Merge branch 'arm/booting' of git://git.pengutronix.de/git/ukl/linux-2.6 into devel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / sched.c
1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY RPCDBG_SCHED
28 #endif
29
30 /*
31 * RPC slabs and memory pools
32 */
33 #define RPC_BUFFER_MAXSIZE (2048)
34 #define RPC_BUFFER_POOLSIZE (8)
35 #define RPC_TASK_POOLSIZE (8)
36 static struct kmem_cache *rpc_task_slabp __read_mostly;
37 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
38 static mempool_t *rpc_task_mempool __read_mostly;
39 static mempool_t *rpc_buffer_mempool __read_mostly;
40
41 static void rpc_async_schedule(struct work_struct *);
42 static void rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46 * RPC tasks sit here while waiting for conditions to improve.
47 */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51 * rpciod-related stuff
52 */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56 * Disable the timer for a given RPC task. Should be called with
57 * queue->lock and bh_disabled in order to avoid races within
58 * rpc_run_timer().
59 */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63 if (task->tk_timeout == 0)
64 return;
65 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66 task->tk_timeout = 0;
67 list_del(&task->u.tk_wait.timer_list);
68 if (list_empty(&queue->timer_list.list))
69 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75 queue->timer_list.expires = expires;
76 mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80 * Set up a timer for the current task.
81 */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85 if (!task->tk_timeout)
86 return;
87
88 dprintk("RPC: %5u setting alarm for %lu ms\n",
89 task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91 task->u.tk_wait.expires = jiffies + task->tk_timeout;
92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98 * Add new request to a priority queue.
99 */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102 struct list_head *q;
103 struct rpc_task *t;
104
105 INIT_LIST_HEAD(&task->u.tk_wait.links);
106 q = &queue->tasks[task->tk_priority];
107 if (unlikely(task->tk_priority > queue->maxpriority))
108 q = &queue->tasks[queue->maxpriority];
109 list_for_each_entry(t, q, u.tk_wait.list) {
110 if (t->tk_owner == task->tk_owner) {
111 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112 return;
113 }
114 }
115 list_add_tail(&task->u.tk_wait.list, q);
116 }
117
118 /*
119 * Add new request to wait queue.
120 *
121 * Swapper tasks always get inserted at the head of the queue.
122 * This should avoid many nasty memory deadlocks and hopefully
123 * improve overall performance.
124 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125 */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128 BUG_ON (RPC_IS_QUEUED(task));
129
130 if (RPC_IS_PRIORITY(queue))
131 __rpc_add_wait_queue_priority(queue, task);
132 else if (RPC_IS_SWAPPER(task))
133 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134 else
135 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136 task->tk_waitqueue = queue;
137 queue->qlen++;
138 rpc_set_queued(task);
139
140 dprintk("RPC: %5u added to queue %p \"%s\"\n",
141 task->tk_pid, queue, rpc_qname(queue));
142 }
143
144 /*
145 * Remove request from a priority queue.
146 */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149 struct rpc_task *t;
150
151 if (!list_empty(&task->u.tk_wait.links)) {
152 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155 }
156 }
157
158 /*
159 * Remove request from queue.
160 * Note: must be called with spin lock held.
161 */
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
163 {
164 __rpc_disable_timer(queue, task);
165 if (RPC_IS_PRIORITY(queue))
166 __rpc_remove_wait_queue_priority(task);
167 list_del(&task->u.tk_wait.list);
168 queue->qlen--;
169 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170 task->tk_pid, queue, rpc_qname(queue));
171 }
172
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
174 {
175 queue->priority = priority;
176 queue->count = 1 << (priority * 2);
177 }
178
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
180 {
181 queue->owner = pid;
182 queue->nr = RPC_BATCH_COUNT;
183 }
184
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
186 {
187 rpc_set_waitqueue_priority(queue, queue->maxpriority);
188 rpc_set_waitqueue_owner(queue, 0);
189 }
190
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
192 {
193 int i;
194
195 spin_lock_init(&queue->lock);
196 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197 INIT_LIST_HEAD(&queue->tasks[i]);
198 queue->maxpriority = nr_queues - 1;
199 rpc_reset_waitqueue_priority(queue);
200 queue->qlen = 0;
201 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202 INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204 queue->name = qname;
205 #endif
206 }
207
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
209 {
210 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
211 }
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
213
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216 __rpc_init_priority_wait_queue(queue, qname, 1);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
219
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
221 {
222 del_timer_sync(&queue->timer_list.timer);
223 }
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
225
226 static int rpc_wait_bit_killable(void *word)
227 {
228 if (fatal_signal_pending(current))
229 return -ERESTARTSYS;
230 schedule();
231 return 0;
232 }
233
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
236 {
237 static atomic_t rpc_pid;
238
239 task->tk_pid = atomic_inc_return(&rpc_pid);
240 }
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
243 {
244 }
245 #endif
246
247 static void rpc_set_active(struct rpc_task *task)
248 {
249 struct rpc_clnt *clnt;
250 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
251 return;
252 rpc_task_set_debuginfo(task);
253 /* Add to global list of all tasks */
254 clnt = task->tk_client;
255 if (clnt != NULL) {
256 spin_lock(&clnt->cl_lock);
257 list_add_tail(&task->tk_task, &clnt->cl_tasks);
258 spin_unlock(&clnt->cl_lock);
259 }
260 }
261
262 /*
263 * Mark an RPC call as having completed by clearing the 'active' bit
264 */
265 static void rpc_mark_complete_task(struct rpc_task *task)
266 {
267 smp_mb__before_clear_bit();
268 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
269 smp_mb__after_clear_bit();
270 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
271 }
272
273 /*
274 * Allow callers to wait for completion of an RPC call
275 */
276 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
277 {
278 if (action == NULL)
279 action = rpc_wait_bit_killable;
280 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
281 action, TASK_KILLABLE);
282 }
283 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
284
285 /*
286 * Make an RPC task runnable.
287 *
288 * Note: If the task is ASYNC, this must be called with
289 * the spinlock held to protect the wait queue operation.
290 */
291 static void rpc_make_runnable(struct rpc_task *task)
292 {
293 rpc_clear_queued(task);
294 if (rpc_test_and_set_running(task))
295 return;
296 if (RPC_IS_ASYNC(task)) {
297 int status;
298
299 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
300 status = queue_work(rpciod_workqueue, &task->u.tk_work);
301 if (status < 0) {
302 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
303 task->tk_status = status;
304 return;
305 }
306 } else
307 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
308 }
309
310 /*
311 * Prepare for sleeping on a wait queue.
312 * By always appending tasks to the list we ensure FIFO behavior.
313 * NB: An RPC task will only receive interrupt-driven events as long
314 * as it's on a wait queue.
315 */
316 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
317 rpc_action action)
318 {
319 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
320 task->tk_pid, rpc_qname(q), jiffies);
321
322 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
323 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
324 return;
325 }
326
327 __rpc_add_wait_queue(q, task);
328
329 BUG_ON(task->tk_callback != NULL);
330 task->tk_callback = action;
331 __rpc_add_timer(q, task);
332 }
333
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335 rpc_action action)
336 {
337 /* Mark the task as being activated if so needed */
338 rpc_set_active(task);
339
340 /*
341 * Protect the queue operations.
342 */
343 spin_lock_bh(&q->lock);
344 __rpc_sleep_on(q, task, action);
345 spin_unlock_bh(&q->lock);
346 }
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
348
349 /**
350 * __rpc_do_wake_up_task - wake up a single rpc_task
351 * @queue: wait queue
352 * @task: task to be woken up
353 *
354 * Caller must hold queue->lock, and have cleared the task queued flag.
355 */
356 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
357 {
358 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
359 task->tk_pid, jiffies);
360
361 /* Has the task been executed yet? If not, we cannot wake it up! */
362 if (!RPC_IS_ACTIVATED(task)) {
363 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
364 return;
365 }
366
367 __rpc_remove_wait_queue(queue, task);
368
369 rpc_make_runnable(task);
370
371 dprintk("RPC: __rpc_wake_up_task done\n");
372 }
373
374 /*
375 * Wake up a queued task while the queue lock is being held
376 */
377 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
378 {
379 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
380 __rpc_do_wake_up_task(queue, task);
381 }
382
383 /*
384 * Tests whether rpc queue is empty
385 */
386 int rpc_queue_empty(struct rpc_wait_queue *queue)
387 {
388 int res;
389
390 spin_lock_bh(&queue->lock);
391 res = queue->qlen;
392 spin_unlock_bh(&queue->lock);
393 return (res == 0);
394 }
395 EXPORT_SYMBOL_GPL(rpc_queue_empty);
396
397 /*
398 * Wake up a task on a specific queue
399 */
400 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
401 {
402 spin_lock_bh(&queue->lock);
403 rpc_wake_up_task_queue_locked(queue, task);
404 spin_unlock_bh(&queue->lock);
405 }
406 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
407
408 /*
409 * Wake up the specified task
410 */
411 static void rpc_wake_up_task(struct rpc_task *task)
412 {
413 rpc_wake_up_queued_task(task->tk_waitqueue, task);
414 }
415
416 /*
417 * Wake up the next task on a priority queue.
418 */
419 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
420 {
421 struct list_head *q;
422 struct rpc_task *task;
423
424 /*
425 * Service a batch of tasks from a single owner.
426 */
427 q = &queue->tasks[queue->priority];
428 if (!list_empty(q)) {
429 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
430 if (queue->owner == task->tk_owner) {
431 if (--queue->nr)
432 goto out;
433 list_move_tail(&task->u.tk_wait.list, q);
434 }
435 /*
436 * Check if we need to switch queues.
437 */
438 if (--queue->count)
439 goto new_owner;
440 }
441
442 /*
443 * Service the next queue.
444 */
445 do {
446 if (q == &queue->tasks[0])
447 q = &queue->tasks[queue->maxpriority];
448 else
449 q = q - 1;
450 if (!list_empty(q)) {
451 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
452 goto new_queue;
453 }
454 } while (q != &queue->tasks[queue->priority]);
455
456 rpc_reset_waitqueue_priority(queue);
457 return NULL;
458
459 new_queue:
460 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
461 new_owner:
462 rpc_set_waitqueue_owner(queue, task->tk_owner);
463 out:
464 rpc_wake_up_task_queue_locked(queue, task);
465 return task;
466 }
467
468 /*
469 * Wake up the next task on the wait queue.
470 */
471 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
472 {
473 struct rpc_task *task = NULL;
474
475 dprintk("RPC: wake_up_next(%p \"%s\")\n",
476 queue, rpc_qname(queue));
477 spin_lock_bh(&queue->lock);
478 if (RPC_IS_PRIORITY(queue))
479 task = __rpc_wake_up_next_priority(queue);
480 else {
481 task_for_first(task, &queue->tasks[0])
482 rpc_wake_up_task_queue_locked(queue, task);
483 }
484 spin_unlock_bh(&queue->lock);
485
486 return task;
487 }
488 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
489
490 /**
491 * rpc_wake_up - wake up all rpc_tasks
492 * @queue: rpc_wait_queue on which the tasks are sleeping
493 *
494 * Grabs queue->lock
495 */
496 void rpc_wake_up(struct rpc_wait_queue *queue)
497 {
498 struct rpc_task *task, *next;
499 struct list_head *head;
500
501 spin_lock_bh(&queue->lock);
502 head = &queue->tasks[queue->maxpriority];
503 for (;;) {
504 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
505 rpc_wake_up_task_queue_locked(queue, task);
506 if (head == &queue->tasks[0])
507 break;
508 head--;
509 }
510 spin_unlock_bh(&queue->lock);
511 }
512 EXPORT_SYMBOL_GPL(rpc_wake_up);
513
514 /**
515 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
516 * @queue: rpc_wait_queue on which the tasks are sleeping
517 * @status: status value to set
518 *
519 * Grabs queue->lock
520 */
521 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
522 {
523 struct rpc_task *task, *next;
524 struct list_head *head;
525
526 spin_lock_bh(&queue->lock);
527 head = &queue->tasks[queue->maxpriority];
528 for (;;) {
529 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
530 task->tk_status = status;
531 rpc_wake_up_task_queue_locked(queue, task);
532 }
533 if (head == &queue->tasks[0])
534 break;
535 head--;
536 }
537 spin_unlock_bh(&queue->lock);
538 }
539 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
540
541 static void __rpc_queue_timer_fn(unsigned long ptr)
542 {
543 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
544 struct rpc_task *task, *n;
545 unsigned long expires, now, timeo;
546
547 spin_lock(&queue->lock);
548 expires = now = jiffies;
549 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
550 timeo = task->u.tk_wait.expires;
551 if (time_after_eq(now, timeo)) {
552 dprintk("RPC: %5u timeout\n", task->tk_pid);
553 task->tk_status = -ETIMEDOUT;
554 rpc_wake_up_task_queue_locked(queue, task);
555 continue;
556 }
557 if (expires == now || time_after(expires, timeo))
558 expires = timeo;
559 }
560 if (!list_empty(&queue->timer_list.list))
561 rpc_set_queue_timer(queue, expires);
562 spin_unlock(&queue->lock);
563 }
564
565 static void __rpc_atrun(struct rpc_task *task)
566 {
567 task->tk_status = 0;
568 }
569
570 /*
571 * Run a task at a later time
572 */
573 void rpc_delay(struct rpc_task *task, unsigned long delay)
574 {
575 task->tk_timeout = delay;
576 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
577 }
578 EXPORT_SYMBOL_GPL(rpc_delay);
579
580 /*
581 * Helper to call task->tk_ops->rpc_call_prepare
582 */
583 void rpc_prepare_task(struct rpc_task *task)
584 {
585 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
586 }
587
588 /*
589 * Helper that calls task->tk_ops->rpc_call_done if it exists
590 */
591 void rpc_exit_task(struct rpc_task *task)
592 {
593 task->tk_action = NULL;
594 if (task->tk_ops->rpc_call_done != NULL) {
595 task->tk_ops->rpc_call_done(task, task->tk_calldata);
596 if (task->tk_action != NULL) {
597 WARN_ON(RPC_ASSASSINATED(task));
598 /* Always release the RPC slot and buffer memory */
599 xprt_release(task);
600 }
601 }
602 }
603 EXPORT_SYMBOL_GPL(rpc_exit_task);
604
605 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
606 {
607 if (ops->rpc_release != NULL)
608 ops->rpc_release(calldata);
609 }
610
611 /*
612 * This is the RPC `scheduler' (or rather, the finite state machine).
613 */
614 static void __rpc_execute(struct rpc_task *task)
615 {
616 struct rpc_wait_queue *queue;
617 int task_is_async = RPC_IS_ASYNC(task);
618 int status = 0;
619
620 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
621 task->tk_pid, task->tk_flags);
622
623 BUG_ON(RPC_IS_QUEUED(task));
624
625 for (;;) {
626
627 /*
628 * Execute any pending callback.
629 */
630 if (task->tk_callback) {
631 void (*save_callback)(struct rpc_task *);
632
633 /*
634 * We set tk_callback to NULL before calling it,
635 * in case it sets the tk_callback field itself:
636 */
637 save_callback = task->tk_callback;
638 task->tk_callback = NULL;
639 save_callback(task);
640 }
641
642 /*
643 * Perform the next FSM step.
644 * tk_action may be NULL when the task has been killed
645 * by someone else.
646 */
647 if (!RPC_IS_QUEUED(task)) {
648 if (task->tk_action == NULL)
649 break;
650 task->tk_action(task);
651 }
652
653 /*
654 * Lockless check for whether task is sleeping or not.
655 */
656 if (!RPC_IS_QUEUED(task))
657 continue;
658 /*
659 * The queue->lock protects against races with
660 * rpc_make_runnable().
661 *
662 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
663 * rpc_task, rpc_make_runnable() can assign it to a
664 * different workqueue. We therefore cannot assume that the
665 * rpc_task pointer may still be dereferenced.
666 */
667 queue = task->tk_waitqueue;
668 spin_lock_bh(&queue->lock);
669 if (!RPC_IS_QUEUED(task)) {
670 spin_unlock_bh(&queue->lock);
671 continue;
672 }
673 rpc_clear_running(task);
674 spin_unlock_bh(&queue->lock);
675 if (task_is_async)
676 return;
677
678 /* sync task: sleep here */
679 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
680 status = out_of_line_wait_on_bit(&task->tk_runstate,
681 RPC_TASK_QUEUED, rpc_wait_bit_killable,
682 TASK_KILLABLE);
683 if (status == -ERESTARTSYS) {
684 /*
685 * When a sync task receives a signal, it exits with
686 * -ERESTARTSYS. In order to catch any callbacks that
687 * clean up after sleeping on some queue, we don't
688 * break the loop here, but go around once more.
689 */
690 dprintk("RPC: %5u got signal\n", task->tk_pid);
691 task->tk_flags |= RPC_TASK_KILLED;
692 rpc_exit(task, -ERESTARTSYS);
693 rpc_wake_up_task(task);
694 }
695 rpc_set_running(task);
696 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
697 }
698
699 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
700 task->tk_status);
701 /* Release all resources associated with the task */
702 rpc_release_task(task);
703 }
704
705 /*
706 * User-visible entry point to the scheduler.
707 *
708 * This may be called recursively if e.g. an async NFS task updates
709 * the attributes and finds that dirty pages must be flushed.
710 * NOTE: Upon exit of this function the task is guaranteed to be
711 * released. In particular note that tk_release() will have
712 * been called, so your task memory may have been freed.
713 */
714 void rpc_execute(struct rpc_task *task)
715 {
716 rpc_set_active(task);
717 rpc_set_running(task);
718 __rpc_execute(task);
719 }
720
721 static void rpc_async_schedule(struct work_struct *work)
722 {
723 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
724 }
725
726 /**
727 * rpc_malloc - allocate an RPC buffer
728 * @task: RPC task that will use this buffer
729 * @size: requested byte size
730 *
731 * To prevent rpciod from hanging, this allocator never sleeps,
732 * returning NULL if the request cannot be serviced immediately.
733 * The caller can arrange to sleep in a way that is safe for rpciod.
734 *
735 * Most requests are 'small' (under 2KiB) and can be serviced from a
736 * mempool, ensuring that NFS reads and writes can always proceed,
737 * and that there is good locality of reference for these buffers.
738 *
739 * In order to avoid memory starvation triggering more writebacks of
740 * NFS requests, we avoid using GFP_KERNEL.
741 */
742 void *rpc_malloc(struct rpc_task *task, size_t size)
743 {
744 struct rpc_buffer *buf;
745 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
746
747 size += sizeof(struct rpc_buffer);
748 if (size <= RPC_BUFFER_MAXSIZE)
749 buf = mempool_alloc(rpc_buffer_mempool, gfp);
750 else
751 buf = kmalloc(size, gfp);
752
753 if (!buf)
754 return NULL;
755
756 buf->len = size;
757 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
758 task->tk_pid, size, buf);
759 return &buf->data;
760 }
761 EXPORT_SYMBOL_GPL(rpc_malloc);
762
763 /**
764 * rpc_free - free buffer allocated via rpc_malloc
765 * @buffer: buffer to free
766 *
767 */
768 void rpc_free(void *buffer)
769 {
770 size_t size;
771 struct rpc_buffer *buf;
772
773 if (!buffer)
774 return;
775
776 buf = container_of(buffer, struct rpc_buffer, data);
777 size = buf->len;
778
779 dprintk("RPC: freeing buffer of size %zu at %p\n",
780 size, buf);
781
782 if (size <= RPC_BUFFER_MAXSIZE)
783 mempool_free(buf, rpc_buffer_mempool);
784 else
785 kfree(buf);
786 }
787 EXPORT_SYMBOL_GPL(rpc_free);
788
789 /*
790 * Creation and deletion of RPC task structures
791 */
792 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
793 {
794 memset(task, 0, sizeof(*task));
795 atomic_set(&task->tk_count, 1);
796 task->tk_flags = task_setup_data->flags;
797 task->tk_ops = task_setup_data->callback_ops;
798 task->tk_calldata = task_setup_data->callback_data;
799 INIT_LIST_HEAD(&task->tk_task);
800
801 /* Initialize retry counters */
802 task->tk_garb_retry = 2;
803 task->tk_cred_retry = 2;
804
805 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
806 task->tk_owner = current->tgid;
807
808 /* Initialize workqueue for async tasks */
809 task->tk_workqueue = task_setup_data->workqueue;
810
811 task->tk_client = task_setup_data->rpc_client;
812 if (task->tk_client != NULL) {
813 kref_get(&task->tk_client->cl_kref);
814 if (task->tk_client->cl_softrtry)
815 task->tk_flags |= RPC_TASK_SOFT;
816 }
817
818 if (task->tk_ops->rpc_call_prepare != NULL)
819 task->tk_action = rpc_prepare_task;
820
821 if (task_setup_data->rpc_message != NULL) {
822 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
823 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
824 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
825 /* Bind the user cred */
826 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
827 if (task->tk_action == NULL)
828 rpc_call_start(task);
829 }
830
831 /* starting timestamp */
832 task->tk_start = ktime_get();
833
834 dprintk("RPC: new task initialized, procpid %u\n",
835 task_pid_nr(current));
836 }
837
838 static struct rpc_task *
839 rpc_alloc_task(void)
840 {
841 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
842 }
843
844 /*
845 * Create a new task for the specified client.
846 */
847 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
848 {
849 struct rpc_task *task = setup_data->task;
850 unsigned short flags = 0;
851
852 if (task == NULL) {
853 task = rpc_alloc_task();
854 if (task == NULL) {
855 rpc_release_calldata(setup_data->callback_ops,
856 setup_data->callback_data);
857 return ERR_PTR(-ENOMEM);
858 }
859 flags = RPC_TASK_DYNAMIC;
860 }
861
862 rpc_init_task(task, setup_data);
863 if (task->tk_status < 0) {
864 int err = task->tk_status;
865 rpc_put_task(task);
866 return ERR_PTR(err);
867 }
868
869 task->tk_flags |= flags;
870 dprintk("RPC: allocated task %p\n", task);
871 return task;
872 }
873
874 static void rpc_free_task(struct rpc_task *task)
875 {
876 const struct rpc_call_ops *tk_ops = task->tk_ops;
877 void *calldata = task->tk_calldata;
878
879 if (task->tk_flags & RPC_TASK_DYNAMIC) {
880 dprintk("RPC: %5u freeing task\n", task->tk_pid);
881 mempool_free(task, rpc_task_mempool);
882 }
883 rpc_release_calldata(tk_ops, calldata);
884 }
885
886 static void rpc_async_release(struct work_struct *work)
887 {
888 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
889 }
890
891 void rpc_put_task(struct rpc_task *task)
892 {
893 if (!atomic_dec_and_test(&task->tk_count))
894 return;
895 /* Release resources */
896 if (task->tk_rqstp)
897 xprt_release(task);
898 if (task->tk_msg.rpc_cred)
899 rpcauth_unbindcred(task);
900 if (task->tk_client) {
901 rpc_release_client(task->tk_client);
902 task->tk_client = NULL;
903 }
904 if (task->tk_workqueue != NULL) {
905 INIT_WORK(&task->u.tk_work, rpc_async_release);
906 queue_work(task->tk_workqueue, &task->u.tk_work);
907 } else
908 rpc_free_task(task);
909 }
910 EXPORT_SYMBOL_GPL(rpc_put_task);
911
912 static void rpc_release_task(struct rpc_task *task)
913 {
914 dprintk("RPC: %5u release task\n", task->tk_pid);
915
916 if (!list_empty(&task->tk_task)) {
917 struct rpc_clnt *clnt = task->tk_client;
918 /* Remove from client task list */
919 spin_lock(&clnt->cl_lock);
920 list_del(&task->tk_task);
921 spin_unlock(&clnt->cl_lock);
922 }
923 BUG_ON (RPC_IS_QUEUED(task));
924
925 /* Wake up anyone who is waiting for task completion */
926 rpc_mark_complete_task(task);
927
928 rpc_put_task(task);
929 }
930
931 /*
932 * Kill all tasks for the given client.
933 * XXX: kill their descendants as well?
934 */
935 void rpc_killall_tasks(struct rpc_clnt *clnt)
936 {
937 struct rpc_task *rovr;
938
939
940 if (list_empty(&clnt->cl_tasks))
941 return;
942 dprintk("RPC: killing all tasks for client %p\n", clnt);
943 /*
944 * Spin lock all_tasks to prevent changes...
945 */
946 spin_lock(&clnt->cl_lock);
947 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
948 if (! RPC_IS_ACTIVATED(rovr))
949 continue;
950 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
951 rovr->tk_flags |= RPC_TASK_KILLED;
952 rpc_exit(rovr, -EIO);
953 rpc_wake_up_task(rovr);
954 }
955 }
956 spin_unlock(&clnt->cl_lock);
957 }
958 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
959
960 int rpciod_up(void)
961 {
962 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
963 }
964
965 void rpciod_down(void)
966 {
967 module_put(THIS_MODULE);
968 }
969
970 /*
971 * Start up the rpciod workqueue.
972 */
973 static int rpciod_start(void)
974 {
975 struct workqueue_struct *wq;
976
977 /*
978 * Create the rpciod thread and wait for it to start.
979 */
980 dprintk("RPC: creating workqueue rpciod\n");
981 wq = create_workqueue("rpciod");
982 rpciod_workqueue = wq;
983 return rpciod_workqueue != NULL;
984 }
985
986 static void rpciod_stop(void)
987 {
988 struct workqueue_struct *wq = NULL;
989
990 if (rpciod_workqueue == NULL)
991 return;
992 dprintk("RPC: destroying workqueue rpciod\n");
993
994 wq = rpciod_workqueue;
995 rpciod_workqueue = NULL;
996 destroy_workqueue(wq);
997 }
998
999 void
1000 rpc_destroy_mempool(void)
1001 {
1002 rpciod_stop();
1003 if (rpc_buffer_mempool)
1004 mempool_destroy(rpc_buffer_mempool);
1005 if (rpc_task_mempool)
1006 mempool_destroy(rpc_task_mempool);
1007 if (rpc_task_slabp)
1008 kmem_cache_destroy(rpc_task_slabp);
1009 if (rpc_buffer_slabp)
1010 kmem_cache_destroy(rpc_buffer_slabp);
1011 rpc_destroy_wait_queue(&delay_queue);
1012 }
1013
1014 int
1015 rpc_init_mempool(void)
1016 {
1017 /*
1018 * The following is not strictly a mempool initialisation,
1019 * but there is no harm in doing it here
1020 */
1021 rpc_init_wait_queue(&delay_queue, "delayq");
1022 if (!rpciod_start())
1023 goto err_nomem;
1024
1025 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1026 sizeof(struct rpc_task),
1027 0, SLAB_HWCACHE_ALIGN,
1028 NULL);
1029 if (!rpc_task_slabp)
1030 goto err_nomem;
1031 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1032 RPC_BUFFER_MAXSIZE,
1033 0, SLAB_HWCACHE_ALIGN,
1034 NULL);
1035 if (!rpc_buffer_slabp)
1036 goto err_nomem;
1037 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1038 rpc_task_slabp);
1039 if (!rpc_task_mempool)
1040 goto err_nomem;
1041 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1042 rpc_buffer_slabp);
1043 if (!rpc_buffer_mempool)
1044 goto err_nomem;
1045 return 0;
1046 err_nomem:
1047 rpc_destroy_mempool();
1048 return -ENOMEM;
1049 }