Merge branch 'for-2.6.37' of git://linux-nfs.org/~bfields/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17
18 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
19
20 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21 static int svc_deferred_recv(struct svc_rqst *rqstp);
22 static struct cache_deferred_req *svc_defer(struct cache_req *req);
23 static void svc_age_temp_xprts(unsigned long closure);
24
25 /* apparently the "standard" is that clients close
26 * idle connections after 5 minutes, servers after
27 * 6 minutes
28 * http://www.connectathon.org/talks96/nfstcp.pdf
29 */
30 static int svc_conn_age_period = 6*60;
31
32 /* List of registered transport classes */
33 static DEFINE_SPINLOCK(svc_xprt_class_lock);
34 static LIST_HEAD(svc_xprt_class_list);
35
36 /* SMP locking strategy:
37 *
38 * svc_pool->sp_lock protects most of the fields of that pool.
39 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40 * when both need to be taken (rare), svc_serv->sv_lock is first.
41 * BKL protects svc_serv->sv_nrthread.
42 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
43 * and the ->sk_info_authunix cache.
44 *
45 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46 * enqueued multiply. During normal transport processing this bit
47 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48 * Providers should not manipulate this bit directly.
49 *
50 * Some flags can be set to certain values at any time
51 * providing that certain rules are followed:
52 *
53 * XPT_CONN, XPT_DATA:
54 * - Can be set or cleared at any time.
55 * - After a set, svc_xprt_enqueue must be called to enqueue
56 * the transport for processing.
57 * - After a clear, the transport must be read/accepted.
58 * If this succeeds, it must be set again.
59 * XPT_CLOSE:
60 * - Can set at any time. It is never cleared.
61 * XPT_DEAD:
62 * - Can only be set while XPT_BUSY is held which ensures
63 * that no other thread will be using the transport or will
64 * try to set XPT_DEAD.
65 */
66
67 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
68 {
69 struct svc_xprt_class *cl;
70 int res = -EEXIST;
71
72 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
73
74 INIT_LIST_HEAD(&xcl->xcl_list);
75 spin_lock(&svc_xprt_class_lock);
76 /* Make sure there isn't already a class with the same name */
77 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79 goto out;
80 }
81 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82 res = 0;
83 out:
84 spin_unlock(&svc_xprt_class_lock);
85 return res;
86 }
87 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
88
89 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
90 {
91 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92 spin_lock(&svc_xprt_class_lock);
93 list_del_init(&xcl->xcl_list);
94 spin_unlock(&svc_xprt_class_lock);
95 }
96 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
97
98 /*
99 * Format the transport list for printing
100 */
101 int svc_print_xprts(char *buf, int maxlen)
102 {
103 struct svc_xprt_class *xcl;
104 char tmpstr[80];
105 int len = 0;
106 buf[0] = '\0';
107
108 spin_lock(&svc_xprt_class_lock);
109 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
110 int slen;
111
112 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
113 slen = strlen(tmpstr);
114 if (len + slen > maxlen)
115 break;
116 len += slen;
117 strcat(buf, tmpstr);
118 }
119 spin_unlock(&svc_xprt_class_lock);
120
121 return len;
122 }
123
124 static void svc_xprt_free(struct kref *kref)
125 {
126 struct svc_xprt *xprt =
127 container_of(kref, struct svc_xprt, xpt_ref);
128 struct module *owner = xprt->xpt_class->xcl_owner;
129 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
130 svcauth_unix_info_release(xprt);
131 put_net(xprt->xpt_net);
132 xprt->xpt_ops->xpo_free(xprt);
133 module_put(owner);
134 }
135
136 void svc_xprt_put(struct svc_xprt *xprt)
137 {
138 kref_put(&xprt->xpt_ref, svc_xprt_free);
139 }
140 EXPORT_SYMBOL_GPL(svc_xprt_put);
141
142 /*
143 * Called by transport drivers to initialize the transport independent
144 * portion of the transport instance.
145 */
146 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
147 struct svc_serv *serv)
148 {
149 memset(xprt, 0, sizeof(*xprt));
150 xprt->xpt_class = xcl;
151 xprt->xpt_ops = xcl->xcl_ops;
152 kref_init(&xprt->xpt_ref);
153 xprt->xpt_server = serv;
154 INIT_LIST_HEAD(&xprt->xpt_list);
155 INIT_LIST_HEAD(&xprt->xpt_ready);
156 INIT_LIST_HEAD(&xprt->xpt_deferred);
157 INIT_LIST_HEAD(&xprt->xpt_users);
158 mutex_init(&xprt->xpt_mutex);
159 spin_lock_init(&xprt->xpt_lock);
160 set_bit(XPT_BUSY, &xprt->xpt_flags);
161 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
162 xprt->xpt_net = get_net(&init_net);
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_init);
165
166 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
167 struct svc_serv *serv,
168 struct net *net,
169 const int family,
170 const unsigned short port,
171 int flags)
172 {
173 struct sockaddr_in sin = {
174 .sin_family = AF_INET,
175 .sin_addr.s_addr = htonl(INADDR_ANY),
176 .sin_port = htons(port),
177 };
178 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
179 struct sockaddr_in6 sin6 = {
180 .sin6_family = AF_INET6,
181 .sin6_addr = IN6ADDR_ANY_INIT,
182 .sin6_port = htons(port),
183 };
184 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
185 struct sockaddr *sap;
186 size_t len;
187
188 switch (family) {
189 case PF_INET:
190 sap = (struct sockaddr *)&sin;
191 len = sizeof(sin);
192 break;
193 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
194 case PF_INET6:
195 sap = (struct sockaddr *)&sin6;
196 len = sizeof(sin6);
197 break;
198 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
199 default:
200 return ERR_PTR(-EAFNOSUPPORT);
201 }
202
203 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
204 }
205
206 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
207 struct net *net, const int family,
208 const unsigned short port, int flags)
209 {
210 struct svc_xprt_class *xcl;
211
212 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
213 spin_lock(&svc_xprt_class_lock);
214 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
215 struct svc_xprt *newxprt;
216
217 if (strcmp(xprt_name, xcl->xcl_name))
218 continue;
219
220 if (!try_module_get(xcl->xcl_owner))
221 goto err;
222
223 spin_unlock(&svc_xprt_class_lock);
224 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
225 if (IS_ERR(newxprt)) {
226 module_put(xcl->xcl_owner);
227 return PTR_ERR(newxprt);
228 }
229
230 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
231 spin_lock_bh(&serv->sv_lock);
232 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
233 spin_unlock_bh(&serv->sv_lock);
234 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
235 return svc_xprt_local_port(newxprt);
236 }
237 err:
238 spin_unlock(&svc_xprt_class_lock);
239 dprintk("svc: transport %s not found\n", xprt_name);
240
241 /* This errno is exposed to user space. Provide a reasonable
242 * perror msg for a bad transport. */
243 return -EPROTONOSUPPORT;
244 }
245 EXPORT_SYMBOL_GPL(svc_create_xprt);
246
247 /*
248 * Copy the local and remote xprt addresses to the rqstp structure
249 */
250 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
251 {
252 struct sockaddr *sin;
253
254 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
255 rqstp->rq_addrlen = xprt->xpt_remotelen;
256
257 /*
258 * Destination address in request is needed for binding the
259 * source address in RPC replies/callbacks later.
260 */
261 sin = (struct sockaddr *)&xprt->xpt_local;
262 switch (sin->sa_family) {
263 case AF_INET:
264 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
265 break;
266 case AF_INET6:
267 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
268 break;
269 }
270 }
271 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
272
273 /**
274 * svc_print_addr - Format rq_addr field for printing
275 * @rqstp: svc_rqst struct containing address to print
276 * @buf: target buffer for formatted address
277 * @len: length of target buffer
278 *
279 */
280 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
281 {
282 return __svc_print_addr(svc_addr(rqstp), buf, len);
283 }
284 EXPORT_SYMBOL_GPL(svc_print_addr);
285
286 /*
287 * Queue up an idle server thread. Must have pool->sp_lock held.
288 * Note: this is really a stack rather than a queue, so that we only
289 * use as many different threads as we need, and the rest don't pollute
290 * the cache.
291 */
292 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
293 {
294 list_add(&rqstp->rq_list, &pool->sp_threads);
295 }
296
297 /*
298 * Dequeue an nfsd thread. Must have pool->sp_lock held.
299 */
300 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
301 {
302 list_del(&rqstp->rq_list);
303 }
304
305 /*
306 * Queue up a transport with data pending. If there are idle nfsd
307 * processes, wake 'em up.
308 *
309 */
310 void svc_xprt_enqueue(struct svc_xprt *xprt)
311 {
312 struct svc_serv *serv = xprt->xpt_server;
313 struct svc_pool *pool;
314 struct svc_rqst *rqstp;
315 int cpu;
316
317 if (!(xprt->xpt_flags &
318 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
319 return;
320
321 cpu = get_cpu();
322 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
323 put_cpu();
324
325 spin_lock_bh(&pool->sp_lock);
326
327 if (!list_empty(&pool->sp_threads) &&
328 !list_empty(&pool->sp_sockets))
329 printk(KERN_ERR
330 "svc_xprt_enqueue: "
331 "threads and transports both waiting??\n");
332
333 pool->sp_stats.packets++;
334
335 /* Mark transport as busy. It will remain in this state until
336 * the provider calls svc_xprt_received. We update XPT_BUSY
337 * atomically because it also guards against trying to enqueue
338 * the transport twice.
339 */
340 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
341 /* Don't enqueue transport while already enqueued */
342 dprintk("svc: transport %p busy, not enqueued\n", xprt);
343 goto out_unlock;
344 }
345 BUG_ON(xprt->xpt_pool != NULL);
346 xprt->xpt_pool = pool;
347
348 /* Handle pending connection */
349 if (test_bit(XPT_CONN, &xprt->xpt_flags))
350 goto process;
351
352 /* Handle close in-progress */
353 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
354 goto process;
355
356 /* Check if we have space to reply to a request */
357 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
358 /* Don't enqueue while not enough space for reply */
359 dprintk("svc: no write space, transport %p not enqueued\n",
360 xprt);
361 xprt->xpt_pool = NULL;
362 clear_bit(XPT_BUSY, &xprt->xpt_flags);
363 goto out_unlock;
364 }
365
366 process:
367 if (!list_empty(&pool->sp_threads)) {
368 rqstp = list_entry(pool->sp_threads.next,
369 struct svc_rqst,
370 rq_list);
371 dprintk("svc: transport %p served by daemon %p\n",
372 xprt, rqstp);
373 svc_thread_dequeue(pool, rqstp);
374 if (rqstp->rq_xprt)
375 printk(KERN_ERR
376 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
377 rqstp, rqstp->rq_xprt);
378 rqstp->rq_xprt = xprt;
379 svc_xprt_get(xprt);
380 rqstp->rq_reserved = serv->sv_max_mesg;
381 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
382 pool->sp_stats.threads_woken++;
383 BUG_ON(xprt->xpt_pool != pool);
384 wake_up(&rqstp->rq_wait);
385 } else {
386 dprintk("svc: transport %p put into queue\n", xprt);
387 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
388 pool->sp_stats.sockets_queued++;
389 BUG_ON(xprt->xpt_pool != pool);
390 }
391
392 out_unlock:
393 spin_unlock_bh(&pool->sp_lock);
394 }
395 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
396
397 /*
398 * Dequeue the first transport. Must be called with the pool->sp_lock held.
399 */
400 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
401 {
402 struct svc_xprt *xprt;
403
404 if (list_empty(&pool->sp_sockets))
405 return NULL;
406
407 xprt = list_entry(pool->sp_sockets.next,
408 struct svc_xprt, xpt_ready);
409 list_del_init(&xprt->xpt_ready);
410
411 dprintk("svc: transport %p dequeued, inuse=%d\n",
412 xprt, atomic_read(&xprt->xpt_ref.refcount));
413
414 return xprt;
415 }
416
417 /*
418 * svc_xprt_received conditionally queues the transport for processing
419 * by another thread. The caller must hold the XPT_BUSY bit and must
420 * not thereafter touch transport data.
421 *
422 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
423 * insufficient) data.
424 */
425 void svc_xprt_received(struct svc_xprt *xprt)
426 {
427 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
428 xprt->xpt_pool = NULL;
429 clear_bit(XPT_BUSY, &xprt->xpt_flags);
430 svc_xprt_enqueue(xprt);
431 }
432 EXPORT_SYMBOL_GPL(svc_xprt_received);
433
434 /**
435 * svc_reserve - change the space reserved for the reply to a request.
436 * @rqstp: The request in question
437 * @space: new max space to reserve
438 *
439 * Each request reserves some space on the output queue of the transport
440 * to make sure the reply fits. This function reduces that reserved
441 * space to be the amount of space used already, plus @space.
442 *
443 */
444 void svc_reserve(struct svc_rqst *rqstp, int space)
445 {
446 space += rqstp->rq_res.head[0].iov_len;
447
448 if (space < rqstp->rq_reserved) {
449 struct svc_xprt *xprt = rqstp->rq_xprt;
450 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
451 rqstp->rq_reserved = space;
452
453 svc_xprt_enqueue(xprt);
454 }
455 }
456 EXPORT_SYMBOL_GPL(svc_reserve);
457
458 static void svc_xprt_release(struct svc_rqst *rqstp)
459 {
460 struct svc_xprt *xprt = rqstp->rq_xprt;
461
462 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
463
464 kfree(rqstp->rq_deferred);
465 rqstp->rq_deferred = NULL;
466
467 svc_free_res_pages(rqstp);
468 rqstp->rq_res.page_len = 0;
469 rqstp->rq_res.page_base = 0;
470
471 /* Reset response buffer and release
472 * the reservation.
473 * But first, check that enough space was reserved
474 * for the reply, otherwise we have a bug!
475 */
476 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
477 printk(KERN_ERR "RPC request reserved %d but used %d\n",
478 rqstp->rq_reserved,
479 rqstp->rq_res.len);
480
481 rqstp->rq_res.head[0].iov_len = 0;
482 svc_reserve(rqstp, 0);
483 rqstp->rq_xprt = NULL;
484
485 svc_xprt_put(xprt);
486 }
487
488 /*
489 * External function to wake up a server waiting for data
490 * This really only makes sense for services like lockd
491 * which have exactly one thread anyway.
492 */
493 void svc_wake_up(struct svc_serv *serv)
494 {
495 struct svc_rqst *rqstp;
496 unsigned int i;
497 struct svc_pool *pool;
498
499 for (i = 0; i < serv->sv_nrpools; i++) {
500 pool = &serv->sv_pools[i];
501
502 spin_lock_bh(&pool->sp_lock);
503 if (!list_empty(&pool->sp_threads)) {
504 rqstp = list_entry(pool->sp_threads.next,
505 struct svc_rqst,
506 rq_list);
507 dprintk("svc: daemon %p woken up.\n", rqstp);
508 /*
509 svc_thread_dequeue(pool, rqstp);
510 rqstp->rq_xprt = NULL;
511 */
512 wake_up(&rqstp->rq_wait);
513 }
514 spin_unlock_bh(&pool->sp_lock);
515 }
516 }
517 EXPORT_SYMBOL_GPL(svc_wake_up);
518
519 int svc_port_is_privileged(struct sockaddr *sin)
520 {
521 switch (sin->sa_family) {
522 case AF_INET:
523 return ntohs(((struct sockaddr_in *)sin)->sin_port)
524 < PROT_SOCK;
525 case AF_INET6:
526 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
527 < PROT_SOCK;
528 default:
529 return 0;
530 }
531 }
532
533 /*
534 * Make sure that we don't have too many active connections. If we have,
535 * something must be dropped. It's not clear what will happen if we allow
536 * "too many" connections, but when dealing with network-facing software,
537 * we have to code defensively. Here we do that by imposing hard limits.
538 *
539 * There's no point in trying to do random drop here for DoS
540 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
541 * attacker can easily beat that.
542 *
543 * The only somewhat efficient mechanism would be if drop old
544 * connections from the same IP first. But right now we don't even
545 * record the client IP in svc_sock.
546 *
547 * single-threaded services that expect a lot of clients will probably
548 * need to set sv_maxconn to override the default value which is based
549 * on the number of threads
550 */
551 static void svc_check_conn_limits(struct svc_serv *serv)
552 {
553 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
554 (serv->sv_nrthreads+3) * 20;
555
556 if (serv->sv_tmpcnt > limit) {
557 struct svc_xprt *xprt = NULL;
558 spin_lock_bh(&serv->sv_lock);
559 if (!list_empty(&serv->sv_tempsocks)) {
560 if (net_ratelimit()) {
561 /* Try to help the admin */
562 printk(KERN_NOTICE "%s: too many open "
563 "connections, consider increasing %s\n",
564 serv->sv_name, serv->sv_maxconn ?
565 "the max number of connections." :
566 "the number of threads.");
567 }
568 /*
569 * Always select the oldest connection. It's not fair,
570 * but so is life
571 */
572 xprt = list_entry(serv->sv_tempsocks.prev,
573 struct svc_xprt,
574 xpt_list);
575 set_bit(XPT_CLOSE, &xprt->xpt_flags);
576 svc_xprt_get(xprt);
577 }
578 spin_unlock_bh(&serv->sv_lock);
579
580 if (xprt) {
581 svc_xprt_enqueue(xprt);
582 svc_xprt_put(xprt);
583 }
584 }
585 }
586
587 /*
588 * Receive the next request on any transport. This code is carefully
589 * organised not to touch any cachelines in the shared svc_serv
590 * structure, only cachelines in the local svc_pool.
591 */
592 int svc_recv(struct svc_rqst *rqstp, long timeout)
593 {
594 struct svc_xprt *xprt = NULL;
595 struct svc_serv *serv = rqstp->rq_server;
596 struct svc_pool *pool = rqstp->rq_pool;
597 int len, i;
598 int pages;
599 struct xdr_buf *arg;
600 DECLARE_WAITQUEUE(wait, current);
601 long time_left;
602
603 dprintk("svc: server %p waiting for data (to = %ld)\n",
604 rqstp, timeout);
605
606 if (rqstp->rq_xprt)
607 printk(KERN_ERR
608 "svc_recv: service %p, transport not NULL!\n",
609 rqstp);
610 if (waitqueue_active(&rqstp->rq_wait))
611 printk(KERN_ERR
612 "svc_recv: service %p, wait queue active!\n",
613 rqstp);
614
615 /* now allocate needed pages. If we get a failure, sleep briefly */
616 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
617 for (i = 0; i < pages ; i++)
618 while (rqstp->rq_pages[i] == NULL) {
619 struct page *p = alloc_page(GFP_KERNEL);
620 if (!p) {
621 set_current_state(TASK_INTERRUPTIBLE);
622 if (signalled() || kthread_should_stop()) {
623 set_current_state(TASK_RUNNING);
624 return -EINTR;
625 }
626 schedule_timeout(msecs_to_jiffies(500));
627 }
628 rqstp->rq_pages[i] = p;
629 }
630 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
631 BUG_ON(pages >= RPCSVC_MAXPAGES);
632
633 /* Make arg->head point to first page and arg->pages point to rest */
634 arg = &rqstp->rq_arg;
635 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
636 arg->head[0].iov_len = PAGE_SIZE;
637 arg->pages = rqstp->rq_pages + 1;
638 arg->page_base = 0;
639 /* save at least one page for response */
640 arg->page_len = (pages-2)*PAGE_SIZE;
641 arg->len = (pages-1)*PAGE_SIZE;
642 arg->tail[0].iov_len = 0;
643
644 try_to_freeze();
645 cond_resched();
646 if (signalled() || kthread_should_stop())
647 return -EINTR;
648
649 /* Normally we will wait up to 5 seconds for any required
650 * cache information to be provided.
651 */
652 rqstp->rq_chandle.thread_wait = 5*HZ;
653
654 spin_lock_bh(&pool->sp_lock);
655 xprt = svc_xprt_dequeue(pool);
656 if (xprt) {
657 rqstp->rq_xprt = xprt;
658 svc_xprt_get(xprt);
659 rqstp->rq_reserved = serv->sv_max_mesg;
660 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
661
662 /* As there is a shortage of threads and this request
663 * had to be queued, don't allow the thread to wait so
664 * long for cache updates.
665 */
666 rqstp->rq_chandle.thread_wait = 1*HZ;
667 } else {
668 /* No data pending. Go to sleep */
669 svc_thread_enqueue(pool, rqstp);
670
671 /*
672 * We have to be able to interrupt this wait
673 * to bring down the daemons ...
674 */
675 set_current_state(TASK_INTERRUPTIBLE);
676
677 /*
678 * checking kthread_should_stop() here allows us to avoid
679 * locking and signalling when stopping kthreads that call
680 * svc_recv. If the thread has already been woken up, then
681 * we can exit here without sleeping. If not, then it
682 * it'll be woken up quickly during the schedule_timeout
683 */
684 if (kthread_should_stop()) {
685 set_current_state(TASK_RUNNING);
686 spin_unlock_bh(&pool->sp_lock);
687 return -EINTR;
688 }
689
690 add_wait_queue(&rqstp->rq_wait, &wait);
691 spin_unlock_bh(&pool->sp_lock);
692
693 time_left = schedule_timeout(timeout);
694
695 try_to_freeze();
696
697 spin_lock_bh(&pool->sp_lock);
698 remove_wait_queue(&rqstp->rq_wait, &wait);
699 if (!time_left)
700 pool->sp_stats.threads_timedout++;
701
702 xprt = rqstp->rq_xprt;
703 if (!xprt) {
704 svc_thread_dequeue(pool, rqstp);
705 spin_unlock_bh(&pool->sp_lock);
706 dprintk("svc: server %p, no data yet\n", rqstp);
707 if (signalled() || kthread_should_stop())
708 return -EINTR;
709 else
710 return -EAGAIN;
711 }
712 }
713 spin_unlock_bh(&pool->sp_lock);
714
715 len = 0;
716 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
717 dprintk("svc_recv: found XPT_CLOSE\n");
718 svc_delete_xprt(xprt);
719 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
720 struct svc_xprt *newxpt;
721 newxpt = xprt->xpt_ops->xpo_accept(xprt);
722 if (newxpt) {
723 /*
724 * We know this module_get will succeed because the
725 * listener holds a reference too
726 */
727 __module_get(newxpt->xpt_class->xcl_owner);
728 svc_check_conn_limits(xprt->xpt_server);
729 spin_lock_bh(&serv->sv_lock);
730 set_bit(XPT_TEMP, &newxpt->xpt_flags);
731 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
732 serv->sv_tmpcnt++;
733 if (serv->sv_temptimer.function == NULL) {
734 /* setup timer to age temp transports */
735 setup_timer(&serv->sv_temptimer,
736 svc_age_temp_xprts,
737 (unsigned long)serv);
738 mod_timer(&serv->sv_temptimer,
739 jiffies + svc_conn_age_period * HZ);
740 }
741 spin_unlock_bh(&serv->sv_lock);
742 svc_xprt_received(newxpt);
743 }
744 svc_xprt_received(xprt);
745 } else {
746 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
747 rqstp, pool->sp_id, xprt,
748 atomic_read(&xprt->xpt_ref.refcount));
749 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
750 if (rqstp->rq_deferred) {
751 svc_xprt_received(xprt);
752 len = svc_deferred_recv(rqstp);
753 } else {
754 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
755 svc_xprt_received(xprt);
756 }
757 dprintk("svc: got len=%d\n", len);
758 }
759
760 /* No data, incomplete (TCP) read, or accept() */
761 if (len == 0 || len == -EAGAIN) {
762 rqstp->rq_res.len = 0;
763 svc_xprt_release(rqstp);
764 return -EAGAIN;
765 }
766 clear_bit(XPT_OLD, &xprt->xpt_flags);
767
768 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
769 rqstp->rq_chandle.defer = svc_defer;
770
771 if (serv->sv_stats)
772 serv->sv_stats->netcnt++;
773 return len;
774 }
775 EXPORT_SYMBOL_GPL(svc_recv);
776
777 /*
778 * Drop request
779 */
780 void svc_drop(struct svc_rqst *rqstp)
781 {
782 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
783 svc_xprt_release(rqstp);
784 }
785 EXPORT_SYMBOL_GPL(svc_drop);
786
787 /*
788 * Return reply to client.
789 */
790 int svc_send(struct svc_rqst *rqstp)
791 {
792 struct svc_xprt *xprt;
793 int len;
794 struct xdr_buf *xb;
795
796 xprt = rqstp->rq_xprt;
797 if (!xprt)
798 return -EFAULT;
799
800 /* release the receive skb before sending the reply */
801 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
802
803 /* calculate over-all length */
804 xb = &rqstp->rq_res;
805 xb->len = xb->head[0].iov_len +
806 xb->page_len +
807 xb->tail[0].iov_len;
808
809 /* Grab mutex to serialize outgoing data. */
810 mutex_lock(&xprt->xpt_mutex);
811 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
812 len = -ENOTCONN;
813 else
814 len = xprt->xpt_ops->xpo_sendto(rqstp);
815 mutex_unlock(&xprt->xpt_mutex);
816 rpc_wake_up(&xprt->xpt_bc_pending);
817 svc_xprt_release(rqstp);
818
819 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
820 return 0;
821 return len;
822 }
823
824 /*
825 * Timer function to close old temporary transports, using
826 * a mark-and-sweep algorithm.
827 */
828 static void svc_age_temp_xprts(unsigned long closure)
829 {
830 struct svc_serv *serv = (struct svc_serv *)closure;
831 struct svc_xprt *xprt;
832 struct list_head *le, *next;
833 LIST_HEAD(to_be_aged);
834
835 dprintk("svc_age_temp_xprts\n");
836
837 if (!spin_trylock_bh(&serv->sv_lock)) {
838 /* busy, try again 1 sec later */
839 dprintk("svc_age_temp_xprts: busy\n");
840 mod_timer(&serv->sv_temptimer, jiffies + HZ);
841 return;
842 }
843
844 list_for_each_safe(le, next, &serv->sv_tempsocks) {
845 xprt = list_entry(le, struct svc_xprt, xpt_list);
846
847 /* First time through, just mark it OLD. Second time
848 * through, close it. */
849 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
850 continue;
851 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
852 test_bit(XPT_BUSY, &xprt->xpt_flags))
853 continue;
854 svc_xprt_get(xprt);
855 list_move(le, &to_be_aged);
856 set_bit(XPT_CLOSE, &xprt->xpt_flags);
857 set_bit(XPT_DETACHED, &xprt->xpt_flags);
858 }
859 spin_unlock_bh(&serv->sv_lock);
860
861 while (!list_empty(&to_be_aged)) {
862 le = to_be_aged.next;
863 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
864 list_del_init(le);
865 xprt = list_entry(le, struct svc_xprt, xpt_list);
866
867 dprintk("queuing xprt %p for closing\n", xprt);
868
869 /* a thread will dequeue and close it soon */
870 svc_xprt_enqueue(xprt);
871 svc_xprt_put(xprt);
872 }
873
874 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
875 }
876
877 static void call_xpt_users(struct svc_xprt *xprt)
878 {
879 struct svc_xpt_user *u;
880
881 spin_lock(&xprt->xpt_lock);
882 while (!list_empty(&xprt->xpt_users)) {
883 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
884 list_del(&u->list);
885 u->callback(u);
886 }
887 spin_unlock(&xprt->xpt_lock);
888 }
889
890 /*
891 * Remove a dead transport
892 */
893 void svc_delete_xprt(struct svc_xprt *xprt)
894 {
895 struct svc_serv *serv = xprt->xpt_server;
896 struct svc_deferred_req *dr;
897
898 /* Only do this once */
899 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
900 BUG();
901
902 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
903 xprt->xpt_ops->xpo_detach(xprt);
904
905 spin_lock_bh(&serv->sv_lock);
906 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
907 list_del_init(&xprt->xpt_list);
908 /*
909 * We used to delete the transport from whichever list
910 * it's sk_xprt.xpt_ready node was on, but we don't actually
911 * need to. This is because the only time we're called
912 * while still attached to a queue, the queue itself
913 * is about to be destroyed (in svc_destroy).
914 */
915 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
916 serv->sv_tmpcnt--;
917 spin_unlock_bh(&serv->sv_lock);
918
919 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
920 kfree(dr);
921
922 call_xpt_users(xprt);
923 svc_xprt_put(xprt);
924 }
925
926 void svc_close_xprt(struct svc_xprt *xprt)
927 {
928 set_bit(XPT_CLOSE, &xprt->xpt_flags);
929 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
930 /* someone else will have to effect the close */
931 return;
932
933 svc_delete_xprt(xprt);
934 }
935 EXPORT_SYMBOL_GPL(svc_close_xprt);
936
937 void svc_close_all(struct list_head *xprt_list)
938 {
939 struct svc_xprt *xprt;
940 struct svc_xprt *tmp;
941
942 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
943 set_bit(XPT_CLOSE, &xprt->xpt_flags);
944 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
945 /* Waiting to be processed, but no threads left,
946 * So just remove it from the waiting list
947 */
948 list_del_init(&xprt->xpt_ready);
949 clear_bit(XPT_BUSY, &xprt->xpt_flags);
950 }
951 svc_close_xprt(xprt);
952 }
953 }
954
955 /*
956 * Handle defer and revisit of requests
957 */
958
959 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
960 {
961 struct svc_deferred_req *dr =
962 container_of(dreq, struct svc_deferred_req, handle);
963 struct svc_xprt *xprt = dr->xprt;
964
965 spin_lock(&xprt->xpt_lock);
966 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
967 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
968 spin_unlock(&xprt->xpt_lock);
969 dprintk("revisit canceled\n");
970 svc_xprt_put(xprt);
971 kfree(dr);
972 return;
973 }
974 dprintk("revisit queued\n");
975 dr->xprt = NULL;
976 list_add(&dr->handle.recent, &xprt->xpt_deferred);
977 spin_unlock(&xprt->xpt_lock);
978 svc_xprt_enqueue(xprt);
979 svc_xprt_put(xprt);
980 }
981
982 /*
983 * Save the request off for later processing. The request buffer looks
984 * like this:
985 *
986 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
987 *
988 * This code can only handle requests that consist of an xprt-header
989 * and rpc-header.
990 */
991 static struct cache_deferred_req *svc_defer(struct cache_req *req)
992 {
993 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
994 struct svc_deferred_req *dr;
995
996 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
997 return NULL; /* if more than a page, give up FIXME */
998 if (rqstp->rq_deferred) {
999 dr = rqstp->rq_deferred;
1000 rqstp->rq_deferred = NULL;
1001 } else {
1002 size_t skip;
1003 size_t size;
1004 /* FIXME maybe discard if size too large */
1005 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1006 dr = kmalloc(size, GFP_KERNEL);
1007 if (dr == NULL)
1008 return NULL;
1009
1010 dr->handle.owner = rqstp->rq_server;
1011 dr->prot = rqstp->rq_prot;
1012 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1013 dr->addrlen = rqstp->rq_addrlen;
1014 dr->daddr = rqstp->rq_daddr;
1015 dr->argslen = rqstp->rq_arg.len >> 2;
1016 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1017
1018 /* back up head to the start of the buffer and copy */
1019 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1020 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1021 dr->argslen << 2);
1022 }
1023 svc_xprt_get(rqstp->rq_xprt);
1024 dr->xprt = rqstp->rq_xprt;
1025
1026 dr->handle.revisit = svc_revisit;
1027 return &dr->handle;
1028 }
1029
1030 /*
1031 * recv data from a deferred request into an active one
1032 */
1033 static int svc_deferred_recv(struct svc_rqst *rqstp)
1034 {
1035 struct svc_deferred_req *dr = rqstp->rq_deferred;
1036
1037 /* setup iov_base past transport header */
1038 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1039 /* The iov_len does not include the transport header bytes */
1040 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1041 rqstp->rq_arg.page_len = 0;
1042 /* The rq_arg.len includes the transport header bytes */
1043 rqstp->rq_arg.len = dr->argslen<<2;
1044 rqstp->rq_prot = dr->prot;
1045 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1046 rqstp->rq_addrlen = dr->addrlen;
1047 /* Save off transport header len in case we get deferred again */
1048 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1049 rqstp->rq_daddr = dr->daddr;
1050 rqstp->rq_respages = rqstp->rq_pages;
1051 return (dr->argslen<<2) - dr->xprt_hlen;
1052 }
1053
1054
1055 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1056 {
1057 struct svc_deferred_req *dr = NULL;
1058
1059 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1060 return NULL;
1061 spin_lock(&xprt->xpt_lock);
1062 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1063 if (!list_empty(&xprt->xpt_deferred)) {
1064 dr = list_entry(xprt->xpt_deferred.next,
1065 struct svc_deferred_req,
1066 handle.recent);
1067 list_del_init(&dr->handle.recent);
1068 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1069 }
1070 spin_unlock(&xprt->xpt_lock);
1071 return dr;
1072 }
1073
1074 /**
1075 * svc_find_xprt - find an RPC transport instance
1076 * @serv: pointer to svc_serv to search
1077 * @xcl_name: C string containing transport's class name
1078 * @af: Address family of transport's local address
1079 * @port: transport's IP port number
1080 *
1081 * Return the transport instance pointer for the endpoint accepting
1082 * connections/peer traffic from the specified transport class,
1083 * address family and port.
1084 *
1085 * Specifying 0 for the address family or port is effectively a
1086 * wild-card, and will result in matching the first transport in the
1087 * service's list that has a matching class name.
1088 */
1089 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1090 const sa_family_t af, const unsigned short port)
1091 {
1092 struct svc_xprt *xprt;
1093 struct svc_xprt *found = NULL;
1094
1095 /* Sanity check the args */
1096 if (serv == NULL || xcl_name == NULL)
1097 return found;
1098
1099 spin_lock_bh(&serv->sv_lock);
1100 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1101 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1102 continue;
1103 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1104 continue;
1105 if (port != 0 && port != svc_xprt_local_port(xprt))
1106 continue;
1107 found = xprt;
1108 svc_xprt_get(xprt);
1109 break;
1110 }
1111 spin_unlock_bh(&serv->sv_lock);
1112 return found;
1113 }
1114 EXPORT_SYMBOL_GPL(svc_find_xprt);
1115
1116 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1117 char *pos, int remaining)
1118 {
1119 int len;
1120
1121 len = snprintf(pos, remaining, "%s %u\n",
1122 xprt->xpt_class->xcl_name,
1123 svc_xprt_local_port(xprt));
1124 if (len >= remaining)
1125 return -ENAMETOOLONG;
1126 return len;
1127 }
1128
1129 /**
1130 * svc_xprt_names - format a buffer with a list of transport names
1131 * @serv: pointer to an RPC service
1132 * @buf: pointer to a buffer to be filled in
1133 * @buflen: length of buffer to be filled in
1134 *
1135 * Fills in @buf with a string containing a list of transport names,
1136 * each name terminated with '\n'.
1137 *
1138 * Returns positive length of the filled-in string on success; otherwise
1139 * a negative errno value is returned if an error occurs.
1140 */
1141 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1142 {
1143 struct svc_xprt *xprt;
1144 int len, totlen;
1145 char *pos;
1146
1147 /* Sanity check args */
1148 if (!serv)
1149 return 0;
1150
1151 spin_lock_bh(&serv->sv_lock);
1152
1153 pos = buf;
1154 totlen = 0;
1155 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1156 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1157 if (len < 0) {
1158 *buf = '\0';
1159 totlen = len;
1160 }
1161 if (len <= 0)
1162 break;
1163
1164 pos += len;
1165 totlen += len;
1166 }
1167
1168 spin_unlock_bh(&serv->sv_lock);
1169 return totlen;
1170 }
1171 EXPORT_SYMBOL_GPL(svc_xprt_names);
1172
1173
1174 /*----------------------------------------------------------------------------*/
1175
1176 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1177 {
1178 unsigned int pidx = (unsigned int)*pos;
1179 struct svc_serv *serv = m->private;
1180
1181 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1182
1183 if (!pidx)
1184 return SEQ_START_TOKEN;
1185 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1186 }
1187
1188 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1189 {
1190 struct svc_pool *pool = p;
1191 struct svc_serv *serv = m->private;
1192
1193 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1194
1195 if (p == SEQ_START_TOKEN) {
1196 pool = &serv->sv_pools[0];
1197 } else {
1198 unsigned int pidx = (pool - &serv->sv_pools[0]);
1199 if (pidx < serv->sv_nrpools-1)
1200 pool = &serv->sv_pools[pidx+1];
1201 else
1202 pool = NULL;
1203 }
1204 ++*pos;
1205 return pool;
1206 }
1207
1208 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1209 {
1210 }
1211
1212 static int svc_pool_stats_show(struct seq_file *m, void *p)
1213 {
1214 struct svc_pool *pool = p;
1215
1216 if (p == SEQ_START_TOKEN) {
1217 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1218 return 0;
1219 }
1220
1221 seq_printf(m, "%u %lu %lu %lu %lu\n",
1222 pool->sp_id,
1223 pool->sp_stats.packets,
1224 pool->sp_stats.sockets_queued,
1225 pool->sp_stats.threads_woken,
1226 pool->sp_stats.threads_timedout);
1227
1228 return 0;
1229 }
1230
1231 static const struct seq_operations svc_pool_stats_seq_ops = {
1232 .start = svc_pool_stats_start,
1233 .next = svc_pool_stats_next,
1234 .stop = svc_pool_stats_stop,
1235 .show = svc_pool_stats_show,
1236 };
1237
1238 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1239 {
1240 int err;
1241
1242 err = seq_open(file, &svc_pool_stats_seq_ops);
1243 if (!err)
1244 ((struct seq_file *) file->private_data)->private = serv;
1245 return err;
1246 }
1247 EXPORT_SYMBOL(svc_pool_stats_open);
1248
1249 /*----------------------------------------------------------------------------*/