sunrpc: move the close processing after do recvfrom method
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16
17 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
18
19 #define SVC_MAX_WAKING 5
20
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25
26 /* apparently the "standard" is that clients close
27 * idle connections after 5 minutes, servers after
28 * 6 minutes
29 * http://www.connectathon.org/talks96/nfstcp.pdf
30 */
31 static int svc_conn_age_period = 6*60;
32
33 /* List of registered transport classes */
34 static DEFINE_SPINLOCK(svc_xprt_class_lock);
35 static LIST_HEAD(svc_xprt_class_list);
36
37 /* SMP locking strategy:
38 *
39 * svc_pool->sp_lock protects most of the fields of that pool.
40 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
41 * when both need to be taken (rare), svc_serv->sv_lock is first.
42 * BKL protects svc_serv->sv_nrthread.
43 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
44 * and the ->sk_info_authunix cache.
45 *
46 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
47 * enqueued multiply. During normal transport processing this bit
48 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
49 * Providers should not manipulate this bit directly.
50 *
51 * Some flags can be set to certain values at any time
52 * providing that certain rules are followed:
53 *
54 * XPT_CONN, XPT_DATA:
55 * - Can be set or cleared at any time.
56 * - After a set, svc_xprt_enqueue must be called to enqueue
57 * the transport for processing.
58 * - After a clear, the transport must be read/accepted.
59 * If this succeeds, it must be set again.
60 * XPT_CLOSE:
61 * - Can set at any time. It is never cleared.
62 * XPT_DEAD:
63 * - Can only be set while XPT_BUSY is held which ensures
64 * that no other thread will be using the transport or will
65 * try to set XPT_DEAD.
66 */
67
68 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
69 {
70 struct svc_xprt_class *cl;
71 int res = -EEXIST;
72
73 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
74
75 INIT_LIST_HEAD(&xcl->xcl_list);
76 spin_lock(&svc_xprt_class_lock);
77 /* Make sure there isn't already a class with the same name */
78 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
79 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
80 goto out;
81 }
82 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
83 res = 0;
84 out:
85 spin_unlock(&svc_xprt_class_lock);
86 return res;
87 }
88 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
89
90 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
91 {
92 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
93 spin_lock(&svc_xprt_class_lock);
94 list_del_init(&xcl->xcl_list);
95 spin_unlock(&svc_xprt_class_lock);
96 }
97 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
98
99 /*
100 * Format the transport list for printing
101 */
102 int svc_print_xprts(char *buf, int maxlen)
103 {
104 struct list_head *le;
105 char tmpstr[80];
106 int len = 0;
107 buf[0] = '\0';
108
109 spin_lock(&svc_xprt_class_lock);
110 list_for_each(le, &svc_xprt_class_list) {
111 int slen;
112 struct svc_xprt_class *xcl =
113 list_entry(le, struct svc_xprt_class, xcl_list);
114
115 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
116 slen = strlen(tmpstr);
117 if (len + slen > maxlen)
118 break;
119 len += slen;
120 strcat(buf, tmpstr);
121 }
122 spin_unlock(&svc_xprt_class_lock);
123
124 return len;
125 }
126
127 static void svc_xprt_free(struct kref *kref)
128 {
129 struct svc_xprt *xprt =
130 container_of(kref, struct svc_xprt, xpt_ref);
131 struct module *owner = xprt->xpt_class->xcl_owner;
132 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)
133 && xprt->xpt_auth_cache != NULL)
134 svcauth_unix_info_release(xprt->xpt_auth_cache);
135 xprt->xpt_ops->xpo_free(xprt);
136 module_put(owner);
137 }
138
139 void svc_xprt_put(struct svc_xprt *xprt)
140 {
141 kref_put(&xprt->xpt_ref, svc_xprt_free);
142 }
143 EXPORT_SYMBOL_GPL(svc_xprt_put);
144
145 /*
146 * Called by transport drivers to initialize the transport independent
147 * portion of the transport instance.
148 */
149 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
150 struct svc_serv *serv)
151 {
152 memset(xprt, 0, sizeof(*xprt));
153 xprt->xpt_class = xcl;
154 xprt->xpt_ops = xcl->xcl_ops;
155 kref_init(&xprt->xpt_ref);
156 xprt->xpt_server = serv;
157 INIT_LIST_HEAD(&xprt->xpt_list);
158 INIT_LIST_HEAD(&xprt->xpt_ready);
159 INIT_LIST_HEAD(&xprt->xpt_deferred);
160 mutex_init(&xprt->xpt_mutex);
161 spin_lock_init(&xprt->xpt_lock);
162 set_bit(XPT_BUSY, &xprt->xpt_flags);
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_init);
165
166 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
167 struct svc_serv *serv,
168 const int family,
169 const unsigned short port,
170 int flags)
171 {
172 struct sockaddr_in sin = {
173 .sin_family = AF_INET,
174 .sin_addr.s_addr = htonl(INADDR_ANY),
175 .sin_port = htons(port),
176 };
177 struct sockaddr_in6 sin6 = {
178 .sin6_family = AF_INET6,
179 .sin6_addr = IN6ADDR_ANY_INIT,
180 .sin6_port = htons(port),
181 };
182 struct sockaddr *sap;
183 size_t len;
184
185 switch (family) {
186 case PF_INET:
187 sap = (struct sockaddr *)&sin;
188 len = sizeof(sin);
189 break;
190 case PF_INET6:
191 sap = (struct sockaddr *)&sin6;
192 len = sizeof(sin6);
193 break;
194 default:
195 return ERR_PTR(-EAFNOSUPPORT);
196 }
197
198 return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
199 }
200
201 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
202 const int family, const unsigned short port,
203 int flags)
204 {
205 struct svc_xprt_class *xcl;
206
207 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
208 spin_lock(&svc_xprt_class_lock);
209 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
210 struct svc_xprt *newxprt;
211
212 if (strcmp(xprt_name, xcl->xcl_name))
213 continue;
214
215 if (!try_module_get(xcl->xcl_owner))
216 goto err;
217
218 spin_unlock(&svc_xprt_class_lock);
219 newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
220 if (IS_ERR(newxprt)) {
221 module_put(xcl->xcl_owner);
222 return PTR_ERR(newxprt);
223 }
224
225 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
226 spin_lock_bh(&serv->sv_lock);
227 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
228 spin_unlock_bh(&serv->sv_lock);
229 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
230 return svc_xprt_local_port(newxprt);
231 }
232 err:
233 spin_unlock(&svc_xprt_class_lock);
234 dprintk("svc: transport %s not found\n", xprt_name);
235 return -ENOENT;
236 }
237 EXPORT_SYMBOL_GPL(svc_create_xprt);
238
239 /*
240 * Copy the local and remote xprt addresses to the rqstp structure
241 */
242 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
243 {
244 struct sockaddr *sin;
245
246 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
247 rqstp->rq_addrlen = xprt->xpt_remotelen;
248
249 /*
250 * Destination address in request is needed for binding the
251 * source address in RPC replies/callbacks later.
252 */
253 sin = (struct sockaddr *)&xprt->xpt_local;
254 switch (sin->sa_family) {
255 case AF_INET:
256 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
257 break;
258 case AF_INET6:
259 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
260 break;
261 }
262 }
263 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
264
265 /**
266 * svc_print_addr - Format rq_addr field for printing
267 * @rqstp: svc_rqst struct containing address to print
268 * @buf: target buffer for formatted address
269 * @len: length of target buffer
270 *
271 */
272 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
273 {
274 return __svc_print_addr(svc_addr(rqstp), buf, len);
275 }
276 EXPORT_SYMBOL_GPL(svc_print_addr);
277
278 /*
279 * Queue up an idle server thread. Must have pool->sp_lock held.
280 * Note: this is really a stack rather than a queue, so that we only
281 * use as many different threads as we need, and the rest don't pollute
282 * the cache.
283 */
284 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
285 {
286 list_add(&rqstp->rq_list, &pool->sp_threads);
287 }
288
289 /*
290 * Dequeue an nfsd thread. Must have pool->sp_lock held.
291 */
292 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
293 {
294 list_del(&rqstp->rq_list);
295 }
296
297 /*
298 * Queue up a transport with data pending. If there are idle nfsd
299 * processes, wake 'em up.
300 *
301 */
302 void svc_xprt_enqueue(struct svc_xprt *xprt)
303 {
304 struct svc_serv *serv = xprt->xpt_server;
305 struct svc_pool *pool;
306 struct svc_rqst *rqstp;
307 int cpu;
308 int thread_avail;
309
310 if (!(xprt->xpt_flags &
311 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
312 return;
313
314 cpu = get_cpu();
315 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
316 put_cpu();
317
318 spin_lock_bh(&pool->sp_lock);
319
320 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
321 /* Don't enqueue dead transports */
322 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
323 goto out_unlock;
324 }
325
326 pool->sp_stats.packets++;
327
328 /* Mark transport as busy. It will remain in this state until
329 * the provider calls svc_xprt_received. We update XPT_BUSY
330 * atomically because it also guards against trying to enqueue
331 * the transport twice.
332 */
333 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
334 /* Don't enqueue transport while already enqueued */
335 dprintk("svc: transport %p busy, not enqueued\n", xprt);
336 goto out_unlock;
337 }
338 BUG_ON(xprt->xpt_pool != NULL);
339 xprt->xpt_pool = pool;
340
341 /* Handle pending connection */
342 if (test_bit(XPT_CONN, &xprt->xpt_flags))
343 goto process;
344
345 /* Handle close in-progress */
346 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
347 goto process;
348
349 /* Check if we have space to reply to a request */
350 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
351 /* Don't enqueue while not enough space for reply */
352 dprintk("svc: no write space, transport %p not enqueued\n",
353 xprt);
354 xprt->xpt_pool = NULL;
355 clear_bit(XPT_BUSY, &xprt->xpt_flags);
356 goto out_unlock;
357 }
358
359 process:
360 /* Work out whether threads are available */
361 thread_avail = !list_empty(&pool->sp_threads); /* threads are asleep */
362 if (pool->sp_nwaking >= SVC_MAX_WAKING) {
363 /* too many threads are runnable and trying to wake up */
364 thread_avail = 0;
365 pool->sp_stats.overloads_avoided++;
366 }
367
368 if (thread_avail) {
369 rqstp = list_entry(pool->sp_threads.next,
370 struct svc_rqst,
371 rq_list);
372 dprintk("svc: transport %p served by daemon %p\n",
373 xprt, rqstp);
374 svc_thread_dequeue(pool, rqstp);
375 if (rqstp->rq_xprt)
376 printk(KERN_ERR
377 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
378 rqstp, rqstp->rq_xprt);
379 rqstp->rq_xprt = xprt;
380 svc_xprt_get(xprt);
381 rqstp->rq_reserved = serv->sv_max_mesg;
382 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
383 rqstp->rq_waking = 1;
384 pool->sp_nwaking++;
385 pool->sp_stats.threads_woken++;
386 BUG_ON(xprt->xpt_pool != pool);
387 wake_up(&rqstp->rq_wait);
388 } else {
389 dprintk("svc: transport %p put into queue\n", xprt);
390 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
391 pool->sp_stats.sockets_queued++;
392 BUG_ON(xprt->xpt_pool != pool);
393 }
394
395 out_unlock:
396 spin_unlock_bh(&pool->sp_lock);
397 }
398 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
399
400 /*
401 * Dequeue the first transport. Must be called with the pool->sp_lock held.
402 */
403 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
404 {
405 struct svc_xprt *xprt;
406
407 if (list_empty(&pool->sp_sockets))
408 return NULL;
409
410 xprt = list_entry(pool->sp_sockets.next,
411 struct svc_xprt, xpt_ready);
412 list_del_init(&xprt->xpt_ready);
413
414 dprintk("svc: transport %p dequeued, inuse=%d\n",
415 xprt, atomic_read(&xprt->xpt_ref.refcount));
416
417 return xprt;
418 }
419
420 /*
421 * svc_xprt_received conditionally queues the transport for processing
422 * by another thread. The caller must hold the XPT_BUSY bit and must
423 * not thereafter touch transport data.
424 *
425 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
426 * insufficient) data.
427 */
428 void svc_xprt_received(struct svc_xprt *xprt)
429 {
430 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
431 xprt->xpt_pool = NULL;
432 clear_bit(XPT_BUSY, &xprt->xpt_flags);
433 svc_xprt_enqueue(xprt);
434 }
435 EXPORT_SYMBOL_GPL(svc_xprt_received);
436
437 /**
438 * svc_reserve - change the space reserved for the reply to a request.
439 * @rqstp: The request in question
440 * @space: new max space to reserve
441 *
442 * Each request reserves some space on the output queue of the transport
443 * to make sure the reply fits. This function reduces that reserved
444 * space to be the amount of space used already, plus @space.
445 *
446 */
447 void svc_reserve(struct svc_rqst *rqstp, int space)
448 {
449 space += rqstp->rq_res.head[0].iov_len;
450
451 if (space < rqstp->rq_reserved) {
452 struct svc_xprt *xprt = rqstp->rq_xprt;
453 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
454 rqstp->rq_reserved = space;
455
456 svc_xprt_enqueue(xprt);
457 }
458 }
459 EXPORT_SYMBOL_GPL(svc_reserve);
460
461 static void svc_xprt_release(struct svc_rqst *rqstp)
462 {
463 struct svc_xprt *xprt = rqstp->rq_xprt;
464
465 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
466
467 kfree(rqstp->rq_deferred);
468 rqstp->rq_deferred = NULL;
469
470 svc_free_res_pages(rqstp);
471 rqstp->rq_res.page_len = 0;
472 rqstp->rq_res.page_base = 0;
473
474 /* Reset response buffer and release
475 * the reservation.
476 * But first, check that enough space was reserved
477 * for the reply, otherwise we have a bug!
478 */
479 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
480 printk(KERN_ERR "RPC request reserved %d but used %d\n",
481 rqstp->rq_reserved,
482 rqstp->rq_res.len);
483
484 rqstp->rq_res.head[0].iov_len = 0;
485 svc_reserve(rqstp, 0);
486 rqstp->rq_xprt = NULL;
487
488 svc_xprt_put(xprt);
489 }
490
491 /*
492 * External function to wake up a server waiting for data
493 * This really only makes sense for services like lockd
494 * which have exactly one thread anyway.
495 */
496 void svc_wake_up(struct svc_serv *serv)
497 {
498 struct svc_rqst *rqstp;
499 unsigned int i;
500 struct svc_pool *pool;
501
502 for (i = 0; i < serv->sv_nrpools; i++) {
503 pool = &serv->sv_pools[i];
504
505 spin_lock_bh(&pool->sp_lock);
506 if (!list_empty(&pool->sp_threads)) {
507 rqstp = list_entry(pool->sp_threads.next,
508 struct svc_rqst,
509 rq_list);
510 dprintk("svc: daemon %p woken up.\n", rqstp);
511 /*
512 svc_thread_dequeue(pool, rqstp);
513 rqstp->rq_xprt = NULL;
514 */
515 wake_up(&rqstp->rq_wait);
516 }
517 spin_unlock_bh(&pool->sp_lock);
518 }
519 }
520 EXPORT_SYMBOL_GPL(svc_wake_up);
521
522 int svc_port_is_privileged(struct sockaddr *sin)
523 {
524 switch (sin->sa_family) {
525 case AF_INET:
526 return ntohs(((struct sockaddr_in *)sin)->sin_port)
527 < PROT_SOCK;
528 case AF_INET6:
529 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
530 < PROT_SOCK;
531 default:
532 return 0;
533 }
534 }
535
536 /*
537 * Make sure that we don't have too many active connections. If we have,
538 * something must be dropped. It's not clear what will happen if we allow
539 * "too many" connections, but when dealing with network-facing software,
540 * we have to code defensively. Here we do that by imposing hard limits.
541 *
542 * There's no point in trying to do random drop here for DoS
543 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
544 * attacker can easily beat that.
545 *
546 * The only somewhat efficient mechanism would be if drop old
547 * connections from the same IP first. But right now we don't even
548 * record the client IP in svc_sock.
549 *
550 * single-threaded services that expect a lot of clients will probably
551 * need to set sv_maxconn to override the default value which is based
552 * on the number of threads
553 */
554 static void svc_check_conn_limits(struct svc_serv *serv)
555 {
556 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
557 (serv->sv_nrthreads+3) * 20;
558
559 if (serv->sv_tmpcnt > limit) {
560 struct svc_xprt *xprt = NULL;
561 spin_lock_bh(&serv->sv_lock);
562 if (!list_empty(&serv->sv_tempsocks)) {
563 if (net_ratelimit()) {
564 /* Try to help the admin */
565 printk(KERN_NOTICE "%s: too many open "
566 "connections, consider increasing %s\n",
567 serv->sv_name, serv->sv_maxconn ?
568 "the max number of connections." :
569 "the number of threads.");
570 }
571 /*
572 * Always select the oldest connection. It's not fair,
573 * but so is life
574 */
575 xprt = list_entry(serv->sv_tempsocks.prev,
576 struct svc_xprt,
577 xpt_list);
578 set_bit(XPT_CLOSE, &xprt->xpt_flags);
579 svc_xprt_get(xprt);
580 }
581 spin_unlock_bh(&serv->sv_lock);
582
583 if (xprt) {
584 svc_xprt_enqueue(xprt);
585 svc_xprt_put(xprt);
586 }
587 }
588 }
589
590 /*
591 * Receive the next request on any transport. This code is carefully
592 * organised not to touch any cachelines in the shared svc_serv
593 * structure, only cachelines in the local svc_pool.
594 */
595 int svc_recv(struct svc_rqst *rqstp, long timeout)
596 {
597 struct svc_xprt *xprt = NULL;
598 struct svc_serv *serv = rqstp->rq_server;
599 struct svc_pool *pool = rqstp->rq_pool;
600 int len, i;
601 int pages;
602 struct xdr_buf *arg;
603 DECLARE_WAITQUEUE(wait, current);
604 long time_left;
605
606 dprintk("svc: server %p waiting for data (to = %ld)\n",
607 rqstp, timeout);
608
609 if (rqstp->rq_xprt)
610 printk(KERN_ERR
611 "svc_recv: service %p, transport not NULL!\n",
612 rqstp);
613 if (waitqueue_active(&rqstp->rq_wait))
614 printk(KERN_ERR
615 "svc_recv: service %p, wait queue active!\n",
616 rqstp);
617
618 /* now allocate needed pages. If we get a failure, sleep briefly */
619 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
620 for (i = 0; i < pages ; i++)
621 while (rqstp->rq_pages[i] == NULL) {
622 struct page *p = alloc_page(GFP_KERNEL);
623 if (!p) {
624 set_current_state(TASK_INTERRUPTIBLE);
625 if (signalled() || kthread_should_stop()) {
626 set_current_state(TASK_RUNNING);
627 return -EINTR;
628 }
629 schedule_timeout(msecs_to_jiffies(500));
630 }
631 rqstp->rq_pages[i] = p;
632 }
633 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
634 BUG_ON(pages >= RPCSVC_MAXPAGES);
635
636 /* Make arg->head point to first page and arg->pages point to rest */
637 arg = &rqstp->rq_arg;
638 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
639 arg->head[0].iov_len = PAGE_SIZE;
640 arg->pages = rqstp->rq_pages + 1;
641 arg->page_base = 0;
642 /* save at least one page for response */
643 arg->page_len = (pages-2)*PAGE_SIZE;
644 arg->len = (pages-1)*PAGE_SIZE;
645 arg->tail[0].iov_len = 0;
646
647 try_to_freeze();
648 cond_resched();
649 if (signalled() || kthread_should_stop())
650 return -EINTR;
651
652 spin_lock_bh(&pool->sp_lock);
653 if (rqstp->rq_waking) {
654 rqstp->rq_waking = 0;
655 pool->sp_nwaking--;
656 BUG_ON(pool->sp_nwaking < 0);
657 }
658 xprt = svc_xprt_dequeue(pool);
659 if (xprt) {
660 rqstp->rq_xprt = xprt;
661 svc_xprt_get(xprt);
662 rqstp->rq_reserved = serv->sv_max_mesg;
663 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
664 } else {
665 /* No data pending. Go to sleep */
666 svc_thread_enqueue(pool, rqstp);
667
668 /*
669 * We have to be able to interrupt this wait
670 * to bring down the daemons ...
671 */
672 set_current_state(TASK_INTERRUPTIBLE);
673
674 /*
675 * checking kthread_should_stop() here allows us to avoid
676 * locking and signalling when stopping kthreads that call
677 * svc_recv. If the thread has already been woken up, then
678 * we can exit here without sleeping. If not, then it
679 * it'll be woken up quickly during the schedule_timeout
680 */
681 if (kthread_should_stop()) {
682 set_current_state(TASK_RUNNING);
683 spin_unlock_bh(&pool->sp_lock);
684 return -EINTR;
685 }
686
687 add_wait_queue(&rqstp->rq_wait, &wait);
688 spin_unlock_bh(&pool->sp_lock);
689
690 time_left = schedule_timeout(timeout);
691
692 try_to_freeze();
693
694 spin_lock_bh(&pool->sp_lock);
695 remove_wait_queue(&rqstp->rq_wait, &wait);
696 if (!time_left)
697 pool->sp_stats.threads_timedout++;
698
699 xprt = rqstp->rq_xprt;
700 if (!xprt) {
701 svc_thread_dequeue(pool, rqstp);
702 spin_unlock_bh(&pool->sp_lock);
703 dprintk("svc: server %p, no data yet\n", rqstp);
704 if (signalled() || kthread_should_stop())
705 return -EINTR;
706 else
707 return -EAGAIN;
708 }
709 }
710 spin_unlock_bh(&pool->sp_lock);
711
712 len = 0;
713 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
714 struct svc_xprt *newxpt;
715 newxpt = xprt->xpt_ops->xpo_accept(xprt);
716 if (newxpt) {
717 /*
718 * We know this module_get will succeed because the
719 * listener holds a reference too
720 */
721 __module_get(newxpt->xpt_class->xcl_owner);
722 svc_check_conn_limits(xprt->xpt_server);
723 spin_lock_bh(&serv->sv_lock);
724 set_bit(XPT_TEMP, &newxpt->xpt_flags);
725 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
726 serv->sv_tmpcnt++;
727 if (serv->sv_temptimer.function == NULL) {
728 /* setup timer to age temp transports */
729 setup_timer(&serv->sv_temptimer,
730 svc_age_temp_xprts,
731 (unsigned long)serv);
732 mod_timer(&serv->sv_temptimer,
733 jiffies + svc_conn_age_period * HZ);
734 }
735 spin_unlock_bh(&serv->sv_lock);
736 svc_xprt_received(newxpt);
737 }
738 svc_xprt_received(xprt);
739 } else if (!test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
740 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
741 rqstp, pool->sp_id, xprt,
742 atomic_read(&xprt->xpt_ref.refcount));
743 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
744 if (rqstp->rq_deferred) {
745 svc_xprt_received(xprt);
746 len = svc_deferred_recv(rqstp);
747 } else
748 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
749 dprintk("svc: got len=%d\n", len);
750 }
751
752 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
753 dprintk("svc_recv: found XPT_CLOSE\n");
754 svc_delete_xprt(xprt);
755 }
756
757 /* No data, incomplete (TCP) read, or accept() */
758 if (len == 0 || len == -EAGAIN) {
759 rqstp->rq_res.len = 0;
760 svc_xprt_release(rqstp);
761 return -EAGAIN;
762 }
763 clear_bit(XPT_OLD, &xprt->xpt_flags);
764
765 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
766 rqstp->rq_chandle.defer = svc_defer;
767
768 if (serv->sv_stats)
769 serv->sv_stats->netcnt++;
770 return len;
771 }
772 EXPORT_SYMBOL_GPL(svc_recv);
773
774 /*
775 * Drop request
776 */
777 void svc_drop(struct svc_rqst *rqstp)
778 {
779 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
780 svc_xprt_release(rqstp);
781 }
782 EXPORT_SYMBOL_GPL(svc_drop);
783
784 /*
785 * Return reply to client.
786 */
787 int svc_send(struct svc_rqst *rqstp)
788 {
789 struct svc_xprt *xprt;
790 int len;
791 struct xdr_buf *xb;
792
793 xprt = rqstp->rq_xprt;
794 if (!xprt)
795 return -EFAULT;
796
797 /* release the receive skb before sending the reply */
798 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
799
800 /* calculate over-all length */
801 xb = &rqstp->rq_res;
802 xb->len = xb->head[0].iov_len +
803 xb->page_len +
804 xb->tail[0].iov_len;
805
806 /* Grab mutex to serialize outgoing data. */
807 mutex_lock(&xprt->xpt_mutex);
808 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
809 len = -ENOTCONN;
810 else
811 len = xprt->xpt_ops->xpo_sendto(rqstp);
812 mutex_unlock(&xprt->xpt_mutex);
813 svc_xprt_release(rqstp);
814
815 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
816 return 0;
817 return len;
818 }
819
820 /*
821 * Timer function to close old temporary transports, using
822 * a mark-and-sweep algorithm.
823 */
824 static void svc_age_temp_xprts(unsigned long closure)
825 {
826 struct svc_serv *serv = (struct svc_serv *)closure;
827 struct svc_xprt *xprt;
828 struct list_head *le, *next;
829 LIST_HEAD(to_be_aged);
830
831 dprintk("svc_age_temp_xprts\n");
832
833 if (!spin_trylock_bh(&serv->sv_lock)) {
834 /* busy, try again 1 sec later */
835 dprintk("svc_age_temp_xprts: busy\n");
836 mod_timer(&serv->sv_temptimer, jiffies + HZ);
837 return;
838 }
839
840 list_for_each_safe(le, next, &serv->sv_tempsocks) {
841 xprt = list_entry(le, struct svc_xprt, xpt_list);
842
843 /* First time through, just mark it OLD. Second time
844 * through, close it. */
845 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
846 continue;
847 if (atomic_read(&xprt->xpt_ref.refcount) > 1
848 || test_bit(XPT_BUSY, &xprt->xpt_flags))
849 continue;
850 svc_xprt_get(xprt);
851 list_move(le, &to_be_aged);
852 set_bit(XPT_CLOSE, &xprt->xpt_flags);
853 set_bit(XPT_DETACHED, &xprt->xpt_flags);
854 }
855 spin_unlock_bh(&serv->sv_lock);
856
857 while (!list_empty(&to_be_aged)) {
858 le = to_be_aged.next;
859 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
860 list_del_init(le);
861 xprt = list_entry(le, struct svc_xprt, xpt_list);
862
863 dprintk("queuing xprt %p for closing\n", xprt);
864
865 /* a thread will dequeue and close it soon */
866 svc_xprt_enqueue(xprt);
867 svc_xprt_put(xprt);
868 }
869
870 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
871 }
872
873 /*
874 * Remove a dead transport
875 */
876 void svc_delete_xprt(struct svc_xprt *xprt)
877 {
878 struct svc_serv *serv = xprt->xpt_server;
879 struct svc_deferred_req *dr;
880
881 /* Only do this once */
882 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
883 return;
884
885 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
886 xprt->xpt_ops->xpo_detach(xprt);
887
888 spin_lock_bh(&serv->sv_lock);
889 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
890 list_del_init(&xprt->xpt_list);
891 /*
892 * We used to delete the transport from whichever list
893 * it's sk_xprt.xpt_ready node was on, but we don't actually
894 * need to. This is because the only time we're called
895 * while still attached to a queue, the queue itself
896 * is about to be destroyed (in svc_destroy).
897 */
898 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
899 serv->sv_tmpcnt--;
900
901 for (dr = svc_deferred_dequeue(xprt); dr;
902 dr = svc_deferred_dequeue(xprt)) {
903 svc_xprt_put(xprt);
904 kfree(dr);
905 }
906
907 svc_xprt_put(xprt);
908 spin_unlock_bh(&serv->sv_lock);
909 }
910
911 void svc_close_xprt(struct svc_xprt *xprt)
912 {
913 set_bit(XPT_CLOSE, &xprt->xpt_flags);
914 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
915 /* someone else will have to effect the close */
916 return;
917
918 svc_xprt_get(xprt);
919 svc_delete_xprt(xprt);
920 clear_bit(XPT_BUSY, &xprt->xpt_flags);
921 svc_xprt_put(xprt);
922 }
923 EXPORT_SYMBOL_GPL(svc_close_xprt);
924
925 void svc_close_all(struct list_head *xprt_list)
926 {
927 struct svc_xprt *xprt;
928 struct svc_xprt *tmp;
929
930 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
931 set_bit(XPT_CLOSE, &xprt->xpt_flags);
932 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
933 /* Waiting to be processed, but no threads left,
934 * So just remove it from the waiting list
935 */
936 list_del_init(&xprt->xpt_ready);
937 clear_bit(XPT_BUSY, &xprt->xpt_flags);
938 }
939 svc_close_xprt(xprt);
940 }
941 }
942
943 /*
944 * Handle defer and revisit of requests
945 */
946
947 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
948 {
949 struct svc_deferred_req *dr =
950 container_of(dreq, struct svc_deferred_req, handle);
951 struct svc_xprt *xprt = dr->xprt;
952
953 spin_lock(&xprt->xpt_lock);
954 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
955 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
956 spin_unlock(&xprt->xpt_lock);
957 dprintk("revisit canceled\n");
958 svc_xprt_put(xprt);
959 kfree(dr);
960 return;
961 }
962 dprintk("revisit queued\n");
963 dr->xprt = NULL;
964 list_add(&dr->handle.recent, &xprt->xpt_deferred);
965 spin_unlock(&xprt->xpt_lock);
966 svc_xprt_enqueue(xprt);
967 svc_xprt_put(xprt);
968 }
969
970 /*
971 * Save the request off for later processing. The request buffer looks
972 * like this:
973 *
974 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
975 *
976 * This code can only handle requests that consist of an xprt-header
977 * and rpc-header.
978 */
979 static struct cache_deferred_req *svc_defer(struct cache_req *req)
980 {
981 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
982 struct svc_deferred_req *dr;
983
984 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
985 return NULL; /* if more than a page, give up FIXME */
986 if (rqstp->rq_deferred) {
987 dr = rqstp->rq_deferred;
988 rqstp->rq_deferred = NULL;
989 } else {
990 size_t skip;
991 size_t size;
992 /* FIXME maybe discard if size too large */
993 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
994 dr = kmalloc(size, GFP_KERNEL);
995 if (dr == NULL)
996 return NULL;
997
998 dr->handle.owner = rqstp->rq_server;
999 dr->prot = rqstp->rq_prot;
1000 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1001 dr->addrlen = rqstp->rq_addrlen;
1002 dr->daddr = rqstp->rq_daddr;
1003 dr->argslen = rqstp->rq_arg.len >> 2;
1004 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1005
1006 /* back up head to the start of the buffer and copy */
1007 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1008 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1009 dr->argslen << 2);
1010 }
1011 svc_xprt_get(rqstp->rq_xprt);
1012 dr->xprt = rqstp->rq_xprt;
1013
1014 dr->handle.revisit = svc_revisit;
1015 return &dr->handle;
1016 }
1017
1018 /*
1019 * recv data from a deferred request into an active one
1020 */
1021 static int svc_deferred_recv(struct svc_rqst *rqstp)
1022 {
1023 struct svc_deferred_req *dr = rqstp->rq_deferred;
1024
1025 /* setup iov_base past transport header */
1026 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1027 /* The iov_len does not include the transport header bytes */
1028 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1029 rqstp->rq_arg.page_len = 0;
1030 /* The rq_arg.len includes the transport header bytes */
1031 rqstp->rq_arg.len = dr->argslen<<2;
1032 rqstp->rq_prot = dr->prot;
1033 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1034 rqstp->rq_addrlen = dr->addrlen;
1035 /* Save off transport header len in case we get deferred again */
1036 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1037 rqstp->rq_daddr = dr->daddr;
1038 rqstp->rq_respages = rqstp->rq_pages;
1039 return (dr->argslen<<2) - dr->xprt_hlen;
1040 }
1041
1042
1043 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1044 {
1045 struct svc_deferred_req *dr = NULL;
1046
1047 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1048 return NULL;
1049 spin_lock(&xprt->xpt_lock);
1050 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1051 if (!list_empty(&xprt->xpt_deferred)) {
1052 dr = list_entry(xprt->xpt_deferred.next,
1053 struct svc_deferred_req,
1054 handle.recent);
1055 list_del_init(&dr->handle.recent);
1056 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1057 }
1058 spin_unlock(&xprt->xpt_lock);
1059 return dr;
1060 }
1061
1062 /**
1063 * svc_find_xprt - find an RPC transport instance
1064 * @serv: pointer to svc_serv to search
1065 * @xcl_name: C string containing transport's class name
1066 * @af: Address family of transport's local address
1067 * @port: transport's IP port number
1068 *
1069 * Return the transport instance pointer for the endpoint accepting
1070 * connections/peer traffic from the specified transport class,
1071 * address family and port.
1072 *
1073 * Specifying 0 for the address family or port is effectively a
1074 * wild-card, and will result in matching the first transport in the
1075 * service's list that has a matching class name.
1076 */
1077 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1078 const sa_family_t af, const unsigned short port)
1079 {
1080 struct svc_xprt *xprt;
1081 struct svc_xprt *found = NULL;
1082
1083 /* Sanity check the args */
1084 if (serv == NULL || xcl_name == NULL)
1085 return found;
1086
1087 spin_lock_bh(&serv->sv_lock);
1088 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1089 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1090 continue;
1091 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1092 continue;
1093 if (port != 0 && port != svc_xprt_local_port(xprt))
1094 continue;
1095 found = xprt;
1096 svc_xprt_get(xprt);
1097 break;
1098 }
1099 spin_unlock_bh(&serv->sv_lock);
1100 return found;
1101 }
1102 EXPORT_SYMBOL_GPL(svc_find_xprt);
1103
1104 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1105 char *pos, int remaining)
1106 {
1107 int len;
1108
1109 len = snprintf(pos, remaining, "%s %u\n",
1110 xprt->xpt_class->xcl_name,
1111 svc_xprt_local_port(xprt));
1112 if (len >= remaining)
1113 return -ENAMETOOLONG;
1114 return len;
1115 }
1116
1117 /**
1118 * svc_xprt_names - format a buffer with a list of transport names
1119 * @serv: pointer to an RPC service
1120 * @buf: pointer to a buffer to be filled in
1121 * @buflen: length of buffer to be filled in
1122 *
1123 * Fills in @buf with a string containing a list of transport names,
1124 * each name terminated with '\n'.
1125 *
1126 * Returns positive length of the filled-in string on success; otherwise
1127 * a negative errno value is returned if an error occurs.
1128 */
1129 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1130 {
1131 struct svc_xprt *xprt;
1132 int len, totlen;
1133 char *pos;
1134
1135 /* Sanity check args */
1136 if (!serv)
1137 return 0;
1138
1139 spin_lock_bh(&serv->sv_lock);
1140
1141 pos = buf;
1142 totlen = 0;
1143 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1144 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1145 if (len < 0) {
1146 *buf = '\0';
1147 totlen = len;
1148 }
1149 if (len <= 0)
1150 break;
1151
1152 pos += len;
1153 totlen += len;
1154 }
1155
1156 spin_unlock_bh(&serv->sv_lock);
1157 return totlen;
1158 }
1159 EXPORT_SYMBOL_GPL(svc_xprt_names);
1160
1161
1162 /*----------------------------------------------------------------------------*/
1163
1164 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1165 {
1166 unsigned int pidx = (unsigned int)*pos;
1167 struct svc_serv *serv = m->private;
1168
1169 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1170
1171 if (!pidx)
1172 return SEQ_START_TOKEN;
1173 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1174 }
1175
1176 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1177 {
1178 struct svc_pool *pool = p;
1179 struct svc_serv *serv = m->private;
1180
1181 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1182
1183 if (p == SEQ_START_TOKEN) {
1184 pool = &serv->sv_pools[0];
1185 } else {
1186 unsigned int pidx = (pool - &serv->sv_pools[0]);
1187 if (pidx < serv->sv_nrpools-1)
1188 pool = &serv->sv_pools[pidx+1];
1189 else
1190 pool = NULL;
1191 }
1192 ++*pos;
1193 return pool;
1194 }
1195
1196 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1197 {
1198 }
1199
1200 static int svc_pool_stats_show(struct seq_file *m, void *p)
1201 {
1202 struct svc_pool *pool = p;
1203
1204 if (p == SEQ_START_TOKEN) {
1205 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken overloads-avoided threads-timedout\n");
1206 return 0;
1207 }
1208
1209 seq_printf(m, "%u %lu %lu %lu %lu %lu\n",
1210 pool->sp_id,
1211 pool->sp_stats.packets,
1212 pool->sp_stats.sockets_queued,
1213 pool->sp_stats.threads_woken,
1214 pool->sp_stats.overloads_avoided,
1215 pool->sp_stats.threads_timedout);
1216
1217 return 0;
1218 }
1219
1220 static const struct seq_operations svc_pool_stats_seq_ops = {
1221 .start = svc_pool_stats_start,
1222 .next = svc_pool_stats_next,
1223 .stop = svc_pool_stats_stop,
1224 .show = svc_pool_stats_show,
1225 };
1226
1227 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1228 {
1229 int err;
1230
1231 err = seq_open(file, &svc_pool_stats_seq_ops);
1232 if (!err)
1233 ((struct seq_file *) file->private_data)->private = serv;
1234 return err;
1235 }
1236 EXPORT_SYMBOL(svc_pool_stats_open);
1237
1238 /*----------------------------------------------------------------------------*/