Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21
22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26
27
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(unsigned long closure);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33
34 /* apparently the "standard" is that clients close
35 * idle connections after 5 minutes, servers after
36 * 6 minutes
37 * http://www.connectathon.org/talks96/nfstcp.pdf
38 */
39 static int svc_conn_age_period = 6*60;
40
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44
45 /* SMP locking strategy:
46 *
47 * svc_pool->sp_lock protects most of the fields of that pool.
48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49 * when both need to be taken (rare), svc_serv->sv_lock is first.
50 * The "service mutex" protects svc_serv->sv_nrthread.
51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
52 * and the ->sk_info_authunix cache.
53 *
54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55 * enqueued multiply. During normal transport processing this bit
56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57 * Providers should not manipulate this bit directly.
58 *
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
61 *
62 * XPT_CONN, XPT_DATA:
63 * - Can be set or cleared at any time.
64 * - After a set, svc_xprt_enqueue must be called to enqueue
65 * the transport for processing.
66 * - After a clear, the transport must be read/accepted.
67 * If this succeeds, it must be set again.
68 * XPT_CLOSE:
69 * - Can set at any time. It is never cleared.
70 * XPT_DEAD:
71 * - Can only be set while XPT_BUSY is held which ensures
72 * that no other thread will be using the transport or will
73 * try to set XPT_DEAD.
74 */
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 struct svc_xprt_class *cl;
78 int res = -EEXIST;
79
80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81
82 INIT_LIST_HEAD(&xcl->xcl_list);
83 spin_lock(&svc_xprt_class_lock);
84 /* Make sure there isn't already a class with the same name */
85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 goto out;
88 }
89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 res = 0;
91 out:
92 spin_unlock(&svc_xprt_class_lock);
93 return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 spin_lock(&svc_xprt_class_lock);
101 list_del_init(&xcl->xcl_list);
102 spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105
106 /*
107 * Format the transport list for printing
108 */
109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 struct svc_xprt_class *xcl;
112 char tmpstr[80];
113 int len = 0;
114 buf[0] = '\0';
115
116 spin_lock(&svc_xprt_class_lock);
117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 int slen;
119
120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 slen = strlen(tmpstr);
122 if (len + slen > maxlen)
123 break;
124 len += slen;
125 strcat(buf, tmpstr);
126 }
127 spin_unlock(&svc_xprt_class_lock);
128
129 return len;
130 }
131
132 static void svc_xprt_free(struct kref *kref)
133 {
134 struct svc_xprt *xprt =
135 container_of(kref, struct svc_xprt, xpt_ref);
136 struct module *owner = xprt->xpt_class->xcl_owner;
137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 svcauth_unix_info_release(xprt);
139 put_net(xprt->xpt_net);
140 /* See comment on corresponding get in xs_setup_bc_tcp(): */
141 if (xprt->xpt_bc_xprt)
142 xprt_put(xprt->xpt_bc_xprt);
143 if (xprt->xpt_bc_xps)
144 xprt_switch_put(xprt->xpt_bc_xps);
145 xprt->xpt_ops->xpo_free(xprt);
146 module_put(owner);
147 }
148
149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154
155 /*
156 * Called by transport drivers to initialize the transport independent
157 * portion of the transport instance.
158 */
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 memset(xprt, 0, sizeof(*xprt));
163 xprt->xpt_class = xcl;
164 xprt->xpt_ops = xcl->xcl_ops;
165 kref_init(&xprt->xpt_ref);
166 xprt->xpt_server = serv;
167 INIT_LIST_HEAD(&xprt->xpt_list);
168 INIT_LIST_HEAD(&xprt->xpt_ready);
169 INIT_LIST_HEAD(&xprt->xpt_deferred);
170 INIT_LIST_HEAD(&xprt->xpt_users);
171 mutex_init(&xprt->xpt_mutex);
172 spin_lock_init(&xprt->xpt_lock);
173 set_bit(XPT_BUSY, &xprt->xpt_flags);
174 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 xprt->xpt_net = get_net(net);
176 }
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
178
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 struct svc_serv *serv,
181 struct net *net,
182 const int family,
183 const unsigned short port,
184 int flags)
185 {
186 struct sockaddr_in sin = {
187 .sin_family = AF_INET,
188 .sin_addr.s_addr = htonl(INADDR_ANY),
189 .sin_port = htons(port),
190 };
191 #if IS_ENABLED(CONFIG_IPV6)
192 struct sockaddr_in6 sin6 = {
193 .sin6_family = AF_INET6,
194 .sin6_addr = IN6ADDR_ANY_INIT,
195 .sin6_port = htons(port),
196 };
197 #endif
198 struct sockaddr *sap;
199 size_t len;
200
201 switch (family) {
202 case PF_INET:
203 sap = (struct sockaddr *)&sin;
204 len = sizeof(sin);
205 break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 case PF_INET6:
208 sap = (struct sockaddr *)&sin6;
209 len = sizeof(sin6);
210 break;
211 #endif
212 default:
213 return ERR_PTR(-EAFNOSUPPORT);
214 }
215
216 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
217 }
218
219 /*
220 * svc_xprt_received conditionally queues the transport for processing
221 * by another thread. The caller must hold the XPT_BUSY bit and must
222 * not thereafter touch transport data.
223 *
224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225 * insufficient) data.
226 */
227 static void svc_xprt_received(struct svc_xprt *xprt)
228 {
229 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 return;
232 }
233
234 /* As soon as we clear busy, the xprt could be closed and
235 * 'put', so we need a reference to call svc_enqueue_xprt with:
236 */
237 svc_xprt_get(xprt);
238 smp_mb__before_atomic();
239 clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 svc_xprt_put(xprt);
242 }
243
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
245 {
246 clear_bit(XPT_TEMP, &new->xpt_flags);
247 spin_lock_bh(&serv->sv_lock);
248 list_add(&new->xpt_list, &serv->sv_permsocks);
249 spin_unlock_bh(&serv->sv_lock);
250 svc_xprt_received(new);
251 }
252
253 int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 struct net *net, const int family,
255 const unsigned short port, int flags)
256 {
257 struct svc_xprt_class *xcl;
258
259 spin_lock(&svc_xprt_class_lock);
260 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 struct svc_xprt *newxprt;
262 unsigned short newport;
263
264 if (strcmp(xprt_name, xcl->xcl_name))
265 continue;
266
267 if (!try_module_get(xcl->xcl_owner))
268 goto err;
269
270 spin_unlock(&svc_xprt_class_lock);
271 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 if (IS_ERR(newxprt)) {
273 module_put(xcl->xcl_owner);
274 return PTR_ERR(newxprt);
275 }
276 svc_add_new_perm_xprt(serv, newxprt);
277 newport = svc_xprt_local_port(newxprt);
278 return newport;
279 }
280 err:
281 spin_unlock(&svc_xprt_class_lock);
282 /* This errno is exposed to user space. Provide a reasonable
283 * perror msg for a bad transport. */
284 return -EPROTONOSUPPORT;
285 }
286
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 struct net *net, const int family,
289 const unsigned short port, int flags)
290 {
291 int err;
292
293 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 if (err == -EPROTONOSUPPORT) {
296 request_module("svc%s", xprt_name);
297 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
298 }
299 if (err)
300 dprintk("svc: transport %s not found, err %d\n",
301 xprt_name, err);
302 return err;
303 }
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
305
306 /*
307 * Copy the local and remote xprt addresses to the rqstp structure
308 */
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
310 {
311 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 rqstp->rq_addrlen = xprt->xpt_remotelen;
313
314 /*
315 * Destination address in request is needed for binding the
316 * source address in RPC replies/callbacks later.
317 */
318 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 rqstp->rq_daddrlen = xprt->xpt_locallen;
320 }
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
322
323 /**
324 * svc_print_addr - Format rq_addr field for printing
325 * @rqstp: svc_rqst struct containing address to print
326 * @buf: target buffer for formatted address
327 * @len: length of target buffer
328 *
329 */
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
331 {
332 return __svc_print_addr(svc_addr(rqstp), buf, len);
333 }
334 EXPORT_SYMBOL_GPL(svc_print_addr);
335
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
337 {
338 unsigned int limit = svc_rpc_per_connection_limit;
339 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
340
341 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
342 }
343
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 if (!svc_xprt_slots_in_range(xprt))
348 return false;
349 atomic_inc(&xprt->xpt_nr_rqsts);
350 set_bit(RQ_DATA, &rqstp->rq_flags);
351 }
352 return true;
353 }
354
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
356 {
357 struct svc_xprt *xprt = rqstp->rq_xprt;
358 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 atomic_dec(&xprt->xpt_nr_rqsts);
360 svc_xprt_enqueue(xprt);
361 }
362 }
363
364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
365 {
366 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
367 return true;
368 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
369 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
370 svc_xprt_slots_in_range(xprt))
371 return true;
372 trace_svc_xprt_no_write_space(xprt);
373 return false;
374 }
375 return false;
376 }
377
378 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
379 {
380 struct svc_pool *pool;
381 struct svc_rqst *rqstp = NULL;
382 int cpu;
383 bool queued = false;
384
385 if (!svc_xprt_has_something_to_do(xprt))
386 goto out;
387
388 /* Mark transport as busy. It will remain in this state until
389 * the provider calls svc_xprt_received. We update XPT_BUSY
390 * atomically because it also guards against trying to enqueue
391 * the transport twice.
392 */
393 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
394 /* Don't enqueue transport while already enqueued */
395 dprintk("svc: transport %p busy, not enqueued\n", xprt);
396 goto out;
397 }
398
399 cpu = get_cpu();
400 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
401
402 atomic_long_inc(&pool->sp_stats.packets);
403
404 redo_search:
405 /* find a thread for this xprt */
406 rcu_read_lock();
407 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
408 /* Do a lockless check first */
409 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
410 continue;
411
412 /*
413 * Once the xprt has been queued, it can only be dequeued by
414 * the task that intends to service it. All we can do at that
415 * point is to try to wake this thread back up so that it can
416 * do so.
417 */
418 if (!queued) {
419 spin_lock_bh(&rqstp->rq_lock);
420 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
421 /* already busy, move on... */
422 spin_unlock_bh(&rqstp->rq_lock);
423 continue;
424 }
425
426 /* this one will do */
427 rqstp->rq_xprt = xprt;
428 svc_xprt_get(xprt);
429 spin_unlock_bh(&rqstp->rq_lock);
430 }
431 rcu_read_unlock();
432
433 atomic_long_inc(&pool->sp_stats.threads_woken);
434 wake_up_process(rqstp->rq_task);
435 put_cpu();
436 goto out;
437 }
438 rcu_read_unlock();
439
440 /*
441 * We didn't find an idle thread to use, so we need to queue the xprt.
442 * Do so and then search again. If we find one, we can't hook this one
443 * up to it directly but we can wake the thread up in the hopes that it
444 * will pick it up once it searches for a xprt to service.
445 */
446 if (!queued) {
447 queued = true;
448 dprintk("svc: transport %p put into queue\n", xprt);
449 spin_lock_bh(&pool->sp_lock);
450 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
451 pool->sp_stats.sockets_queued++;
452 spin_unlock_bh(&pool->sp_lock);
453 goto redo_search;
454 }
455 rqstp = NULL;
456 put_cpu();
457 out:
458 trace_svc_xprt_do_enqueue(xprt, rqstp);
459 }
460 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
461
462 /*
463 * Queue up a transport with data pending. If there are idle nfsd
464 * processes, wake 'em up.
465 *
466 */
467 void svc_xprt_enqueue(struct svc_xprt *xprt)
468 {
469 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
470 return;
471 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
472 }
473 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
474
475 /*
476 * Dequeue the first transport, if there is one.
477 */
478 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
479 {
480 struct svc_xprt *xprt = NULL;
481
482 if (list_empty(&pool->sp_sockets))
483 goto out;
484
485 spin_lock_bh(&pool->sp_lock);
486 if (likely(!list_empty(&pool->sp_sockets))) {
487 xprt = list_first_entry(&pool->sp_sockets,
488 struct svc_xprt, xpt_ready);
489 list_del_init(&xprt->xpt_ready);
490 svc_xprt_get(xprt);
491
492 dprintk("svc: transport %p dequeued, inuse=%d\n",
493 xprt, atomic_read(&xprt->xpt_ref.refcount));
494 }
495 spin_unlock_bh(&pool->sp_lock);
496 out:
497 trace_svc_xprt_dequeue(xprt);
498 return xprt;
499 }
500
501 /**
502 * svc_reserve - change the space reserved for the reply to a request.
503 * @rqstp: The request in question
504 * @space: new max space to reserve
505 *
506 * Each request reserves some space on the output queue of the transport
507 * to make sure the reply fits. This function reduces that reserved
508 * space to be the amount of space used already, plus @space.
509 *
510 */
511 void svc_reserve(struct svc_rqst *rqstp, int space)
512 {
513 space += rqstp->rq_res.head[0].iov_len;
514
515 if (space < rqstp->rq_reserved) {
516 struct svc_xprt *xprt = rqstp->rq_xprt;
517 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
518 rqstp->rq_reserved = space;
519
520 svc_xprt_enqueue(xprt);
521 }
522 }
523 EXPORT_SYMBOL_GPL(svc_reserve);
524
525 static void svc_xprt_release(struct svc_rqst *rqstp)
526 {
527 struct svc_xprt *xprt = rqstp->rq_xprt;
528
529 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
530
531 kfree(rqstp->rq_deferred);
532 rqstp->rq_deferred = NULL;
533
534 svc_free_res_pages(rqstp);
535 rqstp->rq_res.page_len = 0;
536 rqstp->rq_res.page_base = 0;
537
538 /* Reset response buffer and release
539 * the reservation.
540 * But first, check that enough space was reserved
541 * for the reply, otherwise we have a bug!
542 */
543 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
544 printk(KERN_ERR "RPC request reserved %d but used %d\n",
545 rqstp->rq_reserved,
546 rqstp->rq_res.len);
547
548 rqstp->rq_res.head[0].iov_len = 0;
549 svc_reserve(rqstp, 0);
550 svc_xprt_release_slot(rqstp);
551 rqstp->rq_xprt = NULL;
552 svc_xprt_put(xprt);
553 }
554
555 /*
556 * Some svc_serv's will have occasional work to do, even when a xprt is not
557 * waiting to be serviced. This function is there to "kick" a task in one of
558 * those services so that it can wake up and do that work. Note that we only
559 * bother with pool 0 as we don't need to wake up more than one thread for
560 * this purpose.
561 */
562 void svc_wake_up(struct svc_serv *serv)
563 {
564 struct svc_rqst *rqstp;
565 struct svc_pool *pool;
566
567 pool = &serv->sv_pools[0];
568
569 rcu_read_lock();
570 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
571 /* skip any that aren't queued */
572 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
573 continue;
574 rcu_read_unlock();
575 dprintk("svc: daemon %p woken up.\n", rqstp);
576 wake_up_process(rqstp->rq_task);
577 trace_svc_wake_up(rqstp->rq_task->pid);
578 return;
579 }
580 rcu_read_unlock();
581
582 /* No free entries available */
583 set_bit(SP_TASK_PENDING, &pool->sp_flags);
584 smp_wmb();
585 trace_svc_wake_up(0);
586 }
587 EXPORT_SYMBOL_GPL(svc_wake_up);
588
589 int svc_port_is_privileged(struct sockaddr *sin)
590 {
591 switch (sin->sa_family) {
592 case AF_INET:
593 return ntohs(((struct sockaddr_in *)sin)->sin_port)
594 < PROT_SOCK;
595 case AF_INET6:
596 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
597 < PROT_SOCK;
598 default:
599 return 0;
600 }
601 }
602
603 /*
604 * Make sure that we don't have too many active connections. If we have,
605 * something must be dropped. It's not clear what will happen if we allow
606 * "too many" connections, but when dealing with network-facing software,
607 * we have to code defensively. Here we do that by imposing hard limits.
608 *
609 * There's no point in trying to do random drop here for DoS
610 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
611 * attacker can easily beat that.
612 *
613 * The only somewhat efficient mechanism would be if drop old
614 * connections from the same IP first. But right now we don't even
615 * record the client IP in svc_sock.
616 *
617 * single-threaded services that expect a lot of clients will probably
618 * need to set sv_maxconn to override the default value which is based
619 * on the number of threads
620 */
621 static void svc_check_conn_limits(struct svc_serv *serv)
622 {
623 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
624 (serv->sv_nrthreads+3) * 20;
625
626 if (serv->sv_tmpcnt > limit) {
627 struct svc_xprt *xprt = NULL;
628 spin_lock_bh(&serv->sv_lock);
629 if (!list_empty(&serv->sv_tempsocks)) {
630 /* Try to help the admin */
631 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
632 serv->sv_name, serv->sv_maxconn ?
633 "max number of connections" :
634 "number of threads");
635 /*
636 * Always select the oldest connection. It's not fair,
637 * but so is life
638 */
639 xprt = list_entry(serv->sv_tempsocks.prev,
640 struct svc_xprt,
641 xpt_list);
642 set_bit(XPT_CLOSE, &xprt->xpt_flags);
643 svc_xprt_get(xprt);
644 }
645 spin_unlock_bh(&serv->sv_lock);
646
647 if (xprt) {
648 svc_xprt_enqueue(xprt);
649 svc_xprt_put(xprt);
650 }
651 }
652 }
653
654 static int svc_alloc_arg(struct svc_rqst *rqstp)
655 {
656 struct svc_serv *serv = rqstp->rq_server;
657 struct xdr_buf *arg;
658 int pages;
659 int i;
660
661 /* now allocate needed pages. If we get a failure, sleep briefly */
662 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
663 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
664 if (pages >= RPCSVC_MAXPAGES)
665 /* use as many pages as possible */
666 pages = RPCSVC_MAXPAGES - 1;
667 for (i = 0; i < pages ; i++)
668 while (rqstp->rq_pages[i] == NULL) {
669 struct page *p = alloc_page(GFP_KERNEL);
670 if (!p) {
671 set_current_state(TASK_INTERRUPTIBLE);
672 if (signalled() || kthread_should_stop()) {
673 set_current_state(TASK_RUNNING);
674 return -EINTR;
675 }
676 schedule_timeout(msecs_to_jiffies(500));
677 }
678 rqstp->rq_pages[i] = p;
679 }
680 rqstp->rq_page_end = &rqstp->rq_pages[i];
681 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
682
683 /* Make arg->head point to first page and arg->pages point to rest */
684 arg = &rqstp->rq_arg;
685 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
686 arg->head[0].iov_len = PAGE_SIZE;
687 arg->pages = rqstp->rq_pages + 1;
688 arg->page_base = 0;
689 /* save at least one page for response */
690 arg->page_len = (pages-2)*PAGE_SIZE;
691 arg->len = (pages-1)*PAGE_SIZE;
692 arg->tail[0].iov_len = 0;
693 return 0;
694 }
695
696 static bool
697 rqst_should_sleep(struct svc_rqst *rqstp)
698 {
699 struct svc_pool *pool = rqstp->rq_pool;
700
701 /* did someone call svc_wake_up? */
702 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
703 return false;
704
705 /* was a socket queued? */
706 if (!list_empty(&pool->sp_sockets))
707 return false;
708
709 /* are we shutting down? */
710 if (signalled() || kthread_should_stop())
711 return false;
712
713 /* are we freezing? */
714 if (freezing(current))
715 return false;
716
717 return true;
718 }
719
720 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
721 {
722 struct svc_xprt *xprt;
723 struct svc_pool *pool = rqstp->rq_pool;
724 long time_left = 0;
725
726 /* rq_xprt should be clear on entry */
727 WARN_ON_ONCE(rqstp->rq_xprt);
728
729 /* Normally we will wait up to 5 seconds for any required
730 * cache information to be provided.
731 */
732 rqstp->rq_chandle.thread_wait = 5*HZ;
733
734 xprt = svc_xprt_dequeue(pool);
735 if (xprt) {
736 rqstp->rq_xprt = xprt;
737
738 /* As there is a shortage of threads and this request
739 * had to be queued, don't allow the thread to wait so
740 * long for cache updates.
741 */
742 rqstp->rq_chandle.thread_wait = 1*HZ;
743 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
744 return xprt;
745 }
746
747 /*
748 * We have to be able to interrupt this wait
749 * to bring down the daemons ...
750 */
751 set_current_state(TASK_INTERRUPTIBLE);
752 clear_bit(RQ_BUSY, &rqstp->rq_flags);
753 smp_mb();
754
755 if (likely(rqst_should_sleep(rqstp)))
756 time_left = schedule_timeout(timeout);
757 else
758 __set_current_state(TASK_RUNNING);
759
760 try_to_freeze();
761
762 spin_lock_bh(&rqstp->rq_lock);
763 set_bit(RQ_BUSY, &rqstp->rq_flags);
764 spin_unlock_bh(&rqstp->rq_lock);
765
766 xprt = rqstp->rq_xprt;
767 if (xprt != NULL)
768 return xprt;
769
770 if (!time_left)
771 atomic_long_inc(&pool->sp_stats.threads_timedout);
772
773 if (signalled() || kthread_should_stop())
774 return ERR_PTR(-EINTR);
775 return ERR_PTR(-EAGAIN);
776 }
777
778 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
779 {
780 spin_lock_bh(&serv->sv_lock);
781 set_bit(XPT_TEMP, &newxpt->xpt_flags);
782 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
783 serv->sv_tmpcnt++;
784 if (serv->sv_temptimer.function == NULL) {
785 /* setup timer to age temp transports */
786 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
787 (unsigned long)serv);
788 mod_timer(&serv->sv_temptimer,
789 jiffies + svc_conn_age_period * HZ);
790 }
791 spin_unlock_bh(&serv->sv_lock);
792 svc_xprt_received(newxpt);
793 }
794
795 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
796 {
797 struct svc_serv *serv = rqstp->rq_server;
798 int len = 0;
799
800 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
801 dprintk("svc_recv: found XPT_CLOSE\n");
802 svc_delete_xprt(xprt);
803 /* Leave XPT_BUSY set on the dead xprt: */
804 goto out;
805 }
806 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
807 struct svc_xprt *newxpt;
808 /*
809 * We know this module_get will succeed because the
810 * listener holds a reference too
811 */
812 __module_get(xprt->xpt_class->xcl_owner);
813 svc_check_conn_limits(xprt->xpt_server);
814 newxpt = xprt->xpt_ops->xpo_accept(xprt);
815 if (newxpt)
816 svc_add_new_temp_xprt(serv, newxpt);
817 else
818 module_put(xprt->xpt_class->xcl_owner);
819 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
820 /* XPT_DATA|XPT_DEFERRED case: */
821 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
822 rqstp, rqstp->rq_pool->sp_id, xprt,
823 atomic_read(&xprt->xpt_ref.refcount));
824 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
825 if (rqstp->rq_deferred)
826 len = svc_deferred_recv(rqstp);
827 else
828 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
829 dprintk("svc: got len=%d\n", len);
830 rqstp->rq_reserved = serv->sv_max_mesg;
831 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
832 }
833 /* clear XPT_BUSY: */
834 svc_xprt_received(xprt);
835 out:
836 trace_svc_handle_xprt(xprt, len);
837 return len;
838 }
839
840 /*
841 * Receive the next request on any transport. This code is carefully
842 * organised not to touch any cachelines in the shared svc_serv
843 * structure, only cachelines in the local svc_pool.
844 */
845 int svc_recv(struct svc_rqst *rqstp, long timeout)
846 {
847 struct svc_xprt *xprt = NULL;
848 struct svc_serv *serv = rqstp->rq_server;
849 int len, err;
850
851 dprintk("svc: server %p waiting for data (to = %ld)\n",
852 rqstp, timeout);
853
854 if (rqstp->rq_xprt)
855 printk(KERN_ERR
856 "svc_recv: service %p, transport not NULL!\n",
857 rqstp);
858
859 err = svc_alloc_arg(rqstp);
860 if (err)
861 goto out;
862
863 try_to_freeze();
864 cond_resched();
865 err = -EINTR;
866 if (signalled() || kthread_should_stop())
867 goto out;
868
869 xprt = svc_get_next_xprt(rqstp, timeout);
870 if (IS_ERR(xprt)) {
871 err = PTR_ERR(xprt);
872 goto out;
873 }
874
875 len = svc_handle_xprt(rqstp, xprt);
876
877 /* No data, incomplete (TCP) read, or accept() */
878 err = -EAGAIN;
879 if (len <= 0)
880 goto out_release;
881
882 clear_bit(XPT_OLD, &xprt->xpt_flags);
883
884 if (xprt->xpt_ops->xpo_secure_port(rqstp))
885 set_bit(RQ_SECURE, &rqstp->rq_flags);
886 else
887 clear_bit(RQ_SECURE, &rqstp->rq_flags);
888 rqstp->rq_chandle.defer = svc_defer;
889 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
890
891 if (serv->sv_stats)
892 serv->sv_stats->netcnt++;
893 trace_svc_recv(rqstp, len);
894 return len;
895 out_release:
896 rqstp->rq_res.len = 0;
897 svc_xprt_release(rqstp);
898 out:
899 trace_svc_recv(rqstp, err);
900 return err;
901 }
902 EXPORT_SYMBOL_GPL(svc_recv);
903
904 /*
905 * Drop request
906 */
907 void svc_drop(struct svc_rqst *rqstp)
908 {
909 trace_svc_drop(rqstp);
910 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
911 svc_xprt_release(rqstp);
912 }
913 EXPORT_SYMBOL_GPL(svc_drop);
914
915 /*
916 * Return reply to client.
917 */
918 int svc_send(struct svc_rqst *rqstp)
919 {
920 struct svc_xprt *xprt;
921 int len = -EFAULT;
922 struct xdr_buf *xb;
923
924 xprt = rqstp->rq_xprt;
925 if (!xprt)
926 goto out;
927
928 /* release the receive skb before sending the reply */
929 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
930
931 /* calculate over-all length */
932 xb = &rqstp->rq_res;
933 xb->len = xb->head[0].iov_len +
934 xb->page_len +
935 xb->tail[0].iov_len;
936
937 /* Grab mutex to serialize outgoing data. */
938 mutex_lock(&xprt->xpt_mutex);
939 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
940 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
941 len = -ENOTCONN;
942 else
943 len = xprt->xpt_ops->xpo_sendto(rqstp);
944 mutex_unlock(&xprt->xpt_mutex);
945 rpc_wake_up(&xprt->xpt_bc_pending);
946 svc_xprt_release(rqstp);
947
948 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
949 len = 0;
950 out:
951 trace_svc_send(rqstp, len);
952 return len;
953 }
954
955 /*
956 * Timer function to close old temporary transports, using
957 * a mark-and-sweep algorithm.
958 */
959 static void svc_age_temp_xprts(unsigned long closure)
960 {
961 struct svc_serv *serv = (struct svc_serv *)closure;
962 struct svc_xprt *xprt;
963 struct list_head *le, *next;
964
965 dprintk("svc_age_temp_xprts\n");
966
967 if (!spin_trylock_bh(&serv->sv_lock)) {
968 /* busy, try again 1 sec later */
969 dprintk("svc_age_temp_xprts: busy\n");
970 mod_timer(&serv->sv_temptimer, jiffies + HZ);
971 return;
972 }
973
974 list_for_each_safe(le, next, &serv->sv_tempsocks) {
975 xprt = list_entry(le, struct svc_xprt, xpt_list);
976
977 /* First time through, just mark it OLD. Second time
978 * through, close it. */
979 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
980 continue;
981 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
982 test_bit(XPT_BUSY, &xprt->xpt_flags))
983 continue;
984 list_del_init(le);
985 set_bit(XPT_CLOSE, &xprt->xpt_flags);
986 dprintk("queuing xprt %p for closing\n", xprt);
987
988 /* a thread will dequeue and close it soon */
989 svc_xprt_enqueue(xprt);
990 }
991 spin_unlock_bh(&serv->sv_lock);
992
993 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
994 }
995
996 /* Close temporary transports whose xpt_local matches server_addr immediately
997 * instead of waiting for them to be picked up by the timer.
998 *
999 * This is meant to be called from a notifier_block that runs when an ip
1000 * address is deleted.
1001 */
1002 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
1003 {
1004 struct svc_xprt *xprt;
1005 struct svc_sock *svsk;
1006 struct socket *sock;
1007 struct list_head *le, *next;
1008 LIST_HEAD(to_be_closed);
1009 struct linger no_linger = {
1010 .l_onoff = 1,
1011 .l_linger = 0,
1012 };
1013
1014 spin_lock_bh(&serv->sv_lock);
1015 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1016 xprt = list_entry(le, struct svc_xprt, xpt_list);
1017 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1018 &xprt->xpt_local)) {
1019 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1020 list_move(le, &to_be_closed);
1021 }
1022 }
1023 spin_unlock_bh(&serv->sv_lock);
1024
1025 while (!list_empty(&to_be_closed)) {
1026 le = to_be_closed.next;
1027 list_del_init(le);
1028 xprt = list_entry(le, struct svc_xprt, xpt_list);
1029 dprintk("svc_age_temp_xprts_now: closing %p\n", xprt);
1030 svsk = container_of(xprt, struct svc_sock, sk_xprt);
1031 sock = svsk->sk_sock;
1032 kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
1033 (char *)&no_linger, sizeof(no_linger));
1034 svc_close_xprt(xprt);
1035 }
1036 }
1037 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1038
1039 static void call_xpt_users(struct svc_xprt *xprt)
1040 {
1041 struct svc_xpt_user *u;
1042
1043 spin_lock(&xprt->xpt_lock);
1044 while (!list_empty(&xprt->xpt_users)) {
1045 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1046 list_del(&u->list);
1047 u->callback(u);
1048 }
1049 spin_unlock(&xprt->xpt_lock);
1050 }
1051
1052 /*
1053 * Remove a dead transport
1054 */
1055 static void svc_delete_xprt(struct svc_xprt *xprt)
1056 {
1057 struct svc_serv *serv = xprt->xpt_server;
1058 struct svc_deferred_req *dr;
1059
1060 /* Only do this once */
1061 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1062 BUG();
1063
1064 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1065 xprt->xpt_ops->xpo_detach(xprt);
1066
1067 spin_lock_bh(&serv->sv_lock);
1068 list_del_init(&xprt->xpt_list);
1069 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1070 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1071 serv->sv_tmpcnt--;
1072 spin_unlock_bh(&serv->sv_lock);
1073
1074 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1075 kfree(dr);
1076
1077 call_xpt_users(xprt);
1078 svc_xprt_put(xprt);
1079 }
1080
1081 void svc_close_xprt(struct svc_xprt *xprt)
1082 {
1083 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1084 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1085 /* someone else will have to effect the close */
1086 return;
1087 /*
1088 * We expect svc_close_xprt() to work even when no threads are
1089 * running (e.g., while configuring the server before starting
1090 * any threads), so if the transport isn't busy, we delete
1091 * it ourself:
1092 */
1093 svc_delete_xprt(xprt);
1094 }
1095 EXPORT_SYMBOL_GPL(svc_close_xprt);
1096
1097 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1098 {
1099 struct svc_xprt *xprt;
1100 int ret = 0;
1101
1102 spin_lock(&serv->sv_lock);
1103 list_for_each_entry(xprt, xprt_list, xpt_list) {
1104 if (xprt->xpt_net != net)
1105 continue;
1106 ret++;
1107 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1108 svc_xprt_enqueue(xprt);
1109 }
1110 spin_unlock(&serv->sv_lock);
1111 return ret;
1112 }
1113
1114 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1115 {
1116 struct svc_pool *pool;
1117 struct svc_xprt *xprt;
1118 struct svc_xprt *tmp;
1119 int i;
1120
1121 for (i = 0; i < serv->sv_nrpools; i++) {
1122 pool = &serv->sv_pools[i];
1123
1124 spin_lock_bh(&pool->sp_lock);
1125 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1126 if (xprt->xpt_net != net)
1127 continue;
1128 list_del_init(&xprt->xpt_ready);
1129 spin_unlock_bh(&pool->sp_lock);
1130 return xprt;
1131 }
1132 spin_unlock_bh(&pool->sp_lock);
1133 }
1134 return NULL;
1135 }
1136
1137 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1138 {
1139 struct svc_xprt *xprt;
1140
1141 while ((xprt = svc_dequeue_net(serv, net))) {
1142 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1143 svc_delete_xprt(xprt);
1144 }
1145 }
1146
1147 /*
1148 * Server threads may still be running (especially in the case where the
1149 * service is still running in other network namespaces).
1150 *
1151 * So we shut down sockets the same way we would on a running server, by
1152 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1153 * the close. In the case there are no such other threads,
1154 * threads running, svc_clean_up_xprts() does a simple version of a
1155 * server's main event loop, and in the case where there are other
1156 * threads, we may need to wait a little while and then check again to
1157 * see if they're done.
1158 */
1159 void svc_close_net(struct svc_serv *serv, struct net *net)
1160 {
1161 int delay = 0;
1162
1163 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1164 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1165
1166 svc_clean_up_xprts(serv, net);
1167 msleep(delay++);
1168 }
1169 }
1170
1171 /*
1172 * Handle defer and revisit of requests
1173 */
1174
1175 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1176 {
1177 struct svc_deferred_req *dr =
1178 container_of(dreq, struct svc_deferred_req, handle);
1179 struct svc_xprt *xprt = dr->xprt;
1180
1181 spin_lock(&xprt->xpt_lock);
1182 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1183 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1184 spin_unlock(&xprt->xpt_lock);
1185 dprintk("revisit canceled\n");
1186 svc_xprt_put(xprt);
1187 trace_svc_drop_deferred(dr);
1188 kfree(dr);
1189 return;
1190 }
1191 dprintk("revisit queued\n");
1192 dr->xprt = NULL;
1193 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1194 spin_unlock(&xprt->xpt_lock);
1195 svc_xprt_enqueue(xprt);
1196 svc_xprt_put(xprt);
1197 }
1198
1199 /*
1200 * Save the request off for later processing. The request buffer looks
1201 * like this:
1202 *
1203 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1204 *
1205 * This code can only handle requests that consist of an xprt-header
1206 * and rpc-header.
1207 */
1208 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1209 {
1210 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1211 struct svc_deferred_req *dr;
1212
1213 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1214 return NULL; /* if more than a page, give up FIXME */
1215 if (rqstp->rq_deferred) {
1216 dr = rqstp->rq_deferred;
1217 rqstp->rq_deferred = NULL;
1218 } else {
1219 size_t skip;
1220 size_t size;
1221 /* FIXME maybe discard if size too large */
1222 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1223 dr = kmalloc(size, GFP_KERNEL);
1224 if (dr == NULL)
1225 return NULL;
1226
1227 dr->handle.owner = rqstp->rq_server;
1228 dr->prot = rqstp->rq_prot;
1229 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1230 dr->addrlen = rqstp->rq_addrlen;
1231 dr->daddr = rqstp->rq_daddr;
1232 dr->argslen = rqstp->rq_arg.len >> 2;
1233 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1234
1235 /* back up head to the start of the buffer and copy */
1236 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1237 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1238 dr->argslen << 2);
1239 }
1240 svc_xprt_get(rqstp->rq_xprt);
1241 dr->xprt = rqstp->rq_xprt;
1242 set_bit(RQ_DROPME, &rqstp->rq_flags);
1243
1244 dr->handle.revisit = svc_revisit;
1245 trace_svc_defer(rqstp);
1246 return &dr->handle;
1247 }
1248
1249 /*
1250 * recv data from a deferred request into an active one
1251 */
1252 static int svc_deferred_recv(struct svc_rqst *rqstp)
1253 {
1254 struct svc_deferred_req *dr = rqstp->rq_deferred;
1255
1256 /* setup iov_base past transport header */
1257 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1258 /* The iov_len does not include the transport header bytes */
1259 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1260 rqstp->rq_arg.page_len = 0;
1261 /* The rq_arg.len includes the transport header bytes */
1262 rqstp->rq_arg.len = dr->argslen<<2;
1263 rqstp->rq_prot = dr->prot;
1264 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1265 rqstp->rq_addrlen = dr->addrlen;
1266 /* Save off transport header len in case we get deferred again */
1267 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1268 rqstp->rq_daddr = dr->daddr;
1269 rqstp->rq_respages = rqstp->rq_pages;
1270 return (dr->argslen<<2) - dr->xprt_hlen;
1271 }
1272
1273
1274 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1275 {
1276 struct svc_deferred_req *dr = NULL;
1277
1278 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1279 return NULL;
1280 spin_lock(&xprt->xpt_lock);
1281 if (!list_empty(&xprt->xpt_deferred)) {
1282 dr = list_entry(xprt->xpt_deferred.next,
1283 struct svc_deferred_req,
1284 handle.recent);
1285 list_del_init(&dr->handle.recent);
1286 trace_svc_revisit_deferred(dr);
1287 } else
1288 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1289 spin_unlock(&xprt->xpt_lock);
1290 return dr;
1291 }
1292
1293 /**
1294 * svc_find_xprt - find an RPC transport instance
1295 * @serv: pointer to svc_serv to search
1296 * @xcl_name: C string containing transport's class name
1297 * @net: owner net pointer
1298 * @af: Address family of transport's local address
1299 * @port: transport's IP port number
1300 *
1301 * Return the transport instance pointer for the endpoint accepting
1302 * connections/peer traffic from the specified transport class,
1303 * address family and port.
1304 *
1305 * Specifying 0 for the address family or port is effectively a
1306 * wild-card, and will result in matching the first transport in the
1307 * service's list that has a matching class name.
1308 */
1309 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1310 struct net *net, const sa_family_t af,
1311 const unsigned short port)
1312 {
1313 struct svc_xprt *xprt;
1314 struct svc_xprt *found = NULL;
1315
1316 /* Sanity check the args */
1317 if (serv == NULL || xcl_name == NULL)
1318 return found;
1319
1320 spin_lock_bh(&serv->sv_lock);
1321 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1322 if (xprt->xpt_net != net)
1323 continue;
1324 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1325 continue;
1326 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1327 continue;
1328 if (port != 0 && port != svc_xprt_local_port(xprt))
1329 continue;
1330 found = xprt;
1331 svc_xprt_get(xprt);
1332 break;
1333 }
1334 spin_unlock_bh(&serv->sv_lock);
1335 return found;
1336 }
1337 EXPORT_SYMBOL_GPL(svc_find_xprt);
1338
1339 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1340 char *pos, int remaining)
1341 {
1342 int len;
1343
1344 len = snprintf(pos, remaining, "%s %u\n",
1345 xprt->xpt_class->xcl_name,
1346 svc_xprt_local_port(xprt));
1347 if (len >= remaining)
1348 return -ENAMETOOLONG;
1349 return len;
1350 }
1351
1352 /**
1353 * svc_xprt_names - format a buffer with a list of transport names
1354 * @serv: pointer to an RPC service
1355 * @buf: pointer to a buffer to be filled in
1356 * @buflen: length of buffer to be filled in
1357 *
1358 * Fills in @buf with a string containing a list of transport names,
1359 * each name terminated with '\n'.
1360 *
1361 * Returns positive length of the filled-in string on success; otherwise
1362 * a negative errno value is returned if an error occurs.
1363 */
1364 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1365 {
1366 struct svc_xprt *xprt;
1367 int len, totlen;
1368 char *pos;
1369
1370 /* Sanity check args */
1371 if (!serv)
1372 return 0;
1373
1374 spin_lock_bh(&serv->sv_lock);
1375
1376 pos = buf;
1377 totlen = 0;
1378 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1379 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1380 if (len < 0) {
1381 *buf = '\0';
1382 totlen = len;
1383 }
1384 if (len <= 0)
1385 break;
1386
1387 pos += len;
1388 totlen += len;
1389 }
1390
1391 spin_unlock_bh(&serv->sv_lock);
1392 return totlen;
1393 }
1394 EXPORT_SYMBOL_GPL(svc_xprt_names);
1395
1396
1397 /*----------------------------------------------------------------------------*/
1398
1399 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1400 {
1401 unsigned int pidx = (unsigned int)*pos;
1402 struct svc_serv *serv = m->private;
1403
1404 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1405
1406 if (!pidx)
1407 return SEQ_START_TOKEN;
1408 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1409 }
1410
1411 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1412 {
1413 struct svc_pool *pool = p;
1414 struct svc_serv *serv = m->private;
1415
1416 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1417
1418 if (p == SEQ_START_TOKEN) {
1419 pool = &serv->sv_pools[0];
1420 } else {
1421 unsigned int pidx = (pool - &serv->sv_pools[0]);
1422 if (pidx < serv->sv_nrpools-1)
1423 pool = &serv->sv_pools[pidx+1];
1424 else
1425 pool = NULL;
1426 }
1427 ++*pos;
1428 return pool;
1429 }
1430
1431 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1432 {
1433 }
1434
1435 static int svc_pool_stats_show(struct seq_file *m, void *p)
1436 {
1437 struct svc_pool *pool = p;
1438
1439 if (p == SEQ_START_TOKEN) {
1440 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1441 return 0;
1442 }
1443
1444 seq_printf(m, "%u %lu %lu %lu %lu\n",
1445 pool->sp_id,
1446 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1447 pool->sp_stats.sockets_queued,
1448 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1449 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1450
1451 return 0;
1452 }
1453
1454 static const struct seq_operations svc_pool_stats_seq_ops = {
1455 .start = svc_pool_stats_start,
1456 .next = svc_pool_stats_next,
1457 .stop = svc_pool_stats_stop,
1458 .show = svc_pool_stats_show,
1459 };
1460
1461 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1462 {
1463 int err;
1464
1465 err = seq_open(file, &svc_pool_stats_seq_ops);
1466 if (!err)
1467 ((struct seq_file *) file->private_data)->private = serv;
1468 return err;
1469 }
1470 EXPORT_SYMBOL(svc_pool_stats_open);
1471
1472 /*----------------------------------------------------------------------------*/