net: use IS_ENABLED(CONFIG_IPV6)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18
19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
20
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25
26 /* apparently the "standard" is that clients close
27 * idle connections after 5 minutes, servers after
28 * 6 minutes
29 * http://www.connectathon.org/talks96/nfstcp.pdf
30 */
31 static int svc_conn_age_period = 6*60;
32
33 /* List of registered transport classes */
34 static DEFINE_SPINLOCK(svc_xprt_class_lock);
35 static LIST_HEAD(svc_xprt_class_list);
36
37 /* SMP locking strategy:
38 *
39 * svc_pool->sp_lock protects most of the fields of that pool.
40 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
41 * when both need to be taken (rare), svc_serv->sv_lock is first.
42 * BKL protects svc_serv->sv_nrthread.
43 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
44 * and the ->sk_info_authunix cache.
45 *
46 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
47 * enqueued multiply. During normal transport processing this bit
48 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
49 * Providers should not manipulate this bit directly.
50 *
51 * Some flags can be set to certain values at any time
52 * providing that certain rules are followed:
53 *
54 * XPT_CONN, XPT_DATA:
55 * - Can be set or cleared at any time.
56 * - After a set, svc_xprt_enqueue must be called to enqueue
57 * the transport for processing.
58 * - After a clear, the transport must be read/accepted.
59 * If this succeeds, it must be set again.
60 * XPT_CLOSE:
61 * - Can set at any time. It is never cleared.
62 * XPT_DEAD:
63 * - Can only be set while XPT_BUSY is held which ensures
64 * that no other thread will be using the transport or will
65 * try to set XPT_DEAD.
66 */
67
68 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
69 {
70 struct svc_xprt_class *cl;
71 int res = -EEXIST;
72
73 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
74
75 INIT_LIST_HEAD(&xcl->xcl_list);
76 spin_lock(&svc_xprt_class_lock);
77 /* Make sure there isn't already a class with the same name */
78 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
79 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
80 goto out;
81 }
82 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
83 res = 0;
84 out:
85 spin_unlock(&svc_xprt_class_lock);
86 return res;
87 }
88 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
89
90 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
91 {
92 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
93 spin_lock(&svc_xprt_class_lock);
94 list_del_init(&xcl->xcl_list);
95 spin_unlock(&svc_xprt_class_lock);
96 }
97 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
98
99 /*
100 * Format the transport list for printing
101 */
102 int svc_print_xprts(char *buf, int maxlen)
103 {
104 struct svc_xprt_class *xcl;
105 char tmpstr[80];
106 int len = 0;
107 buf[0] = '\0';
108
109 spin_lock(&svc_xprt_class_lock);
110 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
111 int slen;
112
113 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
114 slen = strlen(tmpstr);
115 if (len + slen > maxlen)
116 break;
117 len += slen;
118 strcat(buf, tmpstr);
119 }
120 spin_unlock(&svc_xprt_class_lock);
121
122 return len;
123 }
124
125 static void svc_xprt_free(struct kref *kref)
126 {
127 struct svc_xprt *xprt =
128 container_of(kref, struct svc_xprt, xpt_ref);
129 struct module *owner = xprt->xpt_class->xcl_owner;
130 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
131 svcauth_unix_info_release(xprt);
132 put_net(xprt->xpt_net);
133 /* See comment on corresponding get in xs_setup_bc_tcp(): */
134 if (xprt->xpt_bc_xprt)
135 xprt_put(xprt->xpt_bc_xprt);
136 xprt->xpt_ops->xpo_free(xprt);
137 module_put(owner);
138 }
139
140 void svc_xprt_put(struct svc_xprt *xprt)
141 {
142 kref_put(&xprt->xpt_ref, svc_xprt_free);
143 }
144 EXPORT_SYMBOL_GPL(svc_xprt_put);
145
146 /*
147 * Called by transport drivers to initialize the transport independent
148 * portion of the transport instance.
149 */
150 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
151 struct svc_serv *serv)
152 {
153 memset(xprt, 0, sizeof(*xprt));
154 xprt->xpt_class = xcl;
155 xprt->xpt_ops = xcl->xcl_ops;
156 kref_init(&xprt->xpt_ref);
157 xprt->xpt_server = serv;
158 INIT_LIST_HEAD(&xprt->xpt_list);
159 INIT_LIST_HEAD(&xprt->xpt_ready);
160 INIT_LIST_HEAD(&xprt->xpt_deferred);
161 INIT_LIST_HEAD(&xprt->xpt_users);
162 mutex_init(&xprt->xpt_mutex);
163 spin_lock_init(&xprt->xpt_lock);
164 set_bit(XPT_BUSY, &xprt->xpt_flags);
165 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
166 xprt->xpt_net = get_net(&init_net);
167 }
168 EXPORT_SYMBOL_GPL(svc_xprt_init);
169
170 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
171 struct svc_serv *serv,
172 struct net *net,
173 const int family,
174 const unsigned short port,
175 int flags)
176 {
177 struct sockaddr_in sin = {
178 .sin_family = AF_INET,
179 .sin_addr.s_addr = htonl(INADDR_ANY),
180 .sin_port = htons(port),
181 };
182 #if IS_ENABLED(CONFIG_IPV6)
183 struct sockaddr_in6 sin6 = {
184 .sin6_family = AF_INET6,
185 .sin6_addr = IN6ADDR_ANY_INIT,
186 .sin6_port = htons(port),
187 };
188 #endif
189 struct sockaddr *sap;
190 size_t len;
191
192 switch (family) {
193 case PF_INET:
194 sap = (struct sockaddr *)&sin;
195 len = sizeof(sin);
196 break;
197 #if IS_ENABLED(CONFIG_IPV6)
198 case PF_INET6:
199 sap = (struct sockaddr *)&sin6;
200 len = sizeof(sin6);
201 break;
202 #endif
203 default:
204 return ERR_PTR(-EAFNOSUPPORT);
205 }
206
207 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
208 }
209
210 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
211 struct net *net, const int family,
212 const unsigned short port, int flags)
213 {
214 struct svc_xprt_class *xcl;
215
216 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
217 spin_lock(&svc_xprt_class_lock);
218 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
219 struct svc_xprt *newxprt;
220 unsigned short newport;
221
222 if (strcmp(xprt_name, xcl->xcl_name))
223 continue;
224
225 if (!try_module_get(xcl->xcl_owner))
226 goto err;
227
228 spin_unlock(&svc_xprt_class_lock);
229 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
230 if (IS_ERR(newxprt)) {
231 module_put(xcl->xcl_owner);
232 return PTR_ERR(newxprt);
233 }
234
235 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
236 spin_lock_bh(&serv->sv_lock);
237 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
238 spin_unlock_bh(&serv->sv_lock);
239 newport = svc_xprt_local_port(newxprt);
240 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
241 return newport;
242 }
243 err:
244 spin_unlock(&svc_xprt_class_lock);
245 dprintk("svc: transport %s not found\n", xprt_name);
246
247 /* This errno is exposed to user space. Provide a reasonable
248 * perror msg for a bad transport. */
249 return -EPROTONOSUPPORT;
250 }
251 EXPORT_SYMBOL_GPL(svc_create_xprt);
252
253 /*
254 * Copy the local and remote xprt addresses to the rqstp structure
255 */
256 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
257 {
258 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
259 rqstp->rq_addrlen = xprt->xpt_remotelen;
260
261 /*
262 * Destination address in request is needed for binding the
263 * source address in RPC replies/callbacks later.
264 */
265 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
266 rqstp->rq_daddrlen = xprt->xpt_locallen;
267 }
268 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
269
270 /**
271 * svc_print_addr - Format rq_addr field for printing
272 * @rqstp: svc_rqst struct containing address to print
273 * @buf: target buffer for formatted address
274 * @len: length of target buffer
275 *
276 */
277 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
278 {
279 return __svc_print_addr(svc_addr(rqstp), buf, len);
280 }
281 EXPORT_SYMBOL_GPL(svc_print_addr);
282
283 /*
284 * Queue up an idle server thread. Must have pool->sp_lock held.
285 * Note: this is really a stack rather than a queue, so that we only
286 * use as many different threads as we need, and the rest don't pollute
287 * the cache.
288 */
289 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
290 {
291 list_add(&rqstp->rq_list, &pool->sp_threads);
292 }
293
294 /*
295 * Dequeue an nfsd thread. Must have pool->sp_lock held.
296 */
297 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
298 {
299 list_del(&rqstp->rq_list);
300 }
301
302 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
303 {
304 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
305 return true;
306 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
307 return xprt->xpt_ops->xpo_has_wspace(xprt);
308 return false;
309 }
310
311 /*
312 * Queue up a transport with data pending. If there are idle nfsd
313 * processes, wake 'em up.
314 *
315 */
316 void svc_xprt_enqueue(struct svc_xprt *xprt)
317 {
318 struct svc_serv *serv = xprt->xpt_server;
319 struct svc_pool *pool;
320 struct svc_rqst *rqstp;
321 int cpu;
322
323 if (!svc_xprt_has_something_to_do(xprt))
324 return;
325
326 cpu = get_cpu();
327 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
328 put_cpu();
329
330 spin_lock_bh(&pool->sp_lock);
331
332 if (!list_empty(&pool->sp_threads) &&
333 !list_empty(&pool->sp_sockets))
334 printk(KERN_ERR
335 "svc_xprt_enqueue: "
336 "threads and transports both waiting??\n");
337
338 pool->sp_stats.packets++;
339
340 /* Mark transport as busy. It will remain in this state until
341 * the provider calls svc_xprt_received. We update XPT_BUSY
342 * atomically because it also guards against trying to enqueue
343 * the transport twice.
344 */
345 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
346 /* Don't enqueue transport while already enqueued */
347 dprintk("svc: transport %p busy, not enqueued\n", xprt);
348 goto out_unlock;
349 }
350
351 if (!list_empty(&pool->sp_threads)) {
352 rqstp = list_entry(pool->sp_threads.next,
353 struct svc_rqst,
354 rq_list);
355 dprintk("svc: transport %p served by daemon %p\n",
356 xprt, rqstp);
357 svc_thread_dequeue(pool, rqstp);
358 if (rqstp->rq_xprt)
359 printk(KERN_ERR
360 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
361 rqstp, rqstp->rq_xprt);
362 rqstp->rq_xprt = xprt;
363 svc_xprt_get(xprt);
364 rqstp->rq_reserved = serv->sv_max_mesg;
365 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
366 pool->sp_stats.threads_woken++;
367 wake_up(&rqstp->rq_wait);
368 } else {
369 dprintk("svc: transport %p put into queue\n", xprt);
370 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
371 pool->sp_stats.sockets_queued++;
372 }
373
374 out_unlock:
375 spin_unlock_bh(&pool->sp_lock);
376 }
377 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
378
379 /*
380 * Dequeue the first transport. Must be called with the pool->sp_lock held.
381 */
382 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
383 {
384 struct svc_xprt *xprt;
385
386 if (list_empty(&pool->sp_sockets))
387 return NULL;
388
389 xprt = list_entry(pool->sp_sockets.next,
390 struct svc_xprt, xpt_ready);
391 list_del_init(&xprt->xpt_ready);
392
393 dprintk("svc: transport %p dequeued, inuse=%d\n",
394 xprt, atomic_read(&xprt->xpt_ref.refcount));
395
396 return xprt;
397 }
398
399 /*
400 * svc_xprt_received conditionally queues the transport for processing
401 * by another thread. The caller must hold the XPT_BUSY bit and must
402 * not thereafter touch transport data.
403 *
404 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
405 * insufficient) data.
406 */
407 void svc_xprt_received(struct svc_xprt *xprt)
408 {
409 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
410 /* As soon as we clear busy, the xprt could be closed and
411 * 'put', so we need a reference to call svc_xprt_enqueue with:
412 */
413 svc_xprt_get(xprt);
414 clear_bit(XPT_BUSY, &xprt->xpt_flags);
415 svc_xprt_enqueue(xprt);
416 svc_xprt_put(xprt);
417 }
418 EXPORT_SYMBOL_GPL(svc_xprt_received);
419
420 /**
421 * svc_reserve - change the space reserved for the reply to a request.
422 * @rqstp: The request in question
423 * @space: new max space to reserve
424 *
425 * Each request reserves some space on the output queue of the transport
426 * to make sure the reply fits. This function reduces that reserved
427 * space to be the amount of space used already, plus @space.
428 *
429 */
430 void svc_reserve(struct svc_rqst *rqstp, int space)
431 {
432 space += rqstp->rq_res.head[0].iov_len;
433
434 if (space < rqstp->rq_reserved) {
435 struct svc_xprt *xprt = rqstp->rq_xprt;
436 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
437 rqstp->rq_reserved = space;
438
439 svc_xprt_enqueue(xprt);
440 }
441 }
442 EXPORT_SYMBOL_GPL(svc_reserve);
443
444 static void svc_xprt_release(struct svc_rqst *rqstp)
445 {
446 struct svc_xprt *xprt = rqstp->rq_xprt;
447
448 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
449
450 kfree(rqstp->rq_deferred);
451 rqstp->rq_deferred = NULL;
452
453 svc_free_res_pages(rqstp);
454 rqstp->rq_res.page_len = 0;
455 rqstp->rq_res.page_base = 0;
456
457 /* Reset response buffer and release
458 * the reservation.
459 * But first, check that enough space was reserved
460 * for the reply, otherwise we have a bug!
461 */
462 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
463 printk(KERN_ERR "RPC request reserved %d but used %d\n",
464 rqstp->rq_reserved,
465 rqstp->rq_res.len);
466
467 rqstp->rq_res.head[0].iov_len = 0;
468 svc_reserve(rqstp, 0);
469 rqstp->rq_xprt = NULL;
470
471 svc_xprt_put(xprt);
472 }
473
474 /*
475 * External function to wake up a server waiting for data
476 * This really only makes sense for services like lockd
477 * which have exactly one thread anyway.
478 */
479 void svc_wake_up(struct svc_serv *serv)
480 {
481 struct svc_rqst *rqstp;
482 unsigned int i;
483 struct svc_pool *pool;
484
485 for (i = 0; i < serv->sv_nrpools; i++) {
486 pool = &serv->sv_pools[i];
487
488 spin_lock_bh(&pool->sp_lock);
489 if (!list_empty(&pool->sp_threads)) {
490 rqstp = list_entry(pool->sp_threads.next,
491 struct svc_rqst,
492 rq_list);
493 dprintk("svc: daemon %p woken up.\n", rqstp);
494 /*
495 svc_thread_dequeue(pool, rqstp);
496 rqstp->rq_xprt = NULL;
497 */
498 wake_up(&rqstp->rq_wait);
499 }
500 spin_unlock_bh(&pool->sp_lock);
501 }
502 }
503 EXPORT_SYMBOL_GPL(svc_wake_up);
504
505 int svc_port_is_privileged(struct sockaddr *sin)
506 {
507 switch (sin->sa_family) {
508 case AF_INET:
509 return ntohs(((struct sockaddr_in *)sin)->sin_port)
510 < PROT_SOCK;
511 case AF_INET6:
512 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
513 < PROT_SOCK;
514 default:
515 return 0;
516 }
517 }
518
519 /*
520 * Make sure that we don't have too many active connections. If we have,
521 * something must be dropped. It's not clear what will happen if we allow
522 * "too many" connections, but when dealing with network-facing software,
523 * we have to code defensively. Here we do that by imposing hard limits.
524 *
525 * There's no point in trying to do random drop here for DoS
526 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
527 * attacker can easily beat that.
528 *
529 * The only somewhat efficient mechanism would be if drop old
530 * connections from the same IP first. But right now we don't even
531 * record the client IP in svc_sock.
532 *
533 * single-threaded services that expect a lot of clients will probably
534 * need to set sv_maxconn to override the default value which is based
535 * on the number of threads
536 */
537 static void svc_check_conn_limits(struct svc_serv *serv)
538 {
539 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
540 (serv->sv_nrthreads+3) * 20;
541
542 if (serv->sv_tmpcnt > limit) {
543 struct svc_xprt *xprt = NULL;
544 spin_lock_bh(&serv->sv_lock);
545 if (!list_empty(&serv->sv_tempsocks)) {
546 if (net_ratelimit()) {
547 /* Try to help the admin */
548 printk(KERN_NOTICE "%s: too many open "
549 "connections, consider increasing %s\n",
550 serv->sv_name, serv->sv_maxconn ?
551 "the max number of connections." :
552 "the number of threads.");
553 }
554 /*
555 * Always select the oldest connection. It's not fair,
556 * but so is life
557 */
558 xprt = list_entry(serv->sv_tempsocks.prev,
559 struct svc_xprt,
560 xpt_list);
561 set_bit(XPT_CLOSE, &xprt->xpt_flags);
562 svc_xprt_get(xprt);
563 }
564 spin_unlock_bh(&serv->sv_lock);
565
566 if (xprt) {
567 svc_xprt_enqueue(xprt);
568 svc_xprt_put(xprt);
569 }
570 }
571 }
572
573 /*
574 * Receive the next request on any transport. This code is carefully
575 * organised not to touch any cachelines in the shared svc_serv
576 * structure, only cachelines in the local svc_pool.
577 */
578 int svc_recv(struct svc_rqst *rqstp, long timeout)
579 {
580 struct svc_xprt *xprt = NULL;
581 struct svc_serv *serv = rqstp->rq_server;
582 struct svc_pool *pool = rqstp->rq_pool;
583 int len, i;
584 int pages;
585 struct xdr_buf *arg;
586 DECLARE_WAITQUEUE(wait, current);
587 long time_left;
588
589 dprintk("svc: server %p waiting for data (to = %ld)\n",
590 rqstp, timeout);
591
592 if (rqstp->rq_xprt)
593 printk(KERN_ERR
594 "svc_recv: service %p, transport not NULL!\n",
595 rqstp);
596 if (waitqueue_active(&rqstp->rq_wait))
597 printk(KERN_ERR
598 "svc_recv: service %p, wait queue active!\n",
599 rqstp);
600
601 /* now allocate needed pages. If we get a failure, sleep briefly */
602 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
603 for (i = 0; i < pages ; i++)
604 while (rqstp->rq_pages[i] == NULL) {
605 struct page *p = alloc_page(GFP_KERNEL);
606 if (!p) {
607 set_current_state(TASK_INTERRUPTIBLE);
608 if (signalled() || kthread_should_stop()) {
609 set_current_state(TASK_RUNNING);
610 return -EINTR;
611 }
612 schedule_timeout(msecs_to_jiffies(500));
613 }
614 rqstp->rq_pages[i] = p;
615 }
616 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
617 BUG_ON(pages >= RPCSVC_MAXPAGES);
618
619 /* Make arg->head point to first page and arg->pages point to rest */
620 arg = &rqstp->rq_arg;
621 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
622 arg->head[0].iov_len = PAGE_SIZE;
623 arg->pages = rqstp->rq_pages + 1;
624 arg->page_base = 0;
625 /* save at least one page for response */
626 arg->page_len = (pages-2)*PAGE_SIZE;
627 arg->len = (pages-1)*PAGE_SIZE;
628 arg->tail[0].iov_len = 0;
629
630 try_to_freeze();
631 cond_resched();
632 if (signalled() || kthread_should_stop())
633 return -EINTR;
634
635 /* Normally we will wait up to 5 seconds for any required
636 * cache information to be provided.
637 */
638 rqstp->rq_chandle.thread_wait = 5*HZ;
639
640 spin_lock_bh(&pool->sp_lock);
641 xprt = svc_xprt_dequeue(pool);
642 if (xprt) {
643 rqstp->rq_xprt = xprt;
644 svc_xprt_get(xprt);
645 rqstp->rq_reserved = serv->sv_max_mesg;
646 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
647
648 /* As there is a shortage of threads and this request
649 * had to be queued, don't allow the thread to wait so
650 * long for cache updates.
651 */
652 rqstp->rq_chandle.thread_wait = 1*HZ;
653 } else {
654 /* No data pending. Go to sleep */
655 svc_thread_enqueue(pool, rqstp);
656
657 /*
658 * We have to be able to interrupt this wait
659 * to bring down the daemons ...
660 */
661 set_current_state(TASK_INTERRUPTIBLE);
662
663 /*
664 * checking kthread_should_stop() here allows us to avoid
665 * locking and signalling when stopping kthreads that call
666 * svc_recv. If the thread has already been woken up, then
667 * we can exit here without sleeping. If not, then it
668 * it'll be woken up quickly during the schedule_timeout
669 */
670 if (kthread_should_stop()) {
671 set_current_state(TASK_RUNNING);
672 spin_unlock_bh(&pool->sp_lock);
673 return -EINTR;
674 }
675
676 add_wait_queue(&rqstp->rq_wait, &wait);
677 spin_unlock_bh(&pool->sp_lock);
678
679 time_left = schedule_timeout(timeout);
680
681 try_to_freeze();
682
683 spin_lock_bh(&pool->sp_lock);
684 remove_wait_queue(&rqstp->rq_wait, &wait);
685 if (!time_left)
686 pool->sp_stats.threads_timedout++;
687
688 xprt = rqstp->rq_xprt;
689 if (!xprt) {
690 svc_thread_dequeue(pool, rqstp);
691 spin_unlock_bh(&pool->sp_lock);
692 dprintk("svc: server %p, no data yet\n", rqstp);
693 if (signalled() || kthread_should_stop())
694 return -EINTR;
695 else
696 return -EAGAIN;
697 }
698 }
699 spin_unlock_bh(&pool->sp_lock);
700
701 len = 0;
702 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
703 dprintk("svc_recv: found XPT_CLOSE\n");
704 svc_delete_xprt(xprt);
705 /* Leave XPT_BUSY set on the dead xprt: */
706 goto out;
707 }
708 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
709 struct svc_xprt *newxpt;
710 newxpt = xprt->xpt_ops->xpo_accept(xprt);
711 if (newxpt) {
712 /*
713 * We know this module_get will succeed because the
714 * listener holds a reference too
715 */
716 __module_get(newxpt->xpt_class->xcl_owner);
717 svc_check_conn_limits(xprt->xpt_server);
718 spin_lock_bh(&serv->sv_lock);
719 set_bit(XPT_TEMP, &newxpt->xpt_flags);
720 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
721 serv->sv_tmpcnt++;
722 if (serv->sv_temptimer.function == NULL) {
723 /* setup timer to age temp transports */
724 setup_timer(&serv->sv_temptimer,
725 svc_age_temp_xprts,
726 (unsigned long)serv);
727 mod_timer(&serv->sv_temptimer,
728 jiffies + svc_conn_age_period * HZ);
729 }
730 spin_unlock_bh(&serv->sv_lock);
731 svc_xprt_received(newxpt);
732 }
733 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
734 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
735 rqstp, pool->sp_id, xprt,
736 atomic_read(&xprt->xpt_ref.refcount));
737 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
738 if (rqstp->rq_deferred)
739 len = svc_deferred_recv(rqstp);
740 else
741 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
742 dprintk("svc: got len=%d\n", len);
743 }
744 svc_xprt_received(xprt);
745
746 /* No data, incomplete (TCP) read, or accept() */
747 if (len == 0 || len == -EAGAIN)
748 goto out;
749
750 clear_bit(XPT_OLD, &xprt->xpt_flags);
751
752 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
753 rqstp->rq_chandle.defer = svc_defer;
754
755 if (serv->sv_stats)
756 serv->sv_stats->netcnt++;
757 return len;
758 out:
759 rqstp->rq_res.len = 0;
760 svc_xprt_release(rqstp);
761 return -EAGAIN;
762 }
763 EXPORT_SYMBOL_GPL(svc_recv);
764
765 /*
766 * Drop request
767 */
768 void svc_drop(struct svc_rqst *rqstp)
769 {
770 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
771 svc_xprt_release(rqstp);
772 }
773 EXPORT_SYMBOL_GPL(svc_drop);
774
775 /*
776 * Return reply to client.
777 */
778 int svc_send(struct svc_rqst *rqstp)
779 {
780 struct svc_xprt *xprt;
781 int len;
782 struct xdr_buf *xb;
783
784 xprt = rqstp->rq_xprt;
785 if (!xprt)
786 return -EFAULT;
787
788 /* release the receive skb before sending the reply */
789 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
790
791 /* calculate over-all length */
792 xb = &rqstp->rq_res;
793 xb->len = xb->head[0].iov_len +
794 xb->page_len +
795 xb->tail[0].iov_len;
796
797 /* Grab mutex to serialize outgoing data. */
798 mutex_lock(&xprt->xpt_mutex);
799 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
800 len = -ENOTCONN;
801 else
802 len = xprt->xpt_ops->xpo_sendto(rqstp);
803 mutex_unlock(&xprt->xpt_mutex);
804 rpc_wake_up(&xprt->xpt_bc_pending);
805 svc_xprt_release(rqstp);
806
807 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
808 return 0;
809 return len;
810 }
811
812 /*
813 * Timer function to close old temporary transports, using
814 * a mark-and-sweep algorithm.
815 */
816 static void svc_age_temp_xprts(unsigned long closure)
817 {
818 struct svc_serv *serv = (struct svc_serv *)closure;
819 struct svc_xprt *xprt;
820 struct list_head *le, *next;
821 LIST_HEAD(to_be_aged);
822
823 dprintk("svc_age_temp_xprts\n");
824
825 if (!spin_trylock_bh(&serv->sv_lock)) {
826 /* busy, try again 1 sec later */
827 dprintk("svc_age_temp_xprts: busy\n");
828 mod_timer(&serv->sv_temptimer, jiffies + HZ);
829 return;
830 }
831
832 list_for_each_safe(le, next, &serv->sv_tempsocks) {
833 xprt = list_entry(le, struct svc_xprt, xpt_list);
834
835 /* First time through, just mark it OLD. Second time
836 * through, close it. */
837 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
838 continue;
839 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
840 test_bit(XPT_BUSY, &xprt->xpt_flags))
841 continue;
842 svc_xprt_get(xprt);
843 list_move(le, &to_be_aged);
844 set_bit(XPT_CLOSE, &xprt->xpt_flags);
845 set_bit(XPT_DETACHED, &xprt->xpt_flags);
846 }
847 spin_unlock_bh(&serv->sv_lock);
848
849 while (!list_empty(&to_be_aged)) {
850 le = to_be_aged.next;
851 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
852 list_del_init(le);
853 xprt = list_entry(le, struct svc_xprt, xpt_list);
854
855 dprintk("queuing xprt %p for closing\n", xprt);
856
857 /* a thread will dequeue and close it soon */
858 svc_xprt_enqueue(xprt);
859 svc_xprt_put(xprt);
860 }
861
862 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
863 }
864
865 static void call_xpt_users(struct svc_xprt *xprt)
866 {
867 struct svc_xpt_user *u;
868
869 spin_lock(&xprt->xpt_lock);
870 while (!list_empty(&xprt->xpt_users)) {
871 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
872 list_del(&u->list);
873 u->callback(u);
874 }
875 spin_unlock(&xprt->xpt_lock);
876 }
877
878 /*
879 * Remove a dead transport
880 */
881 void svc_delete_xprt(struct svc_xprt *xprt)
882 {
883 struct svc_serv *serv = xprt->xpt_server;
884 struct svc_deferred_req *dr;
885
886 /* Only do this once */
887 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
888 BUG();
889
890 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
891 xprt->xpt_ops->xpo_detach(xprt);
892
893 spin_lock_bh(&serv->sv_lock);
894 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
895 list_del_init(&xprt->xpt_list);
896 /*
897 * The only time we're called while xpt_ready is still on a list
898 * is while the list itself is about to be destroyed (in
899 * svc_destroy). BUT svc_xprt_enqueue could still be attempting
900 * to add new entries to the sp_sockets list, so we can't leave
901 * a freed xprt on it.
902 */
903 list_del_init(&xprt->xpt_ready);
904 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
905 serv->sv_tmpcnt--;
906 spin_unlock_bh(&serv->sv_lock);
907
908 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
909 kfree(dr);
910
911 call_xpt_users(xprt);
912 svc_xprt_put(xprt);
913 }
914
915 void svc_close_xprt(struct svc_xprt *xprt)
916 {
917 set_bit(XPT_CLOSE, &xprt->xpt_flags);
918 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
919 /* someone else will have to effect the close */
920 return;
921 /*
922 * We expect svc_close_xprt() to work even when no threads are
923 * running (e.g., while configuring the server before starting
924 * any threads), so if the transport isn't busy, we delete
925 * it ourself:
926 */
927 svc_delete_xprt(xprt);
928 }
929 EXPORT_SYMBOL_GPL(svc_close_xprt);
930
931 void svc_close_all(struct list_head *xprt_list)
932 {
933 struct svc_xprt *xprt;
934 struct svc_xprt *tmp;
935
936 /*
937 * The server is shutting down, and no more threads are running.
938 * svc_xprt_enqueue() might still be running, but at worst it
939 * will re-add the xprt to sp_sockets, which will soon get
940 * freed. So we don't bother with any more locking, and don't
941 * leave the close to the (nonexistent) server threads:
942 */
943 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
944 set_bit(XPT_CLOSE, &xprt->xpt_flags);
945 svc_delete_xprt(xprt);
946 }
947 }
948
949 /*
950 * Handle defer and revisit of requests
951 */
952
953 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
954 {
955 struct svc_deferred_req *dr =
956 container_of(dreq, struct svc_deferred_req, handle);
957 struct svc_xprt *xprt = dr->xprt;
958
959 spin_lock(&xprt->xpt_lock);
960 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
961 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
962 spin_unlock(&xprt->xpt_lock);
963 dprintk("revisit canceled\n");
964 svc_xprt_put(xprt);
965 kfree(dr);
966 return;
967 }
968 dprintk("revisit queued\n");
969 dr->xprt = NULL;
970 list_add(&dr->handle.recent, &xprt->xpt_deferred);
971 spin_unlock(&xprt->xpt_lock);
972 svc_xprt_enqueue(xprt);
973 svc_xprt_put(xprt);
974 }
975
976 /*
977 * Save the request off for later processing. The request buffer looks
978 * like this:
979 *
980 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
981 *
982 * This code can only handle requests that consist of an xprt-header
983 * and rpc-header.
984 */
985 static struct cache_deferred_req *svc_defer(struct cache_req *req)
986 {
987 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
988 struct svc_deferred_req *dr;
989
990 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
991 return NULL; /* if more than a page, give up FIXME */
992 if (rqstp->rq_deferred) {
993 dr = rqstp->rq_deferred;
994 rqstp->rq_deferred = NULL;
995 } else {
996 size_t skip;
997 size_t size;
998 /* FIXME maybe discard if size too large */
999 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1000 dr = kmalloc(size, GFP_KERNEL);
1001 if (dr == NULL)
1002 return NULL;
1003
1004 dr->handle.owner = rqstp->rq_server;
1005 dr->prot = rqstp->rq_prot;
1006 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1007 dr->addrlen = rqstp->rq_addrlen;
1008 dr->daddr = rqstp->rq_daddr;
1009 dr->argslen = rqstp->rq_arg.len >> 2;
1010 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1011
1012 /* back up head to the start of the buffer and copy */
1013 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1014 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1015 dr->argslen << 2);
1016 }
1017 svc_xprt_get(rqstp->rq_xprt);
1018 dr->xprt = rqstp->rq_xprt;
1019 rqstp->rq_dropme = true;
1020
1021 dr->handle.revisit = svc_revisit;
1022 return &dr->handle;
1023 }
1024
1025 /*
1026 * recv data from a deferred request into an active one
1027 */
1028 static int svc_deferred_recv(struct svc_rqst *rqstp)
1029 {
1030 struct svc_deferred_req *dr = rqstp->rq_deferred;
1031
1032 /* setup iov_base past transport header */
1033 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1034 /* The iov_len does not include the transport header bytes */
1035 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1036 rqstp->rq_arg.page_len = 0;
1037 /* The rq_arg.len includes the transport header bytes */
1038 rqstp->rq_arg.len = dr->argslen<<2;
1039 rqstp->rq_prot = dr->prot;
1040 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1041 rqstp->rq_addrlen = dr->addrlen;
1042 /* Save off transport header len in case we get deferred again */
1043 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1044 rqstp->rq_daddr = dr->daddr;
1045 rqstp->rq_respages = rqstp->rq_pages;
1046 return (dr->argslen<<2) - dr->xprt_hlen;
1047 }
1048
1049
1050 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1051 {
1052 struct svc_deferred_req *dr = NULL;
1053
1054 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1055 return NULL;
1056 spin_lock(&xprt->xpt_lock);
1057 if (!list_empty(&xprt->xpt_deferred)) {
1058 dr = list_entry(xprt->xpt_deferred.next,
1059 struct svc_deferred_req,
1060 handle.recent);
1061 list_del_init(&dr->handle.recent);
1062 } else
1063 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1064 spin_unlock(&xprt->xpt_lock);
1065 return dr;
1066 }
1067
1068 /**
1069 * svc_find_xprt - find an RPC transport instance
1070 * @serv: pointer to svc_serv to search
1071 * @xcl_name: C string containing transport's class name
1072 * @af: Address family of transport's local address
1073 * @port: transport's IP port number
1074 *
1075 * Return the transport instance pointer for the endpoint accepting
1076 * connections/peer traffic from the specified transport class,
1077 * address family and port.
1078 *
1079 * Specifying 0 for the address family or port is effectively a
1080 * wild-card, and will result in matching the first transport in the
1081 * service's list that has a matching class name.
1082 */
1083 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1084 const sa_family_t af, const unsigned short port)
1085 {
1086 struct svc_xprt *xprt;
1087 struct svc_xprt *found = NULL;
1088
1089 /* Sanity check the args */
1090 if (serv == NULL || xcl_name == NULL)
1091 return found;
1092
1093 spin_lock_bh(&serv->sv_lock);
1094 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1095 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1096 continue;
1097 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1098 continue;
1099 if (port != 0 && port != svc_xprt_local_port(xprt))
1100 continue;
1101 found = xprt;
1102 svc_xprt_get(xprt);
1103 break;
1104 }
1105 spin_unlock_bh(&serv->sv_lock);
1106 return found;
1107 }
1108 EXPORT_SYMBOL_GPL(svc_find_xprt);
1109
1110 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1111 char *pos, int remaining)
1112 {
1113 int len;
1114
1115 len = snprintf(pos, remaining, "%s %u\n",
1116 xprt->xpt_class->xcl_name,
1117 svc_xprt_local_port(xprt));
1118 if (len >= remaining)
1119 return -ENAMETOOLONG;
1120 return len;
1121 }
1122
1123 /**
1124 * svc_xprt_names - format a buffer with a list of transport names
1125 * @serv: pointer to an RPC service
1126 * @buf: pointer to a buffer to be filled in
1127 * @buflen: length of buffer to be filled in
1128 *
1129 * Fills in @buf with a string containing a list of transport names,
1130 * each name terminated with '\n'.
1131 *
1132 * Returns positive length of the filled-in string on success; otherwise
1133 * a negative errno value is returned if an error occurs.
1134 */
1135 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1136 {
1137 struct svc_xprt *xprt;
1138 int len, totlen;
1139 char *pos;
1140
1141 /* Sanity check args */
1142 if (!serv)
1143 return 0;
1144
1145 spin_lock_bh(&serv->sv_lock);
1146
1147 pos = buf;
1148 totlen = 0;
1149 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1150 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1151 if (len < 0) {
1152 *buf = '\0';
1153 totlen = len;
1154 }
1155 if (len <= 0)
1156 break;
1157
1158 pos += len;
1159 totlen += len;
1160 }
1161
1162 spin_unlock_bh(&serv->sv_lock);
1163 return totlen;
1164 }
1165 EXPORT_SYMBOL_GPL(svc_xprt_names);
1166
1167
1168 /*----------------------------------------------------------------------------*/
1169
1170 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1171 {
1172 unsigned int pidx = (unsigned int)*pos;
1173 struct svc_serv *serv = m->private;
1174
1175 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1176
1177 if (!pidx)
1178 return SEQ_START_TOKEN;
1179 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1180 }
1181
1182 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1183 {
1184 struct svc_pool *pool = p;
1185 struct svc_serv *serv = m->private;
1186
1187 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1188
1189 if (p == SEQ_START_TOKEN) {
1190 pool = &serv->sv_pools[0];
1191 } else {
1192 unsigned int pidx = (pool - &serv->sv_pools[0]);
1193 if (pidx < serv->sv_nrpools-1)
1194 pool = &serv->sv_pools[pidx+1];
1195 else
1196 pool = NULL;
1197 }
1198 ++*pos;
1199 return pool;
1200 }
1201
1202 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1203 {
1204 }
1205
1206 static int svc_pool_stats_show(struct seq_file *m, void *p)
1207 {
1208 struct svc_pool *pool = p;
1209
1210 if (p == SEQ_START_TOKEN) {
1211 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1212 return 0;
1213 }
1214
1215 seq_printf(m, "%u %lu %lu %lu %lu\n",
1216 pool->sp_id,
1217 pool->sp_stats.packets,
1218 pool->sp_stats.sockets_queued,
1219 pool->sp_stats.threads_woken,
1220 pool->sp_stats.threads_timedout);
1221
1222 return 0;
1223 }
1224
1225 static const struct seq_operations svc_pool_stats_seq_ops = {
1226 .start = svc_pool_stats_start,
1227 .next = svc_pool_stats_next,
1228 .stop = svc_pool_stats_stop,
1229 .show = svc_pool_stats_show,
1230 };
1231
1232 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1233 {
1234 int err;
1235
1236 err = seq_open(file, &svc_pool_stats_seq_ops);
1237 if (!err)
1238 ((struct seq_file *) file->private_data)->private = serv;
1239 return err;
1240 }
1241 EXPORT_SYMBOL(svc_pool_stats_open);
1242
1243 /*----------------------------------------------------------------------------*/