Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/dtor/input.git manually
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / sched.c
1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21
22 #include <linux/sunrpc/clnt.h>
23 #include <linux/sunrpc/xprt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id;
29 #endif
30
31 /*
32 * RPC slabs and memory pools
33 */
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static kmem_cache_t *rpc_task_slabp;
38 static kmem_cache_t *rpc_buffer_slabp;
39 static mempool_t *rpc_task_mempool;
40 static mempool_t *rpc_buffer_mempool;
41
42 static void __rpc_default_timer(struct rpc_task *task);
43 static void rpciod_killall(void);
44 static void rpc_free(struct rpc_task *task);
45
46 static void rpc_async_schedule(void *);
47
48 /*
49 * RPC tasks that create another task (e.g. for contacting the portmapper)
50 * will wait on this queue for their child's completion
51 */
52 static RPC_WAITQ(childq, "childq");
53
54 /*
55 * RPC tasks sit here while waiting for conditions to improve.
56 */
57 static RPC_WAITQ(delay_queue, "delayq");
58
59 /*
60 * All RPC tasks are linked into this list
61 */
62 static LIST_HEAD(all_tasks);
63
64 /*
65 * rpciod-related stuff
66 */
67 static DECLARE_MUTEX(rpciod_sema);
68 static unsigned int rpciod_users;
69 static struct workqueue_struct *rpciod_workqueue;
70
71 /*
72 * Spinlock for other critical sections of code.
73 */
74 static DEFINE_SPINLOCK(rpc_sched_lock);
75
76 /*
77 * Disable the timer for a given RPC task. Should be called with
78 * queue->lock and bh_disabled in order to avoid races within
79 * rpc_run_timer().
80 */
81 static inline void
82 __rpc_disable_timer(struct rpc_task *task)
83 {
84 dprintk("RPC: %4d disabling timer\n", task->tk_pid);
85 task->tk_timeout_fn = NULL;
86 task->tk_timeout = 0;
87 }
88
89 /*
90 * Run a timeout function.
91 * We use the callback in order to allow __rpc_wake_up_task()
92 * and friends to disable the timer synchronously on SMP systems
93 * without calling del_timer_sync(). The latter could cause a
94 * deadlock if called while we're holding spinlocks...
95 */
96 static void rpc_run_timer(struct rpc_task *task)
97 {
98 void (*callback)(struct rpc_task *);
99
100 callback = task->tk_timeout_fn;
101 task->tk_timeout_fn = NULL;
102 if (callback && RPC_IS_QUEUED(task)) {
103 dprintk("RPC: %4d running timer\n", task->tk_pid);
104 callback(task);
105 }
106 smp_mb__before_clear_bit();
107 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
108 smp_mb__after_clear_bit();
109 }
110
111 /*
112 * Set up a timer for the current task.
113 */
114 static inline void
115 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
116 {
117 if (!task->tk_timeout)
118 return;
119
120 dprintk("RPC: %4d setting alarm for %lu ms\n",
121 task->tk_pid, task->tk_timeout * 1000 / HZ);
122
123 if (timer)
124 task->tk_timeout_fn = timer;
125 else
126 task->tk_timeout_fn = __rpc_default_timer;
127 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
128 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
129 }
130
131 /*
132 * Delete any timer for the current task. Because we use del_timer_sync(),
133 * this function should never be called while holding queue->lock.
134 */
135 static void
136 rpc_delete_timer(struct rpc_task *task)
137 {
138 if (RPC_IS_QUEUED(task))
139 return;
140 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
141 del_singleshot_timer_sync(&task->tk_timer);
142 dprintk("RPC: %4d deleting timer\n", task->tk_pid);
143 }
144 }
145
146 /*
147 * Add new request to a priority queue.
148 */
149 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
150 {
151 struct list_head *q;
152 struct rpc_task *t;
153
154 INIT_LIST_HEAD(&task->u.tk_wait.links);
155 q = &queue->tasks[task->tk_priority];
156 if (unlikely(task->tk_priority > queue->maxpriority))
157 q = &queue->tasks[queue->maxpriority];
158 list_for_each_entry(t, q, u.tk_wait.list) {
159 if (t->tk_cookie == task->tk_cookie) {
160 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
161 return;
162 }
163 }
164 list_add_tail(&task->u.tk_wait.list, q);
165 }
166
167 /*
168 * Add new request to wait queue.
169 *
170 * Swapper tasks always get inserted at the head of the queue.
171 * This should avoid many nasty memory deadlocks and hopefully
172 * improve overall performance.
173 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
174 */
175 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
176 {
177 BUG_ON (RPC_IS_QUEUED(task));
178
179 if (RPC_IS_PRIORITY(queue))
180 __rpc_add_wait_queue_priority(queue, task);
181 else if (RPC_IS_SWAPPER(task))
182 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
183 else
184 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
185 task->u.tk_wait.rpc_waitq = queue;
186 rpc_set_queued(task);
187
188 dprintk("RPC: %4d added to queue %p \"%s\"\n",
189 task->tk_pid, queue, rpc_qname(queue));
190 }
191
192 /*
193 * Remove request from a priority queue.
194 */
195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196 {
197 struct rpc_task *t;
198
199 if (!list_empty(&task->u.tk_wait.links)) {
200 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203 }
204 list_del(&task->u.tk_wait.list);
205 }
206
207 /*
208 * Remove request from queue.
209 * Note: must be called with spin lock held.
210 */
211 static void __rpc_remove_wait_queue(struct rpc_task *task)
212 {
213 struct rpc_wait_queue *queue;
214 queue = task->u.tk_wait.rpc_waitq;
215
216 if (RPC_IS_PRIORITY(queue))
217 __rpc_remove_wait_queue_priority(task);
218 else
219 list_del(&task->u.tk_wait.list);
220 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
221 task->tk_pid, queue, rpc_qname(queue));
222 }
223
224 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
225 {
226 queue->priority = priority;
227 queue->count = 1 << (priority * 2);
228 }
229
230 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
231 {
232 queue->cookie = cookie;
233 queue->nr = RPC_BATCH_COUNT;
234 }
235
236 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
237 {
238 rpc_set_waitqueue_priority(queue, queue->maxpriority);
239 rpc_set_waitqueue_cookie(queue, 0);
240 }
241
242 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
243 {
244 int i;
245
246 spin_lock_init(&queue->lock);
247 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
248 INIT_LIST_HEAD(&queue->tasks[i]);
249 queue->maxpriority = maxprio;
250 rpc_reset_waitqueue_priority(queue);
251 #ifdef RPC_DEBUG
252 queue->name = qname;
253 #endif
254 }
255
256 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
257 {
258 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
259 }
260
261 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
262 {
263 __rpc_init_priority_wait_queue(queue, qname, 0);
264 }
265 EXPORT_SYMBOL(rpc_init_wait_queue);
266
267 /*
268 * Make an RPC task runnable.
269 *
270 * Note: If the task is ASYNC, this must be called with
271 * the spinlock held to protect the wait queue operation.
272 */
273 static void rpc_make_runnable(struct rpc_task *task)
274 {
275 int do_ret;
276
277 BUG_ON(task->tk_timeout_fn);
278 do_ret = rpc_test_and_set_running(task);
279 rpc_clear_queued(task);
280 if (do_ret)
281 return;
282 if (RPC_IS_ASYNC(task)) {
283 int status;
284
285 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
286 status = queue_work(task->tk_workqueue, &task->u.tk_work);
287 if (status < 0) {
288 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
289 task->tk_status = status;
290 return;
291 }
292 } else
293 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
294 }
295
296 /*
297 * Place a newly initialized task on the workqueue.
298 */
299 static inline void
300 rpc_schedule_run(struct rpc_task *task)
301 {
302 /* Don't run a child twice! */
303 if (RPC_IS_ACTIVATED(task))
304 return;
305 task->tk_active = 1;
306 rpc_make_runnable(task);
307 }
308
309 /*
310 * Prepare for sleeping on a wait queue.
311 * By always appending tasks to the list we ensure FIFO behavior.
312 * NB: An RPC task will only receive interrupt-driven events as long
313 * as it's on a wait queue.
314 */
315 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
316 rpc_action action, rpc_action timer)
317 {
318 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
319 rpc_qname(q), jiffies);
320
321 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
322 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
323 return;
324 }
325
326 /* Mark the task as being activated if so needed */
327 if (!RPC_IS_ACTIVATED(task))
328 task->tk_active = 1;
329
330 __rpc_add_wait_queue(q, task);
331
332 BUG_ON(task->tk_callback != NULL);
333 task->tk_callback = action;
334 __rpc_add_timer(task, timer);
335 }
336
337 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
338 rpc_action action, rpc_action timer)
339 {
340 /*
341 * Protect the queue operations.
342 */
343 spin_lock_bh(&q->lock);
344 __rpc_sleep_on(q, task, action, timer);
345 spin_unlock_bh(&q->lock);
346 }
347
348 /**
349 * __rpc_do_wake_up_task - wake up a single rpc_task
350 * @task: task to be woken up
351 *
352 * Caller must hold queue->lock, and have cleared the task queued flag.
353 */
354 static void __rpc_do_wake_up_task(struct rpc_task *task)
355 {
356 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
357
358 #ifdef RPC_DEBUG
359 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
360 #endif
361 /* Has the task been executed yet? If not, we cannot wake it up! */
362 if (!RPC_IS_ACTIVATED(task)) {
363 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
364 return;
365 }
366
367 __rpc_disable_timer(task);
368 __rpc_remove_wait_queue(task);
369
370 rpc_make_runnable(task);
371
372 dprintk("RPC: __rpc_wake_up_task done\n");
373 }
374
375 /*
376 * Wake up the specified task
377 */
378 static void __rpc_wake_up_task(struct rpc_task *task)
379 {
380 if (rpc_start_wakeup(task)) {
381 if (RPC_IS_QUEUED(task))
382 __rpc_do_wake_up_task(task);
383 rpc_finish_wakeup(task);
384 }
385 }
386
387 /*
388 * Default timeout handler if none specified by user
389 */
390 static void
391 __rpc_default_timer(struct rpc_task *task)
392 {
393 dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
394 task->tk_status = -ETIMEDOUT;
395 rpc_wake_up_task(task);
396 }
397
398 /*
399 * Wake up the specified task
400 */
401 void rpc_wake_up_task(struct rpc_task *task)
402 {
403 if (rpc_start_wakeup(task)) {
404 if (RPC_IS_QUEUED(task)) {
405 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
406
407 spin_lock_bh(&queue->lock);
408 __rpc_do_wake_up_task(task);
409 spin_unlock_bh(&queue->lock);
410 }
411 rpc_finish_wakeup(task);
412 }
413 }
414
415 /*
416 * Wake up the next task on a priority queue.
417 */
418 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
419 {
420 struct list_head *q;
421 struct rpc_task *task;
422
423 /*
424 * Service a batch of tasks from a single cookie.
425 */
426 q = &queue->tasks[queue->priority];
427 if (!list_empty(q)) {
428 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
429 if (queue->cookie == task->tk_cookie) {
430 if (--queue->nr)
431 goto out;
432 list_move_tail(&task->u.tk_wait.list, q);
433 }
434 /*
435 * Check if we need to switch queues.
436 */
437 if (--queue->count)
438 goto new_cookie;
439 }
440
441 /*
442 * Service the next queue.
443 */
444 do {
445 if (q == &queue->tasks[0])
446 q = &queue->tasks[queue->maxpriority];
447 else
448 q = q - 1;
449 if (!list_empty(q)) {
450 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
451 goto new_queue;
452 }
453 } while (q != &queue->tasks[queue->priority]);
454
455 rpc_reset_waitqueue_priority(queue);
456 return NULL;
457
458 new_queue:
459 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
460 new_cookie:
461 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
462 out:
463 __rpc_wake_up_task(task);
464 return task;
465 }
466
467 /*
468 * Wake up the next task on the wait queue.
469 */
470 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
471 {
472 struct rpc_task *task = NULL;
473
474 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
475 spin_lock_bh(&queue->lock);
476 if (RPC_IS_PRIORITY(queue))
477 task = __rpc_wake_up_next_priority(queue);
478 else {
479 task_for_first(task, &queue->tasks[0])
480 __rpc_wake_up_task(task);
481 }
482 spin_unlock_bh(&queue->lock);
483
484 return task;
485 }
486
487 /**
488 * rpc_wake_up - wake up all rpc_tasks
489 * @queue: rpc_wait_queue on which the tasks are sleeping
490 *
491 * Grabs queue->lock
492 */
493 void rpc_wake_up(struct rpc_wait_queue *queue)
494 {
495 struct rpc_task *task;
496
497 struct list_head *head;
498 spin_lock_bh(&queue->lock);
499 head = &queue->tasks[queue->maxpriority];
500 for (;;) {
501 while (!list_empty(head)) {
502 task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
503 __rpc_wake_up_task(task);
504 }
505 if (head == &queue->tasks[0])
506 break;
507 head--;
508 }
509 spin_unlock_bh(&queue->lock);
510 }
511
512 /**
513 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
514 * @queue: rpc_wait_queue on which the tasks are sleeping
515 * @status: status value to set
516 *
517 * Grabs queue->lock
518 */
519 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
520 {
521 struct list_head *head;
522 struct rpc_task *task;
523
524 spin_lock_bh(&queue->lock);
525 head = &queue->tasks[queue->maxpriority];
526 for (;;) {
527 while (!list_empty(head)) {
528 task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
529 task->tk_status = status;
530 __rpc_wake_up_task(task);
531 }
532 if (head == &queue->tasks[0])
533 break;
534 head--;
535 }
536 spin_unlock_bh(&queue->lock);
537 }
538
539 /*
540 * Run a task at a later time
541 */
542 static void __rpc_atrun(struct rpc_task *);
543 void
544 rpc_delay(struct rpc_task *task, unsigned long delay)
545 {
546 task->tk_timeout = delay;
547 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
548 }
549
550 static void
551 __rpc_atrun(struct rpc_task *task)
552 {
553 task->tk_status = 0;
554 rpc_wake_up_task(task);
555 }
556
557 /*
558 * Helper that calls task->tk_exit if it exists and then returns
559 * true if we should exit __rpc_execute.
560 */
561 static inline int __rpc_do_exit(struct rpc_task *task)
562 {
563 if (task->tk_exit != NULL) {
564 lock_kernel();
565 task->tk_exit(task);
566 unlock_kernel();
567 /* If tk_action is non-null, we should restart the call */
568 if (task->tk_action != NULL) {
569 if (!RPC_ASSASSINATED(task)) {
570 /* Release RPC slot and buffer memory */
571 xprt_release(task);
572 rpc_free(task);
573 return 0;
574 }
575 printk(KERN_ERR "RPC: dead task tried to walk away.\n");
576 }
577 }
578 return 1;
579 }
580
581 static int rpc_wait_bit_interruptible(void *word)
582 {
583 if (signal_pending(current))
584 return -ERESTARTSYS;
585 schedule();
586 return 0;
587 }
588
589 /*
590 * This is the RPC `scheduler' (or rather, the finite state machine).
591 */
592 static int __rpc_execute(struct rpc_task *task)
593 {
594 int status = 0;
595
596 dprintk("RPC: %4d rpc_execute flgs %x\n",
597 task->tk_pid, task->tk_flags);
598
599 BUG_ON(RPC_IS_QUEUED(task));
600
601 for (;;) {
602 /*
603 * Garbage collection of pending timers...
604 */
605 rpc_delete_timer(task);
606
607 /*
608 * Execute any pending callback.
609 */
610 if (RPC_DO_CALLBACK(task)) {
611 /* Define a callback save pointer */
612 void (*save_callback)(struct rpc_task *);
613
614 /*
615 * If a callback exists, save it, reset it,
616 * call it.
617 * The save is needed to stop from resetting
618 * another callback set within the callback handler
619 * - Dave
620 */
621 save_callback=task->tk_callback;
622 task->tk_callback=NULL;
623 lock_kernel();
624 save_callback(task);
625 unlock_kernel();
626 }
627
628 /*
629 * Perform the next FSM step.
630 * tk_action may be NULL when the task has been killed
631 * by someone else.
632 */
633 if (!RPC_IS_QUEUED(task)) {
634 if (task->tk_action != NULL) {
635 lock_kernel();
636 task->tk_action(task);
637 unlock_kernel();
638 } else if (__rpc_do_exit(task))
639 break;
640 }
641
642 /*
643 * Lockless check for whether task is sleeping or not.
644 */
645 if (!RPC_IS_QUEUED(task))
646 continue;
647 rpc_clear_running(task);
648 if (RPC_IS_ASYNC(task)) {
649 /* Careful! we may have raced... */
650 if (RPC_IS_QUEUED(task))
651 return 0;
652 if (rpc_test_and_set_running(task))
653 return 0;
654 continue;
655 }
656
657 /* sync task: sleep here */
658 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
659 /* Note: Caller should be using rpc_clnt_sigmask() */
660 status = out_of_line_wait_on_bit(&task->tk_runstate,
661 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
662 TASK_INTERRUPTIBLE);
663 if (status == -ERESTARTSYS) {
664 /*
665 * When a sync task receives a signal, it exits with
666 * -ERESTARTSYS. In order to catch any callbacks that
667 * clean up after sleeping on some queue, we don't
668 * break the loop here, but go around once more.
669 */
670 dprintk("RPC: %4d got signal\n", task->tk_pid);
671 task->tk_flags |= RPC_TASK_KILLED;
672 rpc_exit(task, -ERESTARTSYS);
673 rpc_wake_up_task(task);
674 }
675 rpc_set_running(task);
676 dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
677 }
678
679 dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status);
680 status = task->tk_status;
681
682 /* Release all resources associated with the task */
683 rpc_release_task(task);
684 return status;
685 }
686
687 /*
688 * User-visible entry point to the scheduler.
689 *
690 * This may be called recursively if e.g. an async NFS task updates
691 * the attributes and finds that dirty pages must be flushed.
692 * NOTE: Upon exit of this function the task is guaranteed to be
693 * released. In particular note that tk_release() will have
694 * been called, so your task memory may have been freed.
695 */
696 int
697 rpc_execute(struct rpc_task *task)
698 {
699 BUG_ON(task->tk_active);
700
701 task->tk_active = 1;
702 rpc_set_running(task);
703 return __rpc_execute(task);
704 }
705
706 static void rpc_async_schedule(void *arg)
707 {
708 __rpc_execute((struct rpc_task *)arg);
709 }
710
711 /*
712 * Allocate memory for RPC purposes.
713 *
714 * We try to ensure that some NFS reads and writes can always proceed
715 * by using a mempool when allocating 'small' buffers.
716 * In order to avoid memory starvation triggering more writebacks of
717 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
718 */
719 void *
720 rpc_malloc(struct rpc_task *task, size_t size)
721 {
722 int gfp;
723
724 if (task->tk_flags & RPC_TASK_SWAPPER)
725 gfp = GFP_ATOMIC;
726 else
727 gfp = GFP_NOFS;
728
729 if (size > RPC_BUFFER_MAXSIZE) {
730 task->tk_buffer = kmalloc(size, gfp);
731 if (task->tk_buffer)
732 task->tk_bufsize = size;
733 } else {
734 task->tk_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
735 if (task->tk_buffer)
736 task->tk_bufsize = RPC_BUFFER_MAXSIZE;
737 }
738 return task->tk_buffer;
739 }
740
741 static void
742 rpc_free(struct rpc_task *task)
743 {
744 if (task->tk_buffer) {
745 if (task->tk_bufsize == RPC_BUFFER_MAXSIZE)
746 mempool_free(task->tk_buffer, rpc_buffer_mempool);
747 else
748 kfree(task->tk_buffer);
749 task->tk_buffer = NULL;
750 task->tk_bufsize = 0;
751 }
752 }
753
754 /*
755 * Creation and deletion of RPC task structures
756 */
757 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, rpc_action callback, int flags)
758 {
759 memset(task, 0, sizeof(*task));
760 init_timer(&task->tk_timer);
761 task->tk_timer.data = (unsigned long) task;
762 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
763 task->tk_client = clnt;
764 task->tk_flags = flags;
765 task->tk_exit = callback;
766
767 /* Initialize retry counters */
768 task->tk_garb_retry = 2;
769 task->tk_cred_retry = 2;
770
771 task->tk_priority = RPC_PRIORITY_NORMAL;
772 task->tk_cookie = (unsigned long)current;
773
774 /* Initialize workqueue for async tasks */
775 task->tk_workqueue = rpciod_workqueue;
776
777 if (clnt) {
778 atomic_inc(&clnt->cl_users);
779 if (clnt->cl_softrtry)
780 task->tk_flags |= RPC_TASK_SOFT;
781 if (!clnt->cl_intr)
782 task->tk_flags |= RPC_TASK_NOINTR;
783 }
784
785 #ifdef RPC_DEBUG
786 task->tk_magic = RPC_TASK_MAGIC_ID;
787 task->tk_pid = rpc_task_id++;
788 #endif
789 /* Add to global list of all tasks */
790 spin_lock(&rpc_sched_lock);
791 list_add_tail(&task->tk_task, &all_tasks);
792 spin_unlock(&rpc_sched_lock);
793
794 dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
795 current->pid);
796 }
797
798 static struct rpc_task *
799 rpc_alloc_task(void)
800 {
801 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
802 }
803
804 static void
805 rpc_default_free_task(struct rpc_task *task)
806 {
807 dprintk("RPC: %4d freeing task\n", task->tk_pid);
808 mempool_free(task, rpc_task_mempool);
809 }
810
811 /*
812 * Create a new task for the specified client. We have to
813 * clean up after an allocation failure, as the client may
814 * have specified "oneshot".
815 */
816 struct rpc_task *
817 rpc_new_task(struct rpc_clnt *clnt, rpc_action callback, int flags)
818 {
819 struct rpc_task *task;
820
821 task = rpc_alloc_task();
822 if (!task)
823 goto cleanup;
824
825 rpc_init_task(task, clnt, callback, flags);
826
827 /* Replace tk_release */
828 task->tk_release = rpc_default_free_task;
829
830 dprintk("RPC: %4d allocated task\n", task->tk_pid);
831 task->tk_flags |= RPC_TASK_DYNAMIC;
832 out:
833 return task;
834
835 cleanup:
836 /* Check whether to release the client */
837 if (clnt) {
838 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
839 atomic_read(&clnt->cl_users), clnt->cl_oneshot);
840 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
841 rpc_release_client(clnt);
842 }
843 goto out;
844 }
845
846 void rpc_release_task(struct rpc_task *task)
847 {
848 dprintk("RPC: %4d release task\n", task->tk_pid);
849
850 #ifdef RPC_DEBUG
851 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
852 #endif
853
854 /* Remove from global task list */
855 spin_lock(&rpc_sched_lock);
856 list_del(&task->tk_task);
857 spin_unlock(&rpc_sched_lock);
858
859 BUG_ON (RPC_IS_QUEUED(task));
860 task->tk_active = 0;
861
862 /* Synchronously delete any running timer */
863 rpc_delete_timer(task);
864
865 /* Release resources */
866 if (task->tk_rqstp)
867 xprt_release(task);
868 if (task->tk_msg.rpc_cred)
869 rpcauth_unbindcred(task);
870 rpc_free(task);
871 if (task->tk_client) {
872 rpc_release_client(task->tk_client);
873 task->tk_client = NULL;
874 }
875
876 #ifdef RPC_DEBUG
877 task->tk_magic = 0;
878 #endif
879 if (task->tk_release)
880 task->tk_release(task);
881 }
882
883 /**
884 * rpc_find_parent - find the parent of a child task.
885 * @child: child task
886 *
887 * Checks that the parent task is still sleeping on the
888 * queue 'childq'. If so returns a pointer to the parent.
889 * Upon failure returns NULL.
890 *
891 * Caller must hold childq.lock
892 */
893 static inline struct rpc_task *rpc_find_parent(struct rpc_task *child)
894 {
895 struct rpc_task *task, *parent;
896 struct list_head *le;
897
898 parent = (struct rpc_task *) child->tk_calldata;
899 task_for_each(task, le, &childq.tasks[0])
900 if (task == parent)
901 return parent;
902
903 return NULL;
904 }
905
906 static void rpc_child_exit(struct rpc_task *child)
907 {
908 struct rpc_task *parent;
909
910 spin_lock_bh(&childq.lock);
911 if ((parent = rpc_find_parent(child)) != NULL) {
912 parent->tk_status = child->tk_status;
913 __rpc_wake_up_task(parent);
914 }
915 spin_unlock_bh(&childq.lock);
916 }
917
918 /*
919 * Note: rpc_new_task releases the client after a failure.
920 */
921 struct rpc_task *
922 rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent)
923 {
924 struct rpc_task *task;
925
926 task = rpc_new_task(clnt, NULL, RPC_TASK_ASYNC | RPC_TASK_CHILD);
927 if (!task)
928 goto fail;
929 task->tk_exit = rpc_child_exit;
930 task->tk_calldata = parent;
931 return task;
932
933 fail:
934 parent->tk_status = -ENOMEM;
935 return NULL;
936 }
937
938 void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func)
939 {
940 spin_lock_bh(&childq.lock);
941 /* N.B. Is it possible for the child to have already finished? */
942 __rpc_sleep_on(&childq, task, func, NULL);
943 rpc_schedule_run(child);
944 spin_unlock_bh(&childq.lock);
945 }
946
947 /*
948 * Kill all tasks for the given client.
949 * XXX: kill their descendants as well?
950 */
951 void rpc_killall_tasks(struct rpc_clnt *clnt)
952 {
953 struct rpc_task *rovr;
954 struct list_head *le;
955
956 dprintk("RPC: killing all tasks for client %p\n", clnt);
957
958 /*
959 * Spin lock all_tasks to prevent changes...
960 */
961 spin_lock(&rpc_sched_lock);
962 alltask_for_each(rovr, le, &all_tasks) {
963 if (! RPC_IS_ACTIVATED(rovr))
964 continue;
965 if (!clnt || rovr->tk_client == clnt) {
966 rovr->tk_flags |= RPC_TASK_KILLED;
967 rpc_exit(rovr, -EIO);
968 rpc_wake_up_task(rovr);
969 }
970 }
971 spin_unlock(&rpc_sched_lock);
972 }
973
974 static DECLARE_MUTEX_LOCKED(rpciod_running);
975
976 static void rpciod_killall(void)
977 {
978 unsigned long flags;
979
980 while (!list_empty(&all_tasks)) {
981 clear_thread_flag(TIF_SIGPENDING);
982 rpc_killall_tasks(NULL);
983 flush_workqueue(rpciod_workqueue);
984 if (!list_empty(&all_tasks)) {
985 dprintk("rpciod_killall: waiting for tasks to exit\n");
986 yield();
987 }
988 }
989
990 spin_lock_irqsave(&current->sighand->siglock, flags);
991 recalc_sigpending();
992 spin_unlock_irqrestore(&current->sighand->siglock, flags);
993 }
994
995 /*
996 * Start up the rpciod process if it's not already running.
997 */
998 int
999 rpciod_up(void)
1000 {
1001 struct workqueue_struct *wq;
1002 int error = 0;
1003
1004 down(&rpciod_sema);
1005 dprintk("rpciod_up: users %d\n", rpciod_users);
1006 rpciod_users++;
1007 if (rpciod_workqueue)
1008 goto out;
1009 /*
1010 * If there's no pid, we should be the first user.
1011 */
1012 if (rpciod_users > 1)
1013 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1014 /*
1015 * Create the rpciod thread and wait for it to start.
1016 */
1017 error = -ENOMEM;
1018 wq = create_workqueue("rpciod");
1019 if (wq == NULL) {
1020 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1021 rpciod_users--;
1022 goto out;
1023 }
1024 rpciod_workqueue = wq;
1025 error = 0;
1026 out:
1027 up(&rpciod_sema);
1028 return error;
1029 }
1030
1031 void
1032 rpciod_down(void)
1033 {
1034 down(&rpciod_sema);
1035 dprintk("rpciod_down sema %d\n", rpciod_users);
1036 if (rpciod_users) {
1037 if (--rpciod_users)
1038 goto out;
1039 } else
1040 printk(KERN_WARNING "rpciod_down: no users??\n");
1041
1042 if (!rpciod_workqueue) {
1043 dprintk("rpciod_down: Nothing to do!\n");
1044 goto out;
1045 }
1046 rpciod_killall();
1047
1048 destroy_workqueue(rpciod_workqueue);
1049 rpciod_workqueue = NULL;
1050 out:
1051 up(&rpciod_sema);
1052 }
1053
1054 #ifdef RPC_DEBUG
1055 void rpc_show_tasks(void)
1056 {
1057 struct list_head *le;
1058 struct rpc_task *t;
1059
1060 spin_lock(&rpc_sched_lock);
1061 if (list_empty(&all_tasks)) {
1062 spin_unlock(&rpc_sched_lock);
1063 return;
1064 }
1065 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1066 "-rpcwait -action- --exit--\n");
1067 alltask_for_each(t, le, &all_tasks) {
1068 const char *rpc_waitq = "none";
1069
1070 if (RPC_IS_QUEUED(t))
1071 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1072
1073 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1074 t->tk_pid,
1075 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1076 t->tk_flags, t->tk_status,
1077 t->tk_client,
1078 (t->tk_client ? t->tk_client->cl_prog : 0),
1079 t->tk_rqstp, t->tk_timeout,
1080 rpc_waitq,
1081 t->tk_action, t->tk_exit);
1082 }
1083 spin_unlock(&rpc_sched_lock);
1084 }
1085 #endif
1086
1087 void
1088 rpc_destroy_mempool(void)
1089 {
1090 if (rpc_buffer_mempool)
1091 mempool_destroy(rpc_buffer_mempool);
1092 if (rpc_task_mempool)
1093 mempool_destroy(rpc_task_mempool);
1094 if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp))
1095 printk(KERN_INFO "rpc_task: not all structures were freed\n");
1096 if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp))
1097 printk(KERN_INFO "rpc_buffers: not all structures were freed\n");
1098 }
1099
1100 int
1101 rpc_init_mempool(void)
1102 {
1103 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1104 sizeof(struct rpc_task),
1105 0, SLAB_HWCACHE_ALIGN,
1106 NULL, NULL);
1107 if (!rpc_task_slabp)
1108 goto err_nomem;
1109 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1110 RPC_BUFFER_MAXSIZE,
1111 0, SLAB_HWCACHE_ALIGN,
1112 NULL, NULL);
1113 if (!rpc_buffer_slabp)
1114 goto err_nomem;
1115 rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE,
1116 mempool_alloc_slab,
1117 mempool_free_slab,
1118 rpc_task_slabp);
1119 if (!rpc_task_mempool)
1120 goto err_nomem;
1121 rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE,
1122 mempool_alloc_slab,
1123 mempool_free_slab,
1124 rpc_buffer_slabp);
1125 if (!rpc_buffer_mempool)
1126 goto err_nomem;
1127 return 0;
1128 err_nomem:
1129 rpc_destroy_mempool();
1130 return -ENOMEM;
1131 }