1c68956824e3098e28d1cfd48062092009df251a
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <asm/uaccess.h>
41 #include <asm/ioctls.h>
42
43 #include <linux/sunrpc/types.h>
44 #include <linux/sunrpc/xdr.h>
45 #include <linux/sunrpc/svcsock.h>
46 #include <linux/sunrpc/stats.h>
47
48 /* SMP locking strategy:
49 *
50 * svc_pool->sp_lock protects most of the fields of that pool.
51 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
52 * when both need to be taken (rare), svc_serv->sv_lock is first.
53 * BKL protects svc_serv->sv_nrthread.
54 * svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
55 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
56 *
57 * Some flags can be set to certain values at any time
58 * providing that certain rules are followed:
59 *
60 * SK_CONN, SK_DATA, can be set or cleared at any time.
61 * after a set, svc_sock_enqueue must be called.
62 * after a clear, the socket must be read/accepted
63 * if this succeeds, it must be set again.
64 * SK_CLOSE can set at any time. It is never cleared.
65 *
66 */
67
68 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
69
70
71 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
72 int *errp, int pmap_reg);
73 static void svc_udp_data_ready(struct sock *, int);
74 static int svc_udp_recvfrom(struct svc_rqst *);
75 static int svc_udp_sendto(struct svc_rqst *);
76
77 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
78 static int svc_deferred_recv(struct svc_rqst *rqstp);
79 static struct cache_deferred_req *svc_defer(struct cache_req *req);
80
81 /* apparently the "standard" is that clients close
82 * idle connections after 5 minutes, servers after
83 * 6 minutes
84 * http://www.connectathon.org/talks96/nfstcp.pdf
85 */
86 static int svc_conn_age_period = 6*60;
87
88 /*
89 * Queue up an idle server thread. Must have pool->sp_lock held.
90 * Note: this is really a stack rather than a queue, so that we only
91 * use as many different threads as we need, and the rest don't pollute
92 * the cache.
93 */
94 static inline void
95 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
96 {
97 list_add(&rqstp->rq_list, &pool->sp_threads);
98 }
99
100 /*
101 * Dequeue an nfsd thread. Must have pool->sp_lock held.
102 */
103 static inline void
104 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
105 {
106 list_del(&rqstp->rq_list);
107 }
108
109 /*
110 * Release an skbuff after use
111 */
112 static inline void
113 svc_release_skb(struct svc_rqst *rqstp)
114 {
115 struct sk_buff *skb = rqstp->rq_skbuff;
116 struct svc_deferred_req *dr = rqstp->rq_deferred;
117
118 if (skb) {
119 rqstp->rq_skbuff = NULL;
120
121 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
122 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
123 }
124 if (dr) {
125 rqstp->rq_deferred = NULL;
126 kfree(dr);
127 }
128 }
129
130 /*
131 * Any space to write?
132 */
133 static inline unsigned long
134 svc_sock_wspace(struct svc_sock *svsk)
135 {
136 int wspace;
137
138 if (svsk->sk_sock->type == SOCK_STREAM)
139 wspace = sk_stream_wspace(svsk->sk_sk);
140 else
141 wspace = sock_wspace(svsk->sk_sk);
142
143 return wspace;
144 }
145
146 /*
147 * Queue up a socket with data pending. If there are idle nfsd
148 * processes, wake 'em up.
149 *
150 */
151 static void
152 svc_sock_enqueue(struct svc_sock *svsk)
153 {
154 struct svc_serv *serv = svsk->sk_server;
155 struct svc_pool *pool;
156 struct svc_rqst *rqstp;
157 int cpu;
158
159 if (!(svsk->sk_flags &
160 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
161 return;
162 if (test_bit(SK_DEAD, &svsk->sk_flags))
163 return;
164
165 cpu = get_cpu();
166 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
167 put_cpu();
168
169 spin_lock_bh(&pool->sp_lock);
170
171 if (!list_empty(&pool->sp_threads) &&
172 !list_empty(&pool->sp_sockets))
173 printk(KERN_ERR
174 "svc_sock_enqueue: threads and sockets both waiting??\n");
175
176 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
177 /* Don't enqueue dead sockets */
178 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
179 goto out_unlock;
180 }
181
182 /* Mark socket as busy. It will remain in this state until the
183 * server has processed all pending data and put the socket back
184 * on the idle list. We update SK_BUSY atomically because
185 * it also guards against trying to enqueue the svc_sock twice.
186 */
187 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
188 /* Don't enqueue socket while already enqueued */
189 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
190 goto out_unlock;
191 }
192 BUG_ON(svsk->sk_pool != NULL);
193 svsk->sk_pool = pool;
194
195 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
196 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
197 > svc_sock_wspace(svsk))
198 && !test_bit(SK_CLOSE, &svsk->sk_flags)
199 && !test_bit(SK_CONN, &svsk->sk_flags)) {
200 /* Don't enqueue while not enough space for reply */
201 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
202 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
203 svc_sock_wspace(svsk));
204 svsk->sk_pool = NULL;
205 clear_bit(SK_BUSY, &svsk->sk_flags);
206 goto out_unlock;
207 }
208 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
209
210
211 if (!list_empty(&pool->sp_threads)) {
212 rqstp = list_entry(pool->sp_threads.next,
213 struct svc_rqst,
214 rq_list);
215 dprintk("svc: socket %p served by daemon %p\n",
216 svsk->sk_sk, rqstp);
217 svc_thread_dequeue(pool, rqstp);
218 if (rqstp->rq_sock)
219 printk(KERN_ERR
220 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
221 rqstp, rqstp->rq_sock);
222 rqstp->rq_sock = svsk;
223 atomic_inc(&svsk->sk_inuse);
224 rqstp->rq_reserved = serv->sv_max_mesg;
225 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
226 BUG_ON(svsk->sk_pool != pool);
227 wake_up(&rqstp->rq_wait);
228 } else {
229 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
230 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
231 BUG_ON(svsk->sk_pool != pool);
232 }
233
234 out_unlock:
235 spin_unlock_bh(&pool->sp_lock);
236 }
237
238 /*
239 * Dequeue the first socket. Must be called with the pool->sp_lock held.
240 */
241 static inline struct svc_sock *
242 svc_sock_dequeue(struct svc_pool *pool)
243 {
244 struct svc_sock *svsk;
245
246 if (list_empty(&pool->sp_sockets))
247 return NULL;
248
249 svsk = list_entry(pool->sp_sockets.next,
250 struct svc_sock, sk_ready);
251 list_del_init(&svsk->sk_ready);
252
253 dprintk("svc: socket %p dequeued, inuse=%d\n",
254 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
255
256 return svsk;
257 }
258
259 /*
260 * Having read something from a socket, check whether it
261 * needs to be re-enqueued.
262 * Note: SK_DATA only gets cleared when a read-attempt finds
263 * no (or insufficient) data.
264 */
265 static inline void
266 svc_sock_received(struct svc_sock *svsk)
267 {
268 svsk->sk_pool = NULL;
269 clear_bit(SK_BUSY, &svsk->sk_flags);
270 svc_sock_enqueue(svsk);
271 }
272
273
274 /**
275 * svc_reserve - change the space reserved for the reply to a request.
276 * @rqstp: The request in question
277 * @space: new max space to reserve
278 *
279 * Each request reserves some space on the output queue of the socket
280 * to make sure the reply fits. This function reduces that reserved
281 * space to be the amount of space used already, plus @space.
282 *
283 */
284 void svc_reserve(struct svc_rqst *rqstp, int space)
285 {
286 space += rqstp->rq_res.head[0].iov_len;
287
288 if (space < rqstp->rq_reserved) {
289 struct svc_sock *svsk = rqstp->rq_sock;
290 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
291 rqstp->rq_reserved = space;
292
293 svc_sock_enqueue(svsk);
294 }
295 }
296
297 /*
298 * Release a socket after use.
299 */
300 static inline void
301 svc_sock_put(struct svc_sock *svsk)
302 {
303 if (atomic_dec_and_test(&svsk->sk_inuse) &&
304 test_bit(SK_DEAD, &svsk->sk_flags)) {
305 dprintk("svc: releasing dead socket\n");
306 if (svsk->sk_sock->file)
307 sockfd_put(svsk->sk_sock);
308 else
309 sock_release(svsk->sk_sock);
310 if (svsk->sk_info_authunix != NULL)
311 svcauth_unix_info_release(svsk->sk_info_authunix);
312 kfree(svsk);
313 }
314 }
315
316 static void
317 svc_sock_release(struct svc_rqst *rqstp)
318 {
319 struct svc_sock *svsk = rqstp->rq_sock;
320
321 svc_release_skb(rqstp);
322
323 svc_free_res_pages(rqstp);
324 rqstp->rq_res.page_len = 0;
325 rqstp->rq_res.page_base = 0;
326
327
328 /* Reset response buffer and release
329 * the reservation.
330 * But first, check that enough space was reserved
331 * for the reply, otherwise we have a bug!
332 */
333 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
334 printk(KERN_ERR "RPC request reserved %d but used %d\n",
335 rqstp->rq_reserved,
336 rqstp->rq_res.len);
337
338 rqstp->rq_res.head[0].iov_len = 0;
339 svc_reserve(rqstp, 0);
340 rqstp->rq_sock = NULL;
341
342 svc_sock_put(svsk);
343 }
344
345 /*
346 * External function to wake up a server waiting for data
347 * This really only makes sense for services like lockd
348 * which have exactly one thread anyway.
349 */
350 void
351 svc_wake_up(struct svc_serv *serv)
352 {
353 struct svc_rqst *rqstp;
354 unsigned int i;
355 struct svc_pool *pool;
356
357 for (i = 0; i < serv->sv_nrpools; i++) {
358 pool = &serv->sv_pools[i];
359
360 spin_lock_bh(&pool->sp_lock);
361 if (!list_empty(&pool->sp_threads)) {
362 rqstp = list_entry(pool->sp_threads.next,
363 struct svc_rqst,
364 rq_list);
365 dprintk("svc: daemon %p woken up.\n", rqstp);
366 /*
367 svc_thread_dequeue(pool, rqstp);
368 rqstp->rq_sock = NULL;
369 */
370 wake_up(&rqstp->rq_wait);
371 }
372 spin_unlock_bh(&pool->sp_lock);
373 }
374 }
375
376 /*
377 * Generic sendto routine
378 */
379 static int
380 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
381 {
382 struct svc_sock *svsk = rqstp->rq_sock;
383 struct socket *sock = svsk->sk_sock;
384 int slen;
385 char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
386 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
387 struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
388 int len = 0;
389 int result;
390 int size;
391 struct page **ppage = xdr->pages;
392 size_t base = xdr->page_base;
393 unsigned int pglen = xdr->page_len;
394 unsigned int flags = MSG_MORE;
395
396 slen = xdr->len;
397
398 if (rqstp->rq_prot == IPPROTO_UDP) {
399 /* set the source and destination */
400 struct msghdr msg;
401 msg.msg_name = &rqstp->rq_addr;
402 msg.msg_namelen = sizeof(rqstp->rq_addr);
403 msg.msg_iov = NULL;
404 msg.msg_iovlen = 0;
405 msg.msg_flags = MSG_MORE;
406
407 msg.msg_control = cmh;
408 msg.msg_controllen = sizeof(buffer);
409 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
410 cmh->cmsg_level = SOL_IP;
411 cmh->cmsg_type = IP_PKTINFO;
412 pki->ipi_ifindex = 0;
413 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
414
415 if (sock_sendmsg(sock, &msg, 0) < 0)
416 goto out;
417 }
418
419 /* send head */
420 if (slen == xdr->head[0].iov_len)
421 flags = 0;
422 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
423 xdr->head[0].iov_len, flags);
424 if (len != xdr->head[0].iov_len)
425 goto out;
426 slen -= xdr->head[0].iov_len;
427 if (slen == 0)
428 goto out;
429
430 /* send page data */
431 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
432 while (pglen > 0) {
433 if (slen == size)
434 flags = 0;
435 result = kernel_sendpage(sock, *ppage, base, size, flags);
436 if (result > 0)
437 len += result;
438 if (result != size)
439 goto out;
440 slen -= size;
441 pglen -= size;
442 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
443 base = 0;
444 ppage++;
445 }
446 /* send tail */
447 if (xdr->tail[0].iov_len) {
448 result = kernel_sendpage(sock, rqstp->rq_respages[0],
449 ((unsigned long)xdr->tail[0].iov_base)
450 & (PAGE_SIZE-1),
451 xdr->tail[0].iov_len, 0);
452
453 if (result > 0)
454 len += result;
455 }
456 out:
457 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
458 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
459 rqstp->rq_addr.sin_addr.s_addr);
460
461 return len;
462 }
463
464 /*
465 * Report socket names for nfsdfs
466 */
467 static int one_sock_name(char *buf, struct svc_sock *svsk)
468 {
469 int len;
470
471 switch(svsk->sk_sk->sk_family) {
472 case AF_INET:
473 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
474 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
475 "udp" : "tcp",
476 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
477 inet_sk(svsk->sk_sk)->num);
478 break;
479 default:
480 len = sprintf(buf, "*unknown-%d*\n",
481 svsk->sk_sk->sk_family);
482 }
483 return len;
484 }
485
486 int
487 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
488 {
489 struct svc_sock *svsk, *closesk = NULL;
490 int len = 0;
491
492 if (!serv)
493 return 0;
494 spin_lock(&serv->sv_lock);
495 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
496 int onelen = one_sock_name(buf+len, svsk);
497 if (toclose && strcmp(toclose, buf+len) == 0)
498 closesk = svsk;
499 else
500 len += onelen;
501 }
502 spin_unlock(&serv->sv_lock);
503 if (closesk)
504 /* Should unregister with portmap, but you cannot
505 * unregister just one protocol...
506 */
507 svc_delete_socket(closesk);
508 else if (toclose)
509 return -ENOENT;
510 return len;
511 }
512 EXPORT_SYMBOL(svc_sock_names);
513
514 /*
515 * Check input queue length
516 */
517 static int
518 svc_recv_available(struct svc_sock *svsk)
519 {
520 struct socket *sock = svsk->sk_sock;
521 int avail, err;
522
523 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
524
525 return (err >= 0)? avail : err;
526 }
527
528 /*
529 * Generic recvfrom routine.
530 */
531 static int
532 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
533 {
534 struct msghdr msg;
535 struct socket *sock;
536 int len, alen;
537
538 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
539 sock = rqstp->rq_sock->sk_sock;
540
541 msg.msg_name = &rqstp->rq_addr;
542 msg.msg_namelen = sizeof(rqstp->rq_addr);
543 msg.msg_control = NULL;
544 msg.msg_controllen = 0;
545
546 msg.msg_flags = MSG_DONTWAIT;
547
548 len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
549
550 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
551 * possibly we should cache this in the svc_sock structure
552 * at accept time. FIXME
553 */
554 alen = sizeof(rqstp->rq_addr);
555 kernel_getpeername(sock, (struct sockaddr *)&rqstp->rq_addr, &alen);
556
557 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
558 rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
559
560 return len;
561 }
562
563 /*
564 * Set socket snd and rcv buffer lengths
565 */
566 static inline void
567 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
568 {
569 #if 0
570 mm_segment_t oldfs;
571 oldfs = get_fs(); set_fs(KERNEL_DS);
572 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
573 (char*)&snd, sizeof(snd));
574 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
575 (char*)&rcv, sizeof(rcv));
576 #else
577 /* sock_setsockopt limits use to sysctl_?mem_max,
578 * which isn't acceptable. Until that is made conditional
579 * on not having CAP_SYS_RESOURCE or similar, we go direct...
580 * DaveM said I could!
581 */
582 lock_sock(sock->sk);
583 sock->sk->sk_sndbuf = snd * 2;
584 sock->sk->sk_rcvbuf = rcv * 2;
585 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
586 release_sock(sock->sk);
587 #endif
588 }
589 /*
590 * INET callback when data has been received on the socket.
591 */
592 static void
593 svc_udp_data_ready(struct sock *sk, int count)
594 {
595 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
596
597 if (svsk) {
598 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
599 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
600 set_bit(SK_DATA, &svsk->sk_flags);
601 svc_sock_enqueue(svsk);
602 }
603 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
604 wake_up_interruptible(sk->sk_sleep);
605 }
606
607 /*
608 * INET callback when space is newly available on the socket.
609 */
610 static void
611 svc_write_space(struct sock *sk)
612 {
613 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
614
615 if (svsk) {
616 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
617 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
618 svc_sock_enqueue(svsk);
619 }
620
621 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
622 dprintk("RPC svc_write_space: someone sleeping on %p\n",
623 svsk);
624 wake_up_interruptible(sk->sk_sleep);
625 }
626 }
627
628 /*
629 * Receive a datagram from a UDP socket.
630 */
631 static int
632 svc_udp_recvfrom(struct svc_rqst *rqstp)
633 {
634 struct svc_sock *svsk = rqstp->rq_sock;
635 struct svc_serv *serv = svsk->sk_server;
636 struct sk_buff *skb;
637 int err, len;
638
639 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
640 /* udp sockets need large rcvbuf as all pending
641 * requests are still in that buffer. sndbuf must
642 * also be large enough that there is enough space
643 * for one reply per thread. We count all threads
644 * rather than threads in a particular pool, which
645 * provides an upper bound on the number of threads
646 * which will access the socket.
647 */
648 svc_sock_setbufsize(svsk->sk_sock,
649 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
650 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
651
652 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
653 svc_sock_received(svsk);
654 return svc_deferred_recv(rqstp);
655 }
656
657 clear_bit(SK_DATA, &svsk->sk_flags);
658 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
659 if (err == -EAGAIN) {
660 svc_sock_received(svsk);
661 return err;
662 }
663 /* possibly an icmp error */
664 dprintk("svc: recvfrom returned error %d\n", -err);
665 }
666 if (skb->tstamp.off_sec == 0) {
667 struct timeval tv;
668
669 tv.tv_sec = xtime.tv_sec;
670 tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
671 skb_set_timestamp(skb, &tv);
672 /* Don't enable netstamp, sunrpc doesn't
673 need that much accuracy */
674 }
675 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
676 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
677
678 /*
679 * Maybe more packets - kick another thread ASAP.
680 */
681 svc_sock_received(svsk);
682
683 len = skb->len - sizeof(struct udphdr);
684 rqstp->rq_arg.len = len;
685
686 rqstp->rq_prot = IPPROTO_UDP;
687
688 /* Get sender address */
689 rqstp->rq_addr.sin_family = AF_INET;
690 rqstp->rq_addr.sin_port = skb->h.uh->source;
691 rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
692 rqstp->rq_daddr = skb->nh.iph->daddr;
693
694 if (skb_is_nonlinear(skb)) {
695 /* we have to copy */
696 local_bh_disable();
697 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
698 local_bh_enable();
699 /* checksum error */
700 skb_free_datagram(svsk->sk_sk, skb);
701 return 0;
702 }
703 local_bh_enable();
704 skb_free_datagram(svsk->sk_sk, skb);
705 } else {
706 /* we can use it in-place */
707 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
708 rqstp->rq_arg.head[0].iov_len = len;
709 if (skb_checksum_complete(skb)) {
710 skb_free_datagram(svsk->sk_sk, skb);
711 return 0;
712 }
713 rqstp->rq_skbuff = skb;
714 }
715
716 rqstp->rq_arg.page_base = 0;
717 if (len <= rqstp->rq_arg.head[0].iov_len) {
718 rqstp->rq_arg.head[0].iov_len = len;
719 rqstp->rq_arg.page_len = 0;
720 rqstp->rq_respages = rqstp->rq_pages+1;
721 } else {
722 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
723 rqstp->rq_respages = rqstp->rq_pages + 1 +
724 (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
725 }
726
727 if (serv->sv_stats)
728 serv->sv_stats->netudpcnt++;
729
730 return len;
731 }
732
733 static int
734 svc_udp_sendto(struct svc_rqst *rqstp)
735 {
736 int error;
737
738 error = svc_sendto(rqstp, &rqstp->rq_res);
739 if (error == -ECONNREFUSED)
740 /* ICMP error on earlier request. */
741 error = svc_sendto(rqstp, &rqstp->rq_res);
742
743 return error;
744 }
745
746 static void
747 svc_udp_init(struct svc_sock *svsk)
748 {
749 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
750 svsk->sk_sk->sk_write_space = svc_write_space;
751 svsk->sk_recvfrom = svc_udp_recvfrom;
752 svsk->sk_sendto = svc_udp_sendto;
753
754 /* initialise setting must have enough space to
755 * receive and respond to one request.
756 * svc_udp_recvfrom will re-adjust if necessary
757 */
758 svc_sock_setbufsize(svsk->sk_sock,
759 3 * svsk->sk_server->sv_max_mesg,
760 3 * svsk->sk_server->sv_max_mesg);
761
762 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
763 set_bit(SK_CHNGBUF, &svsk->sk_flags);
764 }
765
766 /*
767 * A data_ready event on a listening socket means there's a connection
768 * pending. Do not use state_change as a substitute for it.
769 */
770 static void
771 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
772 {
773 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
774
775 dprintk("svc: socket %p TCP (listen) state change %d\n",
776 sk, sk->sk_state);
777
778 /*
779 * This callback may called twice when a new connection
780 * is established as a child socket inherits everything
781 * from a parent LISTEN socket.
782 * 1) data_ready method of the parent socket will be called
783 * when one of child sockets become ESTABLISHED.
784 * 2) data_ready method of the child socket may be called
785 * when it receives data before the socket is accepted.
786 * In case of 2, we should ignore it silently.
787 */
788 if (sk->sk_state == TCP_LISTEN) {
789 if (svsk) {
790 set_bit(SK_CONN, &svsk->sk_flags);
791 svc_sock_enqueue(svsk);
792 } else
793 printk("svc: socket %p: no user data\n", sk);
794 }
795
796 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
797 wake_up_interruptible_all(sk->sk_sleep);
798 }
799
800 /*
801 * A state change on a connected socket means it's dying or dead.
802 */
803 static void
804 svc_tcp_state_change(struct sock *sk)
805 {
806 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
807
808 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
809 sk, sk->sk_state, sk->sk_user_data);
810
811 if (!svsk)
812 printk("svc: socket %p: no user data\n", sk);
813 else {
814 set_bit(SK_CLOSE, &svsk->sk_flags);
815 svc_sock_enqueue(svsk);
816 }
817 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
818 wake_up_interruptible_all(sk->sk_sleep);
819 }
820
821 static void
822 svc_tcp_data_ready(struct sock *sk, int count)
823 {
824 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
825
826 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
827 sk, sk->sk_user_data);
828 if (svsk) {
829 set_bit(SK_DATA, &svsk->sk_flags);
830 svc_sock_enqueue(svsk);
831 }
832 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
833 wake_up_interruptible(sk->sk_sleep);
834 }
835
836 /*
837 * Accept a TCP connection
838 */
839 static void
840 svc_tcp_accept(struct svc_sock *svsk)
841 {
842 struct sockaddr_in sin;
843 struct svc_serv *serv = svsk->sk_server;
844 struct socket *sock = svsk->sk_sock;
845 struct socket *newsock;
846 struct svc_sock *newsvsk;
847 int err, slen;
848
849 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
850 if (!sock)
851 return;
852
853 clear_bit(SK_CONN, &svsk->sk_flags);
854 err = kernel_accept(sock, &newsock, O_NONBLOCK);
855 if (err < 0) {
856 if (err == -ENOMEM)
857 printk(KERN_WARNING "%s: no more sockets!\n",
858 serv->sv_name);
859 else if (err != -EAGAIN && net_ratelimit())
860 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
861 serv->sv_name, -err);
862 return;
863 }
864
865 set_bit(SK_CONN, &svsk->sk_flags);
866 svc_sock_enqueue(svsk);
867
868 slen = sizeof(sin);
869 err = kernel_getpeername(newsock, (struct sockaddr *) &sin, &slen);
870 if (err < 0) {
871 if (net_ratelimit())
872 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
873 serv->sv_name, -err);
874 goto failed; /* aborted connection or whatever */
875 }
876
877 /* Ideally, we would want to reject connections from unauthorized
878 * hosts here, but when we get encription, the IP of the host won't
879 * tell us anything. For now just warn about unpriv connections.
880 */
881 if (ntohs(sin.sin_port) >= 1024) {
882 dprintk(KERN_WARNING
883 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
884 serv->sv_name,
885 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
886 }
887
888 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
889 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
890
891 /* make sure that a write doesn't block forever when
892 * low on memory
893 */
894 newsock->sk->sk_sndtimeo = HZ*30;
895
896 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
897 goto failed;
898
899
900 /* make sure that we don't have too many active connections.
901 * If we have, something must be dropped.
902 *
903 * There's no point in trying to do random drop here for
904 * DoS prevention. The NFS clients does 1 reconnect in 15
905 * seconds. An attacker can easily beat that.
906 *
907 * The only somewhat efficient mechanism would be if drop
908 * old connections from the same IP first. But right now
909 * we don't even record the client IP in svc_sock.
910 */
911 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
912 struct svc_sock *svsk = NULL;
913 spin_lock_bh(&serv->sv_lock);
914 if (!list_empty(&serv->sv_tempsocks)) {
915 if (net_ratelimit()) {
916 /* Try to help the admin */
917 printk(KERN_NOTICE "%s: too many open TCP "
918 "sockets, consider increasing the "
919 "number of nfsd threads\n",
920 serv->sv_name);
921 printk(KERN_NOTICE "%s: last TCP connect from "
922 "%u.%u.%u.%u:%d\n",
923 serv->sv_name,
924 NIPQUAD(sin.sin_addr.s_addr),
925 ntohs(sin.sin_port));
926 }
927 /*
928 * Always select the oldest socket. It's not fair,
929 * but so is life
930 */
931 svsk = list_entry(serv->sv_tempsocks.prev,
932 struct svc_sock,
933 sk_list);
934 set_bit(SK_CLOSE, &svsk->sk_flags);
935 atomic_inc(&svsk->sk_inuse);
936 }
937 spin_unlock_bh(&serv->sv_lock);
938
939 if (svsk) {
940 svc_sock_enqueue(svsk);
941 svc_sock_put(svsk);
942 }
943
944 }
945
946 if (serv->sv_stats)
947 serv->sv_stats->nettcpconn++;
948
949 return;
950
951 failed:
952 sock_release(newsock);
953 return;
954 }
955
956 /*
957 * Receive data from a TCP socket.
958 */
959 static int
960 svc_tcp_recvfrom(struct svc_rqst *rqstp)
961 {
962 struct svc_sock *svsk = rqstp->rq_sock;
963 struct svc_serv *serv = svsk->sk_server;
964 int len;
965 struct kvec *vec;
966 int pnum, vlen;
967
968 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
969 svsk, test_bit(SK_DATA, &svsk->sk_flags),
970 test_bit(SK_CONN, &svsk->sk_flags),
971 test_bit(SK_CLOSE, &svsk->sk_flags));
972
973 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
974 svc_sock_received(svsk);
975 return svc_deferred_recv(rqstp);
976 }
977
978 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
979 svc_delete_socket(svsk);
980 return 0;
981 }
982
983 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
984 svc_tcp_accept(svsk);
985 svc_sock_received(svsk);
986 return 0;
987 }
988
989 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
990 /* sndbuf needs to have room for one request
991 * per thread, otherwise we can stall even when the
992 * network isn't a bottleneck.
993 *
994 * We count all threads rather than threads in a
995 * particular pool, which provides an upper bound
996 * on the number of threads which will access the socket.
997 *
998 * rcvbuf just needs to be able to hold a few requests.
999 * Normally they will be removed from the queue
1000 * as soon a a complete request arrives.
1001 */
1002 svc_sock_setbufsize(svsk->sk_sock,
1003 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1004 3 * serv->sv_max_mesg);
1005
1006 clear_bit(SK_DATA, &svsk->sk_flags);
1007
1008 /* Receive data. If we haven't got the record length yet, get
1009 * the next four bytes. Otherwise try to gobble up as much as
1010 * possible up to the complete record length.
1011 */
1012 if (svsk->sk_tcplen < 4) {
1013 unsigned long want = 4 - svsk->sk_tcplen;
1014 struct kvec iov;
1015
1016 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1017 iov.iov_len = want;
1018 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1019 goto error;
1020 svsk->sk_tcplen += len;
1021
1022 if (len < want) {
1023 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1024 len, want);
1025 svc_sock_received(svsk);
1026 return -EAGAIN; /* record header not complete */
1027 }
1028
1029 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1030 if (!(svsk->sk_reclen & 0x80000000)) {
1031 /* FIXME: technically, a record can be fragmented,
1032 * and non-terminal fragments will not have the top
1033 * bit set in the fragment length header.
1034 * But apparently no known nfs clients send fragmented
1035 * records. */
1036 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n",
1037 (unsigned long) svsk->sk_reclen);
1038 goto err_delete;
1039 }
1040 svsk->sk_reclen &= 0x7fffffff;
1041 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1042 if (svsk->sk_reclen > serv->sv_max_mesg) {
1043 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n",
1044 (unsigned long) svsk->sk_reclen);
1045 goto err_delete;
1046 }
1047 }
1048
1049 /* Check whether enough data is available */
1050 len = svc_recv_available(svsk);
1051 if (len < 0)
1052 goto error;
1053
1054 if (len < svsk->sk_reclen) {
1055 dprintk("svc: incomplete TCP record (%d of %d)\n",
1056 len, svsk->sk_reclen);
1057 svc_sock_received(svsk);
1058 return -EAGAIN; /* record not complete */
1059 }
1060 len = svsk->sk_reclen;
1061 set_bit(SK_DATA, &svsk->sk_flags);
1062
1063 vec = rqstp->rq_vec;
1064 vec[0] = rqstp->rq_arg.head[0];
1065 vlen = PAGE_SIZE;
1066 pnum = 1;
1067 while (vlen < len) {
1068 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1069 vec[pnum].iov_len = PAGE_SIZE;
1070 pnum++;
1071 vlen += PAGE_SIZE;
1072 }
1073 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1074
1075 /* Now receive data */
1076 len = svc_recvfrom(rqstp, vec, pnum, len);
1077 if (len < 0)
1078 goto error;
1079
1080 dprintk("svc: TCP complete record (%d bytes)\n", len);
1081 rqstp->rq_arg.len = len;
1082 rqstp->rq_arg.page_base = 0;
1083 if (len <= rqstp->rq_arg.head[0].iov_len) {
1084 rqstp->rq_arg.head[0].iov_len = len;
1085 rqstp->rq_arg.page_len = 0;
1086 } else {
1087 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1088 }
1089
1090 rqstp->rq_skbuff = NULL;
1091 rqstp->rq_prot = IPPROTO_TCP;
1092
1093 /* Reset TCP read info */
1094 svsk->sk_reclen = 0;
1095 svsk->sk_tcplen = 0;
1096
1097 svc_sock_received(svsk);
1098 if (serv->sv_stats)
1099 serv->sv_stats->nettcpcnt++;
1100
1101 return len;
1102
1103 err_delete:
1104 svc_delete_socket(svsk);
1105 return -EAGAIN;
1106
1107 error:
1108 if (len == -EAGAIN) {
1109 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1110 svc_sock_received(svsk);
1111 } else {
1112 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1113 svsk->sk_server->sv_name, -len);
1114 goto err_delete;
1115 }
1116
1117 return len;
1118 }
1119
1120 /*
1121 * Send out data on TCP socket.
1122 */
1123 static int
1124 svc_tcp_sendto(struct svc_rqst *rqstp)
1125 {
1126 struct xdr_buf *xbufp = &rqstp->rq_res;
1127 int sent;
1128 __be32 reclen;
1129
1130 /* Set up the first element of the reply kvec.
1131 * Any other kvecs that may be in use have been taken
1132 * care of by the server implementation itself.
1133 */
1134 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1135 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1136
1137 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1138 return -ENOTCONN;
1139
1140 sent = svc_sendto(rqstp, &rqstp->rq_res);
1141 if (sent != xbufp->len) {
1142 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1143 rqstp->rq_sock->sk_server->sv_name,
1144 (sent<0)?"got error":"sent only",
1145 sent, xbufp->len);
1146 svc_delete_socket(rqstp->rq_sock);
1147 sent = -EAGAIN;
1148 }
1149 return sent;
1150 }
1151
1152 static void
1153 svc_tcp_init(struct svc_sock *svsk)
1154 {
1155 struct sock *sk = svsk->sk_sk;
1156 struct tcp_sock *tp = tcp_sk(sk);
1157
1158 svsk->sk_recvfrom = svc_tcp_recvfrom;
1159 svsk->sk_sendto = svc_tcp_sendto;
1160
1161 if (sk->sk_state == TCP_LISTEN) {
1162 dprintk("setting up TCP socket for listening\n");
1163 sk->sk_data_ready = svc_tcp_listen_data_ready;
1164 set_bit(SK_CONN, &svsk->sk_flags);
1165 } else {
1166 dprintk("setting up TCP socket for reading\n");
1167 sk->sk_state_change = svc_tcp_state_change;
1168 sk->sk_data_ready = svc_tcp_data_ready;
1169 sk->sk_write_space = svc_write_space;
1170
1171 svsk->sk_reclen = 0;
1172 svsk->sk_tcplen = 0;
1173
1174 tp->nonagle = 1; /* disable Nagle's algorithm */
1175
1176 /* initialise setting must have enough space to
1177 * receive and respond to one request.
1178 * svc_tcp_recvfrom will re-adjust if necessary
1179 */
1180 svc_sock_setbufsize(svsk->sk_sock,
1181 3 * svsk->sk_server->sv_max_mesg,
1182 3 * svsk->sk_server->sv_max_mesg);
1183
1184 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1185 set_bit(SK_DATA, &svsk->sk_flags);
1186 if (sk->sk_state != TCP_ESTABLISHED)
1187 set_bit(SK_CLOSE, &svsk->sk_flags);
1188 }
1189 }
1190
1191 void
1192 svc_sock_update_bufs(struct svc_serv *serv)
1193 {
1194 /*
1195 * The number of server threads has changed. Update
1196 * rcvbuf and sndbuf accordingly on all sockets
1197 */
1198 struct list_head *le;
1199
1200 spin_lock_bh(&serv->sv_lock);
1201 list_for_each(le, &serv->sv_permsocks) {
1202 struct svc_sock *svsk =
1203 list_entry(le, struct svc_sock, sk_list);
1204 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1205 }
1206 list_for_each(le, &serv->sv_tempsocks) {
1207 struct svc_sock *svsk =
1208 list_entry(le, struct svc_sock, sk_list);
1209 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1210 }
1211 spin_unlock_bh(&serv->sv_lock);
1212 }
1213
1214 /*
1215 * Receive the next request on any socket. This code is carefully
1216 * organised not to touch any cachelines in the shared svc_serv
1217 * structure, only cachelines in the local svc_pool.
1218 */
1219 int
1220 svc_recv(struct svc_rqst *rqstp, long timeout)
1221 {
1222 struct svc_sock *svsk =NULL;
1223 struct svc_serv *serv = rqstp->rq_server;
1224 struct svc_pool *pool = rqstp->rq_pool;
1225 int len, i;
1226 int pages;
1227 struct xdr_buf *arg;
1228 DECLARE_WAITQUEUE(wait, current);
1229
1230 dprintk("svc: server %p waiting for data (to = %ld)\n",
1231 rqstp, timeout);
1232
1233 if (rqstp->rq_sock)
1234 printk(KERN_ERR
1235 "svc_recv: service %p, socket not NULL!\n",
1236 rqstp);
1237 if (waitqueue_active(&rqstp->rq_wait))
1238 printk(KERN_ERR
1239 "svc_recv: service %p, wait queue active!\n",
1240 rqstp);
1241
1242
1243 /* now allocate needed pages. If we get a failure, sleep briefly */
1244 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1245 for (i=0; i < pages ; i++)
1246 while (rqstp->rq_pages[i] == NULL) {
1247 struct page *p = alloc_page(GFP_KERNEL);
1248 if (!p)
1249 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1250 rqstp->rq_pages[i] = p;
1251 }
1252
1253 /* Make arg->head point to first page and arg->pages point to rest */
1254 arg = &rqstp->rq_arg;
1255 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1256 arg->head[0].iov_len = PAGE_SIZE;
1257 arg->pages = rqstp->rq_pages + 1;
1258 arg->page_base = 0;
1259 /* save at least one page for response */
1260 arg->page_len = (pages-2)*PAGE_SIZE;
1261 arg->len = (pages-1)*PAGE_SIZE;
1262 arg->tail[0].iov_len = 0;
1263
1264 try_to_freeze();
1265 cond_resched();
1266 if (signalled())
1267 return -EINTR;
1268
1269 spin_lock_bh(&pool->sp_lock);
1270 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1271 rqstp->rq_sock = svsk;
1272 atomic_inc(&svsk->sk_inuse);
1273 rqstp->rq_reserved = serv->sv_max_mesg;
1274 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1275 } else {
1276 /* No data pending. Go to sleep */
1277 svc_thread_enqueue(pool, rqstp);
1278
1279 /*
1280 * We have to be able to interrupt this wait
1281 * to bring down the daemons ...
1282 */
1283 set_current_state(TASK_INTERRUPTIBLE);
1284 add_wait_queue(&rqstp->rq_wait, &wait);
1285 spin_unlock_bh(&pool->sp_lock);
1286
1287 schedule_timeout(timeout);
1288
1289 try_to_freeze();
1290
1291 spin_lock_bh(&pool->sp_lock);
1292 remove_wait_queue(&rqstp->rq_wait, &wait);
1293
1294 if (!(svsk = rqstp->rq_sock)) {
1295 svc_thread_dequeue(pool, rqstp);
1296 spin_unlock_bh(&pool->sp_lock);
1297 dprintk("svc: server %p, no data yet\n", rqstp);
1298 return signalled()? -EINTR : -EAGAIN;
1299 }
1300 }
1301 spin_unlock_bh(&pool->sp_lock);
1302
1303 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1304 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1305 len = svsk->sk_recvfrom(rqstp);
1306 dprintk("svc: got len=%d\n", len);
1307
1308 /* No data, incomplete (TCP) read, or accept() */
1309 if (len == 0 || len == -EAGAIN) {
1310 rqstp->rq_res.len = 0;
1311 svc_sock_release(rqstp);
1312 return -EAGAIN;
1313 }
1314 svsk->sk_lastrecv = get_seconds();
1315 clear_bit(SK_OLD, &svsk->sk_flags);
1316
1317 rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024;
1318 rqstp->rq_chandle.defer = svc_defer;
1319
1320 if (serv->sv_stats)
1321 serv->sv_stats->netcnt++;
1322 return len;
1323 }
1324
1325 /*
1326 * Drop request
1327 */
1328 void
1329 svc_drop(struct svc_rqst *rqstp)
1330 {
1331 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1332 svc_sock_release(rqstp);
1333 }
1334
1335 /*
1336 * Return reply to client.
1337 */
1338 int
1339 svc_send(struct svc_rqst *rqstp)
1340 {
1341 struct svc_sock *svsk;
1342 int len;
1343 struct xdr_buf *xb;
1344
1345 if ((svsk = rqstp->rq_sock) == NULL) {
1346 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1347 __FILE__, __LINE__);
1348 return -EFAULT;
1349 }
1350
1351 /* release the receive skb before sending the reply */
1352 svc_release_skb(rqstp);
1353
1354 /* calculate over-all length */
1355 xb = & rqstp->rq_res;
1356 xb->len = xb->head[0].iov_len +
1357 xb->page_len +
1358 xb->tail[0].iov_len;
1359
1360 /* Grab svsk->sk_mutex to serialize outgoing data. */
1361 mutex_lock(&svsk->sk_mutex);
1362 if (test_bit(SK_DEAD, &svsk->sk_flags))
1363 len = -ENOTCONN;
1364 else
1365 len = svsk->sk_sendto(rqstp);
1366 mutex_unlock(&svsk->sk_mutex);
1367 svc_sock_release(rqstp);
1368
1369 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1370 return 0;
1371 return len;
1372 }
1373
1374 /*
1375 * Timer function to close old temporary sockets, using
1376 * a mark-and-sweep algorithm.
1377 */
1378 static void
1379 svc_age_temp_sockets(unsigned long closure)
1380 {
1381 struct svc_serv *serv = (struct svc_serv *)closure;
1382 struct svc_sock *svsk;
1383 struct list_head *le, *next;
1384 LIST_HEAD(to_be_aged);
1385
1386 dprintk("svc_age_temp_sockets\n");
1387
1388 if (!spin_trylock_bh(&serv->sv_lock)) {
1389 /* busy, try again 1 sec later */
1390 dprintk("svc_age_temp_sockets: busy\n");
1391 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1392 return;
1393 }
1394
1395 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1396 svsk = list_entry(le, struct svc_sock, sk_list);
1397
1398 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1399 continue;
1400 if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1401 continue;
1402 atomic_inc(&svsk->sk_inuse);
1403 list_move(le, &to_be_aged);
1404 set_bit(SK_CLOSE, &svsk->sk_flags);
1405 set_bit(SK_DETACHED, &svsk->sk_flags);
1406 }
1407 spin_unlock_bh(&serv->sv_lock);
1408
1409 while (!list_empty(&to_be_aged)) {
1410 le = to_be_aged.next;
1411 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1412 list_del_init(le);
1413 svsk = list_entry(le, struct svc_sock, sk_list);
1414
1415 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1416 svsk, get_seconds() - svsk->sk_lastrecv);
1417
1418 /* a thread will dequeue and close it soon */
1419 svc_sock_enqueue(svsk);
1420 svc_sock_put(svsk);
1421 }
1422
1423 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1424 }
1425
1426 /*
1427 * Initialize socket for RPC use and create svc_sock struct
1428 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1429 */
1430 static struct svc_sock *
1431 svc_setup_socket(struct svc_serv *serv, struct socket *sock,
1432 int *errp, int pmap_register)
1433 {
1434 struct svc_sock *svsk;
1435 struct sock *inet;
1436
1437 dprintk("svc: svc_setup_socket %p\n", sock);
1438 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1439 *errp = -ENOMEM;
1440 return NULL;
1441 }
1442
1443 inet = sock->sk;
1444
1445 /* Register socket with portmapper */
1446 if (*errp >= 0 && pmap_register)
1447 *errp = svc_register(serv, inet->sk_protocol,
1448 ntohs(inet_sk(inet)->sport));
1449
1450 if (*errp < 0) {
1451 kfree(svsk);
1452 return NULL;
1453 }
1454
1455 set_bit(SK_BUSY, &svsk->sk_flags);
1456 inet->sk_user_data = svsk;
1457 svsk->sk_sock = sock;
1458 svsk->sk_sk = inet;
1459 svsk->sk_ostate = inet->sk_state_change;
1460 svsk->sk_odata = inet->sk_data_ready;
1461 svsk->sk_owspace = inet->sk_write_space;
1462 svsk->sk_server = serv;
1463 atomic_set(&svsk->sk_inuse, 0);
1464 svsk->sk_lastrecv = get_seconds();
1465 spin_lock_init(&svsk->sk_defer_lock);
1466 INIT_LIST_HEAD(&svsk->sk_deferred);
1467 INIT_LIST_HEAD(&svsk->sk_ready);
1468 mutex_init(&svsk->sk_mutex);
1469
1470 /* Initialize the socket */
1471 if (sock->type == SOCK_DGRAM)
1472 svc_udp_init(svsk);
1473 else
1474 svc_tcp_init(svsk);
1475
1476 spin_lock_bh(&serv->sv_lock);
1477 if (!pmap_register) {
1478 set_bit(SK_TEMP, &svsk->sk_flags);
1479 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1480 serv->sv_tmpcnt++;
1481 if (serv->sv_temptimer.function == NULL) {
1482 /* setup timer to age temp sockets */
1483 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1484 (unsigned long)serv);
1485 mod_timer(&serv->sv_temptimer,
1486 jiffies + svc_conn_age_period * HZ);
1487 }
1488 } else {
1489 clear_bit(SK_TEMP, &svsk->sk_flags);
1490 list_add(&svsk->sk_list, &serv->sv_permsocks);
1491 }
1492 spin_unlock_bh(&serv->sv_lock);
1493
1494 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1495 svsk, svsk->sk_sk);
1496
1497 clear_bit(SK_BUSY, &svsk->sk_flags);
1498 svc_sock_enqueue(svsk);
1499 return svsk;
1500 }
1501
1502 int svc_addsock(struct svc_serv *serv,
1503 int fd,
1504 char *name_return,
1505 int *proto)
1506 {
1507 int err = 0;
1508 struct socket *so = sockfd_lookup(fd, &err);
1509 struct svc_sock *svsk = NULL;
1510
1511 if (!so)
1512 return err;
1513 if (so->sk->sk_family != AF_INET)
1514 err = -EAFNOSUPPORT;
1515 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1516 so->sk->sk_protocol != IPPROTO_UDP)
1517 err = -EPROTONOSUPPORT;
1518 else if (so->state > SS_UNCONNECTED)
1519 err = -EISCONN;
1520 else {
1521 svsk = svc_setup_socket(serv, so, &err, 1);
1522 if (svsk)
1523 err = 0;
1524 }
1525 if (err) {
1526 sockfd_put(so);
1527 return err;
1528 }
1529 if (proto) *proto = so->sk->sk_protocol;
1530 return one_sock_name(name_return, svsk);
1531 }
1532 EXPORT_SYMBOL_GPL(svc_addsock);
1533
1534 /*
1535 * Create socket for RPC service.
1536 */
1537 static int
1538 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
1539 {
1540 struct svc_sock *svsk;
1541 struct socket *sock;
1542 int error;
1543 int type;
1544
1545 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
1546 serv->sv_program->pg_name, protocol,
1547 NIPQUAD(sin->sin_addr.s_addr),
1548 ntohs(sin->sin_port));
1549
1550 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1551 printk(KERN_WARNING "svc: only UDP and TCP "
1552 "sockets supported\n");
1553 return -EINVAL;
1554 }
1555 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1556
1557 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
1558 return error;
1559
1560 if (type == SOCK_STREAM)
1561 sock->sk->sk_reuse = 1; /* allow address reuse */
1562 error = kernel_bind(sock, (struct sockaddr *) sin,
1563 sizeof(*sin));
1564 if (error < 0)
1565 goto bummer;
1566
1567 if (protocol == IPPROTO_TCP) {
1568 if ((error = kernel_listen(sock, 64)) < 0)
1569 goto bummer;
1570 }
1571
1572 if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
1573 return 0;
1574
1575 bummer:
1576 dprintk("svc: svc_create_socket error = %d\n", -error);
1577 sock_release(sock);
1578 return error;
1579 }
1580
1581 /*
1582 * Remove a dead socket
1583 */
1584 void
1585 svc_delete_socket(struct svc_sock *svsk)
1586 {
1587 struct svc_serv *serv;
1588 struct sock *sk;
1589
1590 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1591
1592 serv = svsk->sk_server;
1593 sk = svsk->sk_sk;
1594
1595 sk->sk_state_change = svsk->sk_ostate;
1596 sk->sk_data_ready = svsk->sk_odata;
1597 sk->sk_write_space = svsk->sk_owspace;
1598
1599 spin_lock_bh(&serv->sv_lock);
1600
1601 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1602 list_del_init(&svsk->sk_list);
1603 /*
1604 * We used to delete the svc_sock from whichever list
1605 * it's sk_ready node was on, but we don't actually
1606 * need to. This is because the only time we're called
1607 * while still attached to a queue, the queue itself
1608 * is about to be destroyed (in svc_destroy).
1609 */
1610 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags))
1611 if (test_bit(SK_TEMP, &svsk->sk_flags))
1612 serv->sv_tmpcnt--;
1613
1614 /* This atomic_inc should be needed - svc_delete_socket
1615 * should have the semantic of dropping a reference.
1616 * But it doesn't yet....
1617 */
1618 atomic_inc(&svsk->sk_inuse);
1619 spin_unlock_bh(&serv->sv_lock);
1620 svc_sock_put(svsk);
1621 }
1622
1623 /*
1624 * Make a socket for nfsd and lockd
1625 */
1626 int
1627 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
1628 {
1629 struct sockaddr_in sin;
1630
1631 dprintk("svc: creating socket proto = %d\n", protocol);
1632 sin.sin_family = AF_INET;
1633 sin.sin_addr.s_addr = INADDR_ANY;
1634 sin.sin_port = htons(port);
1635 return svc_create_socket(serv, protocol, &sin);
1636 }
1637
1638 /*
1639 * Handle defer and revisit of requests
1640 */
1641
1642 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1643 {
1644 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1645 struct svc_sock *svsk;
1646
1647 if (too_many) {
1648 svc_sock_put(dr->svsk);
1649 kfree(dr);
1650 return;
1651 }
1652 dprintk("revisit queued\n");
1653 svsk = dr->svsk;
1654 dr->svsk = NULL;
1655 spin_lock_bh(&svsk->sk_defer_lock);
1656 list_add(&dr->handle.recent, &svsk->sk_deferred);
1657 spin_unlock_bh(&svsk->sk_defer_lock);
1658 set_bit(SK_DEFERRED, &svsk->sk_flags);
1659 svc_sock_enqueue(svsk);
1660 svc_sock_put(svsk);
1661 }
1662
1663 static struct cache_deferred_req *
1664 svc_defer(struct cache_req *req)
1665 {
1666 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1667 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1668 struct svc_deferred_req *dr;
1669
1670 if (rqstp->rq_arg.page_len)
1671 return NULL; /* if more than a page, give up FIXME */
1672 if (rqstp->rq_deferred) {
1673 dr = rqstp->rq_deferred;
1674 rqstp->rq_deferred = NULL;
1675 } else {
1676 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1677 /* FIXME maybe discard if size too large */
1678 dr = kmalloc(size, GFP_KERNEL);
1679 if (dr == NULL)
1680 return NULL;
1681
1682 dr->handle.owner = rqstp->rq_server;
1683 dr->prot = rqstp->rq_prot;
1684 dr->addr = rqstp->rq_addr;
1685 dr->daddr = rqstp->rq_daddr;
1686 dr->argslen = rqstp->rq_arg.len >> 2;
1687 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1688 }
1689 atomic_inc(&rqstp->rq_sock->sk_inuse);
1690 dr->svsk = rqstp->rq_sock;
1691
1692 dr->handle.revisit = svc_revisit;
1693 return &dr->handle;
1694 }
1695
1696 /*
1697 * recv data from a deferred request into an active one
1698 */
1699 static int svc_deferred_recv(struct svc_rqst *rqstp)
1700 {
1701 struct svc_deferred_req *dr = rqstp->rq_deferred;
1702
1703 rqstp->rq_arg.head[0].iov_base = dr->args;
1704 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1705 rqstp->rq_arg.page_len = 0;
1706 rqstp->rq_arg.len = dr->argslen<<2;
1707 rqstp->rq_prot = dr->prot;
1708 rqstp->rq_addr = dr->addr;
1709 rqstp->rq_daddr = dr->daddr;
1710 rqstp->rq_respages = rqstp->rq_pages;
1711 return dr->argslen<<2;
1712 }
1713
1714
1715 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1716 {
1717 struct svc_deferred_req *dr = NULL;
1718
1719 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1720 return NULL;
1721 spin_lock_bh(&svsk->sk_defer_lock);
1722 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1723 if (!list_empty(&svsk->sk_deferred)) {
1724 dr = list_entry(svsk->sk_deferred.next,
1725 struct svc_deferred_req,
1726 handle.recent);
1727 list_del_init(&dr->handle.recent);
1728 set_bit(SK_DEFERRED, &svsk->sk_flags);
1729 }
1730 spin_unlock_bh(&svsk->sk_defer_lock);
1731 return dr;
1732 }