Merge branch 'drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/thread_info.h>
73 #include <linux/wanrouter.h>
74 #include <linux/if_bridge.h>
75 #include <linux/if_frad.h>
76 #include <linux/if_vlan.h>
77 #include <linux/init.h>
78 #include <linux/poll.h>
79 #include <linux/cache.h>
80 #include <linux/module.h>
81 #include <linux/highmem.h>
82 #include <linux/mount.h>
83 #include <linux/security.h>
84 #include <linux/syscalls.h>
85 #include <linux/compat.h>
86 #include <linux/kmod.h>
87 #include <linux/audit.h>
88 #include <linux/wireless.h>
89 #include <linux/nsproxy.h>
90
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
102 unsigned long nr_segs, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
104 unsigned long nr_segs, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
106
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109 struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
111 #ifdef CONFIG_COMPAT
112 static long compat_sock_ioctl(struct file *file,
113 unsigned int cmd, unsigned long arg);
114 #endif
115 static int sock_fasync(int fd, struct file *filp, int on);
116 static ssize_t sock_sendpage(struct file *file, struct page *page,
117 int offset, size_t size, loff_t *ppos, int more);
118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
119 struct pipe_inode_info *pipe, size_t len,
120 unsigned int flags);
121
122 /*
123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124 * in the operation structures but are done directly via the socketcall() multiplexor.
125 */
126
127 static const struct file_operations socket_file_ops = {
128 .owner = THIS_MODULE,
129 .llseek = no_llseek,
130 .aio_read = sock_aio_read,
131 .aio_write = sock_aio_write,
132 .poll = sock_poll,
133 .unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135 .compat_ioctl = compat_sock_ioctl,
136 #endif
137 .mmap = sock_mmap,
138 .open = sock_no_open, /* special open code to disallow open via /proc */
139 .release = sock_close,
140 .fasync = sock_fasync,
141 .sendpage = sock_sendpage,
142 .splice_write = generic_splice_sendpage,
143 .splice_read = sock_splice_read,
144 };
145
146 /*
147 * The protocol list. Each protocol is registered in here.
148 */
149
150 static DEFINE_SPINLOCK(net_family_lock);
151 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
152
153 /*
154 * Statistics counters of the socket lists
155 */
156
157 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
158
159 /*
160 * Support routines.
161 * Move socket addresses back and forth across the kernel/user
162 * divide and look after the messy bits.
163 */
164
165 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
166 16 for IP, 16 for IPX,
167 24 for IPv6,
168 about 80 for AX.25
169 must be at least one bigger than
170 the AF_UNIX size (see net/unix/af_unix.c
171 :unix_mkname()).
172 */
173
174 /**
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
179 *
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 {
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
202 *
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
211 */
212
213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
214 int __user *ulen)
215 {
216 int err;
217 int len;
218
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0 || len > sizeof(struct sockaddr_storage))
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
231 }
232 /*
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
235 */
236 return __put_user(klen, ulen);
237 }
238
239 #define SOCKFS_MAGIC 0x534F434B
240
241 static struct kmem_cache *sock_inode_cachep __read_mostly;
242
243 static struct inode *sock_alloc_inode(struct super_block *sb)
244 {
245 struct socket_alloc *ei;
246
247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 if (!ei)
249 return NULL;
250 init_waitqueue_head(&ei->socket.wait);
251
252 ei->socket.fasync_list = NULL;
253 ei->socket.state = SS_UNCONNECTED;
254 ei->socket.flags = 0;
255 ei->socket.ops = NULL;
256 ei->socket.sk = NULL;
257 ei->socket.file = NULL;
258
259 return &ei->vfs_inode;
260 }
261
262 static void sock_destroy_inode(struct inode *inode)
263 {
264 kmem_cache_free(sock_inode_cachep,
265 container_of(inode, struct socket_alloc, vfs_inode));
266 }
267
268 static void init_once(void *foo)
269 {
270 struct socket_alloc *ei = (struct socket_alloc *)foo;
271
272 inode_init_once(&ei->vfs_inode);
273 }
274
275 static int init_inodecache(void)
276 {
277 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
278 sizeof(struct socket_alloc),
279 0,
280 (SLAB_HWCACHE_ALIGN |
281 SLAB_RECLAIM_ACCOUNT |
282 SLAB_MEM_SPREAD),
283 init_once);
284 if (sock_inode_cachep == NULL)
285 return -ENOMEM;
286 return 0;
287 }
288
289 static struct super_operations sockfs_ops = {
290 .alloc_inode = sock_alloc_inode,
291 .destroy_inode =sock_destroy_inode,
292 .statfs = simple_statfs,
293 };
294
295 static int sockfs_get_sb(struct file_system_type *fs_type,
296 int flags, const char *dev_name, void *data,
297 struct vfsmount *mnt)
298 {
299 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
300 mnt);
301 }
302
303 static struct vfsmount *sock_mnt __read_mostly;
304
305 static struct file_system_type sock_fs_type = {
306 .name = "sockfs",
307 .get_sb = sockfs_get_sb,
308 .kill_sb = kill_anon_super,
309 };
310
311 static int sockfs_delete_dentry(struct dentry *dentry)
312 {
313 /*
314 * At creation time, we pretended this dentry was hashed
315 * (by clearing DCACHE_UNHASHED bit in d_flags)
316 * At delete time, we restore the truth : not hashed.
317 * (so that dput() can proceed correctly)
318 */
319 dentry->d_flags |= DCACHE_UNHASHED;
320 return 0;
321 }
322
323 /*
324 * sockfs_dname() is called from d_path().
325 */
326 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
327 {
328 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
329 dentry->d_inode->i_ino);
330 }
331
332 static struct dentry_operations sockfs_dentry_operations = {
333 .d_delete = sockfs_delete_dentry,
334 .d_dname = sockfs_dname,
335 };
336
337 /*
338 * Obtains the first available file descriptor and sets it up for use.
339 *
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
347 *
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
352 */
353
354 static int sock_alloc_fd(struct file **filep, int flags)
355 {
356 int fd;
357
358 fd = get_unused_fd_flags(flags);
359 if (likely(fd >= 0)) {
360 struct file *file = get_empty_filp();
361
362 *filep = file;
363 if (unlikely(!file)) {
364 put_unused_fd(fd);
365 return -ENFILE;
366 }
367 } else
368 *filep = NULL;
369 return fd;
370 }
371
372 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
373 {
374 struct dentry *dentry;
375 struct qstr name = { .name = "" };
376
377 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
378 if (unlikely(!dentry))
379 return -ENOMEM;
380
381 dentry->d_op = &sockfs_dentry_operations;
382 /*
383 * We dont want to push this dentry into global dentry hash table.
384 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
385 * This permits a working /proc/$pid/fd/XXX on sockets
386 */
387 dentry->d_flags &= ~DCACHE_UNHASHED;
388 d_instantiate(dentry, SOCK_INODE(sock));
389
390 sock->file = file;
391 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
392 &socket_file_ops);
393 SOCK_INODE(sock)->i_fop = &socket_file_ops;
394 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
395 file->f_pos = 0;
396 file->private_data = sock;
397
398 return 0;
399 }
400
401 int sock_map_fd(struct socket *sock, int flags)
402 {
403 struct file *newfile;
404 int fd = sock_alloc_fd(&newfile, flags);
405
406 if (likely(fd >= 0)) {
407 int err = sock_attach_fd(sock, newfile, flags);
408
409 if (unlikely(err < 0)) {
410 put_filp(newfile);
411 put_unused_fd(fd);
412 return err;
413 }
414 fd_install(fd, newfile);
415 }
416 return fd;
417 }
418
419 static struct socket *sock_from_file(struct file *file, int *err)
420 {
421 if (file->f_op == &socket_file_ops)
422 return file->private_data; /* set in sock_map_fd */
423
424 *err = -ENOTSOCK;
425 return NULL;
426 }
427
428 /**
429 * sockfd_lookup - Go from a file number to its socket slot
430 * @fd: file handle
431 * @err: pointer to an error code return
432 *
433 * The file handle passed in is locked and the socket it is bound
434 * too is returned. If an error occurs the err pointer is overwritten
435 * with a negative errno code and NULL is returned. The function checks
436 * for both invalid handles and passing a handle which is not a socket.
437 *
438 * On a success the socket object pointer is returned.
439 */
440
441 struct socket *sockfd_lookup(int fd, int *err)
442 {
443 struct file *file;
444 struct socket *sock;
445
446 file = fget(fd);
447 if (!file) {
448 *err = -EBADF;
449 return NULL;
450 }
451
452 sock = sock_from_file(file, err);
453 if (!sock)
454 fput(file);
455 return sock;
456 }
457
458 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
459 {
460 struct file *file;
461 struct socket *sock;
462
463 *err = -EBADF;
464 file = fget_light(fd, fput_needed);
465 if (file) {
466 sock = sock_from_file(file, err);
467 if (sock)
468 return sock;
469 fput_light(file, *fput_needed);
470 }
471 return NULL;
472 }
473
474 /**
475 * sock_alloc - allocate a socket
476 *
477 * Allocate a new inode and socket object. The two are bound together
478 * and initialised. The socket is then returned. If we are out of inodes
479 * NULL is returned.
480 */
481
482 static struct socket *sock_alloc(void)
483 {
484 struct inode *inode;
485 struct socket *sock;
486
487 inode = new_inode(sock_mnt->mnt_sb);
488 if (!inode)
489 return NULL;
490
491 sock = SOCKET_I(inode);
492
493 inode->i_mode = S_IFSOCK | S_IRWXUGO;
494 inode->i_uid = current->fsuid;
495 inode->i_gid = current->fsgid;
496
497 get_cpu_var(sockets_in_use)++;
498 put_cpu_var(sockets_in_use);
499 return sock;
500 }
501
502 /*
503 * In theory you can't get an open on this inode, but /proc provides
504 * a back door. Remember to keep it shut otherwise you'll let the
505 * creepy crawlies in.
506 */
507
508 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
509 {
510 return -ENXIO;
511 }
512
513 const struct file_operations bad_sock_fops = {
514 .owner = THIS_MODULE,
515 .open = sock_no_open,
516 };
517
518 /**
519 * sock_release - close a socket
520 * @sock: socket to close
521 *
522 * The socket is released from the protocol stack if it has a release
523 * callback, and the inode is then released if the socket is bound to
524 * an inode not a file.
525 */
526
527 void sock_release(struct socket *sock)
528 {
529 if (sock->ops) {
530 struct module *owner = sock->ops->owner;
531
532 sock->ops->release(sock);
533 sock->ops = NULL;
534 module_put(owner);
535 }
536
537 if (sock->fasync_list)
538 printk(KERN_ERR "sock_release: fasync list not empty!\n");
539
540 get_cpu_var(sockets_in_use)--;
541 put_cpu_var(sockets_in_use);
542 if (!sock->file) {
543 iput(SOCK_INODE(sock));
544 return;
545 }
546 sock->file = NULL;
547 }
548
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550 struct msghdr *msg, size_t size)
551 {
552 struct sock_iocb *si = kiocb_to_siocb(iocb);
553 int err;
554
555 si->sock = sock;
556 si->scm = NULL;
557 si->msg = msg;
558 si->size = size;
559
560 err = security_socket_sendmsg(sock, msg, size);
561 if (err)
562 return err;
563
564 return sock->ops->sendmsg(iocb, sock, msg, size);
565 }
566
567 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
568 {
569 struct kiocb iocb;
570 struct sock_iocb siocb;
571 int ret;
572
573 init_sync_kiocb(&iocb, NULL);
574 iocb.private = &siocb;
575 ret = __sock_sendmsg(&iocb, sock, msg, size);
576 if (-EIOCBQUEUED == ret)
577 ret = wait_on_sync_kiocb(&iocb);
578 return ret;
579 }
580
581 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
582 struct kvec *vec, size_t num, size_t size)
583 {
584 mm_segment_t oldfs = get_fs();
585 int result;
586
587 set_fs(KERNEL_DS);
588 /*
589 * the following is safe, since for compiler definitions of kvec and
590 * iovec are identical, yielding the same in-core layout and alignment
591 */
592 msg->msg_iov = (struct iovec *)vec;
593 msg->msg_iovlen = num;
594 result = sock_sendmsg(sock, msg, size);
595 set_fs(oldfs);
596 return result;
597 }
598
599 /*
600 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
601 */
602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
603 struct sk_buff *skb)
604 {
605 ktime_t kt = skb->tstamp;
606
607 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
608 struct timeval tv;
609 /* Race occurred between timestamp enabling and packet
610 receiving. Fill in the current time for now. */
611 if (kt.tv64 == 0)
612 kt = ktime_get_real();
613 skb->tstamp = kt;
614 tv = ktime_to_timeval(kt);
615 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
616 } else {
617 struct timespec ts;
618 /* Race occurred between timestamp enabling and packet
619 receiving. Fill in the current time for now. */
620 if (kt.tv64 == 0)
621 kt = ktime_get_real();
622 skb->tstamp = kt;
623 ts = ktime_to_timespec(kt);
624 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
625 }
626 }
627
628 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
629
630 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
631 struct msghdr *msg, size_t size, int flags)
632 {
633 int err;
634 struct sock_iocb *si = kiocb_to_siocb(iocb);
635
636 si->sock = sock;
637 si->scm = NULL;
638 si->msg = msg;
639 si->size = size;
640 si->flags = flags;
641
642 err = security_socket_recvmsg(sock, msg, size, flags);
643 if (err)
644 return err;
645
646 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
647 }
648
649 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
650 size_t size, int flags)
651 {
652 struct kiocb iocb;
653 struct sock_iocb siocb;
654 int ret;
655
656 init_sync_kiocb(&iocb, NULL);
657 iocb.private = &siocb;
658 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
659 if (-EIOCBQUEUED == ret)
660 ret = wait_on_sync_kiocb(&iocb);
661 return ret;
662 }
663
664 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
665 struct kvec *vec, size_t num, size_t size, int flags)
666 {
667 mm_segment_t oldfs = get_fs();
668 int result;
669
670 set_fs(KERNEL_DS);
671 /*
672 * the following is safe, since for compiler definitions of kvec and
673 * iovec are identical, yielding the same in-core layout and alignment
674 */
675 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
676 result = sock_recvmsg(sock, msg, size, flags);
677 set_fs(oldfs);
678 return result;
679 }
680
681 static void sock_aio_dtor(struct kiocb *iocb)
682 {
683 kfree(iocb->private);
684 }
685
686 static ssize_t sock_sendpage(struct file *file, struct page *page,
687 int offset, size_t size, loff_t *ppos, int more)
688 {
689 struct socket *sock;
690 int flags;
691
692 sock = file->private_data;
693
694 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
695 if (more)
696 flags |= MSG_MORE;
697
698 return sock->ops->sendpage(sock, page, offset, size, flags);
699 }
700
701 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
702 struct pipe_inode_info *pipe, size_t len,
703 unsigned int flags)
704 {
705 struct socket *sock = file->private_data;
706
707 if (unlikely(!sock->ops->splice_read))
708 return -EINVAL;
709
710 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
711 }
712
713 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
714 struct sock_iocb *siocb)
715 {
716 if (!is_sync_kiocb(iocb)) {
717 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
718 if (!siocb)
719 return NULL;
720 iocb->ki_dtor = sock_aio_dtor;
721 }
722
723 siocb->kiocb = iocb;
724 iocb->private = siocb;
725 return siocb;
726 }
727
728 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
729 struct file *file, const struct iovec *iov,
730 unsigned long nr_segs)
731 {
732 struct socket *sock = file->private_data;
733 size_t size = 0;
734 int i;
735
736 for (i = 0; i < nr_segs; i++)
737 size += iov[i].iov_len;
738
739 msg->msg_name = NULL;
740 msg->msg_namelen = 0;
741 msg->msg_control = NULL;
742 msg->msg_controllen = 0;
743 msg->msg_iov = (struct iovec *)iov;
744 msg->msg_iovlen = nr_segs;
745 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
746
747 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
748 }
749
750 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
751 unsigned long nr_segs, loff_t pos)
752 {
753 struct sock_iocb siocb, *x;
754
755 if (pos != 0)
756 return -ESPIPE;
757
758 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
759 return 0;
760
761
762 x = alloc_sock_iocb(iocb, &siocb);
763 if (!x)
764 return -ENOMEM;
765 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
766 }
767
768 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
769 struct file *file, const struct iovec *iov,
770 unsigned long nr_segs)
771 {
772 struct socket *sock = file->private_data;
773 size_t size = 0;
774 int i;
775
776 for (i = 0; i < nr_segs; i++)
777 size += iov[i].iov_len;
778
779 msg->msg_name = NULL;
780 msg->msg_namelen = 0;
781 msg->msg_control = NULL;
782 msg->msg_controllen = 0;
783 msg->msg_iov = (struct iovec *)iov;
784 msg->msg_iovlen = nr_segs;
785 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
786 if (sock->type == SOCK_SEQPACKET)
787 msg->msg_flags |= MSG_EOR;
788
789 return __sock_sendmsg(iocb, sock, msg, size);
790 }
791
792 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
793 unsigned long nr_segs, loff_t pos)
794 {
795 struct sock_iocb siocb, *x;
796
797 if (pos != 0)
798 return -ESPIPE;
799
800 x = alloc_sock_iocb(iocb, &siocb);
801 if (!x)
802 return -ENOMEM;
803
804 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
805 }
806
807 /*
808 * Atomic setting of ioctl hooks to avoid race
809 * with module unload.
810 */
811
812 static DEFINE_MUTEX(br_ioctl_mutex);
813 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
814
815 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
816 {
817 mutex_lock(&br_ioctl_mutex);
818 br_ioctl_hook = hook;
819 mutex_unlock(&br_ioctl_mutex);
820 }
821
822 EXPORT_SYMBOL(brioctl_set);
823
824 static DEFINE_MUTEX(vlan_ioctl_mutex);
825 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
826
827 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
828 {
829 mutex_lock(&vlan_ioctl_mutex);
830 vlan_ioctl_hook = hook;
831 mutex_unlock(&vlan_ioctl_mutex);
832 }
833
834 EXPORT_SYMBOL(vlan_ioctl_set);
835
836 static DEFINE_MUTEX(dlci_ioctl_mutex);
837 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
838
839 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
840 {
841 mutex_lock(&dlci_ioctl_mutex);
842 dlci_ioctl_hook = hook;
843 mutex_unlock(&dlci_ioctl_mutex);
844 }
845
846 EXPORT_SYMBOL(dlci_ioctl_set);
847
848 /*
849 * With an ioctl, arg may well be a user mode pointer, but we don't know
850 * what to do with it - that's up to the protocol still.
851 */
852
853 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
854 {
855 struct socket *sock;
856 struct sock *sk;
857 void __user *argp = (void __user *)arg;
858 int pid, err;
859 struct net *net;
860
861 sock = file->private_data;
862 sk = sock->sk;
863 net = sock_net(sk);
864 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
865 err = dev_ioctl(net, cmd, argp);
866 } else
867 #ifdef CONFIG_WIRELESS_EXT
868 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
869 err = dev_ioctl(net, cmd, argp);
870 } else
871 #endif /* CONFIG_WIRELESS_EXT */
872 switch (cmd) {
873 case FIOSETOWN:
874 case SIOCSPGRP:
875 err = -EFAULT;
876 if (get_user(pid, (int __user *)argp))
877 break;
878 err = f_setown(sock->file, pid, 1);
879 break;
880 case FIOGETOWN:
881 case SIOCGPGRP:
882 err = put_user(f_getown(sock->file),
883 (int __user *)argp);
884 break;
885 case SIOCGIFBR:
886 case SIOCSIFBR:
887 case SIOCBRADDBR:
888 case SIOCBRDELBR:
889 err = -ENOPKG;
890 if (!br_ioctl_hook)
891 request_module("bridge");
892
893 mutex_lock(&br_ioctl_mutex);
894 if (br_ioctl_hook)
895 err = br_ioctl_hook(net, cmd, argp);
896 mutex_unlock(&br_ioctl_mutex);
897 break;
898 case SIOCGIFVLAN:
899 case SIOCSIFVLAN:
900 err = -ENOPKG;
901 if (!vlan_ioctl_hook)
902 request_module("8021q");
903
904 mutex_lock(&vlan_ioctl_mutex);
905 if (vlan_ioctl_hook)
906 err = vlan_ioctl_hook(net, argp);
907 mutex_unlock(&vlan_ioctl_mutex);
908 break;
909 case SIOCADDDLCI:
910 case SIOCDELDLCI:
911 err = -ENOPKG;
912 if (!dlci_ioctl_hook)
913 request_module("dlci");
914
915 mutex_lock(&dlci_ioctl_mutex);
916 if (dlci_ioctl_hook)
917 err = dlci_ioctl_hook(cmd, argp);
918 mutex_unlock(&dlci_ioctl_mutex);
919 break;
920 default:
921 err = sock->ops->ioctl(sock, cmd, arg);
922
923 /*
924 * If this ioctl is unknown try to hand it down
925 * to the NIC driver.
926 */
927 if (err == -ENOIOCTLCMD)
928 err = dev_ioctl(net, cmd, argp);
929 break;
930 }
931 return err;
932 }
933
934 int sock_create_lite(int family, int type, int protocol, struct socket **res)
935 {
936 int err;
937 struct socket *sock = NULL;
938
939 err = security_socket_create(family, type, protocol, 1);
940 if (err)
941 goto out;
942
943 sock = sock_alloc();
944 if (!sock) {
945 err = -ENOMEM;
946 goto out;
947 }
948
949 sock->type = type;
950 err = security_socket_post_create(sock, family, type, protocol, 1);
951 if (err)
952 goto out_release;
953
954 out:
955 *res = sock;
956 return err;
957 out_release:
958 sock_release(sock);
959 sock = NULL;
960 goto out;
961 }
962
963 /* No kernel lock held - perfect */
964 static unsigned int sock_poll(struct file *file, poll_table *wait)
965 {
966 struct socket *sock;
967
968 /*
969 * We can't return errors to poll, so it's either yes or no.
970 */
971 sock = file->private_data;
972 return sock->ops->poll(file, sock, wait);
973 }
974
975 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
976 {
977 struct socket *sock = file->private_data;
978
979 return sock->ops->mmap(file, sock, vma);
980 }
981
982 static int sock_close(struct inode *inode, struct file *filp)
983 {
984 /*
985 * It was possible the inode is NULL we were
986 * closing an unfinished socket.
987 */
988
989 if (!inode) {
990 printk(KERN_DEBUG "sock_close: NULL inode\n");
991 return 0;
992 }
993 sock_release(SOCKET_I(inode));
994 return 0;
995 }
996
997 /*
998 * Update the socket async list
999 *
1000 * Fasync_list locking strategy.
1001 *
1002 * 1. fasync_list is modified only under process context socket lock
1003 * i.e. under semaphore.
1004 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1005 * or under socket lock.
1006 * 3. fasync_list can be used from softirq context, so that
1007 * modification under socket lock have to be enhanced with
1008 * write_lock_bh(&sk->sk_callback_lock).
1009 * --ANK (990710)
1010 */
1011
1012 static int sock_fasync(int fd, struct file *filp, int on)
1013 {
1014 struct fasync_struct *fa, *fna = NULL, **prev;
1015 struct socket *sock;
1016 struct sock *sk;
1017
1018 if (on) {
1019 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1020 if (fna == NULL)
1021 return -ENOMEM;
1022 }
1023
1024 sock = filp->private_data;
1025
1026 sk = sock->sk;
1027 if (sk == NULL) {
1028 kfree(fna);
1029 return -EINVAL;
1030 }
1031
1032 lock_sock(sk);
1033
1034 prev = &(sock->fasync_list);
1035
1036 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1037 if (fa->fa_file == filp)
1038 break;
1039
1040 if (on) {
1041 if (fa != NULL) {
1042 write_lock_bh(&sk->sk_callback_lock);
1043 fa->fa_fd = fd;
1044 write_unlock_bh(&sk->sk_callback_lock);
1045
1046 kfree(fna);
1047 goto out;
1048 }
1049 fna->fa_file = filp;
1050 fna->fa_fd = fd;
1051 fna->magic = FASYNC_MAGIC;
1052 fna->fa_next = sock->fasync_list;
1053 write_lock_bh(&sk->sk_callback_lock);
1054 sock->fasync_list = fna;
1055 write_unlock_bh(&sk->sk_callback_lock);
1056 } else {
1057 if (fa != NULL) {
1058 write_lock_bh(&sk->sk_callback_lock);
1059 *prev = fa->fa_next;
1060 write_unlock_bh(&sk->sk_callback_lock);
1061 kfree(fa);
1062 }
1063 }
1064
1065 out:
1066 release_sock(sock->sk);
1067 return 0;
1068 }
1069
1070 /* This function may be called only under socket lock or callback_lock */
1071
1072 int sock_wake_async(struct socket *sock, int how, int band)
1073 {
1074 if (!sock || !sock->fasync_list)
1075 return -1;
1076 switch (how) {
1077 case SOCK_WAKE_WAITD:
1078 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1079 break;
1080 goto call_kill;
1081 case SOCK_WAKE_SPACE:
1082 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1083 break;
1084 /* fall through */
1085 case SOCK_WAKE_IO:
1086 call_kill:
1087 __kill_fasync(sock->fasync_list, SIGIO, band);
1088 break;
1089 case SOCK_WAKE_URG:
1090 __kill_fasync(sock->fasync_list, SIGURG, band);
1091 }
1092 return 0;
1093 }
1094
1095 static int __sock_create(struct net *net, int family, int type, int protocol,
1096 struct socket **res, int kern)
1097 {
1098 int err;
1099 struct socket *sock;
1100 const struct net_proto_family *pf;
1101
1102 /*
1103 * Check protocol is in range
1104 */
1105 if (family < 0 || family >= NPROTO)
1106 return -EAFNOSUPPORT;
1107 if (type < 0 || type >= SOCK_MAX)
1108 return -EINVAL;
1109
1110 /* Compatibility.
1111
1112 This uglymoron is moved from INET layer to here to avoid
1113 deadlock in module load.
1114 */
1115 if (family == PF_INET && type == SOCK_PACKET) {
1116 static int warned;
1117 if (!warned) {
1118 warned = 1;
1119 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1120 current->comm);
1121 }
1122 family = PF_PACKET;
1123 }
1124
1125 err = security_socket_create(family, type, protocol, kern);
1126 if (err)
1127 return err;
1128
1129 /*
1130 * Allocate the socket and allow the family to set things up. if
1131 * the protocol is 0, the family is instructed to select an appropriate
1132 * default.
1133 */
1134 sock = sock_alloc();
1135 if (!sock) {
1136 if (net_ratelimit())
1137 printk(KERN_WARNING "socket: no more sockets\n");
1138 return -ENFILE; /* Not exactly a match, but its the
1139 closest posix thing */
1140 }
1141
1142 sock->type = type;
1143
1144 #ifdef CONFIG_MODULES
1145 /* Attempt to load a protocol module if the find failed.
1146 *
1147 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1148 * requested real, full-featured networking support upon configuration.
1149 * Otherwise module support will break!
1150 */
1151 if (net_families[family] == NULL)
1152 request_module("net-pf-%d", family);
1153 #endif
1154
1155 rcu_read_lock();
1156 pf = rcu_dereference(net_families[family]);
1157 err = -EAFNOSUPPORT;
1158 if (!pf)
1159 goto out_release;
1160
1161 /*
1162 * We will call the ->create function, that possibly is in a loadable
1163 * module, so we have to bump that loadable module refcnt first.
1164 */
1165 if (!try_module_get(pf->owner))
1166 goto out_release;
1167
1168 /* Now protected by module ref count */
1169 rcu_read_unlock();
1170
1171 err = pf->create(net, sock, protocol);
1172 if (err < 0)
1173 goto out_module_put;
1174
1175 /*
1176 * Now to bump the refcnt of the [loadable] module that owns this
1177 * socket at sock_release time we decrement its refcnt.
1178 */
1179 if (!try_module_get(sock->ops->owner))
1180 goto out_module_busy;
1181
1182 /*
1183 * Now that we're done with the ->create function, the [loadable]
1184 * module can have its refcnt decremented
1185 */
1186 module_put(pf->owner);
1187 err = security_socket_post_create(sock, family, type, protocol, kern);
1188 if (err)
1189 goto out_sock_release;
1190 *res = sock;
1191
1192 return 0;
1193
1194 out_module_busy:
1195 err = -EAFNOSUPPORT;
1196 out_module_put:
1197 sock->ops = NULL;
1198 module_put(pf->owner);
1199 out_sock_release:
1200 sock_release(sock);
1201 return err;
1202
1203 out_release:
1204 rcu_read_unlock();
1205 goto out_sock_release;
1206 }
1207
1208 int sock_create(int family, int type, int protocol, struct socket **res)
1209 {
1210 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1211 }
1212
1213 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1214 {
1215 return __sock_create(&init_net, family, type, protocol, res, 1);
1216 }
1217
1218 asmlinkage long sys_socket(int family, int type, int protocol)
1219 {
1220 int retval;
1221 struct socket *sock;
1222 int flags;
1223
1224 /* Check the SOCK_* constants for consistency. */
1225 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1226 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1227 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1228 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1229
1230 flags = type & ~SOCK_TYPE_MASK;
1231 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1232 return -EINVAL;
1233 type &= SOCK_TYPE_MASK;
1234
1235 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1236 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1237
1238 retval = sock_create(family, type, protocol, &sock);
1239 if (retval < 0)
1240 goto out;
1241
1242 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1243 if (retval < 0)
1244 goto out_release;
1245
1246 out:
1247 /* It may be already another descriptor 8) Not kernel problem. */
1248 return retval;
1249
1250 out_release:
1251 sock_release(sock);
1252 return retval;
1253 }
1254
1255 /*
1256 * Create a pair of connected sockets.
1257 */
1258
1259 asmlinkage long sys_socketpair(int family, int type, int protocol,
1260 int __user *usockvec)
1261 {
1262 struct socket *sock1, *sock2;
1263 int fd1, fd2, err;
1264 struct file *newfile1, *newfile2;
1265 int flags;
1266
1267 flags = type & ~SOCK_TYPE_MASK;
1268 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1269 return -EINVAL;
1270 type &= SOCK_TYPE_MASK;
1271
1272 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1273 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1274
1275 /*
1276 * Obtain the first socket and check if the underlying protocol
1277 * supports the socketpair call.
1278 */
1279
1280 err = sock_create(family, type, protocol, &sock1);
1281 if (err < 0)
1282 goto out;
1283
1284 err = sock_create(family, type, protocol, &sock2);
1285 if (err < 0)
1286 goto out_release_1;
1287
1288 err = sock1->ops->socketpair(sock1, sock2);
1289 if (err < 0)
1290 goto out_release_both;
1291
1292 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1293 if (unlikely(fd1 < 0)) {
1294 err = fd1;
1295 goto out_release_both;
1296 }
1297
1298 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1299 if (unlikely(fd2 < 0)) {
1300 err = fd2;
1301 put_filp(newfile1);
1302 put_unused_fd(fd1);
1303 goto out_release_both;
1304 }
1305
1306 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1307 if (unlikely(err < 0)) {
1308 goto out_fd2;
1309 }
1310
1311 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1312 if (unlikely(err < 0)) {
1313 fput(newfile1);
1314 goto out_fd1;
1315 }
1316
1317 err = audit_fd_pair(fd1, fd2);
1318 if (err < 0) {
1319 fput(newfile1);
1320 fput(newfile2);
1321 goto out_fd;
1322 }
1323
1324 fd_install(fd1, newfile1);
1325 fd_install(fd2, newfile2);
1326 /* fd1 and fd2 may be already another descriptors.
1327 * Not kernel problem.
1328 */
1329
1330 err = put_user(fd1, &usockvec[0]);
1331 if (!err)
1332 err = put_user(fd2, &usockvec[1]);
1333 if (!err)
1334 return 0;
1335
1336 sys_close(fd2);
1337 sys_close(fd1);
1338 return err;
1339
1340 out_release_both:
1341 sock_release(sock2);
1342 out_release_1:
1343 sock_release(sock1);
1344 out:
1345 return err;
1346
1347 out_fd2:
1348 put_filp(newfile1);
1349 sock_release(sock1);
1350 out_fd1:
1351 put_filp(newfile2);
1352 sock_release(sock2);
1353 out_fd:
1354 put_unused_fd(fd1);
1355 put_unused_fd(fd2);
1356 goto out;
1357 }
1358
1359 /*
1360 * Bind a name to a socket. Nothing much to do here since it's
1361 * the protocol's responsibility to handle the local address.
1362 *
1363 * We move the socket address to kernel space before we call
1364 * the protocol layer (having also checked the address is ok).
1365 */
1366
1367 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1368 {
1369 struct socket *sock;
1370 struct sockaddr_storage address;
1371 int err, fput_needed;
1372
1373 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1374 if (sock) {
1375 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1376 if (err >= 0) {
1377 err = security_socket_bind(sock,
1378 (struct sockaddr *)&address,
1379 addrlen);
1380 if (!err)
1381 err = sock->ops->bind(sock,
1382 (struct sockaddr *)
1383 &address, addrlen);
1384 }
1385 fput_light(sock->file, fput_needed);
1386 }
1387 return err;
1388 }
1389
1390 /*
1391 * Perform a listen. Basically, we allow the protocol to do anything
1392 * necessary for a listen, and if that works, we mark the socket as
1393 * ready for listening.
1394 */
1395
1396 asmlinkage long sys_listen(int fd, int backlog)
1397 {
1398 struct socket *sock;
1399 int err, fput_needed;
1400 int somaxconn;
1401
1402 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1403 if (sock) {
1404 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1405 if ((unsigned)backlog > somaxconn)
1406 backlog = somaxconn;
1407
1408 err = security_socket_listen(sock, backlog);
1409 if (!err)
1410 err = sock->ops->listen(sock, backlog);
1411
1412 fput_light(sock->file, fput_needed);
1413 }
1414 return err;
1415 }
1416
1417 /*
1418 * For accept, we attempt to create a new socket, set up the link
1419 * with the client, wake up the client, then return the new
1420 * connected fd. We collect the address of the connector in kernel
1421 * space and move it to user at the very end. This is unclean because
1422 * we open the socket then return an error.
1423 *
1424 * 1003.1g adds the ability to recvmsg() to query connection pending
1425 * status to recvmsg. We need to add that support in a way thats
1426 * clean when we restucture accept also.
1427 */
1428
1429 asmlinkage long sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1430 int __user *upeer_addrlen, int flags)
1431 {
1432 struct socket *sock, *newsock;
1433 struct file *newfile;
1434 int err, len, newfd, fput_needed;
1435 struct sockaddr_storage address;
1436
1437 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1438 return -EINVAL;
1439
1440 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1441 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1442
1443 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1444 if (!sock)
1445 goto out;
1446
1447 err = -ENFILE;
1448 if (!(newsock = sock_alloc()))
1449 goto out_put;
1450
1451 newsock->type = sock->type;
1452 newsock->ops = sock->ops;
1453
1454 /*
1455 * We don't need try_module_get here, as the listening socket (sock)
1456 * has the protocol module (sock->ops->owner) held.
1457 */
1458 __module_get(newsock->ops->owner);
1459
1460 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1461 if (unlikely(newfd < 0)) {
1462 err = newfd;
1463 sock_release(newsock);
1464 goto out_put;
1465 }
1466
1467 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1468 if (err < 0)
1469 goto out_fd_simple;
1470
1471 err = security_socket_accept(sock, newsock);
1472 if (err)
1473 goto out_fd;
1474
1475 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1476 if (err < 0)
1477 goto out_fd;
1478
1479 if (upeer_sockaddr) {
1480 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1481 &len, 2) < 0) {
1482 err = -ECONNABORTED;
1483 goto out_fd;
1484 }
1485 err = move_addr_to_user((struct sockaddr *)&address,
1486 len, upeer_sockaddr, upeer_addrlen);
1487 if (err < 0)
1488 goto out_fd;
1489 }
1490
1491 /* File flags are not inherited via accept() unlike another OSes. */
1492
1493 fd_install(newfd, newfile);
1494 err = newfd;
1495
1496 security_socket_post_accept(sock, newsock);
1497
1498 out_put:
1499 fput_light(sock->file, fput_needed);
1500 out:
1501 return err;
1502 out_fd_simple:
1503 sock_release(newsock);
1504 put_filp(newfile);
1505 put_unused_fd(newfd);
1506 goto out_put;
1507 out_fd:
1508 fput(newfile);
1509 put_unused_fd(newfd);
1510 goto out_put;
1511 }
1512
1513 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1514 int __user *upeer_addrlen)
1515 {
1516 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1517 }
1518
1519 /*
1520 * Attempt to connect to a socket with the server address. The address
1521 * is in user space so we verify it is OK and move it to kernel space.
1522 *
1523 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1524 * break bindings
1525 *
1526 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1527 * other SEQPACKET protocols that take time to connect() as it doesn't
1528 * include the -EINPROGRESS status for such sockets.
1529 */
1530
1531 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1532 int addrlen)
1533 {
1534 struct socket *sock;
1535 struct sockaddr_storage address;
1536 int err, fput_needed;
1537
1538 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1539 if (!sock)
1540 goto out;
1541 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1542 if (err < 0)
1543 goto out_put;
1544
1545 err =
1546 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1547 if (err)
1548 goto out_put;
1549
1550 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1551 sock->file->f_flags);
1552 out_put:
1553 fput_light(sock->file, fput_needed);
1554 out:
1555 return err;
1556 }
1557
1558 /*
1559 * Get the local address ('name') of a socket object. Move the obtained
1560 * name to user space.
1561 */
1562
1563 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1564 int __user *usockaddr_len)
1565 {
1566 struct socket *sock;
1567 struct sockaddr_storage address;
1568 int len, err, fput_needed;
1569
1570 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1571 if (!sock)
1572 goto out;
1573
1574 err = security_socket_getsockname(sock);
1575 if (err)
1576 goto out_put;
1577
1578 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1579 if (err)
1580 goto out_put;
1581 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1582
1583 out_put:
1584 fput_light(sock->file, fput_needed);
1585 out:
1586 return err;
1587 }
1588
1589 /*
1590 * Get the remote address ('name') of a socket object. Move the obtained
1591 * name to user space.
1592 */
1593
1594 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1595 int __user *usockaddr_len)
1596 {
1597 struct socket *sock;
1598 struct sockaddr_storage address;
1599 int len, err, fput_needed;
1600
1601 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1602 if (sock != NULL) {
1603 err = security_socket_getpeername(sock);
1604 if (err) {
1605 fput_light(sock->file, fput_needed);
1606 return err;
1607 }
1608
1609 err =
1610 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1611 1);
1612 if (!err)
1613 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1614 usockaddr_len);
1615 fput_light(sock->file, fput_needed);
1616 }
1617 return err;
1618 }
1619
1620 /*
1621 * Send a datagram to a given address. We move the address into kernel
1622 * space and check the user space data area is readable before invoking
1623 * the protocol.
1624 */
1625
1626 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1627 unsigned flags, struct sockaddr __user *addr,
1628 int addr_len)
1629 {
1630 struct socket *sock;
1631 struct sockaddr_storage address;
1632 int err;
1633 struct msghdr msg;
1634 struct iovec iov;
1635 int fput_needed;
1636
1637 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1638 if (!sock)
1639 goto out;
1640
1641 iov.iov_base = buff;
1642 iov.iov_len = len;
1643 msg.msg_name = NULL;
1644 msg.msg_iov = &iov;
1645 msg.msg_iovlen = 1;
1646 msg.msg_control = NULL;
1647 msg.msg_controllen = 0;
1648 msg.msg_namelen = 0;
1649 if (addr) {
1650 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1651 if (err < 0)
1652 goto out_put;
1653 msg.msg_name = (struct sockaddr *)&address;
1654 msg.msg_namelen = addr_len;
1655 }
1656 if (sock->file->f_flags & O_NONBLOCK)
1657 flags |= MSG_DONTWAIT;
1658 msg.msg_flags = flags;
1659 err = sock_sendmsg(sock, &msg, len);
1660
1661 out_put:
1662 fput_light(sock->file, fput_needed);
1663 out:
1664 return err;
1665 }
1666
1667 /*
1668 * Send a datagram down a socket.
1669 */
1670
1671 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1672 {
1673 return sys_sendto(fd, buff, len, flags, NULL, 0);
1674 }
1675
1676 /*
1677 * Receive a frame from the socket and optionally record the address of the
1678 * sender. We verify the buffers are writable and if needed move the
1679 * sender address from kernel to user space.
1680 */
1681
1682 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1683 unsigned flags, struct sockaddr __user *addr,
1684 int __user *addr_len)
1685 {
1686 struct socket *sock;
1687 struct iovec iov;
1688 struct msghdr msg;
1689 struct sockaddr_storage address;
1690 int err, err2;
1691 int fput_needed;
1692
1693 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694 if (!sock)
1695 goto out;
1696
1697 msg.msg_control = NULL;
1698 msg.msg_controllen = 0;
1699 msg.msg_iovlen = 1;
1700 msg.msg_iov = &iov;
1701 iov.iov_len = size;
1702 iov.iov_base = ubuf;
1703 msg.msg_name = (struct sockaddr *)&address;
1704 msg.msg_namelen = sizeof(address);
1705 if (sock->file->f_flags & O_NONBLOCK)
1706 flags |= MSG_DONTWAIT;
1707 err = sock_recvmsg(sock, &msg, size, flags);
1708
1709 if (err >= 0 && addr != NULL) {
1710 err2 = move_addr_to_user((struct sockaddr *)&address,
1711 msg.msg_namelen, addr, addr_len);
1712 if (err2 < 0)
1713 err = err2;
1714 }
1715
1716 fput_light(sock->file, fput_needed);
1717 out:
1718 return err;
1719 }
1720
1721 /*
1722 * Receive a datagram from a socket.
1723 */
1724
1725 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1726 unsigned flags)
1727 {
1728 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1729 }
1730
1731 /*
1732 * Set a socket option. Because we don't know the option lengths we have
1733 * to pass the user mode parameter for the protocols to sort out.
1734 */
1735
1736 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1737 char __user *optval, int optlen)
1738 {
1739 int err, fput_needed;
1740 struct socket *sock;
1741
1742 if (optlen < 0)
1743 return -EINVAL;
1744
1745 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746 if (sock != NULL) {
1747 err = security_socket_setsockopt(sock, level, optname);
1748 if (err)
1749 goto out_put;
1750
1751 if (level == SOL_SOCKET)
1752 err =
1753 sock_setsockopt(sock, level, optname, optval,
1754 optlen);
1755 else
1756 err =
1757 sock->ops->setsockopt(sock, level, optname, optval,
1758 optlen);
1759 out_put:
1760 fput_light(sock->file, fput_needed);
1761 }
1762 return err;
1763 }
1764
1765 /*
1766 * Get a socket option. Because we don't know the option lengths we have
1767 * to pass a user mode parameter for the protocols to sort out.
1768 */
1769
1770 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1771 char __user *optval, int __user *optlen)
1772 {
1773 int err, fput_needed;
1774 struct socket *sock;
1775
1776 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777 if (sock != NULL) {
1778 err = security_socket_getsockopt(sock, level, optname);
1779 if (err)
1780 goto out_put;
1781
1782 if (level == SOL_SOCKET)
1783 err =
1784 sock_getsockopt(sock, level, optname, optval,
1785 optlen);
1786 else
1787 err =
1788 sock->ops->getsockopt(sock, level, optname, optval,
1789 optlen);
1790 out_put:
1791 fput_light(sock->file, fput_needed);
1792 }
1793 return err;
1794 }
1795
1796 /*
1797 * Shutdown a socket.
1798 */
1799
1800 asmlinkage long sys_shutdown(int fd, int how)
1801 {
1802 int err, fput_needed;
1803 struct socket *sock;
1804
1805 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 if (sock != NULL) {
1807 err = security_socket_shutdown(sock, how);
1808 if (!err)
1809 err = sock->ops->shutdown(sock, how);
1810 fput_light(sock->file, fput_needed);
1811 }
1812 return err;
1813 }
1814
1815 /* A couple of helpful macros for getting the address of the 32/64 bit
1816 * fields which are the same type (int / unsigned) on our platforms.
1817 */
1818 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1819 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1820 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1821
1822 /*
1823 * BSD sendmsg interface
1824 */
1825
1826 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1827 {
1828 struct compat_msghdr __user *msg_compat =
1829 (struct compat_msghdr __user *)msg;
1830 struct socket *sock;
1831 struct sockaddr_storage address;
1832 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1833 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1834 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1835 /* 20 is size of ipv6_pktinfo */
1836 unsigned char *ctl_buf = ctl;
1837 struct msghdr msg_sys;
1838 int err, ctl_len, iov_size, total_len;
1839 int fput_needed;
1840
1841 err = -EFAULT;
1842 if (MSG_CMSG_COMPAT & flags) {
1843 if (get_compat_msghdr(&msg_sys, msg_compat))
1844 return -EFAULT;
1845 }
1846 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1847 return -EFAULT;
1848
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 if (!sock)
1851 goto out;
1852
1853 /* do not move before msg_sys is valid */
1854 err = -EMSGSIZE;
1855 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1856 goto out_put;
1857
1858 /* Check whether to allocate the iovec area */
1859 err = -ENOMEM;
1860 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1861 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1862 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1863 if (!iov)
1864 goto out_put;
1865 }
1866
1867 /* This will also move the address data into kernel space */
1868 if (MSG_CMSG_COMPAT & flags) {
1869 err = verify_compat_iovec(&msg_sys, iov,
1870 (struct sockaddr *)&address,
1871 VERIFY_READ);
1872 } else
1873 err = verify_iovec(&msg_sys, iov,
1874 (struct sockaddr *)&address,
1875 VERIFY_READ);
1876 if (err < 0)
1877 goto out_freeiov;
1878 total_len = err;
1879
1880 err = -ENOBUFS;
1881
1882 if (msg_sys.msg_controllen > INT_MAX)
1883 goto out_freeiov;
1884 ctl_len = msg_sys.msg_controllen;
1885 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1886 err =
1887 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1888 sizeof(ctl));
1889 if (err)
1890 goto out_freeiov;
1891 ctl_buf = msg_sys.msg_control;
1892 ctl_len = msg_sys.msg_controllen;
1893 } else if (ctl_len) {
1894 if (ctl_len > sizeof(ctl)) {
1895 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1896 if (ctl_buf == NULL)
1897 goto out_freeiov;
1898 }
1899 err = -EFAULT;
1900 /*
1901 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1902 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1903 * checking falls down on this.
1904 */
1905 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1906 ctl_len))
1907 goto out_freectl;
1908 msg_sys.msg_control = ctl_buf;
1909 }
1910 msg_sys.msg_flags = flags;
1911
1912 if (sock->file->f_flags & O_NONBLOCK)
1913 msg_sys.msg_flags |= MSG_DONTWAIT;
1914 err = sock_sendmsg(sock, &msg_sys, total_len);
1915
1916 out_freectl:
1917 if (ctl_buf != ctl)
1918 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1919 out_freeiov:
1920 if (iov != iovstack)
1921 sock_kfree_s(sock->sk, iov, iov_size);
1922 out_put:
1923 fput_light(sock->file, fput_needed);
1924 out:
1925 return err;
1926 }
1927
1928 /*
1929 * BSD recvmsg interface
1930 */
1931
1932 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1933 unsigned int flags)
1934 {
1935 struct compat_msghdr __user *msg_compat =
1936 (struct compat_msghdr __user *)msg;
1937 struct socket *sock;
1938 struct iovec iovstack[UIO_FASTIOV];
1939 struct iovec *iov = iovstack;
1940 struct msghdr msg_sys;
1941 unsigned long cmsg_ptr;
1942 int err, iov_size, total_len, len;
1943 int fput_needed;
1944
1945 /* kernel mode address */
1946 struct sockaddr_storage addr;
1947
1948 /* user mode address pointers */
1949 struct sockaddr __user *uaddr;
1950 int __user *uaddr_len;
1951
1952 if (MSG_CMSG_COMPAT & flags) {
1953 if (get_compat_msghdr(&msg_sys, msg_compat))
1954 return -EFAULT;
1955 }
1956 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1957 return -EFAULT;
1958
1959 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1960 if (!sock)
1961 goto out;
1962
1963 err = -EMSGSIZE;
1964 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1965 goto out_put;
1966
1967 /* Check whether to allocate the iovec area */
1968 err = -ENOMEM;
1969 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1970 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1971 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1972 if (!iov)
1973 goto out_put;
1974 }
1975
1976 /*
1977 * Save the user-mode address (verify_iovec will change the
1978 * kernel msghdr to use the kernel address space)
1979 */
1980
1981 uaddr = (__force void __user *)msg_sys.msg_name;
1982 uaddr_len = COMPAT_NAMELEN(msg);
1983 if (MSG_CMSG_COMPAT & flags) {
1984 err = verify_compat_iovec(&msg_sys, iov,
1985 (struct sockaddr *)&addr,
1986 VERIFY_WRITE);
1987 } else
1988 err = verify_iovec(&msg_sys, iov,
1989 (struct sockaddr *)&addr,
1990 VERIFY_WRITE);
1991 if (err < 0)
1992 goto out_freeiov;
1993 total_len = err;
1994
1995 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1996 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1997
1998 if (sock->file->f_flags & O_NONBLOCK)
1999 flags |= MSG_DONTWAIT;
2000 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2001 if (err < 0)
2002 goto out_freeiov;
2003 len = err;
2004
2005 if (uaddr != NULL) {
2006 err = move_addr_to_user((struct sockaddr *)&addr,
2007 msg_sys.msg_namelen, uaddr,
2008 uaddr_len);
2009 if (err < 0)
2010 goto out_freeiov;
2011 }
2012 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2013 COMPAT_FLAGS(msg));
2014 if (err)
2015 goto out_freeiov;
2016 if (MSG_CMSG_COMPAT & flags)
2017 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2018 &msg_compat->msg_controllen);
2019 else
2020 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2021 &msg->msg_controllen);
2022 if (err)
2023 goto out_freeiov;
2024 err = len;
2025
2026 out_freeiov:
2027 if (iov != iovstack)
2028 sock_kfree_s(sock->sk, iov, iov_size);
2029 out_put:
2030 fput_light(sock->file, fput_needed);
2031 out:
2032 return err;
2033 }
2034
2035 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2036
2037 /* Argument list sizes for sys_socketcall */
2038 #define AL(x) ((x) * sizeof(unsigned long))
2039 static const unsigned char nargs[19]={
2040 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2041 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2042 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2043 AL(4)
2044 };
2045
2046 #undef AL
2047
2048 /*
2049 * System call vectors.
2050 *
2051 * Argument checking cleaned up. Saved 20% in size.
2052 * This function doesn't need to set the kernel lock because
2053 * it is set by the callees.
2054 */
2055
2056 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2057 {
2058 unsigned long a[6];
2059 unsigned long a0, a1;
2060 int err;
2061
2062 if (call < 1 || call > SYS_ACCEPT4)
2063 return -EINVAL;
2064
2065 /* copy_from_user should be SMP safe. */
2066 if (copy_from_user(a, args, nargs[call]))
2067 return -EFAULT;
2068
2069 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2070 if (err)
2071 return err;
2072
2073 a0 = a[0];
2074 a1 = a[1];
2075
2076 switch (call) {
2077 case SYS_SOCKET:
2078 err = sys_socket(a0, a1, a[2]);
2079 break;
2080 case SYS_BIND:
2081 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2082 break;
2083 case SYS_CONNECT:
2084 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2085 break;
2086 case SYS_LISTEN:
2087 err = sys_listen(a0, a1);
2088 break;
2089 case SYS_ACCEPT:
2090 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2091 (int __user *)a[2], 0);
2092 break;
2093 case SYS_GETSOCKNAME:
2094 err =
2095 sys_getsockname(a0, (struct sockaddr __user *)a1,
2096 (int __user *)a[2]);
2097 break;
2098 case SYS_GETPEERNAME:
2099 err =
2100 sys_getpeername(a0, (struct sockaddr __user *)a1,
2101 (int __user *)a[2]);
2102 break;
2103 case SYS_SOCKETPAIR:
2104 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2105 break;
2106 case SYS_SEND:
2107 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2108 break;
2109 case SYS_SENDTO:
2110 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2111 (struct sockaddr __user *)a[4], a[5]);
2112 break;
2113 case SYS_RECV:
2114 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2115 break;
2116 case SYS_RECVFROM:
2117 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2118 (struct sockaddr __user *)a[4],
2119 (int __user *)a[5]);
2120 break;
2121 case SYS_SHUTDOWN:
2122 err = sys_shutdown(a0, a1);
2123 break;
2124 case SYS_SETSOCKOPT:
2125 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2126 break;
2127 case SYS_GETSOCKOPT:
2128 err =
2129 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2130 (int __user *)a[4]);
2131 break;
2132 case SYS_SENDMSG:
2133 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2134 break;
2135 case SYS_RECVMSG:
2136 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2137 break;
2138 case SYS_ACCEPT4:
2139 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2140 (int __user *)a[2], a[3]);
2141 break;
2142 default:
2143 err = -EINVAL;
2144 break;
2145 }
2146 return err;
2147 }
2148
2149 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2150
2151 /**
2152 * sock_register - add a socket protocol handler
2153 * @ops: description of protocol
2154 *
2155 * This function is called by a protocol handler that wants to
2156 * advertise its address family, and have it linked into the
2157 * socket interface. The value ops->family coresponds to the
2158 * socket system call protocol family.
2159 */
2160 int sock_register(const struct net_proto_family *ops)
2161 {
2162 int err;
2163
2164 if (ops->family >= NPROTO) {
2165 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2166 NPROTO);
2167 return -ENOBUFS;
2168 }
2169
2170 spin_lock(&net_family_lock);
2171 if (net_families[ops->family])
2172 err = -EEXIST;
2173 else {
2174 net_families[ops->family] = ops;
2175 err = 0;
2176 }
2177 spin_unlock(&net_family_lock);
2178
2179 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2180 return err;
2181 }
2182
2183 /**
2184 * sock_unregister - remove a protocol handler
2185 * @family: protocol family to remove
2186 *
2187 * This function is called by a protocol handler that wants to
2188 * remove its address family, and have it unlinked from the
2189 * new socket creation.
2190 *
2191 * If protocol handler is a module, then it can use module reference
2192 * counts to protect against new references. If protocol handler is not
2193 * a module then it needs to provide its own protection in
2194 * the ops->create routine.
2195 */
2196 void sock_unregister(int family)
2197 {
2198 BUG_ON(family < 0 || family >= NPROTO);
2199
2200 spin_lock(&net_family_lock);
2201 net_families[family] = NULL;
2202 spin_unlock(&net_family_lock);
2203
2204 synchronize_rcu();
2205
2206 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2207 }
2208
2209 static int __init sock_init(void)
2210 {
2211 /*
2212 * Initialize sock SLAB cache.
2213 */
2214
2215 sk_init();
2216
2217 /*
2218 * Initialize skbuff SLAB cache
2219 */
2220 skb_init();
2221
2222 /*
2223 * Initialize the protocols module.
2224 */
2225
2226 init_inodecache();
2227 register_filesystem(&sock_fs_type);
2228 sock_mnt = kern_mount(&sock_fs_type);
2229
2230 /* The real protocol initialization is performed in later initcalls.
2231 */
2232
2233 #ifdef CONFIG_NETFILTER
2234 netfilter_init();
2235 #endif
2236
2237 return 0;
2238 }
2239
2240 core_initcall(sock_init); /* early initcall */
2241
2242 #ifdef CONFIG_PROC_FS
2243 void socket_seq_show(struct seq_file *seq)
2244 {
2245 int cpu;
2246 int counter = 0;
2247
2248 for_each_possible_cpu(cpu)
2249 counter += per_cpu(sockets_in_use, cpu);
2250
2251 /* It can be negative, by the way. 8) */
2252 if (counter < 0)
2253 counter = 0;
2254
2255 seq_printf(seq, "sockets: used %d\n", counter);
2256 }
2257 #endif /* CONFIG_PROC_FS */
2258
2259 #ifdef CONFIG_COMPAT
2260 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2261 unsigned long arg)
2262 {
2263 struct socket *sock = file->private_data;
2264 int ret = -ENOIOCTLCMD;
2265 struct sock *sk;
2266 struct net *net;
2267
2268 sk = sock->sk;
2269 net = sock_net(sk);
2270
2271 if (sock->ops->compat_ioctl)
2272 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2273
2274 if (ret == -ENOIOCTLCMD &&
2275 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2276 ret = compat_wext_handle_ioctl(net, cmd, arg);
2277
2278 return ret;
2279 }
2280 #endif
2281
2282 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2283 {
2284 return sock->ops->bind(sock, addr, addrlen);
2285 }
2286
2287 int kernel_listen(struct socket *sock, int backlog)
2288 {
2289 return sock->ops->listen(sock, backlog);
2290 }
2291
2292 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2293 {
2294 struct sock *sk = sock->sk;
2295 int err;
2296
2297 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2298 newsock);
2299 if (err < 0)
2300 goto done;
2301
2302 err = sock->ops->accept(sock, *newsock, flags);
2303 if (err < 0) {
2304 sock_release(*newsock);
2305 *newsock = NULL;
2306 goto done;
2307 }
2308
2309 (*newsock)->ops = sock->ops;
2310
2311 done:
2312 return err;
2313 }
2314
2315 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2316 int flags)
2317 {
2318 return sock->ops->connect(sock, addr, addrlen, flags);
2319 }
2320
2321 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2322 int *addrlen)
2323 {
2324 return sock->ops->getname(sock, addr, addrlen, 0);
2325 }
2326
2327 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2328 int *addrlen)
2329 {
2330 return sock->ops->getname(sock, addr, addrlen, 1);
2331 }
2332
2333 int kernel_getsockopt(struct socket *sock, int level, int optname,
2334 char *optval, int *optlen)
2335 {
2336 mm_segment_t oldfs = get_fs();
2337 int err;
2338
2339 set_fs(KERNEL_DS);
2340 if (level == SOL_SOCKET)
2341 err = sock_getsockopt(sock, level, optname, optval, optlen);
2342 else
2343 err = sock->ops->getsockopt(sock, level, optname, optval,
2344 optlen);
2345 set_fs(oldfs);
2346 return err;
2347 }
2348
2349 int kernel_setsockopt(struct socket *sock, int level, int optname,
2350 char *optval, int optlen)
2351 {
2352 mm_segment_t oldfs = get_fs();
2353 int err;
2354
2355 set_fs(KERNEL_DS);
2356 if (level == SOL_SOCKET)
2357 err = sock_setsockopt(sock, level, optname, optval, optlen);
2358 else
2359 err = sock->ops->setsockopt(sock, level, optname, optval,
2360 optlen);
2361 set_fs(oldfs);
2362 return err;
2363 }
2364
2365 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2366 size_t size, int flags)
2367 {
2368 if (sock->ops->sendpage)
2369 return sock->ops->sendpage(sock, page, offset, size, flags);
2370
2371 return sock_no_sendpage(sock, page, offset, size, flags);
2372 }
2373
2374 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2375 {
2376 mm_segment_t oldfs = get_fs();
2377 int err;
2378
2379 set_fs(KERNEL_DS);
2380 err = sock->ops->ioctl(sock, cmd, arg);
2381 set_fs(oldfs);
2382
2383 return err;
2384 }
2385
2386 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2387 {
2388 return sock->ops->shutdown(sock, how);
2389 }
2390
2391 EXPORT_SYMBOL(sock_create);
2392 EXPORT_SYMBOL(sock_create_kern);
2393 EXPORT_SYMBOL(sock_create_lite);
2394 EXPORT_SYMBOL(sock_map_fd);
2395 EXPORT_SYMBOL(sock_recvmsg);
2396 EXPORT_SYMBOL(sock_register);
2397 EXPORT_SYMBOL(sock_release);
2398 EXPORT_SYMBOL(sock_sendmsg);
2399 EXPORT_SYMBOL(sock_unregister);
2400 EXPORT_SYMBOL(sock_wake_async);
2401 EXPORT_SYMBOL(sockfd_lookup);
2402 EXPORT_SYMBOL(kernel_sendmsg);
2403 EXPORT_SYMBOL(kernel_recvmsg);
2404 EXPORT_SYMBOL(kernel_bind);
2405 EXPORT_SYMBOL(kernel_listen);
2406 EXPORT_SYMBOL(kernel_accept);
2407 EXPORT_SYMBOL(kernel_connect);
2408 EXPORT_SYMBOL(kernel_getsockname);
2409 EXPORT_SYMBOL(kernel_getpeername);
2410 EXPORT_SYMBOL(kernel_getsockopt);
2411 EXPORT_SYMBOL(kernel_setsockopt);
2412 EXPORT_SYMBOL(kernel_sendpage);
2413 EXPORT_SYMBOL(kernel_sock_ioctl);
2414 EXPORT_SYMBOL(kernel_sock_shutdown);