_name, -err);
805 return NULL;
806 }
807 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
808
809 err = kernel_getpeername(newsock, sin, &slen);
810 if (err < 0) {
811 if (net_ratelimit())
812 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
813 serv->sv_name, -err);
814 goto failed; /* aborted connection or whatever */
815 }
816
817 /* Ideally, we would want to reject connections from unauthorized
818 * hosts here, but when we get encryption, the IP of the host won't
819 * tell us anything. For now just warn about unpriv connections.
820 */
821 if (!svc_port_is_privileged(sin)) {
822 dprintk(KERN_WARNING
823 "%s: connect from unprivileged port: %s\n",
824 serv->sv_name,
825 __svc_print_addr(sin, buf, sizeof(buf)));
826 }
827 dprintk("%s: connect from %s\n", serv->sv_name,
828 __svc_print_addr(sin, buf, sizeof(buf)));
829
830 /* make sure that a write doesn't block forever when
831 * low on memory
832 */
833 newsock->sk->sk_sndtimeo = HZ*30;
834
835 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
836 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
837 goto failed;
838 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
839 err = kernel_getsockname(newsock, sin, &slen);
840 if (unlikely(err < 0)) {
841 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
842 slen = offsetof(struct sockaddr, sa_data);
843 }
844 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
845
846 if (serv->sv_stats)
847 serv->sv_stats->nettcpconn++;
848
849 return &newsvsk->sk_xprt;
850
851 failed:
852 sock_release(newsock);
853 return NULL;
854 }
855
856 /*
857 * Receive data.
858 * If we haven't gotten the record length yet, get the next four bytes.
859 * Otherwise try to gobble up as much as possible up to the complete
860 * record length.
861 */
862 static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp)
863 {
864 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
865 int len;
866
867 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
868 /* sndbuf needs to have room for one request
869 * per thread, otherwise we can stall even when the
870 * network isn't a bottleneck.
871 *
872 * We count all threads rather than threads in a
873 * particular pool, which provides an upper bound
874 * on the number of threads which will access the socket.
875 *
876 * rcvbuf just needs to be able to hold a few requests.
877 * Normally they will be removed from the queue
878 * as soon a a complete request arrives.
879 */
880 svc_sock_setbufsize(svsk->sk_sock,
881 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
882 3 * serv->sv_max_mesg);
883
884 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
885
886 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
887 int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
888 struct kvec iov;
889
890 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
891 iov.iov_len = want;
892 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
893 goto error;
894 svsk->sk_tcplen += len;
895
896 if (len < want) {
897 dprintk("svc: short recvfrom while reading record "
898 "length (%d of %d)\n", len, want);
899 svc_xprt_received(&svsk->sk_xprt);
900 goto err_again; /* record header not complete */
901 }
902
903 svsk->sk_reclen = ntohl(svsk->sk_reclen);
904 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
905 /* FIXME: technically, a record can be fragmented,
906 * and non-terminal fragments will not have the top
907 * bit set in the fragment length header.
908 * But apparently no known nfs clients send fragmented
909 * records. */
910 if (net_ratelimit())
911 printk(KERN_NOTICE "RPC: multiple fragments "
912 "per record not supported\n");
913 goto err_delete;
914 }
915
916 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
917 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
918 if (svsk->sk_reclen > serv->sv_max_mesg) {
919 if (net_ratelimit())
920 printk(KERN_NOTICE "RPC: "
921 "fragment too large: 0x%08lx\n",
922 (unsigned long)svsk->sk_reclen);
923 goto err_delete;
924 }
925 }
926
927 /* Check whether enough data is available */
928 len = svc_recv_available(svsk);
929 if (len < 0)
930 goto error;
931
932 if (len < svsk->sk_reclen) {
933 dprintk("svc: incomplete TCP record (%d of %d)\n",
934 len, svsk->sk_reclen);
935 svc_xprt_received(&svsk->sk_xprt);
936 goto err_again; /* record not complete */
937 }
938 len = svsk->sk_reclen;
939 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
940
941 return len;
942 error:
943 if (len == -EAGAIN) {
944 dprintk("RPC: TCP recv_record got EAGAIN\n");
945 svc_xprt_received(&svsk->sk_xprt);
946 }
947 return len;
948 err_delete:
949 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
950 err_again:
951 return -EAGAIN;
952 }
953
954 /*
955 * Receive data from a TCP socket.
956 */
957 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
958 {
959 struct svc_sock *svsk =
960 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
961 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
962 int len;
963 struct kvec *vec;
964 int pnum, vlen;
965
966 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
967 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
968 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
969 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
970
971 len = svc_tcp_recv_record(svsk, rqstp);
972 if (len < 0)
973 goto error;
974
975 vec = rqstp->rq_vec;
976 vec[0] = rqstp->rq_arg.head[0];
977 vlen = PAGE_SIZE;
978 pnum = 1;
979 while (vlen < len) {
980 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
981 vec[pnum].iov_len = PAGE_SIZE;
982 pnum++;
983 vlen += PAGE_SIZE;
984 }
985 rqstp->rq_respages = &rqstp->rq_pages[pnum];
986
987 /* Now receive data */
988 len = svc_recvfrom(rqstp, vec, pnum, len);
989 if (len < 0)
990 goto err_again;
991
992 dprintk("svc: TCP complete record (%d bytes)\n", len);
993 rqstp->rq_arg.len = len;
994 rqstp->rq_arg.page_base = 0;
995 if (len <= rqstp->rq_arg.head[0].iov_len) {
996 rqstp->rq_arg.head[0].iov_len = len;
997 rqstp->rq_arg.page_len = 0;
998 } else {
999 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1000 }
1001
1002 rqstp->rq_xprt_ctxt = NULL;
1003 rqstp->rq_prot = IPPROTO_TCP;
1004
1005 /* Reset TCP read info */
1006 svsk->sk_reclen = 0;
1007 svsk->sk_tcplen = 0;
1008
1009 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1010 svc_xprt_received(&svsk->sk_xprt);
1011 if (serv->sv_stats)
1012 serv->sv_stats->nettcpcnt++;
1013
1014 return len;
1015
1016 err_again:
1017 if (len == -EAGAIN) {
1018 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1019 svc_xprt_received(&svsk->sk_xprt);
1020 return len;
1021 }
1022 error:
1023 if (len != -EAGAIN) {
1024 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1025 svsk->sk_xprt.xpt_server->sv_name, -len);
1026 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1027 }
1028 return -EAGAIN;
1029 }
1030
1031 /*
1032 * Send out data on TCP socket.
1033 */
1034 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1035 {
1036 struct xdr_buf *xbufp = &rqstp->rq_res;
1037 int sent;
1038 __be32 reclen;
1039
1040 /* Set up the first element of the reply kvec.
1041 * Any other kvecs that may be in use have been taken
1042 * care of by the server implementation itself.
1043 */
1044 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1045 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1046
1047 if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags))
1048 return -ENOTCONN;
1049
1050 sent = svc_sendto(rqstp, &rqstp->rq_res);
1051 if (sent != xbufp->len) {
1052 printk(KERN_NOTICE
1053 "rpc-srv/tcp: %s: %s %d when sending %d bytes "
1054 "- shutting down socket\n",
1055 rqstp->rq_xprt->xpt_server->sv_name,
1056 (sent<0)?"got error":"sent only",
1057 sent, xbufp->len);
1058 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
1059 svc_xprt_enqueue(rqstp->rq_xprt);
1060 sent = -EAGAIN;
1061 }
1062 return sent;
1063 }
1064
1065 /*
1066 * Setup response header. TCP has a 4B record length field.
1067 */
1068 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1069 {
1070 struct kvec *resv = &rqstp->rq_res.head[0];
1071
1072 /* tcp needs a space for the record length... */
1073 svc_putnl(resv, 0);
1074 }
1075
1076 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
1077 {
1078 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1079 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1080 int required;
1081
1082 if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
1083 return 1;
1084 required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg;
1085 if (sk_stream_wspace(svsk->sk_sk) >= required)
1086 return 1;
1087 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1088 return 0;
1089 }
1090
1091 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1092 struct sockaddr *sa, int salen,
1093 int flags)
1094 {
1095 return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
1096 }
1097
1098 static struct svc_xprt_ops svc_tcp_ops = {
1099 .xpo_create = svc_tcp_create,
1100 .xpo_recvfrom = svc_tcp_recvfrom,
1101 .xpo_sendto = svc_tcp_sendto,
1102 .xpo_release_rqst = svc_release_skb,
1103 .xpo_detach = svc_tcp_sock_detach,
1104 .xpo_free = svc_sock_free,
1105 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1106 .xpo_has_wspace = svc_tcp_has_wspace,
1107 .xpo_accept = svc_tcp_accept,
1108 };
1109
1110 static struct svc_xprt_class svc_tcp_class = {
1111 .xcl_name = "tcp",
1112 .xcl_owner = THIS_MODULE,
1113 .xcl_ops = &svc_tcp_ops,
1114 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1115 };
1116
1117 void svc_init_xprt_sock(void)
1118 {
1119 svc_reg_xprt_class(&svc_tcp_class);
1120 svc_reg_xprt_class(&svc_udp_class);
1121 }
1122
1123 void svc_cleanup_xprt_sock(void)
1124 {
1125 svc_unreg_xprt_class(&svc_tcp_class);
1126 svc_unreg_xprt_class(&svc_udp_class);
1127 }
1128
1129 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1130 {
1131 struct sock *sk = svsk->sk_sk;
1132
1133 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1134 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1135 if (sk->sk_state == TCP_LISTEN) {
1136 dprintk("setting up TCP socket for listening\n");
1137 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1138 sk->sk_data_ready = svc_tcp_listen_data_ready;
1139 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1140 } else {
1141 dprintk("setting up TCP socket for reading\n");
1142 sk->sk_state_change = svc_tcp_state_change;
1143 sk->sk_data_ready = svc_tcp_data_ready;
1144 sk->sk_write_space = svc_tcp_write_space;
1145
1146 svsk->sk_reclen = 0;
1147 svsk->sk_tcplen = 0;
1148
1149 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
1150
1151 /* initialise setting must have enough space to
1152 * receive and respond to one request.
1153 * svc_tcp_recvfrom will re-adjust if necessary
1154 */
1155 svc_sock_setbufsize(svsk->sk_sock,
1156 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1157 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1158
1159 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1160 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1161 if (sk->sk_state != TCP_ESTABLISHED)
1162 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1163 }
1164 }
1165
1166 void svc_sock_update_bufs(struct svc_serv *serv)
1167 {
1168 /*
1169 * The number of server threads has changed. Update
1170 * rcvbuf and sndbuf accordingly on all sockets
1171 */
1172 struct list_head *le;
1173
1174 spin_lock_bh(&serv->sv_lock);
1175 list_for_each(le, &serv->sv_permsocks) {
1176 struct svc_sock *svsk =
1177 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1178 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1179 }
1180 list_for_each(le, &serv->sv_tempsocks) {
1181 struct svc_sock *svsk =
1182 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1183 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1184 }
1185 spin_unlock_bh(&serv->sv_lock);
1186 }
1187 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1188
1189 /*
1190 * Initialize socket for RPC use and create svc_sock struct
1191 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1192 */
1193 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1194 struct socket *sock,
1195 int *errp, int flags)
1196 {
1197 struct svc_sock *svsk;
1198 struct sock *inet;
1199 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1200
1201 dprintk("svc: svc_setup_socket %p\n", sock);
1202 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1203 *errp = -ENOMEM;
1204 return NULL;
1205 }
1206
1207 inet = sock->sk;
1208
1209 /* Register socket with portmapper */
1210 if (*errp >= 0 && pmap_register)
1211 *errp = svc_register(serv, inet->sk_family, inet->sk_protocol,
1212 ntohs(inet_sk(inet)->sport));
1213
1214 if (*errp < 0) {
1215 kfree(svsk);
1216 return NULL;
1217 }
1218
1219 inet->sk_user_data = svsk;
1220 svsk->sk_sock = sock;
1221 svsk->sk_sk = inet;
1222 svsk->sk_ostate = inet->sk_state_change;
1223 svsk->sk_odata = inet->sk_data_ready;
1224 svsk->sk_owspace = inet->sk_write_space;
1225
1226 /* Initialize the socket */
1227 if (sock->type == SOCK_DGRAM)
1228 svc_udp_init(svsk, serv);
1229 else
1230 svc_tcp_init(svsk, serv);
1231
1232 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1233 svsk, svsk->sk_sk);
1234
1235 return svsk;
1236 }
1237
1238 /**
1239 * svc_addsock - add a listener socket to an RPC service
1240 * @serv: pointer to RPC service to which to add a new listener
1241 * @fd: file descriptor of the new listener
1242 * @name_return: pointer to buffer to fill in with name of listener
1243 * @len: size of the buffer
1244 *
1245 * Fills in socket name and returns positive length of name if successful.
1246 * Name is terminated with '\n'. On error, returns a negative errno
1247 * value.
1248 */
1249 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return,
1250 const size_t len)
1251 {
1252 int err = 0;
1253 struct socket *so = sockfd_lookup(fd, &err);
1254 struct svc_sock *svsk = NULL;
1255
1256 if (!so)
1257 return err;
1258 if (so->sk->sk_family != AF_INET)
1259 err = -EAFNOSUPPORT;
1260 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1261 so->sk->sk_protocol != IPPROTO_UDP)
1262 err = -EPROTONOSUPPORT;
1263 else if (so->state > SS_UNCONNECTED)
1264 err = -EISCONN;
1265 else {
1266 if (!try_module_get(THIS_MODULE))
1267 err = -ENOENT;
1268 else
1269 svsk = svc_setup_socket(serv, so, &err,
1270 SVC_SOCK_DEFAULTS);
1271 if (svsk) {
1272 struct sockaddr_storage addr;
1273 struct sockaddr *sin = (struct sockaddr *)&addr;
1274 int salen;
1275 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1276 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1277 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1278 spin_lock_bh(&serv->sv_lock);
1279 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1280 spin_unlock_bh(&serv->sv_lock);
1281 svc_xprt_received(&svsk->sk_xprt);
1282 err = 0;
1283 } else
1284 module_put(THIS_MODULE);
1285 }
1286 if (err) {
1287 sockfd_put(so);
1288 return err;
1289 }
1290 return svc_one_sock_name(svsk, name_return, len);
1291 }
1292 EXPORT_SYMBOL_GPL(svc_addsock);
1293
1294 /*
1295 * Create socket for RPC service.
1296 */
1297 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1298 int protocol,
1299 struct sockaddr *sin, int len,
1300 int flags)
1301 {
1302 struct svc_sock *svsk;
1303 struct socket *sock;
1304 int error;
1305 int type;
1306 struct sockaddr_storage addr;
1307 struct sockaddr *newsin = (struct sockaddr *)&addr;
1308 int newlen;
1309 int family;
1310 int val;
1311 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
1312
1313 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1314 serv->sv_program->pg_name, protocol,
1315 __svc_print_addr(sin, buf, sizeof(buf)));
1316
1317 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1318 printk(KERN_WARNING "svc: only UDP and TCP "
1319 "sockets supported\n");
1320 return ERR_PTR(-EINVAL);
1321 }
1322
1323 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1324 switch (sin->sa_family) {
1325 case AF_INET6:
1326 family = PF_INET6;
1327 break;
1328 case AF_INET:
1329 family = PF_INET;
1330 break;
1331 default:
1332 return ERR_PTR(-EINVAL);
1333 }
1334
1335 error = sock_create_kern(family, type, protocol, &sock);
1336 if (error < 0)
1337 return ERR_PTR(error);
1338
1339 svc_reclassify_socket(sock);
1340
1341 /*
1342 * If this is an PF_INET6 listener, we want to avoid
1343 * getting requests from IPv4 remotes. Those should
1344 * be shunted to a PF_INET listener via rpcbind.
1345 */
1346 val = 1;
1347 if (family == PF_INET6)
1348 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
1349 (char *)&val, sizeof(val));
1350
1351 if (type == SOCK_STREAM)
1352 sock->sk->sk_reuse = 1; /* allow address reuse */
1353 error = kernel_bind(sock, sin, len);
1354 if (error < 0)
1355 goto bummer;
1356
1357 newlen = len;
1358 error = kernel_getsockname(sock, newsin, &newlen);
1359 if (error < 0)
1360 goto bummer;
1361
1362 if (protocol == IPPROTO_TCP) {
1363 if ((error = kernel_listen(sock, 64)) < 0)
1364 goto bummer;
1365 }
1366
1367 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1368 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1369 return (struct svc_xprt *)svsk;
1370 }
1371
1372 bummer:
1373 dprintk("svc: svc_create_socket error = %d\n", -error);
1374 sock_release(sock);
1375 return ERR_PTR(error);
1376 }
1377
1378 /*
1379 * Detach the svc_sock from the socket so that no
1380 * more callbacks occur.
1381 */
1382 static void svc_sock_detach(struct svc_xprt *xprt)
1383 {
1384 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1385 struct sock *sk = svsk->sk_sk;
1386
1387 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1388
1389 /* put back the old socket callbacks */
1390 sk->sk_state_change = svsk->sk_ostate;
1391 sk->sk_data_ready = svsk->sk_odata;
1392 sk->sk_write_space = svsk->sk_owspace;
1393
1394 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1395 wake_up_interruptible(sk->sk_sleep);
1396 }
1397
1398 /*
1399 * Disconnect the socket, and reset the callbacks
1400 */
1401 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1402 {
1403 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1404
1405 dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk);
1406
1407 svc_sock_detach(xprt);
1408
1409 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags))
1410 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1411 }
1412
1413 /*
1414 * Free the svc_sock's socket resources and the svc_sock itself.
1415 */
1416 static void svc_sock_free(struct svc_xprt *xprt)
1417 {
1418 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1419 dprintk("svc: svc_sock_free(%p)\n", svsk);
1420
1421 if (svsk->sk_sock->file)
1422 sockfd_put(svsk->sk_sock);
1423 else
1424 sock_release(svsk->sk_sock);
1425 kfree(svsk);
1426 }
1427
1428 /*
1429 * Create a svc_xprt.
1430 *
1431 * For internal use only (e.g. nfsv4.1 backchannel).
1432 * Callers should typically use the xpo_create() method.
1433 */
1434 struct svc_xprt *svc_sock_create(struct svc_serv *serv, int prot)
1435 {
1436 struct svc_sock *svsk;
1437 struct svc_xprt *xprt = NULL;
1438
1439 dprintk("svc: %s\n", __func__);
1440 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
1441 if (!svsk)
1442 goto out;
1443
1444 xprt = &svsk->sk_xprt;
1445 if (prot == IPPROTO_TCP)
1446 svc_xprt_init(&svc_tcp_class, xprt, serv);
1447 else if (prot == IPPROTO_UDP)
1448 svc_xprt_init(&svc_udp_class, xprt, serv);
1449 else
1450 BUG();
1451 out:
1452 dprintk("svc: %s return %p\n", __func__, xprt);
1453 return xprt;
1454 }
1455 EXPORT_SYMBOL_GPL(svc_sock_create);
1456
1457 /*
1458 * Destroy a svc_sock.
1459 */
1460 void svc_sock_destroy(struct svc_xprt *xprt)
1461 {
1462 if (xprt)
1463 kfree(container_of(xprt, struct svc_sock, sk_xprt));
1464 }
1465 EXPORT_SYMBOL_GPL(svc_sock_destroy);