TOMOYO: Fix wrong domainname validation.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sunrpc / auth_gss / auth_gss.c
1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
3 *
4 * RPCSEC_GSS client authentication.
5 *
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
54
55 static const struct rpc_authops authgss_ops;
56
57 static const struct rpc_credops gss_credops;
58 static const struct rpc_credops gss_nullops;
59
60 #define GSS_RETRY_EXPIRED 5
61 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
62
63 #ifdef RPC_DEBUG
64 # define RPCDBG_FACILITY RPCDBG_AUTH
65 #endif
66
67 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2)
68 /* length of a krb5 verifier (48), plus data added before arguments when
69 * using integrity (two 4-byte integers): */
70 #define GSS_VERF_SLACK 100
71
72 struct gss_auth {
73 struct kref kref;
74 struct rpc_auth rpc_auth;
75 struct gss_api_mech *mech;
76 enum rpc_gss_svc service;
77 struct rpc_clnt *client;
78 /*
79 * There are two upcall pipes; dentry[1], named "gssd", is used
80 * for the new text-based upcall; dentry[0] is named after the
81 * mechanism (for example, "krb5") and exists for
82 * backwards-compatibility with older gssd's.
83 */
84 struct dentry *dentry[2];
85 };
86
87 /* pipe_version >= 0 if and only if someone has a pipe open. */
88 static int pipe_version = -1;
89 static atomic_t pipe_users = ATOMIC_INIT(0);
90 static DEFINE_SPINLOCK(pipe_version_lock);
91 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
92 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
93
94 static void gss_free_ctx(struct gss_cl_ctx *);
95 static const struct rpc_pipe_ops gss_upcall_ops_v0;
96 static const struct rpc_pipe_ops gss_upcall_ops_v1;
97
98 static inline struct gss_cl_ctx *
99 gss_get_ctx(struct gss_cl_ctx *ctx)
100 {
101 atomic_inc(&ctx->count);
102 return ctx;
103 }
104
105 static inline void
106 gss_put_ctx(struct gss_cl_ctx *ctx)
107 {
108 if (atomic_dec_and_test(&ctx->count))
109 gss_free_ctx(ctx);
110 }
111
112 /* gss_cred_set_ctx:
113 * called by gss_upcall_callback and gss_create_upcall in order
114 * to set the gss context. The actual exchange of an old context
115 * and a new one is protected by the inode->i_lock.
116 */
117 static void
118 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
119 {
120 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
121
122 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
123 return;
124 gss_get_ctx(ctx);
125 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
126 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
127 smp_mb__before_clear_bit();
128 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
129 }
130
131 static const void *
132 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
133 {
134 const void *q = (const void *)((const char *)p + len);
135 if (unlikely(q > end || q < p))
136 return ERR_PTR(-EFAULT);
137 memcpy(res, p, len);
138 return q;
139 }
140
141 static inline const void *
142 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
143 {
144 const void *q;
145 unsigned int len;
146
147 p = simple_get_bytes(p, end, &len, sizeof(len));
148 if (IS_ERR(p))
149 return p;
150 q = (const void *)((const char *)p + len);
151 if (unlikely(q > end || q < p))
152 return ERR_PTR(-EFAULT);
153 dest->data = kmemdup(p, len, GFP_NOFS);
154 if (unlikely(dest->data == NULL))
155 return ERR_PTR(-ENOMEM);
156 dest->len = len;
157 return q;
158 }
159
160 static struct gss_cl_ctx *
161 gss_cred_get_ctx(struct rpc_cred *cred)
162 {
163 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
164 struct gss_cl_ctx *ctx = NULL;
165
166 rcu_read_lock();
167 if (gss_cred->gc_ctx)
168 ctx = gss_get_ctx(gss_cred->gc_ctx);
169 rcu_read_unlock();
170 return ctx;
171 }
172
173 static struct gss_cl_ctx *
174 gss_alloc_context(void)
175 {
176 struct gss_cl_ctx *ctx;
177
178 ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
179 if (ctx != NULL) {
180 ctx->gc_proc = RPC_GSS_PROC_DATA;
181 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
182 spin_lock_init(&ctx->gc_seq_lock);
183 atomic_set(&ctx->count,1);
184 }
185 return ctx;
186 }
187
188 #define GSSD_MIN_TIMEOUT (60 * 60)
189 static const void *
190 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
191 {
192 const void *q;
193 unsigned int seclen;
194 unsigned int timeout;
195 u32 window_size;
196 int ret;
197
198 /* First unsigned int gives the lifetime (in seconds) of the cred */
199 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
200 if (IS_ERR(p))
201 goto err;
202 if (timeout == 0)
203 timeout = GSSD_MIN_TIMEOUT;
204 ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
205 /* Sequence number window. Determines the maximum number of simultaneous requests */
206 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
207 if (IS_ERR(p))
208 goto err;
209 ctx->gc_win = window_size;
210 /* gssd signals an error by passing ctx->gc_win = 0: */
211 if (ctx->gc_win == 0) {
212 /*
213 * in which case, p points to an error code. Anything other
214 * than -EKEYEXPIRED gets converted to -EACCES.
215 */
216 p = simple_get_bytes(p, end, &ret, sizeof(ret));
217 if (!IS_ERR(p))
218 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
219 ERR_PTR(-EACCES);
220 goto err;
221 }
222 /* copy the opaque wire context */
223 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
224 if (IS_ERR(p))
225 goto err;
226 /* import the opaque security context */
227 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
228 if (IS_ERR(p))
229 goto err;
230 q = (const void *)((const char *)p + seclen);
231 if (unlikely(q > end || q < p)) {
232 p = ERR_PTR(-EFAULT);
233 goto err;
234 }
235 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, GFP_NOFS);
236 if (ret < 0) {
237 p = ERR_PTR(ret);
238 goto err;
239 }
240 return q;
241 err:
242 dprintk("RPC: gss_fill_context returning %ld\n", -PTR_ERR(p));
243 return p;
244 }
245
246 #define UPCALL_BUF_LEN 128
247
248 struct gss_upcall_msg {
249 atomic_t count;
250 uid_t uid;
251 struct rpc_pipe_msg msg;
252 struct list_head list;
253 struct gss_auth *auth;
254 struct rpc_inode *inode;
255 struct rpc_wait_queue rpc_waitqueue;
256 wait_queue_head_t waitqueue;
257 struct gss_cl_ctx *ctx;
258 char databuf[UPCALL_BUF_LEN];
259 };
260
261 static int get_pipe_version(void)
262 {
263 int ret;
264
265 spin_lock(&pipe_version_lock);
266 if (pipe_version >= 0) {
267 atomic_inc(&pipe_users);
268 ret = pipe_version;
269 } else
270 ret = -EAGAIN;
271 spin_unlock(&pipe_version_lock);
272 return ret;
273 }
274
275 static void put_pipe_version(void)
276 {
277 if (atomic_dec_and_lock(&pipe_users, &pipe_version_lock)) {
278 pipe_version = -1;
279 spin_unlock(&pipe_version_lock);
280 }
281 }
282
283 static void
284 gss_release_msg(struct gss_upcall_msg *gss_msg)
285 {
286 if (!atomic_dec_and_test(&gss_msg->count))
287 return;
288 put_pipe_version();
289 BUG_ON(!list_empty(&gss_msg->list));
290 if (gss_msg->ctx != NULL)
291 gss_put_ctx(gss_msg->ctx);
292 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
293 kfree(gss_msg);
294 }
295
296 static struct gss_upcall_msg *
297 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid)
298 {
299 struct gss_upcall_msg *pos;
300 list_for_each_entry(pos, &rpci->in_downcall, list) {
301 if (pos->uid != uid)
302 continue;
303 atomic_inc(&pos->count);
304 dprintk("RPC: gss_find_upcall found msg %p\n", pos);
305 return pos;
306 }
307 dprintk("RPC: gss_find_upcall found nothing\n");
308 return NULL;
309 }
310
311 /* Try to add an upcall to the pipefs queue.
312 * If an upcall owned by our uid already exists, then we return a reference
313 * to that upcall instead of adding the new upcall.
314 */
315 static inline struct gss_upcall_msg *
316 gss_add_msg(struct gss_upcall_msg *gss_msg)
317 {
318 struct rpc_inode *rpci = gss_msg->inode;
319 struct inode *inode = &rpci->vfs_inode;
320 struct gss_upcall_msg *old;
321
322 spin_lock(&inode->i_lock);
323 old = __gss_find_upcall(rpci, gss_msg->uid);
324 if (old == NULL) {
325 atomic_inc(&gss_msg->count);
326 list_add(&gss_msg->list, &rpci->in_downcall);
327 } else
328 gss_msg = old;
329 spin_unlock(&inode->i_lock);
330 return gss_msg;
331 }
332
333 static void
334 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
335 {
336 list_del_init(&gss_msg->list);
337 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
338 wake_up_all(&gss_msg->waitqueue);
339 atomic_dec(&gss_msg->count);
340 }
341
342 static void
343 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
344 {
345 struct inode *inode = &gss_msg->inode->vfs_inode;
346
347 if (list_empty(&gss_msg->list))
348 return;
349 spin_lock(&inode->i_lock);
350 if (!list_empty(&gss_msg->list))
351 __gss_unhash_msg(gss_msg);
352 spin_unlock(&inode->i_lock);
353 }
354
355 static void
356 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
357 {
358 switch (gss_msg->msg.errno) {
359 case 0:
360 if (gss_msg->ctx == NULL)
361 break;
362 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
363 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
364 break;
365 case -EKEYEXPIRED:
366 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
367 }
368 gss_cred->gc_upcall_timestamp = jiffies;
369 gss_cred->gc_upcall = NULL;
370 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
371 }
372
373 static void
374 gss_upcall_callback(struct rpc_task *task)
375 {
376 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
377 struct gss_cred, gc_base);
378 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
379 struct inode *inode = &gss_msg->inode->vfs_inode;
380
381 spin_lock(&inode->i_lock);
382 gss_handle_downcall_result(gss_cred, gss_msg);
383 spin_unlock(&inode->i_lock);
384 task->tk_status = gss_msg->msg.errno;
385 gss_release_msg(gss_msg);
386 }
387
388 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
389 {
390 gss_msg->msg.data = &gss_msg->uid;
391 gss_msg->msg.len = sizeof(gss_msg->uid);
392 }
393
394 static void gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
395 struct rpc_clnt *clnt, int machine_cred)
396 {
397 struct gss_api_mech *mech = gss_msg->auth->mech;
398 char *p = gss_msg->databuf;
399 int len = 0;
400
401 gss_msg->msg.len = sprintf(gss_msg->databuf, "mech=%s uid=%d ",
402 mech->gm_name,
403 gss_msg->uid);
404 p += gss_msg->msg.len;
405 if (clnt->cl_principal) {
406 len = sprintf(p, "target=%s ", clnt->cl_principal);
407 p += len;
408 gss_msg->msg.len += len;
409 }
410 if (machine_cred) {
411 len = sprintf(p, "service=* ");
412 p += len;
413 gss_msg->msg.len += len;
414 } else if (!strcmp(clnt->cl_program->name, "nfs4_cb")) {
415 len = sprintf(p, "service=nfs ");
416 p += len;
417 gss_msg->msg.len += len;
418 }
419 if (mech->gm_upcall_enctypes) {
420 len = sprintf(p, "enctypes=%s ", mech->gm_upcall_enctypes);
421 p += len;
422 gss_msg->msg.len += len;
423 }
424 len = sprintf(p, "\n");
425 gss_msg->msg.len += len;
426
427 gss_msg->msg.data = gss_msg->databuf;
428 BUG_ON(gss_msg->msg.len > UPCALL_BUF_LEN);
429 }
430
431 static void gss_encode_msg(struct gss_upcall_msg *gss_msg,
432 struct rpc_clnt *clnt, int machine_cred)
433 {
434 if (pipe_version == 0)
435 gss_encode_v0_msg(gss_msg);
436 else /* pipe_version == 1 */
437 gss_encode_v1_msg(gss_msg, clnt, machine_cred);
438 }
439
440 static inline struct gss_upcall_msg *
441 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid, struct rpc_clnt *clnt,
442 int machine_cred)
443 {
444 struct gss_upcall_msg *gss_msg;
445 int vers;
446
447 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
448 if (gss_msg == NULL)
449 return ERR_PTR(-ENOMEM);
450 vers = get_pipe_version();
451 if (vers < 0) {
452 kfree(gss_msg);
453 return ERR_PTR(vers);
454 }
455 gss_msg->inode = RPC_I(gss_auth->dentry[vers]->d_inode);
456 INIT_LIST_HEAD(&gss_msg->list);
457 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
458 init_waitqueue_head(&gss_msg->waitqueue);
459 atomic_set(&gss_msg->count, 1);
460 gss_msg->uid = uid;
461 gss_msg->auth = gss_auth;
462 gss_encode_msg(gss_msg, clnt, machine_cred);
463 return gss_msg;
464 }
465
466 static struct gss_upcall_msg *
467 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
468 {
469 struct gss_cred *gss_cred = container_of(cred,
470 struct gss_cred, gc_base);
471 struct gss_upcall_msg *gss_new, *gss_msg;
472 uid_t uid = cred->cr_uid;
473
474 gss_new = gss_alloc_msg(gss_auth, uid, clnt, gss_cred->gc_machine_cred);
475 if (IS_ERR(gss_new))
476 return gss_new;
477 gss_msg = gss_add_msg(gss_new);
478 if (gss_msg == gss_new) {
479 struct inode *inode = &gss_new->inode->vfs_inode;
480 int res = rpc_queue_upcall(inode, &gss_new->msg);
481 if (res) {
482 gss_unhash_msg(gss_new);
483 gss_msg = ERR_PTR(res);
484 }
485 } else
486 gss_release_msg(gss_new);
487 return gss_msg;
488 }
489
490 static void warn_gssd(void)
491 {
492 static unsigned long ratelimit;
493 unsigned long now = jiffies;
494
495 if (time_after(now, ratelimit)) {
496 printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
497 "Please check user daemon is running.\n");
498 ratelimit = now + 15*HZ;
499 }
500 }
501
502 static inline int
503 gss_refresh_upcall(struct rpc_task *task)
504 {
505 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
506 struct gss_auth *gss_auth = container_of(cred->cr_auth,
507 struct gss_auth, rpc_auth);
508 struct gss_cred *gss_cred = container_of(cred,
509 struct gss_cred, gc_base);
510 struct gss_upcall_msg *gss_msg;
511 struct inode *inode;
512 int err = 0;
513
514 dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid,
515 cred->cr_uid);
516 gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
517 if (PTR_ERR(gss_msg) == -EAGAIN) {
518 /* XXX: warning on the first, under the assumption we
519 * shouldn't normally hit this case on a refresh. */
520 warn_gssd();
521 task->tk_timeout = 15*HZ;
522 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
523 return 0;
524 }
525 if (IS_ERR(gss_msg)) {
526 err = PTR_ERR(gss_msg);
527 goto out;
528 }
529 inode = &gss_msg->inode->vfs_inode;
530 spin_lock(&inode->i_lock);
531 if (gss_cred->gc_upcall != NULL)
532 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
533 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
534 task->tk_timeout = 0;
535 gss_cred->gc_upcall = gss_msg;
536 /* gss_upcall_callback will release the reference to gss_upcall_msg */
537 atomic_inc(&gss_msg->count);
538 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
539 } else {
540 gss_handle_downcall_result(gss_cred, gss_msg);
541 err = gss_msg->msg.errno;
542 }
543 spin_unlock(&inode->i_lock);
544 gss_release_msg(gss_msg);
545 out:
546 dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n",
547 task->tk_pid, cred->cr_uid, err);
548 return err;
549 }
550
551 static inline int
552 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
553 {
554 struct inode *inode;
555 struct rpc_cred *cred = &gss_cred->gc_base;
556 struct gss_upcall_msg *gss_msg;
557 DEFINE_WAIT(wait);
558 int err = 0;
559
560 dprintk("RPC: gss_upcall for uid %u\n", cred->cr_uid);
561 retry:
562 gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
563 if (PTR_ERR(gss_msg) == -EAGAIN) {
564 err = wait_event_interruptible_timeout(pipe_version_waitqueue,
565 pipe_version >= 0, 15*HZ);
566 if (err)
567 goto out;
568 if (pipe_version < 0)
569 warn_gssd();
570 goto retry;
571 }
572 if (IS_ERR(gss_msg)) {
573 err = PTR_ERR(gss_msg);
574 goto out;
575 }
576 inode = &gss_msg->inode->vfs_inode;
577 for (;;) {
578 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE);
579 spin_lock(&inode->i_lock);
580 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
581 break;
582 }
583 spin_unlock(&inode->i_lock);
584 if (signalled()) {
585 err = -ERESTARTSYS;
586 goto out_intr;
587 }
588 schedule();
589 }
590 if (gss_msg->ctx)
591 gss_cred_set_ctx(cred, gss_msg->ctx);
592 else
593 err = gss_msg->msg.errno;
594 spin_unlock(&inode->i_lock);
595 out_intr:
596 finish_wait(&gss_msg->waitqueue, &wait);
597 gss_release_msg(gss_msg);
598 out:
599 dprintk("RPC: gss_create_upcall for uid %u result %d\n",
600 cred->cr_uid, err);
601 return err;
602 }
603
604 static ssize_t
605 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg,
606 char __user *dst, size_t buflen)
607 {
608 char *data = (char *)msg->data + msg->copied;
609 size_t mlen = min(msg->len, buflen);
610 unsigned long left;
611
612 left = copy_to_user(dst, data, mlen);
613 if (left == mlen) {
614 msg->errno = -EFAULT;
615 return -EFAULT;
616 }
617
618 mlen -= left;
619 msg->copied += mlen;
620 msg->errno = 0;
621 return mlen;
622 }
623
624 #define MSG_BUF_MAXSIZE 1024
625
626 static ssize_t
627 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
628 {
629 const void *p, *end;
630 void *buf;
631 struct gss_upcall_msg *gss_msg;
632 struct inode *inode = filp->f_path.dentry->d_inode;
633 struct gss_cl_ctx *ctx;
634 uid_t uid;
635 ssize_t err = -EFBIG;
636
637 if (mlen > MSG_BUF_MAXSIZE)
638 goto out;
639 err = -ENOMEM;
640 buf = kmalloc(mlen, GFP_NOFS);
641 if (!buf)
642 goto out;
643
644 err = -EFAULT;
645 if (copy_from_user(buf, src, mlen))
646 goto err;
647
648 end = (const void *)((char *)buf + mlen);
649 p = simple_get_bytes(buf, end, &uid, sizeof(uid));
650 if (IS_ERR(p)) {
651 err = PTR_ERR(p);
652 goto err;
653 }
654
655 err = -ENOMEM;
656 ctx = gss_alloc_context();
657 if (ctx == NULL)
658 goto err;
659
660 err = -ENOENT;
661 /* Find a matching upcall */
662 spin_lock(&inode->i_lock);
663 gss_msg = __gss_find_upcall(RPC_I(inode), uid);
664 if (gss_msg == NULL) {
665 spin_unlock(&inode->i_lock);
666 goto err_put_ctx;
667 }
668 list_del_init(&gss_msg->list);
669 spin_unlock(&inode->i_lock);
670
671 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
672 if (IS_ERR(p)) {
673 err = PTR_ERR(p);
674 switch (err) {
675 case -EACCES:
676 case -EKEYEXPIRED:
677 gss_msg->msg.errno = err;
678 err = mlen;
679 break;
680 case -EFAULT:
681 case -ENOMEM:
682 case -EINVAL:
683 case -ENOSYS:
684 gss_msg->msg.errno = -EAGAIN;
685 break;
686 default:
687 printk(KERN_CRIT "%s: bad return from "
688 "gss_fill_context: %zd\n", __func__, err);
689 BUG();
690 }
691 goto err_release_msg;
692 }
693 gss_msg->ctx = gss_get_ctx(ctx);
694 err = mlen;
695
696 err_release_msg:
697 spin_lock(&inode->i_lock);
698 __gss_unhash_msg(gss_msg);
699 spin_unlock(&inode->i_lock);
700 gss_release_msg(gss_msg);
701 err_put_ctx:
702 gss_put_ctx(ctx);
703 err:
704 kfree(buf);
705 out:
706 dprintk("RPC: gss_pipe_downcall returning %Zd\n", err);
707 return err;
708 }
709
710 static int gss_pipe_open(struct inode *inode, int new_version)
711 {
712 int ret = 0;
713
714 spin_lock(&pipe_version_lock);
715 if (pipe_version < 0) {
716 /* First open of any gss pipe determines the version: */
717 pipe_version = new_version;
718 rpc_wake_up(&pipe_version_rpc_waitqueue);
719 wake_up(&pipe_version_waitqueue);
720 } else if (pipe_version != new_version) {
721 /* Trying to open a pipe of a different version */
722 ret = -EBUSY;
723 goto out;
724 }
725 atomic_inc(&pipe_users);
726 out:
727 spin_unlock(&pipe_version_lock);
728 return ret;
729
730 }
731
732 static int gss_pipe_open_v0(struct inode *inode)
733 {
734 return gss_pipe_open(inode, 0);
735 }
736
737 static int gss_pipe_open_v1(struct inode *inode)
738 {
739 return gss_pipe_open(inode, 1);
740 }
741
742 static void
743 gss_pipe_release(struct inode *inode)
744 {
745 struct rpc_inode *rpci = RPC_I(inode);
746 struct gss_upcall_msg *gss_msg;
747
748 restart:
749 spin_lock(&inode->i_lock);
750 list_for_each_entry(gss_msg, &rpci->in_downcall, list) {
751
752 if (!list_empty(&gss_msg->msg.list))
753 continue;
754 gss_msg->msg.errno = -EPIPE;
755 atomic_inc(&gss_msg->count);
756 __gss_unhash_msg(gss_msg);
757 spin_unlock(&inode->i_lock);
758 gss_release_msg(gss_msg);
759 goto restart;
760 }
761 spin_unlock(&inode->i_lock);
762
763 put_pipe_version();
764 }
765
766 static void
767 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
768 {
769 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
770
771 if (msg->errno < 0) {
772 dprintk("RPC: gss_pipe_destroy_msg releasing msg %p\n",
773 gss_msg);
774 atomic_inc(&gss_msg->count);
775 gss_unhash_msg(gss_msg);
776 if (msg->errno == -ETIMEDOUT)
777 warn_gssd();
778 gss_release_msg(gss_msg);
779 }
780 }
781
782 /*
783 * NOTE: we have the opportunity to use different
784 * parameters based on the input flavor (which must be a pseudoflavor)
785 */
786 static struct rpc_auth *
787 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
788 {
789 struct gss_auth *gss_auth;
790 struct rpc_auth * auth;
791 int err = -ENOMEM; /* XXX? */
792
793 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
794
795 if (!try_module_get(THIS_MODULE))
796 return ERR_PTR(err);
797 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
798 goto out_dec;
799 gss_auth->client = clnt;
800 err = -EINVAL;
801 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
802 if (!gss_auth->mech) {
803 printk(KERN_WARNING "%s: Pseudoflavor %d not found!\n",
804 __func__, flavor);
805 goto err_free;
806 }
807 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
808 if (gss_auth->service == 0)
809 goto err_put_mech;
810 auth = &gss_auth->rpc_auth;
811 auth->au_cslack = GSS_CRED_SLACK >> 2;
812 auth->au_rslack = GSS_VERF_SLACK >> 2;
813 auth->au_ops = &authgss_ops;
814 auth->au_flavor = flavor;
815 atomic_set(&auth->au_count, 1);
816 kref_init(&gss_auth->kref);
817
818 /*
819 * Note: if we created the old pipe first, then someone who
820 * examined the directory at the right moment might conclude
821 * that we supported only the old pipe. So we instead create
822 * the new pipe first.
823 */
824 gss_auth->dentry[1] = rpc_mkpipe(clnt->cl_path.dentry,
825 "gssd",
826 clnt, &gss_upcall_ops_v1,
827 RPC_PIPE_WAIT_FOR_OPEN);
828 if (IS_ERR(gss_auth->dentry[1])) {
829 err = PTR_ERR(gss_auth->dentry[1]);
830 goto err_put_mech;
831 }
832
833 gss_auth->dentry[0] = rpc_mkpipe(clnt->cl_path.dentry,
834 gss_auth->mech->gm_name,
835 clnt, &gss_upcall_ops_v0,
836 RPC_PIPE_WAIT_FOR_OPEN);
837 if (IS_ERR(gss_auth->dentry[0])) {
838 err = PTR_ERR(gss_auth->dentry[0]);
839 goto err_unlink_pipe_1;
840 }
841 err = rpcauth_init_credcache(auth);
842 if (err)
843 goto err_unlink_pipe_0;
844
845 return auth;
846 err_unlink_pipe_0:
847 rpc_unlink(gss_auth->dentry[0]);
848 err_unlink_pipe_1:
849 rpc_unlink(gss_auth->dentry[1]);
850 err_put_mech:
851 gss_mech_put(gss_auth->mech);
852 err_free:
853 kfree(gss_auth);
854 out_dec:
855 module_put(THIS_MODULE);
856 return ERR_PTR(err);
857 }
858
859 static void
860 gss_free(struct gss_auth *gss_auth)
861 {
862 rpc_unlink(gss_auth->dentry[1]);
863 rpc_unlink(gss_auth->dentry[0]);
864 gss_mech_put(gss_auth->mech);
865
866 kfree(gss_auth);
867 module_put(THIS_MODULE);
868 }
869
870 static void
871 gss_free_callback(struct kref *kref)
872 {
873 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
874
875 gss_free(gss_auth);
876 }
877
878 static void
879 gss_destroy(struct rpc_auth *auth)
880 {
881 struct gss_auth *gss_auth;
882
883 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
884 auth, auth->au_flavor);
885
886 rpcauth_destroy_credcache(auth);
887
888 gss_auth = container_of(auth, struct gss_auth, rpc_auth);
889 kref_put(&gss_auth->kref, gss_free_callback);
890 }
891
892 /*
893 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
894 * to the server with the GSS control procedure field set to
895 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
896 * all RPCSEC_GSS state associated with that context.
897 */
898 static int
899 gss_destroying_context(struct rpc_cred *cred)
900 {
901 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
902 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
903 struct rpc_task *task;
904
905 if (gss_cred->gc_ctx == NULL ||
906 test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
907 return 0;
908
909 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
910 cred->cr_ops = &gss_nullops;
911
912 /* Take a reference to ensure the cred will be destroyed either
913 * by the RPC call or by the put_rpccred() below */
914 get_rpccred(cred);
915
916 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
917 if (!IS_ERR(task))
918 rpc_put_task(task);
919
920 put_rpccred(cred);
921 return 1;
922 }
923
924 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
925 * to create a new cred or context, so they check that things have been
926 * allocated before freeing them. */
927 static void
928 gss_do_free_ctx(struct gss_cl_ctx *ctx)
929 {
930 dprintk("RPC: gss_free_ctx\n");
931
932 gss_delete_sec_context(&ctx->gc_gss_ctx);
933 kfree(ctx->gc_wire_ctx.data);
934 kfree(ctx);
935 }
936
937 static void
938 gss_free_ctx_callback(struct rcu_head *head)
939 {
940 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
941 gss_do_free_ctx(ctx);
942 }
943
944 static void
945 gss_free_ctx(struct gss_cl_ctx *ctx)
946 {
947 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
948 }
949
950 static void
951 gss_free_cred(struct gss_cred *gss_cred)
952 {
953 dprintk("RPC: gss_free_cred %p\n", gss_cred);
954 kfree(gss_cred);
955 }
956
957 static void
958 gss_free_cred_callback(struct rcu_head *head)
959 {
960 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
961 gss_free_cred(gss_cred);
962 }
963
964 static void
965 gss_destroy_nullcred(struct rpc_cred *cred)
966 {
967 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
968 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
969 struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
970
971 rcu_assign_pointer(gss_cred->gc_ctx, NULL);
972 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
973 if (ctx)
974 gss_put_ctx(ctx);
975 kref_put(&gss_auth->kref, gss_free_callback);
976 }
977
978 static void
979 gss_destroy_cred(struct rpc_cred *cred)
980 {
981
982 if (gss_destroying_context(cred))
983 return;
984 gss_destroy_nullcred(cred);
985 }
986
987 /*
988 * Lookup RPCSEC_GSS cred for the current process
989 */
990 static struct rpc_cred *
991 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
992 {
993 return rpcauth_lookup_credcache(auth, acred, flags);
994 }
995
996 static struct rpc_cred *
997 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
998 {
999 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1000 struct gss_cred *cred = NULL;
1001 int err = -ENOMEM;
1002
1003 dprintk("RPC: gss_create_cred for uid %d, flavor %d\n",
1004 acred->uid, auth->au_flavor);
1005
1006 if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS)))
1007 goto out_err;
1008
1009 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1010 /*
1011 * Note: in order to force a call to call_refresh(), we deliberately
1012 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1013 */
1014 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1015 cred->gc_service = gss_auth->service;
1016 cred->gc_machine_cred = acred->machine_cred;
1017 kref_get(&gss_auth->kref);
1018 return &cred->gc_base;
1019
1020 out_err:
1021 dprintk("RPC: gss_create_cred failed with error %d\n", err);
1022 return ERR_PTR(err);
1023 }
1024
1025 static int
1026 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1027 {
1028 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1029 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1030 int err;
1031
1032 do {
1033 err = gss_create_upcall(gss_auth, gss_cred);
1034 } while (err == -EAGAIN);
1035 return err;
1036 }
1037
1038 static int
1039 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1040 {
1041 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1042
1043 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1044 goto out;
1045 /* Don't match with creds that have expired. */
1046 if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
1047 return 0;
1048 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1049 return 0;
1050 out:
1051 if (acred->machine_cred != gss_cred->gc_machine_cred)
1052 return 0;
1053 return rc->cr_uid == acred->uid;
1054 }
1055
1056 /*
1057 * Marshal credentials.
1058 * Maybe we should keep a cached credential for performance reasons.
1059 */
1060 static __be32 *
1061 gss_marshal(struct rpc_task *task, __be32 *p)
1062 {
1063 struct rpc_rqst *req = task->tk_rqstp;
1064 struct rpc_cred *cred = req->rq_cred;
1065 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1066 gc_base);
1067 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1068 __be32 *cred_len;
1069 u32 maj_stat = 0;
1070 struct xdr_netobj mic;
1071 struct kvec iov;
1072 struct xdr_buf verf_buf;
1073
1074 dprintk("RPC: %5u gss_marshal\n", task->tk_pid);
1075
1076 *p++ = htonl(RPC_AUTH_GSS);
1077 cred_len = p++;
1078
1079 spin_lock(&ctx->gc_seq_lock);
1080 req->rq_seqno = ctx->gc_seq++;
1081 spin_unlock(&ctx->gc_seq_lock);
1082
1083 *p++ = htonl((u32) RPC_GSS_VERSION);
1084 *p++ = htonl((u32) ctx->gc_proc);
1085 *p++ = htonl((u32) req->rq_seqno);
1086 *p++ = htonl((u32) gss_cred->gc_service);
1087 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1088 *cred_len = htonl((p - (cred_len + 1)) << 2);
1089
1090 /* We compute the checksum for the verifier over the xdr-encoded bytes
1091 * starting with the xid and ending at the end of the credential: */
1092 iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
1093 req->rq_snd_buf.head[0].iov_base);
1094 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1095 xdr_buf_from_iov(&iov, &verf_buf);
1096
1097 /* set verifier flavor*/
1098 *p++ = htonl(RPC_AUTH_GSS);
1099
1100 mic.data = (u8 *)(p + 1);
1101 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1102 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1103 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1104 } else if (maj_stat != 0) {
1105 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1106 goto out_put_ctx;
1107 }
1108 p = xdr_encode_opaque(p, NULL, mic.len);
1109 gss_put_ctx(ctx);
1110 return p;
1111 out_put_ctx:
1112 gss_put_ctx(ctx);
1113 return NULL;
1114 }
1115
1116 static int gss_renew_cred(struct rpc_task *task)
1117 {
1118 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1119 struct gss_cred *gss_cred = container_of(oldcred,
1120 struct gss_cred,
1121 gc_base);
1122 struct rpc_auth *auth = oldcred->cr_auth;
1123 struct auth_cred acred = {
1124 .uid = oldcred->cr_uid,
1125 .machine_cred = gss_cred->gc_machine_cred,
1126 };
1127 struct rpc_cred *new;
1128
1129 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1130 if (IS_ERR(new))
1131 return PTR_ERR(new);
1132 task->tk_rqstp->rq_cred = new;
1133 put_rpccred(oldcred);
1134 return 0;
1135 }
1136
1137 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1138 {
1139 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1140 unsigned long now = jiffies;
1141 unsigned long begin, expire;
1142 struct gss_cred *gss_cred;
1143
1144 gss_cred = container_of(cred, struct gss_cred, gc_base);
1145 begin = gss_cred->gc_upcall_timestamp;
1146 expire = begin + gss_expired_cred_retry_delay * HZ;
1147
1148 if (time_in_range_open(now, begin, expire))
1149 return 1;
1150 }
1151 return 0;
1152 }
1153
1154 /*
1155 * Refresh credentials. XXX - finish
1156 */
1157 static int
1158 gss_refresh(struct rpc_task *task)
1159 {
1160 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1161 int ret = 0;
1162
1163 if (gss_cred_is_negative_entry(cred))
1164 return -EKEYEXPIRED;
1165
1166 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1167 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1168 ret = gss_renew_cred(task);
1169 if (ret < 0)
1170 goto out;
1171 cred = task->tk_rqstp->rq_cred;
1172 }
1173
1174 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1175 ret = gss_refresh_upcall(task);
1176 out:
1177 return ret;
1178 }
1179
1180 /* Dummy refresh routine: used only when destroying the context */
1181 static int
1182 gss_refresh_null(struct rpc_task *task)
1183 {
1184 return -EACCES;
1185 }
1186
1187 static __be32 *
1188 gss_validate(struct rpc_task *task, __be32 *p)
1189 {
1190 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1191 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1192 __be32 seq;
1193 struct kvec iov;
1194 struct xdr_buf verf_buf;
1195 struct xdr_netobj mic;
1196 u32 flav,len;
1197 u32 maj_stat;
1198
1199 dprintk("RPC: %5u gss_validate\n", task->tk_pid);
1200
1201 flav = ntohl(*p++);
1202 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1203 goto out_bad;
1204 if (flav != RPC_AUTH_GSS)
1205 goto out_bad;
1206 seq = htonl(task->tk_rqstp->rq_seqno);
1207 iov.iov_base = &seq;
1208 iov.iov_len = sizeof(seq);
1209 xdr_buf_from_iov(&iov, &verf_buf);
1210 mic.data = (u8 *)p;
1211 mic.len = len;
1212
1213 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1214 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1215 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1216 if (maj_stat) {
1217 dprintk("RPC: %5u gss_validate: gss_verify_mic returned "
1218 "error 0x%08x\n", task->tk_pid, maj_stat);
1219 goto out_bad;
1220 }
1221 /* We leave it to unwrap to calculate au_rslack. For now we just
1222 * calculate the length of the verifier: */
1223 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1224 gss_put_ctx(ctx);
1225 dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n",
1226 task->tk_pid);
1227 return p + XDR_QUADLEN(len);
1228 out_bad:
1229 gss_put_ctx(ctx);
1230 dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid);
1231 return NULL;
1232 }
1233
1234 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp,
1235 __be32 *p, void *obj)
1236 {
1237 struct xdr_stream xdr;
1238
1239 xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p);
1240 encode(rqstp, &xdr, obj);
1241 }
1242
1243 static inline int
1244 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1245 kxdreproc_t encode, struct rpc_rqst *rqstp,
1246 __be32 *p, void *obj)
1247 {
1248 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1249 struct xdr_buf integ_buf;
1250 __be32 *integ_len = NULL;
1251 struct xdr_netobj mic;
1252 u32 offset;
1253 __be32 *q;
1254 struct kvec *iov;
1255 u32 maj_stat = 0;
1256 int status = -EIO;
1257
1258 integ_len = p++;
1259 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1260 *p++ = htonl(rqstp->rq_seqno);
1261
1262 gss_wrap_req_encode(encode, rqstp, p, obj);
1263
1264 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1265 offset, snd_buf->len - offset))
1266 return status;
1267 *integ_len = htonl(integ_buf.len);
1268
1269 /* guess whether we're in the head or the tail: */
1270 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1271 iov = snd_buf->tail;
1272 else
1273 iov = snd_buf->head;
1274 p = iov->iov_base + iov->iov_len;
1275 mic.data = (u8 *)(p + 1);
1276
1277 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1278 status = -EIO; /* XXX? */
1279 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1280 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1281 else if (maj_stat)
1282 return status;
1283 q = xdr_encode_opaque(p, NULL, mic.len);
1284
1285 offset = (u8 *)q - (u8 *)p;
1286 iov->iov_len += offset;
1287 snd_buf->len += offset;
1288 return 0;
1289 }
1290
1291 static void
1292 priv_release_snd_buf(struct rpc_rqst *rqstp)
1293 {
1294 int i;
1295
1296 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1297 __free_page(rqstp->rq_enc_pages[i]);
1298 kfree(rqstp->rq_enc_pages);
1299 }
1300
1301 static int
1302 alloc_enc_pages(struct rpc_rqst *rqstp)
1303 {
1304 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1305 int first, last, i;
1306
1307 if (snd_buf->page_len == 0) {
1308 rqstp->rq_enc_pages_num = 0;
1309 return 0;
1310 }
1311
1312 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1313 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1314 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1315 rqstp->rq_enc_pages
1316 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1317 GFP_NOFS);
1318 if (!rqstp->rq_enc_pages)
1319 goto out;
1320 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1321 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1322 if (rqstp->rq_enc_pages[i] == NULL)
1323 goto out_free;
1324 }
1325 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1326 return 0;
1327 out_free:
1328 rqstp->rq_enc_pages_num = i;
1329 priv_release_snd_buf(rqstp);
1330 out:
1331 return -EAGAIN;
1332 }
1333
1334 static inline int
1335 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1336 kxdreproc_t encode, struct rpc_rqst *rqstp,
1337 __be32 *p, void *obj)
1338 {
1339 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1340 u32 offset;
1341 u32 maj_stat;
1342 int status;
1343 __be32 *opaque_len;
1344 struct page **inpages;
1345 int first;
1346 int pad;
1347 struct kvec *iov;
1348 char *tmp;
1349
1350 opaque_len = p++;
1351 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1352 *p++ = htonl(rqstp->rq_seqno);
1353
1354 gss_wrap_req_encode(encode, rqstp, p, obj);
1355
1356 status = alloc_enc_pages(rqstp);
1357 if (status)
1358 return status;
1359 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1360 inpages = snd_buf->pages + first;
1361 snd_buf->pages = rqstp->rq_enc_pages;
1362 snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1363 /*
1364 * Give the tail its own page, in case we need extra space in the
1365 * head when wrapping:
1366 *
1367 * call_allocate() allocates twice the slack space required
1368 * by the authentication flavor to rq_callsize.
1369 * For GSS, slack is GSS_CRED_SLACK.
1370 */
1371 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1372 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1373 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1374 snd_buf->tail[0].iov_base = tmp;
1375 }
1376 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1377 /* slack space should prevent this ever happening: */
1378 BUG_ON(snd_buf->len > snd_buf->buflen);
1379 status = -EIO;
1380 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1381 * done anyway, so it's safe to put the request on the wire: */
1382 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1383 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1384 else if (maj_stat)
1385 return status;
1386
1387 *opaque_len = htonl(snd_buf->len - offset);
1388 /* guess whether we're in the head or the tail: */
1389 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1390 iov = snd_buf->tail;
1391 else
1392 iov = snd_buf->head;
1393 p = iov->iov_base + iov->iov_len;
1394 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1395 memset(p, 0, pad);
1396 iov->iov_len += pad;
1397 snd_buf->len += pad;
1398
1399 return 0;
1400 }
1401
1402 static int
1403 gss_wrap_req(struct rpc_task *task,
1404 kxdreproc_t encode, void *rqstp, __be32 *p, void *obj)
1405 {
1406 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1407 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1408 gc_base);
1409 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1410 int status = -EIO;
1411
1412 dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid);
1413 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1414 /* The spec seems a little ambiguous here, but I think that not
1415 * wrapping context destruction requests makes the most sense.
1416 */
1417 gss_wrap_req_encode(encode, rqstp, p, obj);
1418 status = 0;
1419 goto out;
1420 }
1421 switch (gss_cred->gc_service) {
1422 case RPC_GSS_SVC_NONE:
1423 gss_wrap_req_encode(encode, rqstp, p, obj);
1424 status = 0;
1425 break;
1426 case RPC_GSS_SVC_INTEGRITY:
1427 status = gss_wrap_req_integ(cred, ctx, encode,
1428 rqstp, p, obj);
1429 break;
1430 case RPC_GSS_SVC_PRIVACY:
1431 status = gss_wrap_req_priv(cred, ctx, encode,
1432 rqstp, p, obj);
1433 break;
1434 }
1435 out:
1436 gss_put_ctx(ctx);
1437 dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status);
1438 return status;
1439 }
1440
1441 static inline int
1442 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1443 struct rpc_rqst *rqstp, __be32 **p)
1444 {
1445 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1446 struct xdr_buf integ_buf;
1447 struct xdr_netobj mic;
1448 u32 data_offset, mic_offset;
1449 u32 integ_len;
1450 u32 maj_stat;
1451 int status = -EIO;
1452
1453 integ_len = ntohl(*(*p)++);
1454 if (integ_len & 3)
1455 return status;
1456 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1457 mic_offset = integ_len + data_offset;
1458 if (mic_offset > rcv_buf->len)
1459 return status;
1460 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1461 return status;
1462
1463 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1464 mic_offset - data_offset))
1465 return status;
1466
1467 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1468 return status;
1469
1470 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1471 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1472 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1473 if (maj_stat != GSS_S_COMPLETE)
1474 return status;
1475 return 0;
1476 }
1477
1478 static inline int
1479 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1480 struct rpc_rqst *rqstp, __be32 **p)
1481 {
1482 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1483 u32 offset;
1484 u32 opaque_len;
1485 u32 maj_stat;
1486 int status = -EIO;
1487
1488 opaque_len = ntohl(*(*p)++);
1489 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1490 if (offset + opaque_len > rcv_buf->len)
1491 return status;
1492 /* remove padding: */
1493 rcv_buf->len = offset + opaque_len;
1494
1495 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1496 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1497 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1498 if (maj_stat != GSS_S_COMPLETE)
1499 return status;
1500 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1501 return status;
1502
1503 return 0;
1504 }
1505
1506 static int
1507 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp,
1508 __be32 *p, void *obj)
1509 {
1510 struct xdr_stream xdr;
1511
1512 xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
1513 return decode(rqstp, &xdr, obj);
1514 }
1515
1516 static int
1517 gss_unwrap_resp(struct rpc_task *task,
1518 kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj)
1519 {
1520 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1521 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1522 gc_base);
1523 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1524 __be32 *savedp = p;
1525 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1526 int savedlen = head->iov_len;
1527 int status = -EIO;
1528
1529 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1530 goto out_decode;
1531 switch (gss_cred->gc_service) {
1532 case RPC_GSS_SVC_NONE:
1533 break;
1534 case RPC_GSS_SVC_INTEGRITY:
1535 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1536 if (status)
1537 goto out;
1538 break;
1539 case RPC_GSS_SVC_PRIVACY:
1540 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1541 if (status)
1542 goto out;
1543 break;
1544 }
1545 /* take into account extra slack for integrity and privacy cases: */
1546 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1547 + (savedlen - head->iov_len);
1548 out_decode:
1549 status = gss_unwrap_req_decode(decode, rqstp, p, obj);
1550 out:
1551 gss_put_ctx(ctx);
1552 dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid,
1553 status);
1554 return status;
1555 }
1556
1557 static const struct rpc_authops authgss_ops = {
1558 .owner = THIS_MODULE,
1559 .au_flavor = RPC_AUTH_GSS,
1560 .au_name = "RPCSEC_GSS",
1561 .create = gss_create,
1562 .destroy = gss_destroy,
1563 .lookup_cred = gss_lookup_cred,
1564 .crcreate = gss_create_cred
1565 };
1566
1567 static const struct rpc_credops gss_credops = {
1568 .cr_name = "AUTH_GSS",
1569 .crdestroy = gss_destroy_cred,
1570 .cr_init = gss_cred_init,
1571 .crbind = rpcauth_generic_bind_cred,
1572 .crmatch = gss_match,
1573 .crmarshal = gss_marshal,
1574 .crrefresh = gss_refresh,
1575 .crvalidate = gss_validate,
1576 .crwrap_req = gss_wrap_req,
1577 .crunwrap_resp = gss_unwrap_resp,
1578 };
1579
1580 static const struct rpc_credops gss_nullops = {
1581 .cr_name = "AUTH_GSS",
1582 .crdestroy = gss_destroy_nullcred,
1583 .crbind = rpcauth_generic_bind_cred,
1584 .crmatch = gss_match,
1585 .crmarshal = gss_marshal,
1586 .crrefresh = gss_refresh_null,
1587 .crvalidate = gss_validate,
1588 .crwrap_req = gss_wrap_req,
1589 .crunwrap_resp = gss_unwrap_resp,
1590 };
1591
1592 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
1593 .upcall = gss_pipe_upcall,
1594 .downcall = gss_pipe_downcall,
1595 .destroy_msg = gss_pipe_destroy_msg,
1596 .open_pipe = gss_pipe_open_v0,
1597 .release_pipe = gss_pipe_release,
1598 };
1599
1600 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
1601 .upcall = gss_pipe_upcall,
1602 .downcall = gss_pipe_downcall,
1603 .destroy_msg = gss_pipe_destroy_msg,
1604 .open_pipe = gss_pipe_open_v1,
1605 .release_pipe = gss_pipe_release,
1606 };
1607
1608 /*
1609 * Initialize RPCSEC_GSS module
1610 */
1611 static int __init init_rpcsec_gss(void)
1612 {
1613 int err = 0;
1614
1615 err = rpcauth_register(&authgss_ops);
1616 if (err)
1617 goto out;
1618 err = gss_svc_init();
1619 if (err)
1620 goto out_unregister;
1621 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
1622 return 0;
1623 out_unregister:
1624 rpcauth_unregister(&authgss_ops);
1625 out:
1626 return err;
1627 }
1628
1629 static void __exit exit_rpcsec_gss(void)
1630 {
1631 gss_svc_shutdown();
1632 rpcauth_unregister(&authgss_ops);
1633 rcu_barrier(); /* Wait for completion of call_rcu()'s */
1634 }
1635
1636 MODULE_LICENSE("GPL");
1637 module_param_named(expired_cred_retry_delay,
1638 gss_expired_cred_retry_delay,
1639 uint, 0644);
1640 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
1641 "the RPC engine retries an expired credential");
1642
1643 module_init(init_rpcsec_gss)
1644 module_exit(exit_rpcsec_gss)