Merge branch 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / clnt.c
1 /*
2 * linux/net/sunrpc/clnt.c
3 *
4 * This file contains the high-level RPC interface.
5 * It is modeled as a finite state machine to support both synchronous
6 * and asynchronous requests.
7 *
8 * - RPC header generation and argument serialization.
9 * - Credential refresh.
10 * - TCP connect handling.
11 * - Retry of operation when it is suspected the operation failed because
12 * of uid squashing on the server, or when the credentials were stale
13 * and need to be refreshed, or when a packet was damaged in transit.
14 * This may be have to be moved to the VFS layer.
15 *
16 * Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com>
17 * Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de>
18 */
19
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kallsyms.h>
24 #include <linux/mm.h>
25 #include <linux/namei.h>
26 #include <linux/mount.h>
27 #include <linux/slab.h>
28 #include <linux/utsname.h>
29 #include <linux/workqueue.h>
30 #include <linux/in.h>
31 #include <linux/in6.h>
32 #include <linux/un.h>
33 #include <linux/rcupdate.h>
34
35 #include <linux/sunrpc/clnt.h>
36 #include <linux/sunrpc/addr.h>
37 #include <linux/sunrpc/rpc_pipe_fs.h>
38 #include <linux/sunrpc/metrics.h>
39 #include <linux/sunrpc/bc_xprt.h>
40 #include <trace/events/sunrpc.h>
41
42 #include "sunrpc.h"
43 #include "netns.h"
44
45 #ifdef RPC_DEBUG
46 # define RPCDBG_FACILITY RPCDBG_CALL
47 #endif
48
49 #define dprint_status(t) \
50 dprintk("RPC: %5u %s (status %d)\n", t->tk_pid, \
51 __func__, t->tk_status)
52
53 /*
54 * All RPC clients are linked into this list
55 */
56
57 static DECLARE_WAIT_QUEUE_HEAD(destroy_wait);
58
59
60 static void call_start(struct rpc_task *task);
61 static void call_reserve(struct rpc_task *task);
62 static void call_reserveresult(struct rpc_task *task);
63 static void call_allocate(struct rpc_task *task);
64 static void call_decode(struct rpc_task *task);
65 static void call_bind(struct rpc_task *task);
66 static void call_bind_status(struct rpc_task *task);
67 static void call_transmit(struct rpc_task *task);
68 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
69 static void call_bc_transmit(struct rpc_task *task);
70 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
71 static void call_status(struct rpc_task *task);
72 static void call_transmit_status(struct rpc_task *task);
73 static void call_refresh(struct rpc_task *task);
74 static void call_refreshresult(struct rpc_task *task);
75 static void call_timeout(struct rpc_task *task);
76 static void call_connect(struct rpc_task *task);
77 static void call_connect_status(struct rpc_task *task);
78
79 static __be32 *rpc_encode_header(struct rpc_task *task);
80 static __be32 *rpc_verify_header(struct rpc_task *task);
81 static int rpc_ping(struct rpc_clnt *clnt);
82
83 static void rpc_register_client(struct rpc_clnt *clnt)
84 {
85 struct net *net = rpc_net_ns(clnt);
86 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
87
88 spin_lock(&sn->rpc_client_lock);
89 list_add(&clnt->cl_clients, &sn->all_clients);
90 spin_unlock(&sn->rpc_client_lock);
91 }
92
93 static void rpc_unregister_client(struct rpc_clnt *clnt)
94 {
95 struct net *net = rpc_net_ns(clnt);
96 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
97
98 spin_lock(&sn->rpc_client_lock);
99 list_del(&clnt->cl_clients);
100 spin_unlock(&sn->rpc_client_lock);
101 }
102
103 static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
104 {
105 if (clnt->cl_dentry) {
106 if (clnt->cl_auth && clnt->cl_auth->au_ops->pipes_destroy)
107 clnt->cl_auth->au_ops->pipes_destroy(clnt->cl_auth);
108 rpc_remove_client_dir(clnt->cl_dentry);
109 }
110 clnt->cl_dentry = NULL;
111 }
112
113 static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
114 {
115 struct net *net = rpc_net_ns(clnt);
116 struct super_block *pipefs_sb;
117
118 pipefs_sb = rpc_get_sb_net(net);
119 if (pipefs_sb) {
120 __rpc_clnt_remove_pipedir(clnt);
121 rpc_put_sb_net(net);
122 }
123 }
124
125 static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb,
126 struct rpc_clnt *clnt,
127 const char *dir_name)
128 {
129 static uint32_t clntid;
130 char name[15];
131 struct qstr q = { .name = name };
132 struct dentry *dir, *dentry;
133 int error;
134
135 dir = rpc_d_lookup_sb(sb, dir_name);
136 if (dir == NULL) {
137 pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name);
138 return dir;
139 }
140 for (;;) {
141 q.len = snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++);
142 name[sizeof(name) - 1] = '\0';
143 q.hash = full_name_hash(q.name, q.len);
144 dentry = rpc_create_client_dir(dir, &q, clnt);
145 if (!IS_ERR(dentry))
146 break;
147 error = PTR_ERR(dentry);
148 if (error != -EEXIST) {
149 printk(KERN_INFO "RPC: Couldn't create pipefs entry"
150 " %s/%s, error %d\n",
151 dir_name, name, error);
152 break;
153 }
154 }
155 dput(dir);
156 return dentry;
157 }
158
159 static int
160 rpc_setup_pipedir(struct rpc_clnt *clnt, const char *dir_name)
161 {
162 struct net *net = rpc_net_ns(clnt);
163 struct super_block *pipefs_sb;
164 struct dentry *dentry;
165
166 clnt->cl_dentry = NULL;
167 if (dir_name == NULL)
168 return 0;
169 pipefs_sb = rpc_get_sb_net(net);
170 if (!pipefs_sb)
171 return 0;
172 dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt, dir_name);
173 rpc_put_sb_net(net);
174 if (IS_ERR(dentry))
175 return PTR_ERR(dentry);
176 clnt->cl_dentry = dentry;
177 return 0;
178 }
179
180 static inline int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event)
181 {
182 if (((event == RPC_PIPEFS_MOUNT) && clnt->cl_dentry) ||
183 ((event == RPC_PIPEFS_UMOUNT) && !clnt->cl_dentry))
184 return 1;
185 return 0;
186 }
187
188 static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event,
189 struct super_block *sb)
190 {
191 struct dentry *dentry;
192 int err = 0;
193
194 switch (event) {
195 case RPC_PIPEFS_MOUNT:
196 dentry = rpc_setup_pipedir_sb(sb, clnt,
197 clnt->cl_program->pipe_dir_name);
198 if (!dentry)
199 return -ENOENT;
200 if (IS_ERR(dentry))
201 return PTR_ERR(dentry);
202 clnt->cl_dentry = dentry;
203 if (clnt->cl_auth->au_ops->pipes_create) {
204 err = clnt->cl_auth->au_ops->pipes_create(clnt->cl_auth);
205 if (err)
206 __rpc_clnt_remove_pipedir(clnt);
207 }
208 break;
209 case RPC_PIPEFS_UMOUNT:
210 __rpc_clnt_remove_pipedir(clnt);
211 break;
212 default:
213 printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event);
214 return -ENOTSUPP;
215 }
216 return err;
217 }
218
219 static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event,
220 struct super_block *sb)
221 {
222 int error = 0;
223
224 for (;; clnt = clnt->cl_parent) {
225 if (!rpc_clnt_skip_event(clnt, event))
226 error = __rpc_clnt_handle_event(clnt, event, sb);
227 if (error || clnt == clnt->cl_parent)
228 break;
229 }
230 return error;
231 }
232
233 static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event)
234 {
235 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
236 struct rpc_clnt *clnt;
237
238 spin_lock(&sn->rpc_client_lock);
239 list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
240 if (clnt->cl_program->pipe_dir_name == NULL)
241 continue;
242 if (rpc_clnt_skip_event(clnt, event))
243 continue;
244 if (atomic_inc_not_zero(&clnt->cl_count) == 0)
245 continue;
246 spin_unlock(&sn->rpc_client_lock);
247 return clnt;
248 }
249 spin_unlock(&sn->rpc_client_lock);
250 return NULL;
251 }
252
253 static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event,
254 void *ptr)
255 {
256 struct super_block *sb = ptr;
257 struct rpc_clnt *clnt;
258 int error = 0;
259
260 while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) {
261 error = __rpc_pipefs_event(clnt, event, sb);
262 rpc_release_client(clnt);
263 if (error)
264 break;
265 }
266 return error;
267 }
268
269 static struct notifier_block rpc_clients_block = {
270 .notifier_call = rpc_pipefs_event,
271 .priority = SUNRPC_PIPEFS_RPC_PRIO,
272 };
273
274 int rpc_clients_notifier_register(void)
275 {
276 return rpc_pipefs_notifier_register(&rpc_clients_block);
277 }
278
279 void rpc_clients_notifier_unregister(void)
280 {
281 return rpc_pipefs_notifier_unregister(&rpc_clients_block);
282 }
283
284 static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename)
285 {
286 clnt->cl_nodelen = strlen(nodename);
287 if (clnt->cl_nodelen > UNX_MAXNODENAME)
288 clnt->cl_nodelen = UNX_MAXNODENAME;
289 memcpy(clnt->cl_nodename, nodename, clnt->cl_nodelen);
290 }
291
292 static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args, struct rpc_xprt *xprt)
293 {
294 const struct rpc_program *program = args->program;
295 const struct rpc_version *version;
296 struct rpc_clnt *clnt = NULL;
297 struct rpc_auth *auth;
298 int err;
299
300 /* sanity check the name before trying to print it */
301 dprintk("RPC: creating %s client for %s (xprt %p)\n",
302 program->name, args->servername, xprt);
303
304 err = rpciod_up();
305 if (err)
306 goto out_no_rpciod;
307 err = -EINVAL;
308 if (!xprt)
309 goto out_no_xprt;
310
311 if (args->version >= program->nrvers)
312 goto out_err;
313 version = program->version[args->version];
314 if (version == NULL)
315 goto out_err;
316
317 err = -ENOMEM;
318 clnt = kzalloc(sizeof(*clnt), GFP_KERNEL);
319 if (!clnt)
320 goto out_err;
321 clnt->cl_parent = clnt;
322
323 rcu_assign_pointer(clnt->cl_xprt, xprt);
324 clnt->cl_procinfo = version->procs;
325 clnt->cl_maxproc = version->nrprocs;
326 clnt->cl_protname = program->name;
327 clnt->cl_prog = args->prognumber ? : program->number;
328 clnt->cl_vers = version->number;
329 clnt->cl_stats = program->stats;
330 clnt->cl_metrics = rpc_alloc_iostats(clnt);
331 err = -ENOMEM;
332 if (clnt->cl_metrics == NULL)
333 goto out_no_stats;
334 clnt->cl_program = program;
335 INIT_LIST_HEAD(&clnt->cl_tasks);
336 spin_lock_init(&clnt->cl_lock);
337
338 if (!xprt_bound(xprt))
339 clnt->cl_autobind = 1;
340
341 clnt->cl_timeout = xprt->timeout;
342 if (args->timeout != NULL) {
343 memcpy(&clnt->cl_timeout_default, args->timeout,
344 sizeof(clnt->cl_timeout_default));
345 clnt->cl_timeout = &clnt->cl_timeout_default;
346 }
347
348 clnt->cl_rtt = &clnt->cl_rtt_default;
349 rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval);
350 clnt->cl_principal = NULL;
351 if (args->client_name) {
352 clnt->cl_principal = kstrdup(args->client_name, GFP_KERNEL);
353 if (!clnt->cl_principal)
354 goto out_no_principal;
355 }
356
357 atomic_set(&clnt->cl_count, 1);
358
359 err = rpc_setup_pipedir(clnt, program->pipe_dir_name);
360 if (err < 0)
361 goto out_no_path;
362
363 auth = rpcauth_create(args->authflavor, clnt);
364 if (IS_ERR(auth)) {
365 printk(KERN_INFO "RPC: Couldn't create auth handle (flavor %u)\n",
366 args->authflavor);
367 err = PTR_ERR(auth);
368 goto out_no_auth;
369 }
370
371 /* save the nodename */
372 rpc_clnt_set_nodename(clnt, utsname()->nodename);
373 rpc_register_client(clnt);
374 return clnt;
375
376 out_no_auth:
377 rpc_clnt_remove_pipedir(clnt);
378 out_no_path:
379 kfree(clnt->cl_principal);
380 out_no_principal:
381 rpc_free_iostats(clnt->cl_metrics);
382 out_no_stats:
383 kfree(clnt);
384 out_err:
385 xprt_put(xprt);
386 out_no_xprt:
387 rpciod_down();
388 out_no_rpciod:
389 return ERR_PTR(err);
390 }
391
392 /**
393 * rpc_create - create an RPC client and transport with one call
394 * @args: rpc_clnt create argument structure
395 *
396 * Creates and initializes an RPC transport and an RPC client.
397 *
398 * It can ping the server in order to determine if it is up, and to see if
399 * it supports this program and version. RPC_CLNT_CREATE_NOPING disables
400 * this behavior so asynchronous tasks can also use rpc_create.
401 */
402 struct rpc_clnt *rpc_create(struct rpc_create_args *args)
403 {
404 struct rpc_xprt *xprt;
405 struct rpc_clnt *clnt;
406 struct xprt_create xprtargs = {
407 .net = args->net,
408 .ident = args->protocol,
409 .srcaddr = args->saddress,
410 .dstaddr = args->address,
411 .addrlen = args->addrsize,
412 .servername = args->servername,
413 .bc_xprt = args->bc_xprt,
414 };
415 char servername[48];
416
417 /*
418 * If the caller chooses not to specify a hostname, whip
419 * up a string representation of the passed-in address.
420 */
421 if (xprtargs.servername == NULL) {
422 struct sockaddr_un *sun =
423 (struct sockaddr_un *)args->address;
424 struct sockaddr_in *sin =
425 (struct sockaddr_in *)args->address;
426 struct sockaddr_in6 *sin6 =
427 (struct sockaddr_in6 *)args->address;
428
429 servername[0] = '\0';
430 switch (args->address->sa_family) {
431 case AF_LOCAL:
432 snprintf(servername, sizeof(servername), "%s",
433 sun->sun_path);
434 break;
435 case AF_INET:
436 snprintf(servername, sizeof(servername), "%pI4",
437 &sin->sin_addr.s_addr);
438 break;
439 case AF_INET6:
440 snprintf(servername, sizeof(servername), "%pI6",
441 &sin6->sin6_addr);
442 break;
443 default:
444 /* caller wants default server name, but
445 * address family isn't recognized. */
446 return ERR_PTR(-EINVAL);
447 }
448 xprtargs.servername = servername;
449 }
450
451 xprt = xprt_create_transport(&xprtargs);
452 if (IS_ERR(xprt))
453 return (struct rpc_clnt *)xprt;
454
455 /*
456 * By default, kernel RPC client connects from a reserved port.
457 * CAP_NET_BIND_SERVICE will not be set for unprivileged requesters,
458 * but it is always enabled for rpciod, which handles the connect
459 * operation.
460 */
461 xprt->resvport = 1;
462 if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT)
463 xprt->resvport = 0;
464
465 clnt = rpc_new_client(args, xprt);
466 if (IS_ERR(clnt))
467 return clnt;
468
469 if (!(args->flags & RPC_CLNT_CREATE_NOPING)) {
470 int err = rpc_ping(clnt);
471 if (err != 0) {
472 rpc_shutdown_client(clnt);
473 return ERR_PTR(err);
474 }
475 }
476
477 clnt->cl_softrtry = 1;
478 if (args->flags & RPC_CLNT_CREATE_HARDRTRY)
479 clnt->cl_softrtry = 0;
480
481 if (args->flags & RPC_CLNT_CREATE_AUTOBIND)
482 clnt->cl_autobind = 1;
483 if (args->flags & RPC_CLNT_CREATE_DISCRTRY)
484 clnt->cl_discrtry = 1;
485 if (!(args->flags & RPC_CLNT_CREATE_QUIET))
486 clnt->cl_chatty = 1;
487
488 return clnt;
489 }
490 EXPORT_SYMBOL_GPL(rpc_create);
491
492 /*
493 * This function clones the RPC client structure. It allows us to share the
494 * same transport while varying parameters such as the authentication
495 * flavour.
496 */
497 static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args,
498 struct rpc_clnt *clnt)
499 {
500 struct rpc_xprt *xprt;
501 struct rpc_clnt *new;
502 int err;
503
504 err = -ENOMEM;
505 rcu_read_lock();
506 xprt = xprt_get(rcu_dereference(clnt->cl_xprt));
507 rcu_read_unlock();
508 if (xprt == NULL)
509 goto out_err;
510 args->servername = xprt->servername;
511
512 new = rpc_new_client(args, xprt);
513 if (IS_ERR(new)) {
514 err = PTR_ERR(new);
515 goto out_put;
516 }
517
518 atomic_inc(&clnt->cl_count);
519 new->cl_parent = clnt;
520
521 /* Turn off autobind on clones */
522 new->cl_autobind = 0;
523 new->cl_softrtry = clnt->cl_softrtry;
524 new->cl_discrtry = clnt->cl_discrtry;
525 new->cl_chatty = clnt->cl_chatty;
526 return new;
527
528 out_put:
529 xprt_put(xprt);
530 out_err:
531 dprintk("RPC: %s: returned error %d\n", __func__, err);
532 return ERR_PTR(err);
533 }
534
535 /**
536 * rpc_clone_client - Clone an RPC client structure
537 *
538 * @clnt: RPC client whose parameters are copied
539 *
540 * Returns a fresh RPC client or an ERR_PTR.
541 */
542 struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt)
543 {
544 struct rpc_create_args args = {
545 .program = clnt->cl_program,
546 .prognumber = clnt->cl_prog,
547 .version = clnt->cl_vers,
548 .authflavor = clnt->cl_auth->au_flavor,
549 .client_name = clnt->cl_principal,
550 };
551 return __rpc_clone_client(&args, clnt);
552 }
553 EXPORT_SYMBOL_GPL(rpc_clone_client);
554
555 /**
556 * rpc_clone_client_set_auth - Clone an RPC client structure and set its auth
557 *
558 * @clnt: RPC client whose parameters are copied
559 * @flavor: security flavor for new client
560 *
561 * Returns a fresh RPC client or an ERR_PTR.
562 */
563 struct rpc_clnt *
564 rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
565 {
566 struct rpc_create_args args = {
567 .program = clnt->cl_program,
568 .prognumber = clnt->cl_prog,
569 .version = clnt->cl_vers,
570 .authflavor = flavor,
571 .client_name = clnt->cl_principal,
572 };
573 return __rpc_clone_client(&args, clnt);
574 }
575 EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth);
576
577 /*
578 * Kill all tasks for the given client.
579 * XXX: kill their descendants as well?
580 */
581 void rpc_killall_tasks(struct rpc_clnt *clnt)
582 {
583 struct rpc_task *rovr;
584
585
586 if (list_empty(&clnt->cl_tasks))
587 return;
588 dprintk("RPC: killing all tasks for client %p\n", clnt);
589 /*
590 * Spin lock all_tasks to prevent changes...
591 */
592 spin_lock(&clnt->cl_lock);
593 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
594 if (!RPC_IS_ACTIVATED(rovr))
595 continue;
596 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
597 rovr->tk_flags |= RPC_TASK_KILLED;
598 rpc_exit(rovr, -EIO);
599 if (RPC_IS_QUEUED(rovr))
600 rpc_wake_up_queued_task(rovr->tk_waitqueue,
601 rovr);
602 }
603 }
604 spin_unlock(&clnt->cl_lock);
605 }
606 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
607
608 /*
609 * Properly shut down an RPC client, terminating all outstanding
610 * requests.
611 */
612 void rpc_shutdown_client(struct rpc_clnt *clnt)
613 {
614 might_sleep();
615
616 dprintk_rcu("RPC: shutting down %s client for %s\n",
617 clnt->cl_protname,
618 rcu_dereference(clnt->cl_xprt)->servername);
619
620 while (!list_empty(&clnt->cl_tasks)) {
621 rpc_killall_tasks(clnt);
622 wait_event_timeout(destroy_wait,
623 list_empty(&clnt->cl_tasks), 1*HZ);
624 }
625
626 rpc_release_client(clnt);
627 }
628 EXPORT_SYMBOL_GPL(rpc_shutdown_client);
629
630 /*
631 * Free an RPC client
632 */
633 static void
634 rpc_free_client(struct rpc_clnt *clnt)
635 {
636 dprintk_rcu("RPC: destroying %s client for %s\n",
637 clnt->cl_protname,
638 rcu_dereference(clnt->cl_xprt)->servername);
639 if (clnt->cl_parent != clnt)
640 rpc_release_client(clnt->cl_parent);
641 rpc_unregister_client(clnt);
642 rpc_clnt_remove_pipedir(clnt);
643 rpc_free_iostats(clnt->cl_metrics);
644 kfree(clnt->cl_principal);
645 clnt->cl_metrics = NULL;
646 xprt_put(rcu_dereference_raw(clnt->cl_xprt));
647 rpciod_down();
648 kfree(clnt);
649 }
650
651 /*
652 * Free an RPC client
653 */
654 static void
655 rpc_free_auth(struct rpc_clnt *clnt)
656 {
657 if (clnt->cl_auth == NULL) {
658 rpc_free_client(clnt);
659 return;
660 }
661
662 /*
663 * Note: RPCSEC_GSS may need to send NULL RPC calls in order to
664 * release remaining GSS contexts. This mechanism ensures
665 * that it can do so safely.
666 */
667 atomic_inc(&clnt->cl_count);
668 rpcauth_release(clnt->cl_auth);
669 clnt->cl_auth = NULL;
670 if (atomic_dec_and_test(&clnt->cl_count))
671 rpc_free_client(clnt);
672 }
673
674 /*
675 * Release reference to the RPC client
676 */
677 void
678 rpc_release_client(struct rpc_clnt *clnt)
679 {
680 dprintk("RPC: rpc_release_client(%p)\n", clnt);
681
682 if (list_empty(&clnt->cl_tasks))
683 wake_up(&destroy_wait);
684 if (atomic_dec_and_test(&clnt->cl_count))
685 rpc_free_auth(clnt);
686 }
687
688 /**
689 * rpc_bind_new_program - bind a new RPC program to an existing client
690 * @old: old rpc_client
691 * @program: rpc program to set
692 * @vers: rpc program version
693 *
694 * Clones the rpc client and sets up a new RPC program. This is mainly
695 * of use for enabling different RPC programs to share the same transport.
696 * The Sun NFSv2/v3 ACL protocol can do this.
697 */
698 struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old,
699 const struct rpc_program *program,
700 u32 vers)
701 {
702 struct rpc_create_args args = {
703 .program = program,
704 .prognumber = program->number,
705 .version = vers,
706 .authflavor = old->cl_auth->au_flavor,
707 .client_name = old->cl_principal,
708 };
709 struct rpc_clnt *clnt;
710 int err;
711
712 clnt = __rpc_clone_client(&args, old);
713 if (IS_ERR(clnt))
714 goto out;
715 err = rpc_ping(clnt);
716 if (err != 0) {
717 rpc_shutdown_client(clnt);
718 clnt = ERR_PTR(err);
719 }
720 out:
721 return clnt;
722 }
723 EXPORT_SYMBOL_GPL(rpc_bind_new_program);
724
725 void rpc_task_release_client(struct rpc_task *task)
726 {
727 struct rpc_clnt *clnt = task->tk_client;
728
729 if (clnt != NULL) {
730 /* Remove from client task list */
731 spin_lock(&clnt->cl_lock);
732 list_del(&task->tk_task);
733 spin_unlock(&clnt->cl_lock);
734 task->tk_client = NULL;
735
736 rpc_release_client(clnt);
737 }
738 }
739
740 static
741 void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt)
742 {
743 if (clnt != NULL) {
744 rpc_task_release_client(task);
745 task->tk_client = clnt;
746 atomic_inc(&clnt->cl_count);
747 if (clnt->cl_softrtry)
748 task->tk_flags |= RPC_TASK_SOFT;
749 if (sk_memalloc_socks()) {
750 struct rpc_xprt *xprt;
751
752 rcu_read_lock();
753 xprt = rcu_dereference(clnt->cl_xprt);
754 if (xprt->swapper)
755 task->tk_flags |= RPC_TASK_SWAPPER;
756 rcu_read_unlock();
757 }
758 /* Add to the client's list of all tasks */
759 spin_lock(&clnt->cl_lock);
760 list_add_tail(&task->tk_task, &clnt->cl_tasks);
761 spin_unlock(&clnt->cl_lock);
762 }
763 }
764
765 void rpc_task_reset_client(struct rpc_task *task, struct rpc_clnt *clnt)
766 {
767 rpc_task_release_client(task);
768 rpc_task_set_client(task, clnt);
769 }
770 EXPORT_SYMBOL_GPL(rpc_task_reset_client);
771
772
773 static void
774 rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg)
775 {
776 if (msg != NULL) {
777 task->tk_msg.rpc_proc = msg->rpc_proc;
778 task->tk_msg.rpc_argp = msg->rpc_argp;
779 task->tk_msg.rpc_resp = msg->rpc_resp;
780 if (msg->rpc_cred != NULL)
781 task->tk_msg.rpc_cred = get_rpccred(msg->rpc_cred);
782 }
783 }
784
785 /*
786 * Default callback for async RPC calls
787 */
788 static void
789 rpc_default_callback(struct rpc_task *task, void *data)
790 {
791 }
792
793 static const struct rpc_call_ops rpc_default_ops = {
794 .rpc_call_done = rpc_default_callback,
795 };
796
797 /**
798 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
799 * @task_setup_data: pointer to task initialisation data
800 */
801 struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data)
802 {
803 struct rpc_task *task;
804
805 task = rpc_new_task(task_setup_data);
806 if (IS_ERR(task))
807 goto out;
808
809 rpc_task_set_client(task, task_setup_data->rpc_client);
810 rpc_task_set_rpc_message(task, task_setup_data->rpc_message);
811
812 if (task->tk_action == NULL)
813 rpc_call_start(task);
814
815 atomic_inc(&task->tk_count);
816 rpc_execute(task);
817 out:
818 return task;
819 }
820 EXPORT_SYMBOL_GPL(rpc_run_task);
821
822 /**
823 * rpc_call_sync - Perform a synchronous RPC call
824 * @clnt: pointer to RPC client
825 * @msg: RPC call parameters
826 * @flags: RPC call flags
827 */
828 int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags)
829 {
830 struct rpc_task *task;
831 struct rpc_task_setup task_setup_data = {
832 .rpc_client = clnt,
833 .rpc_message = msg,
834 .callback_ops = &rpc_default_ops,
835 .flags = flags,
836 };
837 int status;
838
839 WARN_ON_ONCE(flags & RPC_TASK_ASYNC);
840 if (flags & RPC_TASK_ASYNC) {
841 rpc_release_calldata(task_setup_data.callback_ops,
842 task_setup_data.callback_data);
843 return -EINVAL;
844 }
845
846 task = rpc_run_task(&task_setup_data);
847 if (IS_ERR(task))
848 return PTR_ERR(task);
849 status = task->tk_status;
850 rpc_put_task(task);
851 return status;
852 }
853 EXPORT_SYMBOL_GPL(rpc_call_sync);
854
855 /**
856 * rpc_call_async - Perform an asynchronous RPC call
857 * @clnt: pointer to RPC client
858 * @msg: RPC call parameters
859 * @flags: RPC call flags
860 * @tk_ops: RPC call ops
861 * @data: user call data
862 */
863 int
864 rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags,
865 const struct rpc_call_ops *tk_ops, void *data)
866 {
867 struct rpc_task *task;
868 struct rpc_task_setup task_setup_data = {
869 .rpc_client = clnt,
870 .rpc_message = msg,
871 .callback_ops = tk_ops,
872 .callback_data = data,
873 .flags = flags|RPC_TASK_ASYNC,
874 };
875
876 task = rpc_run_task(&task_setup_data);
877 if (IS_ERR(task))
878 return PTR_ERR(task);
879 rpc_put_task(task);
880 return 0;
881 }
882 EXPORT_SYMBOL_GPL(rpc_call_async);
883
884 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
885 /**
886 * rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run
887 * rpc_execute against it
888 * @req: RPC request
889 * @tk_ops: RPC call ops
890 */
891 struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req,
892 const struct rpc_call_ops *tk_ops)
893 {
894 struct rpc_task *task;
895 struct xdr_buf *xbufp = &req->rq_snd_buf;
896 struct rpc_task_setup task_setup_data = {
897 .callback_ops = tk_ops,
898 };
899
900 dprintk("RPC: rpc_run_bc_task req= %p\n", req);
901 /*
902 * Create an rpc_task to send the data
903 */
904 task = rpc_new_task(&task_setup_data);
905 if (IS_ERR(task)) {
906 xprt_free_bc_request(req);
907 goto out;
908 }
909 task->tk_rqstp = req;
910
911 /*
912 * Set up the xdr_buf length.
913 * This also indicates that the buffer is XDR encoded already.
914 */
915 xbufp->len = xbufp->head[0].iov_len + xbufp->page_len +
916 xbufp->tail[0].iov_len;
917
918 task->tk_action = call_bc_transmit;
919 atomic_inc(&task->tk_count);
920 WARN_ON_ONCE(atomic_read(&task->tk_count) != 2);
921 rpc_execute(task);
922
923 out:
924 dprintk("RPC: rpc_run_bc_task: task= %p\n", task);
925 return task;
926 }
927 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
928
929 void
930 rpc_call_start(struct rpc_task *task)
931 {
932 task->tk_action = call_start;
933 }
934 EXPORT_SYMBOL_GPL(rpc_call_start);
935
936 /**
937 * rpc_peeraddr - extract remote peer address from clnt's xprt
938 * @clnt: RPC client structure
939 * @buf: target buffer
940 * @bufsize: length of target buffer
941 *
942 * Returns the number of bytes that are actually in the stored address.
943 */
944 size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize)
945 {
946 size_t bytes;
947 struct rpc_xprt *xprt;
948
949 rcu_read_lock();
950 xprt = rcu_dereference(clnt->cl_xprt);
951
952 bytes = xprt->addrlen;
953 if (bytes > bufsize)
954 bytes = bufsize;
955 memcpy(buf, &xprt->addr, bytes);
956 rcu_read_unlock();
957
958 return bytes;
959 }
960 EXPORT_SYMBOL_GPL(rpc_peeraddr);
961
962 /**
963 * rpc_peeraddr2str - return remote peer address in printable format
964 * @clnt: RPC client structure
965 * @format: address format
966 *
967 * NB: the lifetime of the memory referenced by the returned pointer is
968 * the same as the rpc_xprt itself. As long as the caller uses this
969 * pointer, it must hold the RCU read lock.
970 */
971 const char *rpc_peeraddr2str(struct rpc_clnt *clnt,
972 enum rpc_display_format_t format)
973 {
974 struct rpc_xprt *xprt;
975
976 xprt = rcu_dereference(clnt->cl_xprt);
977
978 if (xprt->address_strings[format] != NULL)
979 return xprt->address_strings[format];
980 else
981 return "unprintable";
982 }
983 EXPORT_SYMBOL_GPL(rpc_peeraddr2str);
984
985 static const struct sockaddr_in rpc_inaddr_loopback = {
986 .sin_family = AF_INET,
987 .sin_addr.s_addr = htonl(INADDR_ANY),
988 };
989
990 static const struct sockaddr_in6 rpc_in6addr_loopback = {
991 .sin6_family = AF_INET6,
992 .sin6_addr = IN6ADDR_ANY_INIT,
993 };
994
995 /*
996 * Try a getsockname() on a connected datagram socket. Using a
997 * connected datagram socket prevents leaving a socket in TIME_WAIT.
998 * This conserves the ephemeral port number space.
999 *
1000 * Returns zero and fills in "buf" if successful; otherwise, a
1001 * negative errno is returned.
1002 */
1003 static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen,
1004 struct sockaddr *buf, int buflen)
1005 {
1006 struct socket *sock;
1007 int err;
1008
1009 err = __sock_create(net, sap->sa_family,
1010 SOCK_DGRAM, IPPROTO_UDP, &sock, 1);
1011 if (err < 0) {
1012 dprintk("RPC: can't create UDP socket (%d)\n", err);
1013 goto out;
1014 }
1015
1016 switch (sap->sa_family) {
1017 case AF_INET:
1018 err = kernel_bind(sock,
1019 (struct sockaddr *)&rpc_inaddr_loopback,
1020 sizeof(rpc_inaddr_loopback));
1021 break;
1022 case AF_INET6:
1023 err = kernel_bind(sock,
1024 (struct sockaddr *)&rpc_in6addr_loopback,
1025 sizeof(rpc_in6addr_loopback));
1026 break;
1027 default:
1028 err = -EAFNOSUPPORT;
1029 goto out;
1030 }
1031 if (err < 0) {
1032 dprintk("RPC: can't bind UDP socket (%d)\n", err);
1033 goto out_release;
1034 }
1035
1036 err = kernel_connect(sock, sap, salen, 0);
1037 if (err < 0) {
1038 dprintk("RPC: can't connect UDP socket (%d)\n", err);
1039 goto out_release;
1040 }
1041
1042 err = kernel_getsockname(sock, buf, &buflen);
1043 if (err < 0) {
1044 dprintk("RPC: getsockname failed (%d)\n", err);
1045 goto out_release;
1046 }
1047
1048 err = 0;
1049 if (buf->sa_family == AF_INET6) {
1050 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf;
1051 sin6->sin6_scope_id = 0;
1052 }
1053 dprintk("RPC: %s succeeded\n", __func__);
1054
1055 out_release:
1056 sock_release(sock);
1057 out:
1058 return err;
1059 }
1060
1061 /*
1062 * Scraping a connected socket failed, so we don't have a useable
1063 * local address. Fallback: generate an address that will prevent
1064 * the server from calling us back.
1065 *
1066 * Returns zero and fills in "buf" if successful; otherwise, a
1067 * negative errno is returned.
1068 */
1069 static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen)
1070 {
1071 switch (family) {
1072 case AF_INET:
1073 if (buflen < sizeof(rpc_inaddr_loopback))
1074 return -EINVAL;
1075 memcpy(buf, &rpc_inaddr_loopback,
1076 sizeof(rpc_inaddr_loopback));
1077 break;
1078 case AF_INET6:
1079 if (buflen < sizeof(rpc_in6addr_loopback))
1080 return -EINVAL;
1081 memcpy(buf, &rpc_in6addr_loopback,
1082 sizeof(rpc_in6addr_loopback));
1083 default:
1084 dprintk("RPC: %s: address family not supported\n",
1085 __func__);
1086 return -EAFNOSUPPORT;
1087 }
1088 dprintk("RPC: %s: succeeded\n", __func__);
1089 return 0;
1090 }
1091
1092 /**
1093 * rpc_localaddr - discover local endpoint address for an RPC client
1094 * @clnt: RPC client structure
1095 * @buf: target buffer
1096 * @buflen: size of target buffer, in bytes
1097 *
1098 * Returns zero and fills in "buf" and "buflen" if successful;
1099 * otherwise, a negative errno is returned.
1100 *
1101 * This works even if the underlying transport is not currently connected,
1102 * or if the upper layer never previously provided a source address.
1103 *
1104 * The result of this function call is transient: multiple calls in
1105 * succession may give different results, depending on how local
1106 * networking configuration changes over time.
1107 */
1108 int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen)
1109 {
1110 struct sockaddr_storage address;
1111 struct sockaddr *sap = (struct sockaddr *)&address;
1112 struct rpc_xprt *xprt;
1113 struct net *net;
1114 size_t salen;
1115 int err;
1116
1117 rcu_read_lock();
1118 xprt = rcu_dereference(clnt->cl_xprt);
1119 salen = xprt->addrlen;
1120 memcpy(sap, &xprt->addr, salen);
1121 net = get_net(xprt->xprt_net);
1122 rcu_read_unlock();
1123
1124 rpc_set_port(sap, 0);
1125 err = rpc_sockname(net, sap, salen, buf, buflen);
1126 put_net(net);
1127 if (err != 0)
1128 /* Couldn't discover local address, return ANYADDR */
1129 return rpc_anyaddr(sap->sa_family, buf, buflen);
1130 return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(rpc_localaddr);
1133
1134 void
1135 rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize)
1136 {
1137 struct rpc_xprt *xprt;
1138
1139 rcu_read_lock();
1140 xprt = rcu_dereference(clnt->cl_xprt);
1141 if (xprt->ops->set_buffer_size)
1142 xprt->ops->set_buffer_size(xprt, sndsize, rcvsize);
1143 rcu_read_unlock();
1144 }
1145 EXPORT_SYMBOL_GPL(rpc_setbufsize);
1146
1147 /**
1148 * rpc_protocol - Get transport protocol number for an RPC client
1149 * @clnt: RPC client to query
1150 *
1151 */
1152 int rpc_protocol(struct rpc_clnt *clnt)
1153 {
1154 int protocol;
1155
1156 rcu_read_lock();
1157 protocol = rcu_dereference(clnt->cl_xprt)->prot;
1158 rcu_read_unlock();
1159 return protocol;
1160 }
1161 EXPORT_SYMBOL_GPL(rpc_protocol);
1162
1163 /**
1164 * rpc_net_ns - Get the network namespace for this RPC client
1165 * @clnt: RPC client to query
1166 *
1167 */
1168 struct net *rpc_net_ns(struct rpc_clnt *clnt)
1169 {
1170 struct net *ret;
1171
1172 rcu_read_lock();
1173 ret = rcu_dereference(clnt->cl_xprt)->xprt_net;
1174 rcu_read_unlock();
1175 return ret;
1176 }
1177 EXPORT_SYMBOL_GPL(rpc_net_ns);
1178
1179 /**
1180 * rpc_max_payload - Get maximum payload size for a transport, in bytes
1181 * @clnt: RPC client to query
1182 *
1183 * For stream transports, this is one RPC record fragment (see RFC
1184 * 1831), as we don't support multi-record requests yet. For datagram
1185 * transports, this is the size of an IP packet minus the IP, UDP, and
1186 * RPC header sizes.
1187 */
1188 size_t rpc_max_payload(struct rpc_clnt *clnt)
1189 {
1190 size_t ret;
1191
1192 rcu_read_lock();
1193 ret = rcu_dereference(clnt->cl_xprt)->max_payload;
1194 rcu_read_unlock();
1195 return ret;
1196 }
1197 EXPORT_SYMBOL_GPL(rpc_max_payload);
1198
1199 /**
1200 * rpc_force_rebind - force transport to check that remote port is unchanged
1201 * @clnt: client to rebind
1202 *
1203 */
1204 void rpc_force_rebind(struct rpc_clnt *clnt)
1205 {
1206 if (clnt->cl_autobind) {
1207 rcu_read_lock();
1208 xprt_clear_bound(rcu_dereference(clnt->cl_xprt));
1209 rcu_read_unlock();
1210 }
1211 }
1212 EXPORT_SYMBOL_GPL(rpc_force_rebind);
1213
1214 /*
1215 * Restart an (async) RPC call from the call_prepare state.
1216 * Usually called from within the exit handler.
1217 */
1218 int
1219 rpc_restart_call_prepare(struct rpc_task *task)
1220 {
1221 if (RPC_ASSASSINATED(task))
1222 return 0;
1223 task->tk_action = call_start;
1224 if (task->tk_ops->rpc_call_prepare != NULL)
1225 task->tk_action = rpc_prepare_task;
1226 return 1;
1227 }
1228 EXPORT_SYMBOL_GPL(rpc_restart_call_prepare);
1229
1230 /*
1231 * Restart an (async) RPC call. Usually called from within the
1232 * exit handler.
1233 */
1234 int
1235 rpc_restart_call(struct rpc_task *task)
1236 {
1237 if (RPC_ASSASSINATED(task))
1238 return 0;
1239 task->tk_action = call_start;
1240 return 1;
1241 }
1242 EXPORT_SYMBOL_GPL(rpc_restart_call);
1243
1244 #ifdef RPC_DEBUG
1245 static const char *rpc_proc_name(const struct rpc_task *task)
1246 {
1247 const struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
1248
1249 if (proc) {
1250 if (proc->p_name)
1251 return proc->p_name;
1252 else
1253 return "NULL";
1254 } else
1255 return "no proc";
1256 }
1257 #endif
1258
1259 /*
1260 * 0. Initial state
1261 *
1262 * Other FSM states can be visited zero or more times, but
1263 * this state is visited exactly once for each RPC.
1264 */
1265 static void
1266 call_start(struct rpc_task *task)
1267 {
1268 struct rpc_clnt *clnt = task->tk_client;
1269
1270 dprintk("RPC: %5u call_start %s%d proc %s (%s)\n", task->tk_pid,
1271 clnt->cl_protname, clnt->cl_vers,
1272 rpc_proc_name(task),
1273 (RPC_IS_ASYNC(task) ? "async" : "sync"));
1274
1275 /* Increment call count */
1276 task->tk_msg.rpc_proc->p_count++;
1277 clnt->cl_stats->rpccnt++;
1278 task->tk_action = call_reserve;
1279 }
1280
1281 /*
1282 * 1. Reserve an RPC call slot
1283 */
1284 static void
1285 call_reserve(struct rpc_task *task)
1286 {
1287 dprint_status(task);
1288
1289 task->tk_status = 0;
1290 task->tk_action = call_reserveresult;
1291 xprt_reserve(task);
1292 }
1293
1294 /*
1295 * 1b. Grok the result of xprt_reserve()
1296 */
1297 static void
1298 call_reserveresult(struct rpc_task *task)
1299 {
1300 int status = task->tk_status;
1301
1302 dprint_status(task);
1303
1304 /*
1305 * After a call to xprt_reserve(), we must have either
1306 * a request slot or else an error status.
1307 */
1308 task->tk_status = 0;
1309 if (status >= 0) {
1310 if (task->tk_rqstp) {
1311 task->tk_action = call_refresh;
1312 return;
1313 }
1314
1315 printk(KERN_ERR "%s: status=%d, but no request slot, exiting\n",
1316 __func__, status);
1317 rpc_exit(task, -EIO);
1318 return;
1319 }
1320
1321 /*
1322 * Even though there was an error, we may have acquired
1323 * a request slot somehow. Make sure not to leak it.
1324 */
1325 if (task->tk_rqstp) {
1326 printk(KERN_ERR "%s: status=%d, request allocated anyway\n",
1327 __func__, status);
1328 xprt_release(task);
1329 }
1330
1331 switch (status) {
1332 case -ENOMEM:
1333 rpc_delay(task, HZ >> 2);
1334 case -EAGAIN: /* woken up; retry */
1335 task->tk_action = call_reserve;
1336 return;
1337 case -EIO: /* probably a shutdown */
1338 break;
1339 default:
1340 printk(KERN_ERR "%s: unrecognized error %d, exiting\n",
1341 __func__, status);
1342 break;
1343 }
1344 rpc_exit(task, status);
1345 }
1346
1347 /*
1348 * 2. Bind and/or refresh the credentials
1349 */
1350 static void
1351 call_refresh(struct rpc_task *task)
1352 {
1353 dprint_status(task);
1354
1355 task->tk_action = call_refreshresult;
1356 task->tk_status = 0;
1357 task->tk_client->cl_stats->rpcauthrefresh++;
1358 rpcauth_refreshcred(task);
1359 }
1360
1361 /*
1362 * 2a. Process the results of a credential refresh
1363 */
1364 static void
1365 call_refreshresult(struct rpc_task *task)
1366 {
1367 int status = task->tk_status;
1368
1369 dprint_status(task);
1370
1371 task->tk_status = 0;
1372 task->tk_action = call_refresh;
1373 switch (status) {
1374 case 0:
1375 if (rpcauth_uptodatecred(task))
1376 task->tk_action = call_allocate;
1377 return;
1378 case -ETIMEDOUT:
1379 rpc_delay(task, 3*HZ);
1380 case -EKEYEXPIRED:
1381 case -EAGAIN:
1382 status = -EACCES;
1383 if (!task->tk_cred_retry)
1384 break;
1385 task->tk_cred_retry--;
1386 dprintk("RPC: %5u %s: retry refresh creds\n",
1387 task->tk_pid, __func__);
1388 return;
1389 }
1390 dprintk("RPC: %5u %s: refresh creds failed with error %d\n",
1391 task->tk_pid, __func__, status);
1392 rpc_exit(task, status);
1393 }
1394
1395 /*
1396 * 2b. Allocate the buffer. For details, see sched.c:rpc_malloc.
1397 * (Note: buffer memory is freed in xprt_release).
1398 */
1399 static void
1400 call_allocate(struct rpc_task *task)
1401 {
1402 unsigned int slack = task->tk_rqstp->rq_cred->cr_auth->au_cslack;
1403 struct rpc_rqst *req = task->tk_rqstp;
1404 struct rpc_xprt *xprt = req->rq_xprt;
1405 struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
1406
1407 dprint_status(task);
1408
1409 task->tk_status = 0;
1410 task->tk_action = call_bind;
1411
1412 if (req->rq_buffer)
1413 return;
1414
1415 if (proc->p_proc != 0) {
1416 BUG_ON(proc->p_arglen == 0);
1417 if (proc->p_decode != NULL)
1418 BUG_ON(proc->p_replen == 0);
1419 }
1420
1421 /*
1422 * Calculate the size (in quads) of the RPC call
1423 * and reply headers, and convert both values
1424 * to byte sizes.
1425 */
1426 req->rq_callsize = RPC_CALLHDRSIZE + (slack << 1) + proc->p_arglen;
1427 req->rq_callsize <<= 2;
1428 req->rq_rcvsize = RPC_REPHDRSIZE + slack + proc->p_replen;
1429 req->rq_rcvsize <<= 2;
1430
1431 req->rq_buffer = xprt->ops->buf_alloc(task,
1432 req->rq_callsize + req->rq_rcvsize);
1433 if (req->rq_buffer != NULL)
1434 return;
1435
1436 dprintk("RPC: %5u rpc_buffer allocation failed\n", task->tk_pid);
1437
1438 if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) {
1439 task->tk_action = call_allocate;
1440 rpc_delay(task, HZ>>4);
1441 return;
1442 }
1443
1444 rpc_exit(task, -ERESTARTSYS);
1445 }
1446
1447 static inline int
1448 rpc_task_need_encode(struct rpc_task *task)
1449 {
1450 return task->tk_rqstp->rq_snd_buf.len == 0;
1451 }
1452
1453 static inline void
1454 rpc_task_force_reencode(struct rpc_task *task)
1455 {
1456 task->tk_rqstp->rq_snd_buf.len = 0;
1457 task->tk_rqstp->rq_bytes_sent = 0;
1458 }
1459
1460 static inline void
1461 rpc_xdr_buf_init(struct xdr_buf *buf, void *start, size_t len)
1462 {
1463 buf->head[0].iov_base = start;
1464 buf->head[0].iov_len = len;
1465 buf->tail[0].iov_len = 0;
1466 buf->page_len = 0;
1467 buf->flags = 0;
1468 buf->len = 0;
1469 buf->buflen = len;
1470 }
1471
1472 /*
1473 * 3. Encode arguments of an RPC call
1474 */
1475 static void
1476 rpc_xdr_encode(struct rpc_task *task)
1477 {
1478 struct rpc_rqst *req = task->tk_rqstp;
1479 kxdreproc_t encode;
1480 __be32 *p;
1481
1482 dprint_status(task);
1483
1484 rpc_xdr_buf_init(&req->rq_snd_buf,
1485 req->rq_buffer,
1486 req->rq_callsize);
1487 rpc_xdr_buf_init(&req->rq_rcv_buf,
1488 (char *)req->rq_buffer + req->rq_callsize,
1489 req->rq_rcvsize);
1490
1491 p = rpc_encode_header(task);
1492 if (p == NULL) {
1493 printk(KERN_INFO "RPC: couldn't encode RPC header, exit EIO\n");
1494 rpc_exit(task, -EIO);
1495 return;
1496 }
1497
1498 encode = task->tk_msg.rpc_proc->p_encode;
1499 if (encode == NULL)
1500 return;
1501
1502 task->tk_status = rpcauth_wrap_req(task, encode, req, p,
1503 task->tk_msg.rpc_argp);
1504 }
1505
1506 /*
1507 * 4. Get the server port number if not yet set
1508 */
1509 static void
1510 call_bind(struct rpc_task *task)
1511 {
1512 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1513
1514 dprint_status(task);
1515
1516 task->tk_action = call_connect;
1517 if (!xprt_bound(xprt)) {
1518 task->tk_action = call_bind_status;
1519 task->tk_timeout = xprt->bind_timeout;
1520 xprt->ops->rpcbind(task);
1521 }
1522 }
1523
1524 /*
1525 * 4a. Sort out bind result
1526 */
1527 static void
1528 call_bind_status(struct rpc_task *task)
1529 {
1530 int status = -EIO;
1531
1532 if (task->tk_status >= 0) {
1533 dprint_status(task);
1534 task->tk_status = 0;
1535 task->tk_action = call_connect;
1536 return;
1537 }
1538
1539 trace_rpc_bind_status(task);
1540 switch (task->tk_status) {
1541 case -ENOMEM:
1542 dprintk("RPC: %5u rpcbind out of memory\n", task->tk_pid);
1543 rpc_delay(task, HZ >> 2);
1544 goto retry_timeout;
1545 case -EACCES:
1546 dprintk("RPC: %5u remote rpcbind: RPC program/version "
1547 "unavailable\n", task->tk_pid);
1548 /* fail immediately if this is an RPC ping */
1549 if (task->tk_msg.rpc_proc->p_proc == 0) {
1550 status = -EOPNOTSUPP;
1551 break;
1552 }
1553 if (task->tk_rebind_retry == 0)
1554 break;
1555 task->tk_rebind_retry--;
1556 rpc_delay(task, 3*HZ);
1557 goto retry_timeout;
1558 case -ETIMEDOUT:
1559 dprintk("RPC: %5u rpcbind request timed out\n",
1560 task->tk_pid);
1561 goto retry_timeout;
1562 case -EPFNOSUPPORT:
1563 /* server doesn't support any rpcbind version we know of */
1564 dprintk("RPC: %5u unrecognized remote rpcbind service\n",
1565 task->tk_pid);
1566 break;
1567 case -EPROTONOSUPPORT:
1568 dprintk("RPC: %5u remote rpcbind version unavailable, retrying\n",
1569 task->tk_pid);
1570 task->tk_status = 0;
1571 task->tk_action = call_bind;
1572 return;
1573 case -ECONNREFUSED: /* connection problems */
1574 case -ECONNRESET:
1575 case -ENOTCONN:
1576 case -EHOSTDOWN:
1577 case -EHOSTUNREACH:
1578 case -ENETUNREACH:
1579 case -EPIPE:
1580 dprintk("RPC: %5u remote rpcbind unreachable: %d\n",
1581 task->tk_pid, task->tk_status);
1582 if (!RPC_IS_SOFTCONN(task)) {
1583 rpc_delay(task, 5*HZ);
1584 goto retry_timeout;
1585 }
1586 status = task->tk_status;
1587 break;
1588 default:
1589 dprintk("RPC: %5u unrecognized rpcbind error (%d)\n",
1590 task->tk_pid, -task->tk_status);
1591 }
1592
1593 rpc_exit(task, status);
1594 return;
1595
1596 retry_timeout:
1597 task->tk_action = call_timeout;
1598 }
1599
1600 /*
1601 * 4b. Connect to the RPC server
1602 */
1603 static void
1604 call_connect(struct rpc_task *task)
1605 {
1606 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1607
1608 dprintk("RPC: %5u call_connect xprt %p %s connected\n",
1609 task->tk_pid, xprt,
1610 (xprt_connected(xprt) ? "is" : "is not"));
1611
1612 task->tk_action = call_transmit;
1613 if (!xprt_connected(xprt)) {
1614 task->tk_action = call_connect_status;
1615 if (task->tk_status < 0)
1616 return;
1617 xprt_connect(task);
1618 }
1619 }
1620
1621 /*
1622 * 4c. Sort out connect result
1623 */
1624 static void
1625 call_connect_status(struct rpc_task *task)
1626 {
1627 struct rpc_clnt *clnt = task->tk_client;
1628 int status = task->tk_status;
1629
1630 dprint_status(task);
1631
1632 task->tk_status = 0;
1633 if (status >= 0 || status == -EAGAIN) {
1634 clnt->cl_stats->netreconn++;
1635 task->tk_action = call_transmit;
1636 return;
1637 }
1638
1639 trace_rpc_connect_status(task, status);
1640 switch (status) {
1641 /* if soft mounted, test if we've timed out */
1642 case -ETIMEDOUT:
1643 task->tk_action = call_timeout;
1644 break;
1645 default:
1646 rpc_exit(task, -EIO);
1647 }
1648 }
1649
1650 /*
1651 * 5. Transmit the RPC request, and wait for reply
1652 */
1653 static void
1654 call_transmit(struct rpc_task *task)
1655 {
1656 dprint_status(task);
1657
1658 task->tk_action = call_status;
1659 if (task->tk_status < 0)
1660 return;
1661 task->tk_status = xprt_prepare_transmit(task);
1662 if (task->tk_status != 0)
1663 return;
1664 task->tk_action = call_transmit_status;
1665 /* Encode here so that rpcsec_gss can use correct sequence number. */
1666 if (rpc_task_need_encode(task)) {
1667 rpc_xdr_encode(task);
1668 /* Did the encode result in an error condition? */
1669 if (task->tk_status != 0) {
1670 /* Was the error nonfatal? */
1671 if (task->tk_status == -EAGAIN)
1672 rpc_delay(task, HZ >> 4);
1673 else
1674 rpc_exit(task, task->tk_status);
1675 return;
1676 }
1677 }
1678 xprt_transmit(task);
1679 if (task->tk_status < 0)
1680 return;
1681 /*
1682 * On success, ensure that we call xprt_end_transmit() before sleeping
1683 * in order to allow access to the socket to other RPC requests.
1684 */
1685 call_transmit_status(task);
1686 if (rpc_reply_expected(task))
1687 return;
1688 task->tk_action = rpc_exit_task;
1689 rpc_wake_up_queued_task(&task->tk_rqstp->rq_xprt->pending, task);
1690 }
1691
1692 /*
1693 * 5a. Handle cleanup after a transmission
1694 */
1695 static void
1696 call_transmit_status(struct rpc_task *task)
1697 {
1698 task->tk_action = call_status;
1699
1700 /*
1701 * Common case: success. Force the compiler to put this
1702 * test first.
1703 */
1704 if (task->tk_status == 0) {
1705 xprt_end_transmit(task);
1706 rpc_task_force_reencode(task);
1707 return;
1708 }
1709
1710 switch (task->tk_status) {
1711 case -EAGAIN:
1712 break;
1713 default:
1714 dprint_status(task);
1715 xprt_end_transmit(task);
1716 rpc_task_force_reencode(task);
1717 break;
1718 /*
1719 * Special cases: if we've been waiting on the
1720 * socket's write_space() callback, or if the
1721 * socket just returned a connection error,
1722 * then hold onto the transport lock.
1723 */
1724 case -ECONNREFUSED:
1725 case -EHOSTDOWN:
1726 case -EHOSTUNREACH:
1727 case -ENETUNREACH:
1728 if (RPC_IS_SOFTCONN(task)) {
1729 xprt_end_transmit(task);
1730 rpc_exit(task, task->tk_status);
1731 break;
1732 }
1733 case -ECONNRESET:
1734 case -ENOTCONN:
1735 case -EPIPE:
1736 rpc_task_force_reencode(task);
1737 }
1738 }
1739
1740 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1741 /*
1742 * 5b. Send the backchannel RPC reply. On error, drop the reply. In
1743 * addition, disconnect on connectivity errors.
1744 */
1745 static void
1746 call_bc_transmit(struct rpc_task *task)
1747 {
1748 struct rpc_rqst *req = task->tk_rqstp;
1749
1750 task->tk_status = xprt_prepare_transmit(task);
1751 if (task->tk_status == -EAGAIN) {
1752 /*
1753 * Could not reserve the transport. Try again after the
1754 * transport is released.
1755 */
1756 task->tk_status = 0;
1757 task->tk_action = call_bc_transmit;
1758 return;
1759 }
1760
1761 task->tk_action = rpc_exit_task;
1762 if (task->tk_status < 0) {
1763 printk(KERN_NOTICE "RPC: Could not send backchannel reply "
1764 "error: %d\n", task->tk_status);
1765 return;
1766 }
1767
1768 xprt_transmit(task);
1769 xprt_end_transmit(task);
1770 dprint_status(task);
1771 switch (task->tk_status) {
1772 case 0:
1773 /* Success */
1774 break;
1775 case -EHOSTDOWN:
1776 case -EHOSTUNREACH:
1777 case -ENETUNREACH:
1778 case -ETIMEDOUT:
1779 /*
1780 * Problem reaching the server. Disconnect and let the
1781 * forechannel reestablish the connection. The server will
1782 * have to retransmit the backchannel request and we'll
1783 * reprocess it. Since these ops are idempotent, there's no
1784 * need to cache our reply at this time.
1785 */
1786 printk(KERN_NOTICE "RPC: Could not send backchannel reply "
1787 "error: %d\n", task->tk_status);
1788 xprt_conditional_disconnect(req->rq_xprt,
1789 req->rq_connect_cookie);
1790 break;
1791 default:
1792 /*
1793 * We were unable to reply and will have to drop the
1794 * request. The server should reconnect and retransmit.
1795 */
1796 WARN_ON_ONCE(task->tk_status == -EAGAIN);
1797 printk(KERN_NOTICE "RPC: Could not send backchannel reply "
1798 "error: %d\n", task->tk_status);
1799 break;
1800 }
1801 rpc_wake_up_queued_task(&req->rq_xprt->pending, task);
1802 }
1803 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1804
1805 /*
1806 * 6. Sort out the RPC call status
1807 */
1808 static void
1809 call_status(struct rpc_task *task)
1810 {
1811 struct rpc_clnt *clnt = task->tk_client;
1812 struct rpc_rqst *req = task->tk_rqstp;
1813 int status;
1814
1815 if (req->rq_reply_bytes_recvd > 0 && !req->rq_bytes_sent)
1816 task->tk_status = req->rq_reply_bytes_recvd;
1817
1818 dprint_status(task);
1819
1820 status = task->tk_status;
1821 if (status >= 0) {
1822 task->tk_action = call_decode;
1823 return;
1824 }
1825
1826 trace_rpc_call_status(task);
1827 task->tk_status = 0;
1828 switch(status) {
1829 case -EHOSTDOWN:
1830 case -EHOSTUNREACH:
1831 case -ENETUNREACH:
1832 /*
1833 * Delay any retries for 3 seconds, then handle as if it
1834 * were a timeout.
1835 */
1836 rpc_delay(task, 3*HZ);
1837 case -ETIMEDOUT:
1838 task->tk_action = call_timeout;
1839 if (task->tk_client->cl_discrtry)
1840 xprt_conditional_disconnect(req->rq_xprt,
1841 req->rq_connect_cookie);
1842 break;
1843 case -ECONNRESET:
1844 case -ECONNREFUSED:
1845 rpc_force_rebind(clnt);
1846 rpc_delay(task, 3*HZ);
1847 case -EPIPE:
1848 case -ENOTCONN:
1849 task->tk_action = call_bind;
1850 break;
1851 case -EAGAIN:
1852 task->tk_action = call_transmit;
1853 break;
1854 case -EIO:
1855 /* shutdown or soft timeout */
1856 rpc_exit(task, status);
1857 break;
1858 default:
1859 if (clnt->cl_chatty)
1860 printk("%s: RPC call returned error %d\n",
1861 clnt->cl_protname, -status);
1862 rpc_exit(task, status);
1863 }
1864 }
1865
1866 /*
1867 * 6a. Handle RPC timeout
1868 * We do not release the request slot, so we keep using the
1869 * same XID for all retransmits.
1870 */
1871 static void
1872 call_timeout(struct rpc_task *task)
1873 {
1874 struct rpc_clnt *clnt = task->tk_client;
1875
1876 if (xprt_adjust_timeout(task->tk_rqstp) == 0) {
1877 dprintk("RPC: %5u call_timeout (minor)\n", task->tk_pid);
1878 goto retry;
1879 }
1880
1881 dprintk("RPC: %5u call_timeout (major)\n", task->tk_pid);
1882 task->tk_timeouts++;
1883
1884 if (RPC_IS_SOFTCONN(task)) {
1885 rpc_exit(task, -ETIMEDOUT);
1886 return;
1887 }
1888 if (RPC_IS_SOFT(task)) {
1889 if (clnt->cl_chatty) {
1890 rcu_read_lock();
1891 printk(KERN_NOTICE "%s: server %s not responding, timed out\n",
1892 clnt->cl_protname,
1893 rcu_dereference(clnt->cl_xprt)->servername);
1894 rcu_read_unlock();
1895 }
1896 if (task->tk_flags & RPC_TASK_TIMEOUT)
1897 rpc_exit(task, -ETIMEDOUT);
1898 else
1899 rpc_exit(task, -EIO);
1900 return;
1901 }
1902
1903 if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) {
1904 task->tk_flags |= RPC_CALL_MAJORSEEN;
1905 if (clnt->cl_chatty) {
1906 rcu_read_lock();
1907 printk(KERN_NOTICE "%s: server %s not responding, still trying\n",
1908 clnt->cl_protname,
1909 rcu_dereference(clnt->cl_xprt)->servername);
1910 rcu_read_unlock();
1911 }
1912 }
1913 rpc_force_rebind(clnt);
1914 /*
1915 * Did our request time out due to an RPCSEC_GSS out-of-sequence
1916 * event? RFC2203 requires the server to drop all such requests.
1917 */
1918 rpcauth_invalcred(task);
1919
1920 retry:
1921 clnt->cl_stats->rpcretrans++;
1922 task->tk_action = call_bind;
1923 task->tk_status = 0;
1924 }
1925
1926 /*
1927 * 7. Decode the RPC reply
1928 */
1929 static void
1930 call_decode(struct rpc_task *task)
1931 {
1932 struct rpc_clnt *clnt = task->tk_client;
1933 struct rpc_rqst *req = task->tk_rqstp;
1934 kxdrdproc_t decode = task->tk_msg.rpc_proc->p_decode;
1935 __be32 *p;
1936
1937 dprint_status(task);
1938
1939 if (task->tk_flags & RPC_CALL_MAJORSEEN) {
1940 if (clnt->cl_chatty) {
1941 rcu_read_lock();
1942 printk(KERN_NOTICE "%s: server %s OK\n",
1943 clnt->cl_protname,
1944 rcu_dereference(clnt->cl_xprt)->servername);
1945 rcu_read_unlock();
1946 }
1947 task->tk_flags &= ~RPC_CALL_MAJORSEEN;
1948 }
1949
1950 /*
1951 * Ensure that we see all writes made by xprt_complete_rqst()
1952 * before it changed req->rq_reply_bytes_recvd.
1953 */
1954 smp_rmb();
1955 req->rq_rcv_buf.len = req->rq_private_buf.len;
1956
1957 /* Check that the softirq receive buffer is valid */
1958 WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf,
1959 sizeof(req->rq_rcv_buf)) != 0);
1960
1961 if (req->rq_rcv_buf.len < 12) {
1962 if (!RPC_IS_SOFT(task)) {
1963 task->tk_action = call_bind;
1964 clnt->cl_stats->rpcretrans++;
1965 goto out_retry;
1966 }
1967 dprintk("RPC: %s: too small RPC reply size (%d bytes)\n",
1968 clnt->cl_protname, task->tk_status);
1969 task->tk_action = call_timeout;
1970 goto out_retry;
1971 }
1972
1973 p = rpc_verify_header(task);
1974 if (IS_ERR(p)) {
1975 if (p == ERR_PTR(-EAGAIN))
1976 goto out_retry;
1977 return;
1978 }
1979
1980 task->tk_action = rpc_exit_task;
1981
1982 if (decode) {
1983 task->tk_status = rpcauth_unwrap_resp(task, decode, req, p,
1984 task->tk_msg.rpc_resp);
1985 }
1986 dprintk("RPC: %5u call_decode result %d\n", task->tk_pid,
1987 task->tk_status);
1988 return;
1989 out_retry:
1990 task->tk_status = 0;
1991 /* Note: rpc_verify_header() may have freed the RPC slot */
1992 if (task->tk_rqstp == req) {
1993 req->rq_reply_bytes_recvd = req->rq_rcv_buf.len = 0;
1994 if (task->tk_client->cl_discrtry)
1995 xprt_conditional_disconnect(req->rq_xprt,
1996 req->rq_connect_cookie);
1997 }
1998 }
1999
2000 static __be32 *
2001 rpc_encode_header(struct rpc_task *task)
2002 {
2003 struct rpc_clnt *clnt = task->tk_client;
2004 struct rpc_rqst *req = task->tk_rqstp;
2005 __be32 *p = req->rq_svec[0].iov_base;
2006
2007 /* FIXME: check buffer size? */
2008
2009 p = xprt_skip_transport_header(req->rq_xprt, p);
2010 *p++ = req->rq_xid; /* XID */
2011 *p++ = htonl(RPC_CALL); /* CALL */
2012 *p++ = htonl(RPC_VERSION); /* RPC version */
2013 *p++ = htonl(clnt->cl_prog); /* program number */
2014 *p++ = htonl(clnt->cl_vers); /* program version */
2015 *p++ = htonl(task->tk_msg.rpc_proc->p_proc); /* procedure */
2016 p = rpcauth_marshcred(task, p);
2017 req->rq_slen = xdr_adjust_iovec(&req->rq_svec[0], p);
2018 return p;
2019 }
2020
2021 static __be32 *
2022 rpc_verify_header(struct rpc_task *task)
2023 {
2024 struct rpc_clnt *clnt = task->tk_client;
2025 struct kvec *iov = &task->tk_rqstp->rq_rcv_buf.head[0];
2026 int len = task->tk_rqstp->rq_rcv_buf.len >> 2;
2027 __be32 *p = iov->iov_base;
2028 u32 n;
2029 int error = -EACCES;
2030
2031 if ((task->tk_rqstp->rq_rcv_buf.len & 3) != 0) {
2032 /* RFC-1014 says that the representation of XDR data must be a
2033 * multiple of four bytes
2034 * - if it isn't pointer subtraction in the NFS client may give
2035 * undefined results
2036 */
2037 dprintk("RPC: %5u %s: XDR representation not a multiple of"
2038 " 4 bytes: 0x%x\n", task->tk_pid, __func__,
2039 task->tk_rqstp->rq_rcv_buf.len);
2040 goto out_eio;
2041 }
2042 if ((len -= 3) < 0)
2043 goto out_overflow;
2044
2045 p += 1; /* skip XID */
2046 if ((n = ntohl(*p++)) != RPC_REPLY) {
2047 dprintk("RPC: %5u %s: not an RPC reply: %x\n",
2048 task->tk_pid, __func__, n);
2049 goto out_garbage;
2050 }
2051
2052 if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) {
2053 if (--len < 0)
2054 goto out_overflow;
2055 switch ((n = ntohl(*p++))) {
2056 case RPC_AUTH_ERROR:
2057 break;
2058 case RPC_MISMATCH:
2059 dprintk("RPC: %5u %s: RPC call version mismatch!\n",
2060 task->tk_pid, __func__);
2061 error = -EPROTONOSUPPORT;
2062 goto out_err;
2063 default:
2064 dprintk("RPC: %5u %s: RPC call rejected, "
2065 "unknown error: %x\n",
2066 task->tk_pid, __func__, n);
2067 goto out_eio;
2068 }
2069 if (--len < 0)
2070 goto out_overflow;
2071 switch ((n = ntohl(*p++))) {
2072 case RPC_AUTH_REJECTEDCRED:
2073 case RPC_AUTH_REJECTEDVERF:
2074 case RPCSEC_GSS_CREDPROBLEM:
2075 case RPCSEC_GSS_CTXPROBLEM:
2076 if (!task->tk_cred_retry)
2077 break;
2078 task->tk_cred_retry--;
2079 dprintk("RPC: %5u %s: retry stale creds\n",
2080 task->tk_pid, __func__);
2081 rpcauth_invalcred(task);
2082 /* Ensure we obtain a new XID! */
2083 xprt_release(task);
2084 task->tk_action = call_reserve;
2085 goto out_retry;
2086 case RPC_AUTH_BADCRED:
2087 case RPC_AUTH_BADVERF:
2088 /* possibly garbled cred/verf? */
2089 if (!task->tk_garb_retry)
2090 break;
2091 task->tk_garb_retry--;
2092 dprintk("RPC: %5u %s: retry garbled creds\n",
2093 task->tk_pid, __func__);
2094 task->tk_action = call_bind;
2095 goto out_retry;
2096 case RPC_AUTH_TOOWEAK:
2097 rcu_read_lock();
2098 printk(KERN_NOTICE "RPC: server %s requires stronger "
2099 "authentication.\n",
2100 rcu_dereference(clnt->cl_xprt)->servername);
2101 rcu_read_unlock();
2102 break;
2103 default:
2104 dprintk("RPC: %5u %s: unknown auth error: %x\n",
2105 task->tk_pid, __func__, n);
2106 error = -EIO;
2107 }
2108 dprintk("RPC: %5u %s: call rejected %d\n",
2109 task->tk_pid, __func__, n);
2110 goto out_err;
2111 }
2112 if (!(p = rpcauth_checkverf(task, p))) {
2113 dprintk("RPC: %5u %s: auth check failed\n",
2114 task->tk_pid, __func__);
2115 goto out_garbage; /* bad verifier, retry */
2116 }
2117 len = p - (__be32 *)iov->iov_base - 1;
2118 if (len < 0)
2119 goto out_overflow;
2120 switch ((n = ntohl(*p++))) {
2121 case RPC_SUCCESS:
2122 return p;
2123 case RPC_PROG_UNAVAIL:
2124 dprintk_rcu("RPC: %5u %s: program %u is unsupported "
2125 "by server %s\n", task->tk_pid, __func__,
2126 (unsigned int)clnt->cl_prog,
2127 rcu_dereference(clnt->cl_xprt)->servername);
2128 error = -EPFNOSUPPORT;
2129 goto out_err;
2130 case RPC_PROG_MISMATCH:
2131 dprintk_rcu("RPC: %5u %s: program %u, version %u unsupported "
2132 "by server %s\n", task->tk_pid, __func__,
2133 (unsigned int)clnt->cl_prog,
2134 (unsigned int)clnt->cl_vers,
2135 rcu_dereference(clnt->cl_xprt)->servername);
2136 error = -EPROTONOSUPPORT;
2137 goto out_err;
2138 case RPC_PROC_UNAVAIL:
2139 dprintk_rcu("RPC: %5u %s: proc %s unsupported by program %u, "
2140 "version %u on server %s\n",
2141 task->tk_pid, __func__,
2142 rpc_proc_name(task),
2143 clnt->cl_prog, clnt->cl_vers,
2144 rcu_dereference(clnt->cl_xprt)->servername);
2145 error = -EOPNOTSUPP;
2146 goto out_err;
2147 case RPC_GARBAGE_ARGS:
2148 dprintk("RPC: %5u %s: server saw garbage\n",
2149 task->tk_pid, __func__);
2150 break; /* retry */
2151 default:
2152 dprintk("RPC: %5u %s: server accept status: %x\n",
2153 task->tk_pid, __func__, n);
2154 /* Also retry */
2155 }
2156
2157 out_garbage:
2158 clnt->cl_stats->rpcgarbage++;
2159 if (task->tk_garb_retry) {
2160 task->tk_garb_retry--;
2161 dprintk("RPC: %5u %s: retrying\n",
2162 task->tk_pid, __func__);
2163 task->tk_action = call_bind;
2164 out_retry:
2165 return ERR_PTR(-EAGAIN);
2166 }
2167 out_eio:
2168 error = -EIO;
2169 out_err:
2170 rpc_exit(task, error);
2171 dprintk("RPC: %5u %s: call failed with error %d\n", task->tk_pid,
2172 __func__, error);
2173 return ERR_PTR(error);
2174 out_overflow:
2175 dprintk("RPC: %5u %s: server reply was truncated.\n", task->tk_pid,
2176 __func__);
2177 goto out_garbage;
2178 }
2179
2180 static void rpcproc_encode_null(void *rqstp, struct xdr_stream *xdr, void *obj)
2181 {
2182 }
2183
2184 static int rpcproc_decode_null(void *rqstp, struct xdr_stream *xdr, void *obj)
2185 {
2186 return 0;
2187 }
2188
2189 static struct rpc_procinfo rpcproc_null = {
2190 .p_encode = rpcproc_encode_null,
2191 .p_decode = rpcproc_decode_null,
2192 };
2193
2194 static int rpc_ping(struct rpc_clnt *clnt)
2195 {
2196 struct rpc_message msg = {
2197 .rpc_proc = &rpcproc_null,
2198 };
2199 int err;
2200 msg.rpc_cred = authnull_ops.lookup_cred(NULL, NULL, 0);
2201 err = rpc_call_sync(clnt, &msg, RPC_TASK_SOFT | RPC_TASK_SOFTCONN);
2202 put_rpccred(msg.rpc_cred);
2203 return err;
2204 }
2205
2206 struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags)
2207 {
2208 struct rpc_message msg = {
2209 .rpc_proc = &rpcproc_null,
2210 .rpc_cred = cred,
2211 };
2212 struct rpc_task_setup task_setup_data = {
2213 .rpc_client = clnt,
2214 .rpc_message = &msg,
2215 .callback_ops = &rpc_default_ops,
2216 .flags = flags,
2217 };
2218 return rpc_run_task(&task_setup_data);
2219 }
2220 EXPORT_SYMBOL_GPL(rpc_call_null);
2221
2222 #ifdef RPC_DEBUG
2223 static void rpc_show_header(void)
2224 {
2225 printk(KERN_INFO "-pid- flgs status -client- --rqstp- "
2226 "-timeout ---ops--\n");
2227 }
2228
2229 static void rpc_show_task(const struct rpc_clnt *clnt,
2230 const struct rpc_task *task)
2231 {
2232 const char *rpc_waitq = "none";
2233
2234 if (RPC_IS_QUEUED(task))
2235 rpc_waitq = rpc_qname(task->tk_waitqueue);
2236
2237 printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n",
2238 task->tk_pid, task->tk_flags, task->tk_status,
2239 clnt, task->tk_rqstp, task->tk_timeout, task->tk_ops,
2240 clnt->cl_protname, clnt->cl_vers, rpc_proc_name(task),
2241 task->tk_action, rpc_waitq);
2242 }
2243
2244 void rpc_show_tasks(struct net *net)
2245 {
2246 struct rpc_clnt *clnt;
2247 struct rpc_task *task;
2248 int header = 0;
2249 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
2250
2251 spin_lock(&sn->rpc_client_lock);
2252 list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
2253 spin_lock(&clnt->cl_lock);
2254 list_for_each_entry(task, &clnt->cl_tasks, tk_task) {
2255 if (!header) {
2256 rpc_show_header();
2257 header++;
2258 }
2259 rpc_show_task(clnt, task);
2260 }
2261 spin_unlock(&clnt->cl_lock);
2262 }
2263 spin_unlock(&sn->rpc_client_lock);
2264 }
2265 #endif