Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213 int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 if (!ei->socket.wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
251 }
252 init_waitqueue_head(&ei->socket.wq->wait);
253 ei->socket.wq->fasync_list = NULL;
254
255 ei->socket.state = SS_UNCONNECTED;
256 ei->socket.flags = 0;
257 ei->socket.ops = NULL;
258 ei->socket.sk = NULL;
259 ei->socket.file = NULL;
260
261 return &ei->vfs_inode;
262 }
263
264
265 static void wq_free_rcu(struct rcu_head *head)
266 {
267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
268
269 kfree(wq);
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 kmem_cache_free(sock_inode_cachep, ei);
279 }
280
281 static void init_once(void *foo)
282 {
283 struct socket_alloc *ei = (struct socket_alloc *)foo;
284
285 inode_init_once(&ei->vfs_inode);
286 }
287
288 static int init_inodecache(void)
289 {
290 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 sizeof(struct socket_alloc),
292 0,
293 (SLAB_HWCACHE_ALIGN |
294 SLAB_RECLAIM_ACCOUNT |
295 SLAB_MEM_SPREAD),
296 init_once);
297 if (sock_inode_cachep == NULL)
298 return -ENOMEM;
299 return 0;
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 static int sockfs_get_sb(struct file_system_type *fs_type,
309 int flags, const char *dev_name, void *data,
310 struct vfsmount *mnt)
311 {
312 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
313 mnt);
314 }
315
316 static struct vfsmount *sock_mnt __read_mostly;
317
318 static struct file_system_type sock_fs_type = {
319 .name = "sockfs",
320 .get_sb = sockfs_get_sb,
321 .kill_sb = kill_anon_super,
322 };
323
324 /*
325 * sockfs_dname() is called from d_path().
326 */
327 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
328 {
329 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
330 dentry->d_inode->i_ino);
331 }
332
333 static const struct dentry_operations sockfs_dentry_operations = {
334 .d_dname = sockfs_dname,
335 };
336
337 /*
338 * Obtains the first available file descriptor and sets it up for use.
339 *
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
347 *
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
352 */
353
354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
355 {
356 struct qstr name = { .name = "" };
357 struct path path;
358 struct file *file;
359 int fd;
360
361 fd = get_unused_fd_flags(flags);
362 if (unlikely(fd < 0))
363 return fd;
364
365 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
366 if (unlikely(!path.dentry)) {
367 put_unused_fd(fd);
368 return -ENOMEM;
369 }
370 path.mnt = mntget(sock_mnt);
371
372 path.dentry->d_op = &sockfs_dentry_operations;
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374 SOCK_INODE(sock)->i_fop = &socket_file_ops;
375
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(!file)) {
379 /* drop dentry, keep inode */
380 atomic_inc(&path.dentry->d_inode->i_count);
381 path_put(&path);
382 put_unused_fd(fd);
383 return -ENFILE;
384 }
385
386 sock->file = file;
387 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 file->f_pos = 0;
389 file->private_data = sock;
390
391 *f = file;
392 return fd;
393 }
394
395 int sock_map_fd(struct socket *sock, int flags)
396 {
397 struct file *newfile;
398 int fd = sock_alloc_file(sock, &newfile, flags);
399
400 if (likely(fd >= 0))
401 fd_install(fd, newfile);
402
403 return fd;
404 }
405 EXPORT_SYMBOL(sock_map_fd);
406
407 static struct socket *sock_from_file(struct file *file, int *err)
408 {
409 if (file->f_op == &socket_file_ops)
410 return file->private_data; /* set in sock_map_fd */
411
412 *err = -ENOTSOCK;
413 return NULL;
414 }
415
416 /**
417 * sockfd_lookup - Go from a file number to its socket slot
418 * @fd: file handle
419 * @err: pointer to an error code return
420 *
421 * The file handle passed in is locked and the socket it is bound
422 * too is returned. If an error occurs the err pointer is overwritten
423 * with a negative errno code and NULL is returned. The function checks
424 * for both invalid handles and passing a handle which is not a socket.
425 *
426 * On a success the socket object pointer is returned.
427 */
428
429 struct socket *sockfd_lookup(int fd, int *err)
430 {
431 struct file *file;
432 struct socket *sock;
433
434 file = fget(fd);
435 if (!file) {
436 *err = -EBADF;
437 return NULL;
438 }
439
440 sock = sock_from_file(file, err);
441 if (!sock)
442 fput(file);
443 return sock;
444 }
445 EXPORT_SYMBOL(sockfd_lookup);
446
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 {
449 struct file *file;
450 struct socket *sock;
451
452 *err = -EBADF;
453 file = fget_light(fd, fput_needed);
454 if (file) {
455 sock = sock_from_file(file, err);
456 if (sock)
457 return sock;
458 fput_light(file, *fput_needed);
459 }
460 return NULL;
461 }
462
463 /**
464 * sock_alloc - allocate a socket
465 *
466 * Allocate a new inode and socket object. The two are bound together
467 * and initialised. The socket is then returned. If we are out of inodes
468 * NULL is returned.
469 */
470
471 static struct socket *sock_alloc(void)
472 {
473 struct inode *inode;
474 struct socket *sock;
475
476 inode = new_inode(sock_mnt->mnt_sb);
477 if (!inode)
478 return NULL;
479
480 sock = SOCKET_I(inode);
481
482 kmemcheck_annotate_bitfield(sock, type);
483 inode->i_mode = S_IFSOCK | S_IRWXUGO;
484 inode->i_uid = current_fsuid();
485 inode->i_gid = current_fsgid();
486
487 percpu_add(sockets_in_use, 1);
488 return sock;
489 }
490
491 /*
492 * In theory you can't get an open on this inode, but /proc provides
493 * a back door. Remember to keep it shut otherwise you'll let the
494 * creepy crawlies in.
495 */
496
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498 {
499 return -ENXIO;
500 }
501
502 const struct file_operations bad_sock_fops = {
503 .owner = THIS_MODULE,
504 .open = sock_no_open,
505 };
506
507 /**
508 * sock_release - close a socket
509 * @sock: socket to close
510 *
511 * The socket is released from the protocol stack if it has a release
512 * callback, and the inode is then released if the socket is bound to
513 * an inode not a file.
514 */
515
516 void sock_release(struct socket *sock)
517 {
518 if (sock->ops) {
519 struct module *owner = sock->ops->owner;
520
521 sock->ops->release(sock);
522 sock->ops = NULL;
523 module_put(owner);
524 }
525
526 if (sock->wq->fasync_list)
527 printk(KERN_ERR "sock_release: fasync list not empty!\n");
528
529 percpu_sub(sockets_in_use, 1);
530 if (!sock->file) {
531 iput(SOCK_INODE(sock));
532 return;
533 }
534 sock->file = NULL;
535 }
536 EXPORT_SYMBOL(sock_release);
537
538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
539 {
540 *tx_flags = 0;
541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 *tx_flags |= SKBTX_HW_TSTAMP;
543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 *tx_flags |= SKBTX_SW_TSTAMP;
545 return 0;
546 }
547 EXPORT_SYMBOL(sock_tx_timestamp);
548
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550 struct msghdr *msg, size_t size)
551 {
552 struct sock_iocb *si = kiocb_to_siocb(iocb);
553 int err;
554
555 sock_update_classid(sock->sk);
556
557 si->sock = sock;
558 si->scm = NULL;
559 si->msg = msg;
560 si->size = size;
561
562 err = security_socket_sendmsg(sock, msg, size);
563 if (err)
564 return err;
565
566 return sock->ops->sendmsg(iocb, sock, msg, size);
567 }
568
569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
570 {
571 struct kiocb iocb;
572 struct sock_iocb siocb;
573 int ret;
574
575 init_sync_kiocb(&iocb, NULL);
576 iocb.private = &siocb;
577 ret = __sock_sendmsg(&iocb, sock, msg, size);
578 if (-EIOCBQUEUED == ret)
579 ret = wait_on_sync_kiocb(&iocb);
580 return ret;
581 }
582 EXPORT_SYMBOL(sock_sendmsg);
583
584 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
585 struct kvec *vec, size_t num, size_t size)
586 {
587 mm_segment_t oldfs = get_fs();
588 int result;
589
590 set_fs(KERNEL_DS);
591 /*
592 * the following is safe, since for compiler definitions of kvec and
593 * iovec are identical, yielding the same in-core layout and alignment
594 */
595 msg->msg_iov = (struct iovec *)vec;
596 msg->msg_iovlen = num;
597 result = sock_sendmsg(sock, msg, size);
598 set_fs(oldfs);
599 return result;
600 }
601 EXPORT_SYMBOL(kernel_sendmsg);
602
603 static int ktime2ts(ktime_t kt, struct timespec *ts)
604 {
605 if (kt.tv64) {
606 *ts = ktime_to_timespec(kt);
607 return 1;
608 } else {
609 return 0;
610 }
611 }
612
613 /*
614 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
615 */
616 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
617 struct sk_buff *skb)
618 {
619 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
620 struct timespec ts[3];
621 int empty = 1;
622 struct skb_shared_hwtstamps *shhwtstamps =
623 skb_hwtstamps(skb);
624
625 /* Race occurred between timestamp enabling and packet
626 receiving. Fill in the current time for now. */
627 if (need_software_tstamp && skb->tstamp.tv64 == 0)
628 __net_timestamp(skb);
629
630 if (need_software_tstamp) {
631 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
632 struct timeval tv;
633 skb_get_timestamp(skb, &tv);
634 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
635 sizeof(tv), &tv);
636 } else {
637 skb_get_timestampns(skb, &ts[0]);
638 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
639 sizeof(ts[0]), &ts[0]);
640 }
641 }
642
643
644 memset(ts, 0, sizeof(ts));
645 if (skb->tstamp.tv64 &&
646 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
647 skb_get_timestampns(skb, ts + 0);
648 empty = 0;
649 }
650 if (shhwtstamps) {
651 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
652 ktime2ts(shhwtstamps->syststamp, ts + 1))
653 empty = 0;
654 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
655 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
656 empty = 0;
657 }
658 if (!empty)
659 put_cmsg(msg, SOL_SOCKET,
660 SCM_TIMESTAMPING, sizeof(ts), &ts);
661 }
662 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
663
664 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
665 {
666 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
667 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
668 sizeof(__u32), &skb->dropcount);
669 }
670
671 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
672 struct sk_buff *skb)
673 {
674 sock_recv_timestamp(msg, sk, skb);
675 sock_recv_drops(msg, sk, skb);
676 }
677 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
678
679 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
680 struct msghdr *msg, size_t size, int flags)
681 {
682 struct sock_iocb *si = kiocb_to_siocb(iocb);
683
684 sock_update_classid(sock->sk);
685
686 si->sock = sock;
687 si->scm = NULL;
688 si->msg = msg;
689 si->size = size;
690 si->flags = flags;
691
692 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
693 }
694
695 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
696 struct msghdr *msg, size_t size, int flags)
697 {
698 int err = security_socket_recvmsg(sock, msg, size, flags);
699
700 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
701 }
702
703 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
704 size_t size, int flags)
705 {
706 struct kiocb iocb;
707 struct sock_iocb siocb;
708 int ret;
709
710 init_sync_kiocb(&iocb, NULL);
711 iocb.private = &siocb;
712 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
713 if (-EIOCBQUEUED == ret)
714 ret = wait_on_sync_kiocb(&iocb);
715 return ret;
716 }
717 EXPORT_SYMBOL(sock_recvmsg);
718
719 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
720 size_t size, int flags)
721 {
722 struct kiocb iocb;
723 struct sock_iocb siocb;
724 int ret;
725
726 init_sync_kiocb(&iocb, NULL);
727 iocb.private = &siocb;
728 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
729 if (-EIOCBQUEUED == ret)
730 ret = wait_on_sync_kiocb(&iocb);
731 return ret;
732 }
733
734 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
735 struct kvec *vec, size_t num, size_t size, int flags)
736 {
737 mm_segment_t oldfs = get_fs();
738 int result;
739
740 set_fs(KERNEL_DS);
741 /*
742 * the following is safe, since for compiler definitions of kvec and
743 * iovec are identical, yielding the same in-core layout and alignment
744 */
745 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
746 result = sock_recvmsg(sock, msg, size, flags);
747 set_fs(oldfs);
748 return result;
749 }
750 EXPORT_SYMBOL(kernel_recvmsg);
751
752 static void sock_aio_dtor(struct kiocb *iocb)
753 {
754 kfree(iocb->private);
755 }
756
757 static ssize_t sock_sendpage(struct file *file, struct page *page,
758 int offset, size_t size, loff_t *ppos, int more)
759 {
760 struct socket *sock;
761 int flags;
762
763 sock = file->private_data;
764
765 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
766 if (more)
767 flags |= MSG_MORE;
768
769 return kernel_sendpage(sock, page, offset, size, flags);
770 }
771
772 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
773 struct pipe_inode_info *pipe, size_t len,
774 unsigned int flags)
775 {
776 struct socket *sock = file->private_data;
777
778 if (unlikely(!sock->ops->splice_read))
779 return -EINVAL;
780
781 sock_update_classid(sock->sk);
782
783 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
784 }
785
786 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
787 struct sock_iocb *siocb)
788 {
789 if (!is_sync_kiocb(iocb)) {
790 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
791 if (!siocb)
792 return NULL;
793 iocb->ki_dtor = sock_aio_dtor;
794 }
795
796 siocb->kiocb = iocb;
797 iocb->private = siocb;
798 return siocb;
799 }
800
801 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
802 struct file *file, const struct iovec *iov,
803 unsigned long nr_segs)
804 {
805 struct socket *sock = file->private_data;
806 size_t size = 0;
807 int i;
808
809 for (i = 0; i < nr_segs; i++)
810 size += iov[i].iov_len;
811
812 msg->msg_name = NULL;
813 msg->msg_namelen = 0;
814 msg->msg_control = NULL;
815 msg->msg_controllen = 0;
816 msg->msg_iov = (struct iovec *)iov;
817 msg->msg_iovlen = nr_segs;
818 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
819
820 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
821 }
822
823 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
824 unsigned long nr_segs, loff_t pos)
825 {
826 struct sock_iocb siocb, *x;
827
828 if (pos != 0)
829 return -ESPIPE;
830
831 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
832 return 0;
833
834
835 x = alloc_sock_iocb(iocb, &siocb);
836 if (!x)
837 return -ENOMEM;
838 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
839 }
840
841 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
842 struct file *file, const struct iovec *iov,
843 unsigned long nr_segs)
844 {
845 struct socket *sock = file->private_data;
846 size_t size = 0;
847 int i;
848
849 for (i = 0; i < nr_segs; i++)
850 size += iov[i].iov_len;
851
852 msg->msg_name = NULL;
853 msg->msg_namelen = 0;
854 msg->msg_control = NULL;
855 msg->msg_controllen = 0;
856 msg->msg_iov = (struct iovec *)iov;
857 msg->msg_iovlen = nr_segs;
858 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
859 if (sock->type == SOCK_SEQPACKET)
860 msg->msg_flags |= MSG_EOR;
861
862 return __sock_sendmsg(iocb, sock, msg, size);
863 }
864
865 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
866 unsigned long nr_segs, loff_t pos)
867 {
868 struct sock_iocb siocb, *x;
869
870 if (pos != 0)
871 return -ESPIPE;
872
873 x = alloc_sock_iocb(iocb, &siocb);
874 if (!x)
875 return -ENOMEM;
876
877 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
878 }
879
880 /*
881 * Atomic setting of ioctl hooks to avoid race
882 * with module unload.
883 */
884
885 static DEFINE_MUTEX(br_ioctl_mutex);
886 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
887
888 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
889 {
890 mutex_lock(&br_ioctl_mutex);
891 br_ioctl_hook = hook;
892 mutex_unlock(&br_ioctl_mutex);
893 }
894 EXPORT_SYMBOL(brioctl_set);
895
896 static DEFINE_MUTEX(vlan_ioctl_mutex);
897 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
898
899 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
900 {
901 mutex_lock(&vlan_ioctl_mutex);
902 vlan_ioctl_hook = hook;
903 mutex_unlock(&vlan_ioctl_mutex);
904 }
905 EXPORT_SYMBOL(vlan_ioctl_set);
906
907 static DEFINE_MUTEX(dlci_ioctl_mutex);
908 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
909
910 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
911 {
912 mutex_lock(&dlci_ioctl_mutex);
913 dlci_ioctl_hook = hook;
914 mutex_unlock(&dlci_ioctl_mutex);
915 }
916 EXPORT_SYMBOL(dlci_ioctl_set);
917
918 static long sock_do_ioctl(struct net *net, struct socket *sock,
919 unsigned int cmd, unsigned long arg)
920 {
921 int err;
922 void __user *argp = (void __user *)arg;
923
924 err = sock->ops->ioctl(sock, cmd, arg);
925
926 /*
927 * If this ioctl is unknown try to hand it down
928 * to the NIC driver.
929 */
930 if (err == -ENOIOCTLCMD)
931 err = dev_ioctl(net, cmd, argp);
932
933 return err;
934 }
935
936 /*
937 * With an ioctl, arg may well be a user mode pointer, but we don't know
938 * what to do with it - that's up to the protocol still.
939 */
940
941 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
942 {
943 struct socket *sock;
944 struct sock *sk;
945 void __user *argp = (void __user *)arg;
946 int pid, err;
947 struct net *net;
948
949 sock = file->private_data;
950 sk = sock->sk;
951 net = sock_net(sk);
952 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
953 err = dev_ioctl(net, cmd, argp);
954 } else
955 #ifdef CONFIG_WEXT_CORE
956 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
957 err = dev_ioctl(net, cmd, argp);
958 } else
959 #endif
960 switch (cmd) {
961 case FIOSETOWN:
962 case SIOCSPGRP:
963 err = -EFAULT;
964 if (get_user(pid, (int __user *)argp))
965 break;
966 err = f_setown(sock->file, pid, 1);
967 break;
968 case FIOGETOWN:
969 case SIOCGPGRP:
970 err = put_user(f_getown(sock->file),
971 (int __user *)argp);
972 break;
973 case SIOCGIFBR:
974 case SIOCSIFBR:
975 case SIOCBRADDBR:
976 case SIOCBRDELBR:
977 err = -ENOPKG;
978 if (!br_ioctl_hook)
979 request_module("bridge");
980
981 mutex_lock(&br_ioctl_mutex);
982 if (br_ioctl_hook)
983 err = br_ioctl_hook(net, cmd, argp);
984 mutex_unlock(&br_ioctl_mutex);
985 break;
986 case SIOCGIFVLAN:
987 case SIOCSIFVLAN:
988 err = -ENOPKG;
989 if (!vlan_ioctl_hook)
990 request_module("8021q");
991
992 mutex_lock(&vlan_ioctl_mutex);
993 if (vlan_ioctl_hook)
994 err = vlan_ioctl_hook(net, argp);
995 mutex_unlock(&vlan_ioctl_mutex);
996 break;
997 case SIOCADDDLCI:
998 case SIOCDELDLCI:
999 err = -ENOPKG;
1000 if (!dlci_ioctl_hook)
1001 request_module("dlci");
1002
1003 mutex_lock(&dlci_ioctl_mutex);
1004 if (dlci_ioctl_hook)
1005 err = dlci_ioctl_hook(cmd, argp);
1006 mutex_unlock(&dlci_ioctl_mutex);
1007 break;
1008 default:
1009 err = sock_do_ioctl(net, sock, cmd, arg);
1010 break;
1011 }
1012 return err;
1013 }
1014
1015 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1016 {
1017 int err;
1018 struct socket *sock = NULL;
1019
1020 err = security_socket_create(family, type, protocol, 1);
1021 if (err)
1022 goto out;
1023
1024 sock = sock_alloc();
1025 if (!sock) {
1026 err = -ENOMEM;
1027 goto out;
1028 }
1029
1030 sock->type = type;
1031 err = security_socket_post_create(sock, family, type, protocol, 1);
1032 if (err)
1033 goto out_release;
1034
1035 out:
1036 *res = sock;
1037 return err;
1038 out_release:
1039 sock_release(sock);
1040 sock = NULL;
1041 goto out;
1042 }
1043 EXPORT_SYMBOL(sock_create_lite);
1044
1045 /* No kernel lock held - perfect */
1046 static unsigned int sock_poll(struct file *file, poll_table *wait)
1047 {
1048 struct socket *sock;
1049
1050 /*
1051 * We can't return errors to poll, so it's either yes or no.
1052 */
1053 sock = file->private_data;
1054 return sock->ops->poll(file, sock, wait);
1055 }
1056
1057 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1058 {
1059 struct socket *sock = file->private_data;
1060
1061 return sock->ops->mmap(file, sock, vma);
1062 }
1063
1064 static int sock_close(struct inode *inode, struct file *filp)
1065 {
1066 /*
1067 * It was possible the inode is NULL we were
1068 * closing an unfinished socket.
1069 */
1070
1071 if (!inode) {
1072 printk(KERN_DEBUG "sock_close: NULL inode\n");
1073 return 0;
1074 }
1075 sock_release(SOCKET_I(inode));
1076 return 0;
1077 }
1078
1079 /*
1080 * Update the socket async list
1081 *
1082 * Fasync_list locking strategy.
1083 *
1084 * 1. fasync_list is modified only under process context socket lock
1085 * i.e. under semaphore.
1086 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1087 * or under socket lock
1088 */
1089
1090 static int sock_fasync(int fd, struct file *filp, int on)
1091 {
1092 struct socket *sock = filp->private_data;
1093 struct sock *sk = sock->sk;
1094
1095 if (sk == NULL)
1096 return -EINVAL;
1097
1098 lock_sock(sk);
1099
1100 fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1101
1102 if (!sock->wq->fasync_list)
1103 sock_reset_flag(sk, SOCK_FASYNC);
1104 else
1105 sock_set_flag(sk, SOCK_FASYNC);
1106
1107 release_sock(sk);
1108 return 0;
1109 }
1110
1111 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1112
1113 int sock_wake_async(struct socket *sock, int how, int band)
1114 {
1115 struct socket_wq *wq;
1116
1117 if (!sock)
1118 return -1;
1119 rcu_read_lock();
1120 wq = rcu_dereference(sock->wq);
1121 if (!wq || !wq->fasync_list) {
1122 rcu_read_unlock();
1123 return -1;
1124 }
1125 switch (how) {
1126 case SOCK_WAKE_WAITD:
1127 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1128 break;
1129 goto call_kill;
1130 case SOCK_WAKE_SPACE:
1131 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1132 break;
1133 /* fall through */
1134 case SOCK_WAKE_IO:
1135 call_kill:
1136 kill_fasync(&wq->fasync_list, SIGIO, band);
1137 break;
1138 case SOCK_WAKE_URG:
1139 kill_fasync(&wq->fasync_list, SIGURG, band);
1140 }
1141 rcu_read_unlock();
1142 return 0;
1143 }
1144 EXPORT_SYMBOL(sock_wake_async);
1145
1146 static int __sock_create(struct net *net, int family, int type, int protocol,
1147 struct socket **res, int kern)
1148 {
1149 int err;
1150 struct socket *sock;
1151 const struct net_proto_family *pf;
1152
1153 /*
1154 * Check protocol is in range
1155 */
1156 if (family < 0 || family >= NPROTO)
1157 return -EAFNOSUPPORT;
1158 if (type < 0 || type >= SOCK_MAX)
1159 return -EINVAL;
1160
1161 /* Compatibility.
1162
1163 This uglymoron is moved from INET layer to here to avoid
1164 deadlock in module load.
1165 */
1166 if (family == PF_INET && type == SOCK_PACKET) {
1167 static int warned;
1168 if (!warned) {
1169 warned = 1;
1170 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1171 current->comm);
1172 }
1173 family = PF_PACKET;
1174 }
1175
1176 err = security_socket_create(family, type, protocol, kern);
1177 if (err)
1178 return err;
1179
1180 /*
1181 * Allocate the socket and allow the family to set things up. if
1182 * the protocol is 0, the family is instructed to select an appropriate
1183 * default.
1184 */
1185 sock = sock_alloc();
1186 if (!sock) {
1187 if (net_ratelimit())
1188 printk(KERN_WARNING "socket: no more sockets\n");
1189 return -ENFILE; /* Not exactly a match, but its the
1190 closest posix thing */
1191 }
1192
1193 sock->type = type;
1194
1195 #ifdef CONFIG_MODULES
1196 /* Attempt to load a protocol module if the find failed.
1197 *
1198 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1199 * requested real, full-featured networking support upon configuration.
1200 * Otherwise module support will break!
1201 */
1202 if (net_families[family] == NULL)
1203 request_module("net-pf-%d", family);
1204 #endif
1205
1206 rcu_read_lock();
1207 pf = rcu_dereference(net_families[family]);
1208 err = -EAFNOSUPPORT;
1209 if (!pf)
1210 goto out_release;
1211
1212 /*
1213 * We will call the ->create function, that possibly is in a loadable
1214 * module, so we have to bump that loadable module refcnt first.
1215 */
1216 if (!try_module_get(pf->owner))
1217 goto out_release;
1218
1219 /* Now protected by module ref count */
1220 rcu_read_unlock();
1221
1222 err = pf->create(net, sock, protocol, kern);
1223 if (err < 0)
1224 goto out_module_put;
1225
1226 /*
1227 * Now to bump the refcnt of the [loadable] module that owns this
1228 * socket at sock_release time we decrement its refcnt.
1229 */
1230 if (!try_module_get(sock->ops->owner))
1231 goto out_module_busy;
1232
1233 /*
1234 * Now that we're done with the ->create function, the [loadable]
1235 * module can have its refcnt decremented
1236 */
1237 module_put(pf->owner);
1238 err = security_socket_post_create(sock, family, type, protocol, kern);
1239 if (err)
1240 goto out_sock_release;
1241 *res = sock;
1242
1243 return 0;
1244
1245 out_module_busy:
1246 err = -EAFNOSUPPORT;
1247 out_module_put:
1248 sock->ops = NULL;
1249 module_put(pf->owner);
1250 out_sock_release:
1251 sock_release(sock);
1252 return err;
1253
1254 out_release:
1255 rcu_read_unlock();
1256 goto out_sock_release;
1257 }
1258
1259 int sock_create(int family, int type, int protocol, struct socket **res)
1260 {
1261 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1262 }
1263 EXPORT_SYMBOL(sock_create);
1264
1265 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1266 {
1267 return __sock_create(&init_net, family, type, protocol, res, 1);
1268 }
1269 EXPORT_SYMBOL(sock_create_kern);
1270
1271 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1272 {
1273 int retval;
1274 struct socket *sock;
1275 int flags;
1276
1277 /* Check the SOCK_* constants for consistency. */
1278 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1279 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1280 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1281 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1282
1283 flags = type & ~SOCK_TYPE_MASK;
1284 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1285 return -EINVAL;
1286 type &= SOCK_TYPE_MASK;
1287
1288 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1289 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1290
1291 retval = sock_create(family, type, protocol, &sock);
1292 if (retval < 0)
1293 goto out;
1294
1295 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1296 if (retval < 0)
1297 goto out_release;
1298
1299 out:
1300 /* It may be already another descriptor 8) Not kernel problem. */
1301 return retval;
1302
1303 out_release:
1304 sock_release(sock);
1305 return retval;
1306 }
1307
1308 /*
1309 * Create a pair of connected sockets.
1310 */
1311
1312 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1313 int __user *, usockvec)
1314 {
1315 struct socket *sock1, *sock2;
1316 int fd1, fd2, err;
1317 struct file *newfile1, *newfile2;
1318 int flags;
1319
1320 flags = type & ~SOCK_TYPE_MASK;
1321 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1322 return -EINVAL;
1323 type &= SOCK_TYPE_MASK;
1324
1325 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1326 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1327
1328 /*
1329 * Obtain the first socket and check if the underlying protocol
1330 * supports the socketpair call.
1331 */
1332
1333 err = sock_create(family, type, protocol, &sock1);
1334 if (err < 0)
1335 goto out;
1336
1337 err = sock_create(family, type, protocol, &sock2);
1338 if (err < 0)
1339 goto out_release_1;
1340
1341 err = sock1->ops->socketpair(sock1, sock2);
1342 if (err < 0)
1343 goto out_release_both;
1344
1345 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1346 if (unlikely(fd1 < 0)) {
1347 err = fd1;
1348 goto out_release_both;
1349 }
1350
1351 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1352 if (unlikely(fd2 < 0)) {
1353 err = fd2;
1354 fput(newfile1);
1355 put_unused_fd(fd1);
1356 sock_release(sock2);
1357 goto out;
1358 }
1359
1360 audit_fd_pair(fd1, fd2);
1361 fd_install(fd1, newfile1);
1362 fd_install(fd2, newfile2);
1363 /* fd1 and fd2 may be already another descriptors.
1364 * Not kernel problem.
1365 */
1366
1367 err = put_user(fd1, &usockvec[0]);
1368 if (!err)
1369 err = put_user(fd2, &usockvec[1]);
1370 if (!err)
1371 return 0;
1372
1373 sys_close(fd2);
1374 sys_close(fd1);
1375 return err;
1376
1377 out_release_both:
1378 sock_release(sock2);
1379 out_release_1:
1380 sock_release(sock1);
1381 out:
1382 return err;
1383 }
1384
1385 /*
1386 * Bind a name to a socket. Nothing much to do here since it's
1387 * the protocol's responsibility to handle the local address.
1388 *
1389 * We move the socket address to kernel space before we call
1390 * the protocol layer (having also checked the address is ok).
1391 */
1392
1393 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1394 {
1395 struct socket *sock;
1396 struct sockaddr_storage address;
1397 int err, fput_needed;
1398
1399 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1400 if (sock) {
1401 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1402 if (err >= 0) {
1403 err = security_socket_bind(sock,
1404 (struct sockaddr *)&address,
1405 addrlen);
1406 if (!err)
1407 err = sock->ops->bind(sock,
1408 (struct sockaddr *)
1409 &address, addrlen);
1410 }
1411 fput_light(sock->file, fput_needed);
1412 }
1413 return err;
1414 }
1415
1416 /*
1417 * Perform a listen. Basically, we allow the protocol to do anything
1418 * necessary for a listen, and if that works, we mark the socket as
1419 * ready for listening.
1420 */
1421
1422 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1423 {
1424 struct socket *sock;
1425 int err, fput_needed;
1426 int somaxconn;
1427
1428 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1429 if (sock) {
1430 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1431 if ((unsigned)backlog > somaxconn)
1432 backlog = somaxconn;
1433
1434 err = security_socket_listen(sock, backlog);
1435 if (!err)
1436 err = sock->ops->listen(sock, backlog);
1437
1438 fput_light(sock->file, fput_needed);
1439 }
1440 return err;
1441 }
1442
1443 /*
1444 * For accept, we attempt to create a new socket, set up the link
1445 * with the client, wake up the client, then return the new
1446 * connected fd. We collect the address of the connector in kernel
1447 * space and move it to user at the very end. This is unclean because
1448 * we open the socket then return an error.
1449 *
1450 * 1003.1g adds the ability to recvmsg() to query connection pending
1451 * status to recvmsg. We need to add that support in a way thats
1452 * clean when we restucture accept also.
1453 */
1454
1455 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1456 int __user *, upeer_addrlen, int, flags)
1457 {
1458 struct socket *sock, *newsock;
1459 struct file *newfile;
1460 int err, len, newfd, fput_needed;
1461 struct sockaddr_storage address;
1462
1463 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1464 return -EINVAL;
1465
1466 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1467 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1468
1469 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1470 if (!sock)
1471 goto out;
1472
1473 err = -ENFILE;
1474 newsock = sock_alloc();
1475 if (!newsock)
1476 goto out_put;
1477
1478 newsock->type = sock->type;
1479 newsock->ops = sock->ops;
1480
1481 /*
1482 * We don't need try_module_get here, as the listening socket (sock)
1483 * has the protocol module (sock->ops->owner) held.
1484 */
1485 __module_get(newsock->ops->owner);
1486
1487 newfd = sock_alloc_file(newsock, &newfile, flags);
1488 if (unlikely(newfd < 0)) {
1489 err = newfd;
1490 sock_release(newsock);
1491 goto out_put;
1492 }
1493
1494 err = security_socket_accept(sock, newsock);
1495 if (err)
1496 goto out_fd;
1497
1498 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1499 if (err < 0)
1500 goto out_fd;
1501
1502 if (upeer_sockaddr) {
1503 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1504 &len, 2) < 0) {
1505 err = -ECONNABORTED;
1506 goto out_fd;
1507 }
1508 err = move_addr_to_user((struct sockaddr *)&address,
1509 len, upeer_sockaddr, upeer_addrlen);
1510 if (err < 0)
1511 goto out_fd;
1512 }
1513
1514 /* File flags are not inherited via accept() unlike another OSes. */
1515
1516 fd_install(newfd, newfile);
1517 err = newfd;
1518
1519 out_put:
1520 fput_light(sock->file, fput_needed);
1521 out:
1522 return err;
1523 out_fd:
1524 fput(newfile);
1525 put_unused_fd(newfd);
1526 goto out_put;
1527 }
1528
1529 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1530 int __user *, upeer_addrlen)
1531 {
1532 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1533 }
1534
1535 /*
1536 * Attempt to connect to a socket with the server address. The address
1537 * is in user space so we verify it is OK and move it to kernel space.
1538 *
1539 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1540 * break bindings
1541 *
1542 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1543 * other SEQPACKET protocols that take time to connect() as it doesn't
1544 * include the -EINPROGRESS status for such sockets.
1545 */
1546
1547 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1548 int, addrlen)
1549 {
1550 struct socket *sock;
1551 struct sockaddr_storage address;
1552 int err, fput_needed;
1553
1554 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 if (!sock)
1556 goto out;
1557 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1558 if (err < 0)
1559 goto out_put;
1560
1561 err =
1562 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1563 if (err)
1564 goto out_put;
1565
1566 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1567 sock->file->f_flags);
1568 out_put:
1569 fput_light(sock->file, fput_needed);
1570 out:
1571 return err;
1572 }
1573
1574 /*
1575 * Get the local address ('name') of a socket object. Move the obtained
1576 * name to user space.
1577 */
1578
1579 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1580 int __user *, usockaddr_len)
1581 {
1582 struct socket *sock;
1583 struct sockaddr_storage address;
1584 int len, err, fput_needed;
1585
1586 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1587 if (!sock)
1588 goto out;
1589
1590 err = security_socket_getsockname(sock);
1591 if (err)
1592 goto out_put;
1593
1594 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1595 if (err)
1596 goto out_put;
1597 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1598
1599 out_put:
1600 fput_light(sock->file, fput_needed);
1601 out:
1602 return err;
1603 }
1604
1605 /*
1606 * Get the remote address ('name') of a socket object. Move the obtained
1607 * name to user space.
1608 */
1609
1610 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1611 int __user *, usockaddr_len)
1612 {
1613 struct socket *sock;
1614 struct sockaddr_storage address;
1615 int len, err, fput_needed;
1616
1617 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1618 if (sock != NULL) {
1619 err = security_socket_getpeername(sock);
1620 if (err) {
1621 fput_light(sock->file, fput_needed);
1622 return err;
1623 }
1624
1625 err =
1626 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1627 1);
1628 if (!err)
1629 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1630 usockaddr_len);
1631 fput_light(sock->file, fput_needed);
1632 }
1633 return err;
1634 }
1635
1636 /*
1637 * Send a datagram to a given address. We move the address into kernel
1638 * space and check the user space data area is readable before invoking
1639 * the protocol.
1640 */
1641
1642 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1643 unsigned, flags, struct sockaddr __user *, addr,
1644 int, addr_len)
1645 {
1646 struct socket *sock;
1647 struct sockaddr_storage address;
1648 int err;
1649 struct msghdr msg;
1650 struct iovec iov;
1651 int fput_needed;
1652
1653 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 if (!sock)
1655 goto out;
1656
1657 iov.iov_base = buff;
1658 iov.iov_len = len;
1659 msg.msg_name = NULL;
1660 msg.msg_iov = &iov;
1661 msg.msg_iovlen = 1;
1662 msg.msg_control = NULL;
1663 msg.msg_controllen = 0;
1664 msg.msg_namelen = 0;
1665 if (addr) {
1666 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1667 if (err < 0)
1668 goto out_put;
1669 msg.msg_name = (struct sockaddr *)&address;
1670 msg.msg_namelen = addr_len;
1671 }
1672 if (sock->file->f_flags & O_NONBLOCK)
1673 flags |= MSG_DONTWAIT;
1674 msg.msg_flags = flags;
1675 err = sock_sendmsg(sock, &msg, len);
1676
1677 out_put:
1678 fput_light(sock->file, fput_needed);
1679 out:
1680 return err;
1681 }
1682
1683 /*
1684 * Send a datagram down a socket.
1685 */
1686
1687 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1688 unsigned, flags)
1689 {
1690 return sys_sendto(fd, buff, len, flags, NULL, 0);
1691 }
1692
1693 /*
1694 * Receive a frame from the socket and optionally record the address of the
1695 * sender. We verify the buffers are writable and if needed move the
1696 * sender address from kernel to user space.
1697 */
1698
1699 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1700 unsigned, flags, struct sockaddr __user *, addr,
1701 int __user *, addr_len)
1702 {
1703 struct socket *sock;
1704 struct iovec iov;
1705 struct msghdr msg;
1706 struct sockaddr_storage address;
1707 int err, err2;
1708 int fput_needed;
1709
1710 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1711 if (!sock)
1712 goto out;
1713
1714 msg.msg_control = NULL;
1715 msg.msg_controllen = 0;
1716 msg.msg_iovlen = 1;
1717 msg.msg_iov = &iov;
1718 iov.iov_len = size;
1719 iov.iov_base = ubuf;
1720 msg.msg_name = (struct sockaddr *)&address;
1721 msg.msg_namelen = sizeof(address);
1722 if (sock->file->f_flags & O_NONBLOCK)
1723 flags |= MSG_DONTWAIT;
1724 err = sock_recvmsg(sock, &msg, size, flags);
1725
1726 if (err >= 0 && addr != NULL) {
1727 err2 = move_addr_to_user((struct sockaddr *)&address,
1728 msg.msg_namelen, addr, addr_len);
1729 if (err2 < 0)
1730 err = err2;
1731 }
1732
1733 fput_light(sock->file, fput_needed);
1734 out:
1735 return err;
1736 }
1737
1738 /*
1739 * Receive a datagram from a socket.
1740 */
1741
1742 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1743 unsigned flags)
1744 {
1745 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1746 }
1747
1748 /*
1749 * Set a socket option. Because we don't know the option lengths we have
1750 * to pass the user mode parameter for the protocols to sort out.
1751 */
1752
1753 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1754 char __user *, optval, int, optlen)
1755 {
1756 int err, fput_needed;
1757 struct socket *sock;
1758
1759 if (optlen < 0)
1760 return -EINVAL;
1761
1762 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1763 if (sock != NULL) {
1764 err = security_socket_setsockopt(sock, level, optname);
1765 if (err)
1766 goto out_put;
1767
1768 if (level == SOL_SOCKET)
1769 err =
1770 sock_setsockopt(sock, level, optname, optval,
1771 optlen);
1772 else
1773 err =
1774 sock->ops->setsockopt(sock, level, optname, optval,
1775 optlen);
1776 out_put:
1777 fput_light(sock->file, fput_needed);
1778 }
1779 return err;
1780 }
1781
1782 /*
1783 * Get a socket option. Because we don't know the option lengths we have
1784 * to pass a user mode parameter for the protocols to sort out.
1785 */
1786
1787 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1788 char __user *, optval, int __user *, optlen)
1789 {
1790 int err, fput_needed;
1791 struct socket *sock;
1792
1793 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794 if (sock != NULL) {
1795 err = security_socket_getsockopt(sock, level, optname);
1796 if (err)
1797 goto out_put;
1798
1799 if (level == SOL_SOCKET)
1800 err =
1801 sock_getsockopt(sock, level, optname, optval,
1802 optlen);
1803 else
1804 err =
1805 sock->ops->getsockopt(sock, level, optname, optval,
1806 optlen);
1807 out_put:
1808 fput_light(sock->file, fput_needed);
1809 }
1810 return err;
1811 }
1812
1813 /*
1814 * Shutdown a socket.
1815 */
1816
1817 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1818 {
1819 int err, fput_needed;
1820 struct socket *sock;
1821
1822 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1823 if (sock != NULL) {
1824 err = security_socket_shutdown(sock, how);
1825 if (!err)
1826 err = sock->ops->shutdown(sock, how);
1827 fput_light(sock->file, fput_needed);
1828 }
1829 return err;
1830 }
1831
1832 /* A couple of helpful macros for getting the address of the 32/64 bit
1833 * fields which are the same type (int / unsigned) on our platforms.
1834 */
1835 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1836 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1837 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1838
1839 /*
1840 * BSD sendmsg interface
1841 */
1842
1843 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1844 {
1845 struct compat_msghdr __user *msg_compat =
1846 (struct compat_msghdr __user *)msg;
1847 struct socket *sock;
1848 struct sockaddr_storage address;
1849 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1850 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1851 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1852 /* 20 is size of ipv6_pktinfo */
1853 unsigned char *ctl_buf = ctl;
1854 struct msghdr msg_sys;
1855 int err, ctl_len, iov_size, total_len;
1856 int fput_needed;
1857
1858 err = -EFAULT;
1859 if (MSG_CMSG_COMPAT & flags) {
1860 if (get_compat_msghdr(&msg_sys, msg_compat))
1861 return -EFAULT;
1862 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1863 return -EFAULT;
1864
1865 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1866 if (!sock)
1867 goto out;
1868
1869 /* do not move before msg_sys is valid */
1870 err = -EMSGSIZE;
1871 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1872 goto out_put;
1873
1874 /* Check whether to allocate the iovec area */
1875 err = -ENOMEM;
1876 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1877 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1878 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1879 if (!iov)
1880 goto out_put;
1881 }
1882
1883 /* This will also move the address data into kernel space */
1884 if (MSG_CMSG_COMPAT & flags) {
1885 err = verify_compat_iovec(&msg_sys, iov,
1886 (struct sockaddr *)&address,
1887 VERIFY_READ);
1888 } else
1889 err = verify_iovec(&msg_sys, iov,
1890 (struct sockaddr *)&address,
1891 VERIFY_READ);
1892 if (err < 0)
1893 goto out_freeiov;
1894 total_len = err;
1895
1896 err = -ENOBUFS;
1897
1898 if (msg_sys.msg_controllen > INT_MAX)
1899 goto out_freeiov;
1900 ctl_len = msg_sys.msg_controllen;
1901 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1902 err =
1903 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1904 sizeof(ctl));
1905 if (err)
1906 goto out_freeiov;
1907 ctl_buf = msg_sys.msg_control;
1908 ctl_len = msg_sys.msg_controllen;
1909 } else if (ctl_len) {
1910 if (ctl_len > sizeof(ctl)) {
1911 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1912 if (ctl_buf == NULL)
1913 goto out_freeiov;
1914 }
1915 err = -EFAULT;
1916 /*
1917 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1918 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1919 * checking falls down on this.
1920 */
1921 if (copy_from_user(ctl_buf,
1922 (void __user __force *)msg_sys.msg_control,
1923 ctl_len))
1924 goto out_freectl;
1925 msg_sys.msg_control = ctl_buf;
1926 }
1927 msg_sys.msg_flags = flags;
1928
1929 if (sock->file->f_flags & O_NONBLOCK)
1930 msg_sys.msg_flags |= MSG_DONTWAIT;
1931 err = sock_sendmsg(sock, &msg_sys, total_len);
1932
1933 out_freectl:
1934 if (ctl_buf != ctl)
1935 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1936 out_freeiov:
1937 if (iov != iovstack)
1938 sock_kfree_s(sock->sk, iov, iov_size);
1939 out_put:
1940 fput_light(sock->file, fput_needed);
1941 out:
1942 return err;
1943 }
1944
1945 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1946 struct msghdr *msg_sys, unsigned flags, int nosec)
1947 {
1948 struct compat_msghdr __user *msg_compat =
1949 (struct compat_msghdr __user *)msg;
1950 struct iovec iovstack[UIO_FASTIOV];
1951 struct iovec *iov = iovstack;
1952 unsigned long cmsg_ptr;
1953 int err, iov_size, total_len, len;
1954
1955 /* kernel mode address */
1956 struct sockaddr_storage addr;
1957
1958 /* user mode address pointers */
1959 struct sockaddr __user *uaddr;
1960 int __user *uaddr_len;
1961
1962 if (MSG_CMSG_COMPAT & flags) {
1963 if (get_compat_msghdr(msg_sys, msg_compat))
1964 return -EFAULT;
1965 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1966 return -EFAULT;
1967
1968 err = -EMSGSIZE;
1969 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1970 goto out;
1971
1972 /* Check whether to allocate the iovec area */
1973 err = -ENOMEM;
1974 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1975 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1976 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1977 if (!iov)
1978 goto out;
1979 }
1980
1981 /*
1982 * Save the user-mode address (verify_iovec will change the
1983 * kernel msghdr to use the kernel address space)
1984 */
1985
1986 uaddr = (__force void __user *)msg_sys->msg_name;
1987 uaddr_len = COMPAT_NAMELEN(msg);
1988 if (MSG_CMSG_COMPAT & flags) {
1989 err = verify_compat_iovec(msg_sys, iov,
1990 (struct sockaddr *)&addr,
1991 VERIFY_WRITE);
1992 } else
1993 err = verify_iovec(msg_sys, iov,
1994 (struct sockaddr *)&addr,
1995 VERIFY_WRITE);
1996 if (err < 0)
1997 goto out_freeiov;
1998 total_len = err;
1999
2000 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2001 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2002
2003 if (sock->file->f_flags & O_NONBLOCK)
2004 flags |= MSG_DONTWAIT;
2005 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2006 total_len, flags);
2007 if (err < 0)
2008 goto out_freeiov;
2009 len = err;
2010
2011 if (uaddr != NULL) {
2012 err = move_addr_to_user((struct sockaddr *)&addr,
2013 msg_sys->msg_namelen, uaddr,
2014 uaddr_len);
2015 if (err < 0)
2016 goto out_freeiov;
2017 }
2018 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2019 COMPAT_FLAGS(msg));
2020 if (err)
2021 goto out_freeiov;
2022 if (MSG_CMSG_COMPAT & flags)
2023 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2024 &msg_compat->msg_controllen);
2025 else
2026 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2027 &msg->msg_controllen);
2028 if (err)
2029 goto out_freeiov;
2030 err = len;
2031
2032 out_freeiov:
2033 if (iov != iovstack)
2034 sock_kfree_s(sock->sk, iov, iov_size);
2035 out:
2036 return err;
2037 }
2038
2039 /*
2040 * BSD recvmsg interface
2041 */
2042
2043 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2044 unsigned int, flags)
2045 {
2046 int fput_needed, err;
2047 struct msghdr msg_sys;
2048 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2049
2050 if (!sock)
2051 goto out;
2052
2053 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2054
2055 fput_light(sock->file, fput_needed);
2056 out:
2057 return err;
2058 }
2059
2060 /*
2061 * Linux recvmmsg interface
2062 */
2063
2064 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2065 unsigned int flags, struct timespec *timeout)
2066 {
2067 int fput_needed, err, datagrams;
2068 struct socket *sock;
2069 struct mmsghdr __user *entry;
2070 struct compat_mmsghdr __user *compat_entry;
2071 struct msghdr msg_sys;
2072 struct timespec end_time;
2073
2074 if (timeout &&
2075 poll_select_set_timeout(&end_time, timeout->tv_sec,
2076 timeout->tv_nsec))
2077 return -EINVAL;
2078
2079 datagrams = 0;
2080
2081 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2082 if (!sock)
2083 return err;
2084
2085 err = sock_error(sock->sk);
2086 if (err)
2087 goto out_put;
2088
2089 entry = mmsg;
2090 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2091
2092 while (datagrams < vlen) {
2093 /*
2094 * No need to ask LSM for more than the first datagram.
2095 */
2096 if (MSG_CMSG_COMPAT & flags) {
2097 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2098 &msg_sys, flags, datagrams);
2099 if (err < 0)
2100 break;
2101 err = __put_user(err, &compat_entry->msg_len);
2102 ++compat_entry;
2103 } else {
2104 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2105 &msg_sys, flags, datagrams);
2106 if (err < 0)
2107 break;
2108 err = put_user(err, &entry->msg_len);
2109 ++entry;
2110 }
2111
2112 if (err)
2113 break;
2114 ++datagrams;
2115
2116 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2117 if (flags & MSG_WAITFORONE)
2118 flags |= MSG_DONTWAIT;
2119
2120 if (timeout) {
2121 ktime_get_ts(timeout);
2122 *timeout = timespec_sub(end_time, *timeout);
2123 if (timeout->tv_sec < 0) {
2124 timeout->tv_sec = timeout->tv_nsec = 0;
2125 break;
2126 }
2127
2128 /* Timeout, return less than vlen datagrams */
2129 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2130 break;
2131 }
2132
2133 /* Out of band data, return right away */
2134 if (msg_sys.msg_flags & MSG_OOB)
2135 break;
2136 }
2137
2138 out_put:
2139 fput_light(sock->file, fput_needed);
2140
2141 if (err == 0)
2142 return datagrams;
2143
2144 if (datagrams != 0) {
2145 /*
2146 * We may return less entries than requested (vlen) if the
2147 * sock is non block and there aren't enough datagrams...
2148 */
2149 if (err != -EAGAIN) {
2150 /*
2151 * ... or if recvmsg returns an error after we
2152 * received some datagrams, where we record the
2153 * error to return on the next call or if the
2154 * app asks about it using getsockopt(SO_ERROR).
2155 */
2156 sock->sk->sk_err = -err;
2157 }
2158
2159 return datagrams;
2160 }
2161
2162 return err;
2163 }
2164
2165 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2166 unsigned int, vlen, unsigned int, flags,
2167 struct timespec __user *, timeout)
2168 {
2169 int datagrams;
2170 struct timespec timeout_sys;
2171
2172 if (!timeout)
2173 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2174
2175 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2176 return -EFAULT;
2177
2178 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2179
2180 if (datagrams > 0 &&
2181 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2182 datagrams = -EFAULT;
2183
2184 return datagrams;
2185 }
2186
2187 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2188 /* Argument list sizes for sys_socketcall */
2189 #define AL(x) ((x) * sizeof(unsigned long))
2190 static const unsigned char nargs[20] = {
2191 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2192 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2193 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2194 AL(4), AL(5)
2195 };
2196
2197 #undef AL
2198
2199 /*
2200 * System call vectors.
2201 *
2202 * Argument checking cleaned up. Saved 20% in size.
2203 * This function doesn't need to set the kernel lock because
2204 * it is set by the callees.
2205 */
2206
2207 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2208 {
2209 unsigned long a[6];
2210 unsigned long a0, a1;
2211 int err;
2212 unsigned int len;
2213
2214 if (call < 1 || call > SYS_RECVMMSG)
2215 return -EINVAL;
2216
2217 len = nargs[call];
2218 if (len > sizeof(a))
2219 return -EINVAL;
2220
2221 /* copy_from_user should be SMP safe. */
2222 if (copy_from_user(a, args, len))
2223 return -EFAULT;
2224
2225 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2226
2227 a0 = a[0];
2228 a1 = a[1];
2229
2230 switch (call) {
2231 case SYS_SOCKET:
2232 err = sys_socket(a0, a1, a[2]);
2233 break;
2234 case SYS_BIND:
2235 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2236 break;
2237 case SYS_CONNECT:
2238 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2239 break;
2240 case SYS_LISTEN:
2241 err = sys_listen(a0, a1);
2242 break;
2243 case SYS_ACCEPT:
2244 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2245 (int __user *)a[2], 0);
2246 break;
2247 case SYS_GETSOCKNAME:
2248 err =
2249 sys_getsockname(a0, (struct sockaddr __user *)a1,
2250 (int __user *)a[2]);
2251 break;
2252 case SYS_GETPEERNAME:
2253 err =
2254 sys_getpeername(a0, (struct sockaddr __user *)a1,
2255 (int __user *)a[2]);
2256 break;
2257 case SYS_SOCKETPAIR:
2258 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2259 break;
2260 case SYS_SEND:
2261 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2262 break;
2263 case SYS_SENDTO:
2264 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2265 (struct sockaddr __user *)a[4], a[5]);
2266 break;
2267 case SYS_RECV:
2268 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2269 break;
2270 case SYS_RECVFROM:
2271 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2272 (struct sockaddr __user *)a[4],
2273 (int __user *)a[5]);
2274 break;
2275 case SYS_SHUTDOWN:
2276 err = sys_shutdown(a0, a1);
2277 break;
2278 case SYS_SETSOCKOPT:
2279 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2280 break;
2281 case SYS_GETSOCKOPT:
2282 err =
2283 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2284 (int __user *)a[4]);
2285 break;
2286 case SYS_SENDMSG:
2287 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2288 break;
2289 case SYS_RECVMSG:
2290 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2291 break;
2292 case SYS_RECVMMSG:
2293 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2294 (struct timespec __user *)a[4]);
2295 break;
2296 case SYS_ACCEPT4:
2297 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2298 (int __user *)a[2], a[3]);
2299 break;
2300 default:
2301 err = -EINVAL;
2302 break;
2303 }
2304 return err;
2305 }
2306
2307 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2308
2309 /**
2310 * sock_register - add a socket protocol handler
2311 * @ops: description of protocol
2312 *
2313 * This function is called by a protocol handler that wants to
2314 * advertise its address family, and have it linked into the
2315 * socket interface. The value ops->family coresponds to the
2316 * socket system call protocol family.
2317 */
2318 int sock_register(const struct net_proto_family *ops)
2319 {
2320 int err;
2321
2322 if (ops->family >= NPROTO) {
2323 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2324 NPROTO);
2325 return -ENOBUFS;
2326 }
2327
2328 spin_lock(&net_family_lock);
2329 if (net_families[ops->family])
2330 err = -EEXIST;
2331 else {
2332 net_families[ops->family] = ops;
2333 err = 0;
2334 }
2335 spin_unlock(&net_family_lock);
2336
2337 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2338 return err;
2339 }
2340 EXPORT_SYMBOL(sock_register);
2341
2342 /**
2343 * sock_unregister - remove a protocol handler
2344 * @family: protocol family to remove
2345 *
2346 * This function is called by a protocol handler that wants to
2347 * remove its address family, and have it unlinked from the
2348 * new socket creation.
2349 *
2350 * If protocol handler is a module, then it can use module reference
2351 * counts to protect against new references. If protocol handler is not
2352 * a module then it needs to provide its own protection in
2353 * the ops->create routine.
2354 */
2355 void sock_unregister(int family)
2356 {
2357 BUG_ON(family < 0 || family >= NPROTO);
2358
2359 spin_lock(&net_family_lock);
2360 net_families[family] = NULL;
2361 spin_unlock(&net_family_lock);
2362
2363 synchronize_rcu();
2364
2365 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2366 }
2367 EXPORT_SYMBOL(sock_unregister);
2368
2369 static int __init sock_init(void)
2370 {
2371 /*
2372 * Initialize sock SLAB cache.
2373 */
2374
2375 sk_init();
2376
2377 /*
2378 * Initialize skbuff SLAB cache
2379 */
2380 skb_init();
2381
2382 /*
2383 * Initialize the protocols module.
2384 */
2385
2386 init_inodecache();
2387 register_filesystem(&sock_fs_type);
2388 sock_mnt = kern_mount(&sock_fs_type);
2389
2390 /* The real protocol initialization is performed in later initcalls.
2391 */
2392
2393 #ifdef CONFIG_NETFILTER
2394 netfilter_init();
2395 #endif
2396
2397 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2398 skb_timestamping_init();
2399 #endif
2400
2401 return 0;
2402 }
2403
2404 core_initcall(sock_init); /* early initcall */
2405
2406 #ifdef CONFIG_PROC_FS
2407 void socket_seq_show(struct seq_file *seq)
2408 {
2409 int cpu;
2410 int counter = 0;
2411
2412 for_each_possible_cpu(cpu)
2413 counter += per_cpu(sockets_in_use, cpu);
2414
2415 /* It can be negative, by the way. 8) */
2416 if (counter < 0)
2417 counter = 0;
2418
2419 seq_printf(seq, "sockets: used %d\n", counter);
2420 }
2421 #endif /* CONFIG_PROC_FS */
2422
2423 #ifdef CONFIG_COMPAT
2424 static int do_siocgstamp(struct net *net, struct socket *sock,
2425 unsigned int cmd, struct compat_timeval __user *up)
2426 {
2427 mm_segment_t old_fs = get_fs();
2428 struct timeval ktv;
2429 int err;
2430
2431 set_fs(KERNEL_DS);
2432 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2433 set_fs(old_fs);
2434 if (!err) {
2435 err = put_user(ktv.tv_sec, &up->tv_sec);
2436 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2437 }
2438 return err;
2439 }
2440
2441 static int do_siocgstampns(struct net *net, struct socket *sock,
2442 unsigned int cmd, struct compat_timespec __user *up)
2443 {
2444 mm_segment_t old_fs = get_fs();
2445 struct timespec kts;
2446 int err;
2447
2448 set_fs(KERNEL_DS);
2449 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2450 set_fs(old_fs);
2451 if (!err) {
2452 err = put_user(kts.tv_sec, &up->tv_sec);
2453 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2454 }
2455 return err;
2456 }
2457
2458 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2459 {
2460 struct ifreq __user *uifr;
2461 int err;
2462
2463 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2464 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2465 return -EFAULT;
2466
2467 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2468 if (err)
2469 return err;
2470
2471 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2472 return -EFAULT;
2473
2474 return 0;
2475 }
2476
2477 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2478 {
2479 struct compat_ifconf ifc32;
2480 struct ifconf ifc;
2481 struct ifconf __user *uifc;
2482 struct compat_ifreq __user *ifr32;
2483 struct ifreq __user *ifr;
2484 unsigned int i, j;
2485 int err;
2486
2487 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2488 return -EFAULT;
2489
2490 if (ifc32.ifcbuf == 0) {
2491 ifc32.ifc_len = 0;
2492 ifc.ifc_len = 0;
2493 ifc.ifc_req = NULL;
2494 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2495 } else {
2496 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2497 sizeof(struct ifreq);
2498 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2499 ifc.ifc_len = len;
2500 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2501 ifr32 = compat_ptr(ifc32.ifcbuf);
2502 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2503 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2504 return -EFAULT;
2505 ifr++;
2506 ifr32++;
2507 }
2508 }
2509 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2510 return -EFAULT;
2511
2512 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2513 if (err)
2514 return err;
2515
2516 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2517 return -EFAULT;
2518
2519 ifr = ifc.ifc_req;
2520 ifr32 = compat_ptr(ifc32.ifcbuf);
2521 for (i = 0, j = 0;
2522 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2523 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2524 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2525 return -EFAULT;
2526 ifr32++;
2527 ifr++;
2528 }
2529
2530 if (ifc32.ifcbuf == 0) {
2531 /* Translate from 64-bit structure multiple to
2532 * a 32-bit one.
2533 */
2534 i = ifc.ifc_len;
2535 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2536 ifc32.ifc_len = i;
2537 } else {
2538 ifc32.ifc_len = i;
2539 }
2540 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2541 return -EFAULT;
2542
2543 return 0;
2544 }
2545
2546 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2547 {
2548 struct ifreq __user *ifr;
2549 u32 data;
2550 void __user *datap;
2551
2552 ifr = compat_alloc_user_space(sizeof(*ifr));
2553
2554 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2555 return -EFAULT;
2556
2557 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2558 return -EFAULT;
2559
2560 datap = compat_ptr(data);
2561 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2562 return -EFAULT;
2563
2564 return dev_ioctl(net, SIOCETHTOOL, ifr);
2565 }
2566
2567 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2568 {
2569 void __user *uptr;
2570 compat_uptr_t uptr32;
2571 struct ifreq __user *uifr;
2572
2573 uifr = compat_alloc_user_space(sizeof(*uifr));
2574 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2575 return -EFAULT;
2576
2577 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2578 return -EFAULT;
2579
2580 uptr = compat_ptr(uptr32);
2581
2582 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2583 return -EFAULT;
2584
2585 return dev_ioctl(net, SIOCWANDEV, uifr);
2586 }
2587
2588 static int bond_ioctl(struct net *net, unsigned int cmd,
2589 struct compat_ifreq __user *ifr32)
2590 {
2591 struct ifreq kifr;
2592 struct ifreq __user *uifr;
2593 mm_segment_t old_fs;
2594 int err;
2595 u32 data;
2596 void __user *datap;
2597
2598 switch (cmd) {
2599 case SIOCBONDENSLAVE:
2600 case SIOCBONDRELEASE:
2601 case SIOCBONDSETHWADDR:
2602 case SIOCBONDCHANGEACTIVE:
2603 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2604 return -EFAULT;
2605
2606 old_fs = get_fs();
2607 set_fs(KERNEL_DS);
2608 err = dev_ioctl(net, cmd, &kifr);
2609 set_fs(old_fs);
2610
2611 return err;
2612 case SIOCBONDSLAVEINFOQUERY:
2613 case SIOCBONDINFOQUERY:
2614 uifr = compat_alloc_user_space(sizeof(*uifr));
2615 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2616 return -EFAULT;
2617
2618 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2619 return -EFAULT;
2620
2621 datap = compat_ptr(data);
2622 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2623 return -EFAULT;
2624
2625 return dev_ioctl(net, cmd, uifr);
2626 default:
2627 return -EINVAL;
2628 }
2629 }
2630
2631 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2632 struct compat_ifreq __user *u_ifreq32)
2633 {
2634 struct ifreq __user *u_ifreq64;
2635 char tmp_buf[IFNAMSIZ];
2636 void __user *data64;
2637 u32 data32;
2638
2639 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2640 IFNAMSIZ))
2641 return -EFAULT;
2642 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2643 return -EFAULT;
2644 data64 = compat_ptr(data32);
2645
2646 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2647
2648 /* Don't check these user accesses, just let that get trapped
2649 * in the ioctl handler instead.
2650 */
2651 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2652 IFNAMSIZ))
2653 return -EFAULT;
2654 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2655 return -EFAULT;
2656
2657 return dev_ioctl(net, cmd, u_ifreq64);
2658 }
2659
2660 static int dev_ifsioc(struct net *net, struct socket *sock,
2661 unsigned int cmd, struct compat_ifreq __user *uifr32)
2662 {
2663 struct ifreq __user *uifr;
2664 int err;
2665
2666 uifr = compat_alloc_user_space(sizeof(*uifr));
2667 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2668 return -EFAULT;
2669
2670 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2671
2672 if (!err) {
2673 switch (cmd) {
2674 case SIOCGIFFLAGS:
2675 case SIOCGIFMETRIC:
2676 case SIOCGIFMTU:
2677 case SIOCGIFMEM:
2678 case SIOCGIFHWADDR:
2679 case SIOCGIFINDEX:
2680 case SIOCGIFADDR:
2681 case SIOCGIFBRDADDR:
2682 case SIOCGIFDSTADDR:
2683 case SIOCGIFNETMASK:
2684 case SIOCGIFPFLAGS:
2685 case SIOCGIFTXQLEN:
2686 case SIOCGMIIPHY:
2687 case SIOCGMIIREG:
2688 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2689 err = -EFAULT;
2690 break;
2691 }
2692 }
2693 return err;
2694 }
2695
2696 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2697 struct compat_ifreq __user *uifr32)
2698 {
2699 struct ifreq ifr;
2700 struct compat_ifmap __user *uifmap32;
2701 mm_segment_t old_fs;
2702 int err;
2703
2704 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2705 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2706 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2707 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2708 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2709 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2710 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2711 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2712 if (err)
2713 return -EFAULT;
2714
2715 old_fs = get_fs();
2716 set_fs(KERNEL_DS);
2717 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2718 set_fs(old_fs);
2719
2720 if (cmd == SIOCGIFMAP && !err) {
2721 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2722 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2723 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2724 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2725 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2726 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2727 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2728 if (err)
2729 err = -EFAULT;
2730 }
2731 return err;
2732 }
2733
2734 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2735 {
2736 void __user *uptr;
2737 compat_uptr_t uptr32;
2738 struct ifreq __user *uifr;
2739
2740 uifr = compat_alloc_user_space(sizeof(*uifr));
2741 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2742 return -EFAULT;
2743
2744 if (get_user(uptr32, &uifr32->ifr_data))
2745 return -EFAULT;
2746
2747 uptr = compat_ptr(uptr32);
2748
2749 if (put_user(uptr, &uifr->ifr_data))
2750 return -EFAULT;
2751
2752 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2753 }
2754
2755 struct rtentry32 {
2756 u32 rt_pad1;
2757 struct sockaddr rt_dst; /* target address */
2758 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2759 struct sockaddr rt_genmask; /* target network mask (IP) */
2760 unsigned short rt_flags;
2761 short rt_pad2;
2762 u32 rt_pad3;
2763 unsigned char rt_tos;
2764 unsigned char rt_class;
2765 short rt_pad4;
2766 short rt_metric; /* +1 for binary compatibility! */
2767 /* char * */ u32 rt_dev; /* forcing the device at add */
2768 u32 rt_mtu; /* per route MTU/Window */
2769 u32 rt_window; /* Window clamping */
2770 unsigned short rt_irtt; /* Initial RTT */
2771 };
2772
2773 struct in6_rtmsg32 {
2774 struct in6_addr rtmsg_dst;
2775 struct in6_addr rtmsg_src;
2776 struct in6_addr rtmsg_gateway;
2777 u32 rtmsg_type;
2778 u16 rtmsg_dst_len;
2779 u16 rtmsg_src_len;
2780 u32 rtmsg_metric;
2781 u32 rtmsg_info;
2782 u32 rtmsg_flags;
2783 s32 rtmsg_ifindex;
2784 };
2785
2786 static int routing_ioctl(struct net *net, struct socket *sock,
2787 unsigned int cmd, void __user *argp)
2788 {
2789 int ret;
2790 void *r = NULL;
2791 struct in6_rtmsg r6;
2792 struct rtentry r4;
2793 char devname[16];
2794 u32 rtdev;
2795 mm_segment_t old_fs = get_fs();
2796
2797 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2798 struct in6_rtmsg32 __user *ur6 = argp;
2799 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2800 3 * sizeof(struct in6_addr));
2801 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2802 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2803 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2804 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2805 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2806 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2807 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2808
2809 r = (void *) &r6;
2810 } else { /* ipv4 */
2811 struct rtentry32 __user *ur4 = argp;
2812 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2813 3 * sizeof(struct sockaddr));
2814 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2815 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2816 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2817 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2818 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2819 ret |= __get_user(rtdev, &(ur4->rt_dev));
2820 if (rtdev) {
2821 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2822 r4.rt_dev = devname; devname[15] = 0;
2823 } else
2824 r4.rt_dev = NULL;
2825
2826 r = (void *) &r4;
2827 }
2828
2829 if (ret) {
2830 ret = -EFAULT;
2831 goto out;
2832 }
2833
2834 set_fs(KERNEL_DS);
2835 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2836 set_fs(old_fs);
2837
2838 out:
2839 return ret;
2840 }
2841
2842 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2843 * for some operations; this forces use of the newer bridge-utils that
2844 * use compatiable ioctls
2845 */
2846 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2847 {
2848 compat_ulong_t tmp;
2849
2850 if (get_user(tmp, argp))
2851 return -EFAULT;
2852 if (tmp == BRCTL_GET_VERSION)
2853 return BRCTL_VERSION + 1;
2854 return -EINVAL;
2855 }
2856
2857 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2858 unsigned int cmd, unsigned long arg)
2859 {
2860 void __user *argp = compat_ptr(arg);
2861 struct sock *sk = sock->sk;
2862 struct net *net = sock_net(sk);
2863
2864 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2865 return siocdevprivate_ioctl(net, cmd, argp);
2866
2867 switch (cmd) {
2868 case SIOCSIFBR:
2869 case SIOCGIFBR:
2870 return old_bridge_ioctl(argp);
2871 case SIOCGIFNAME:
2872 return dev_ifname32(net, argp);
2873 case SIOCGIFCONF:
2874 return dev_ifconf(net, argp);
2875 case SIOCETHTOOL:
2876 return ethtool_ioctl(net, argp);
2877 case SIOCWANDEV:
2878 return compat_siocwandev(net, argp);
2879 case SIOCGIFMAP:
2880 case SIOCSIFMAP:
2881 return compat_sioc_ifmap(net, cmd, argp);
2882 case SIOCBONDENSLAVE:
2883 case SIOCBONDRELEASE:
2884 case SIOCBONDSETHWADDR:
2885 case SIOCBONDSLAVEINFOQUERY:
2886 case SIOCBONDINFOQUERY:
2887 case SIOCBONDCHANGEACTIVE:
2888 return bond_ioctl(net, cmd, argp);
2889 case SIOCADDRT:
2890 case SIOCDELRT:
2891 return routing_ioctl(net, sock, cmd, argp);
2892 case SIOCGSTAMP:
2893 return do_siocgstamp(net, sock, cmd, argp);
2894 case SIOCGSTAMPNS:
2895 return do_siocgstampns(net, sock, cmd, argp);
2896 case SIOCSHWTSTAMP:
2897 return compat_siocshwtstamp(net, argp);
2898
2899 case FIOSETOWN:
2900 case SIOCSPGRP:
2901 case FIOGETOWN:
2902 case SIOCGPGRP:
2903 case SIOCBRADDBR:
2904 case SIOCBRDELBR:
2905 case SIOCGIFVLAN:
2906 case SIOCSIFVLAN:
2907 case SIOCADDDLCI:
2908 case SIOCDELDLCI:
2909 return sock_ioctl(file, cmd, arg);
2910
2911 case SIOCGIFFLAGS:
2912 case SIOCSIFFLAGS:
2913 case SIOCGIFMETRIC:
2914 case SIOCSIFMETRIC:
2915 case SIOCGIFMTU:
2916 case SIOCSIFMTU:
2917 case SIOCGIFMEM:
2918 case SIOCSIFMEM:
2919 case SIOCGIFHWADDR:
2920 case SIOCSIFHWADDR:
2921 case SIOCADDMULTI:
2922 case SIOCDELMULTI:
2923 case SIOCGIFINDEX:
2924 case SIOCGIFADDR:
2925 case SIOCSIFADDR:
2926 case SIOCSIFHWBROADCAST:
2927 case SIOCDIFADDR:
2928 case SIOCGIFBRDADDR:
2929 case SIOCSIFBRDADDR:
2930 case SIOCGIFDSTADDR:
2931 case SIOCSIFDSTADDR:
2932 case SIOCGIFNETMASK:
2933 case SIOCSIFNETMASK:
2934 case SIOCSIFPFLAGS:
2935 case SIOCGIFPFLAGS:
2936 case SIOCGIFTXQLEN:
2937 case SIOCSIFTXQLEN:
2938 case SIOCBRADDIF:
2939 case SIOCBRDELIF:
2940 case SIOCSIFNAME:
2941 case SIOCGMIIPHY:
2942 case SIOCGMIIREG:
2943 case SIOCSMIIREG:
2944 return dev_ifsioc(net, sock, cmd, argp);
2945
2946 case SIOCSARP:
2947 case SIOCGARP:
2948 case SIOCDARP:
2949 case SIOCATMARK:
2950 return sock_do_ioctl(net, sock, cmd, arg);
2951 }
2952
2953 /* Prevent warning from compat_sys_ioctl, these always
2954 * result in -EINVAL in the native case anyway. */
2955 switch (cmd) {
2956 case SIOCRTMSG:
2957 case SIOCGIFCOUNT:
2958 case SIOCSRARP:
2959 case SIOCGRARP:
2960 case SIOCDRARP:
2961 case SIOCSIFLINK:
2962 case SIOCGIFSLAVE:
2963 case SIOCSIFSLAVE:
2964 return -EINVAL;
2965 }
2966
2967 return -ENOIOCTLCMD;
2968 }
2969
2970 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2971 unsigned long arg)
2972 {
2973 struct socket *sock = file->private_data;
2974 int ret = -ENOIOCTLCMD;
2975 struct sock *sk;
2976 struct net *net;
2977
2978 sk = sock->sk;
2979 net = sock_net(sk);
2980
2981 if (sock->ops->compat_ioctl)
2982 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2983
2984 if (ret == -ENOIOCTLCMD &&
2985 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2986 ret = compat_wext_handle_ioctl(net, cmd, arg);
2987
2988 if (ret == -ENOIOCTLCMD)
2989 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2990
2991 return ret;
2992 }
2993 #endif
2994
2995 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2996 {
2997 return sock->ops->bind(sock, addr, addrlen);
2998 }
2999 EXPORT_SYMBOL(kernel_bind);
3000
3001 int kernel_listen(struct socket *sock, int backlog)
3002 {
3003 return sock->ops->listen(sock, backlog);
3004 }
3005 EXPORT_SYMBOL(kernel_listen);
3006
3007 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3008 {
3009 struct sock *sk = sock->sk;
3010 int err;
3011
3012 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3013 newsock);
3014 if (err < 0)
3015 goto done;
3016
3017 err = sock->ops->accept(sock, *newsock, flags);
3018 if (err < 0) {
3019 sock_release(*newsock);
3020 *newsock = NULL;
3021 goto done;
3022 }
3023
3024 (*newsock)->ops = sock->ops;
3025 __module_get((*newsock)->ops->owner);
3026
3027 done:
3028 return err;
3029 }
3030 EXPORT_SYMBOL(kernel_accept);
3031
3032 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3033 int flags)
3034 {
3035 return sock->ops->connect(sock, addr, addrlen, flags);
3036 }
3037 EXPORT_SYMBOL(kernel_connect);
3038
3039 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3040 int *addrlen)
3041 {
3042 return sock->ops->getname(sock, addr, addrlen, 0);
3043 }
3044 EXPORT_SYMBOL(kernel_getsockname);
3045
3046 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3047 int *addrlen)
3048 {
3049 return sock->ops->getname(sock, addr, addrlen, 1);
3050 }
3051 EXPORT_SYMBOL(kernel_getpeername);
3052
3053 int kernel_getsockopt(struct socket *sock, int level, int optname,
3054 char *optval, int *optlen)
3055 {
3056 mm_segment_t oldfs = get_fs();
3057 char __user *uoptval;
3058 int __user *uoptlen;
3059 int err;
3060
3061 uoptval = (char __user __force *) optval;
3062 uoptlen = (int __user __force *) optlen;
3063
3064 set_fs(KERNEL_DS);
3065 if (level == SOL_SOCKET)
3066 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3067 else
3068 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3069 uoptlen);
3070 set_fs(oldfs);
3071 return err;
3072 }
3073 EXPORT_SYMBOL(kernel_getsockopt);
3074
3075 int kernel_setsockopt(struct socket *sock, int level, int optname,
3076 char *optval, unsigned int optlen)
3077 {
3078 mm_segment_t oldfs = get_fs();
3079 char __user *uoptval;
3080 int err;
3081
3082 uoptval = (char __user __force *) optval;
3083
3084 set_fs(KERNEL_DS);
3085 if (level == SOL_SOCKET)
3086 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3087 else
3088 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3089 optlen);
3090 set_fs(oldfs);
3091 return err;
3092 }
3093 EXPORT_SYMBOL(kernel_setsockopt);
3094
3095 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3096 size_t size, int flags)
3097 {
3098 sock_update_classid(sock->sk);
3099
3100 if (sock->ops->sendpage)
3101 return sock->ops->sendpage(sock, page, offset, size, flags);
3102
3103 return sock_no_sendpage(sock, page, offset, size, flags);
3104 }
3105 EXPORT_SYMBOL(kernel_sendpage);
3106
3107 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3108 {
3109 mm_segment_t oldfs = get_fs();
3110 int err;
3111
3112 set_fs(KERNEL_DS);
3113 err = sock->ops->ioctl(sock, cmd, arg);
3114 set_fs(oldfs);
3115
3116 return err;
3117 }
3118 EXPORT_SYMBOL(kernel_sock_ioctl);
3119
3120 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3121 {
3122 return sock->ops->shutdown(sock, how);
3123 }
3124 EXPORT_SYMBOL(kernel_sock_shutdown);