netfilter: ipt_CLUSTERIP: put config struct if we can't increment ct refcount
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
412
413 d_instantiate(path.dentry, SOCK_INODE(sock));
414
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 &socket_file_ops);
417 if (IS_ERR(file)) {
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
420 path_put(&path);
421 return file;
422 }
423
424 sock->file = file;
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
427 return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0))
436 return fd;
437
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
442 }
443
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
446 }
447
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
452
453 *err = -ENOTSOCK;
454 return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457
458 /**
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
462 *
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
467 *
468 * On a success the socket object pointer is returned.
469 */
470
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 struct file *file;
474 struct socket *sock;
475
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
480 }
481
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 struct fd f = fdget(fd);
492 struct socket *sock;
493
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
500 }
501 fdput(f);
502 }
503 return NULL;
504 }
505
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
508 {
509 ssize_t len;
510 ssize_t used = 0;
511
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
520 }
521
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
529 }
530
531 return used;
532 }
533
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 int err = simple_setattr(dentry, iattr);
537
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
540
541 sock->sk->sk_uid = iattr->ia_uid;
542 }
543
544 return err;
545 }
546
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
550 };
551
552 /**
553 * sock_alloc - allocate a socket
554 *
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
557 * NULL is returned.
558 */
559
560 struct socket *sock_alloc(void)
561 {
562 struct inode *inode;
563 struct socket *sock;
564
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 if (!inode)
567 return NULL;
568
569 sock = SOCKET_I(inode);
570
571 inode->i_ino = get_next_ino();
572 inode->i_mode = S_IFSOCK | S_IRWXUGO;
573 inode->i_uid = current_fsuid();
574 inode->i_gid = current_fsgid();
575 inode->i_op = &sockfs_inode_ops;
576
577 this_cpu_add(sockets_in_use, 1);
578 return sock;
579 }
580 EXPORT_SYMBOL(sock_alloc);
581
582 /**
583 * sock_release - close a socket
584 * @sock: socket to close
585 *
586 * The socket is released from the protocol stack if it has a release
587 * callback, and the inode is then released if the socket is bound to
588 * an inode not a file.
589 */
590
591 void sock_release(struct socket *sock)
592 {
593 if (sock->ops) {
594 struct module *owner = sock->ops->owner;
595
596 sock->ops->release(sock);
597 sock->ops = NULL;
598 module_put(owner);
599 }
600
601 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
602 pr_err("%s: fasync list not empty!\n", __func__);
603
604 this_cpu_sub(sockets_in_use, 1);
605 if (!sock->file) {
606 iput(SOCK_INODE(sock));
607 return;
608 }
609 sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612
613 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
614 {
615 u8 flags = *tx_flags;
616
617 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 flags |= SKBTX_HW_TSTAMP;
619
620 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 flags |= SKBTX_SW_TSTAMP;
622
623 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 flags |= SKBTX_SCHED_TSTAMP;
625
626 *tx_flags = flags;
627 }
628 EXPORT_SYMBOL(__sock_tx_timestamp);
629
630 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
631 {
632 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
633 BUG_ON(ret == -EIOCBQUEUED);
634 return ret;
635 }
636
637 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
638 {
639 int err = security_socket_sendmsg(sock, msg,
640 msg_data_left(msg));
641
642 return err ?: sock_sendmsg_nosec(sock, msg);
643 }
644 EXPORT_SYMBOL(sock_sendmsg);
645
646 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
647 struct kvec *vec, size_t num, size_t size)
648 {
649 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
650 return sock_sendmsg(sock, msg);
651 }
652 EXPORT_SYMBOL(kernel_sendmsg);
653
654 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
655 struct kvec *vec, size_t num, size_t size)
656 {
657 struct socket *sock = sk->sk_socket;
658
659 if (!sock->ops->sendmsg_locked)
660 return sock_no_sendmsg_locked(sk, msg, size);
661
662 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
663
664 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
665 }
666 EXPORT_SYMBOL(kernel_sendmsg_locked);
667
668 static bool skb_is_err_queue(const struct sk_buff *skb)
669 {
670 /* pkt_type of skbs enqueued on the error queue are set to
671 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
672 * in recvmsg, since skbs received on a local socket will never
673 * have a pkt_type of PACKET_OUTGOING.
674 */
675 return skb->pkt_type == PACKET_OUTGOING;
676 }
677
678 /* On transmit, software and hardware timestamps are returned independently.
679 * As the two skb clones share the hardware timestamp, which may be updated
680 * before the software timestamp is received, a hardware TX timestamp may be
681 * returned only if there is no software TX timestamp. Ignore false software
682 * timestamps, which may be made in the __sock_recv_timestamp() call when the
683 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
684 * hardware timestamp.
685 */
686 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
687 {
688 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
689 }
690
691 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
692 {
693 struct scm_ts_pktinfo ts_pktinfo;
694 struct net_device *orig_dev;
695
696 if (!skb_mac_header_was_set(skb))
697 return;
698
699 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
700
701 rcu_read_lock();
702 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
703 if (orig_dev)
704 ts_pktinfo.if_index = orig_dev->ifindex;
705 rcu_read_unlock();
706
707 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
708 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
709 sizeof(ts_pktinfo), &ts_pktinfo);
710 }
711
712 /*
713 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
714 */
715 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
716 struct sk_buff *skb)
717 {
718 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
719 struct scm_timestamping tss;
720 int empty = 1, false_tstamp = 0;
721 struct skb_shared_hwtstamps *shhwtstamps =
722 skb_hwtstamps(skb);
723
724 /* Race occurred between timestamp enabling and packet
725 receiving. Fill in the current time for now. */
726 if (need_software_tstamp && skb->tstamp == 0) {
727 __net_timestamp(skb);
728 false_tstamp = 1;
729 }
730
731 if (need_software_tstamp) {
732 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
733 struct timeval tv;
734 skb_get_timestamp(skb, &tv);
735 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
736 sizeof(tv), &tv);
737 } else {
738 struct timespec ts;
739 skb_get_timestampns(skb, &ts);
740 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
741 sizeof(ts), &ts);
742 }
743 }
744
745 memset(&tss, 0, sizeof(tss));
746 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
747 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
748 empty = 0;
749 if (shhwtstamps &&
750 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
751 !skb_is_swtx_tstamp(skb, false_tstamp) &&
752 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
753 empty = 0;
754 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
755 !skb_is_err_queue(skb))
756 put_ts_pktinfo(msg, skb);
757 }
758 if (!empty) {
759 put_cmsg(msg, SOL_SOCKET,
760 SCM_TIMESTAMPING, sizeof(tss), &tss);
761
762 if (skb_is_err_queue(skb) && skb->len &&
763 SKB_EXT_ERR(skb)->opt_stats)
764 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
765 skb->len, skb->data);
766 }
767 }
768 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
769
770 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
771 struct sk_buff *skb)
772 {
773 int ack;
774
775 if (!sock_flag(sk, SOCK_WIFI_STATUS))
776 return;
777 if (!skb->wifi_acked_valid)
778 return;
779
780 ack = skb->wifi_acked;
781
782 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
783 }
784 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
785
786 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
787 struct sk_buff *skb)
788 {
789 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
790 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
791 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
792 }
793
794 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
795 struct sk_buff *skb)
796 {
797 sock_recv_timestamp(msg, sk, skb);
798 sock_recv_drops(msg, sk, skb);
799 }
800 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
801
802 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
803 int flags)
804 {
805 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
806 }
807
808 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
809 {
810 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
811
812 return err ?: sock_recvmsg_nosec(sock, msg, flags);
813 }
814 EXPORT_SYMBOL(sock_recvmsg);
815
816 /**
817 * kernel_recvmsg - Receive a message from a socket (kernel space)
818 * @sock: The socket to receive the message from
819 * @msg: Received message
820 * @vec: Input s/g array for message data
821 * @num: Size of input s/g array
822 * @size: Number of bytes to read
823 * @flags: Message flags (MSG_DONTWAIT, etc...)
824 *
825 * On return the msg structure contains the scatter/gather array passed in the
826 * vec argument. The array is modified so that it consists of the unfilled
827 * portion of the original array.
828 *
829 * The returned value is the total number of bytes received, or an error.
830 */
831 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
832 struct kvec *vec, size_t num, size_t size, int flags)
833 {
834 mm_segment_t oldfs = get_fs();
835 int result;
836
837 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
838 set_fs(KERNEL_DS);
839 result = sock_recvmsg(sock, msg, flags);
840 set_fs(oldfs);
841 return result;
842 }
843 EXPORT_SYMBOL(kernel_recvmsg);
844
845 static ssize_t sock_sendpage(struct file *file, struct page *page,
846 int offset, size_t size, loff_t *ppos, int more)
847 {
848 struct socket *sock;
849 int flags;
850
851 sock = file->private_data;
852
853 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
854 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
855 flags |= more;
856
857 return kernel_sendpage(sock, page, offset, size, flags);
858 }
859
860 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
861 struct pipe_inode_info *pipe, size_t len,
862 unsigned int flags)
863 {
864 struct socket *sock = file->private_data;
865
866 if (unlikely(!sock->ops->splice_read))
867 return -EINVAL;
868
869 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
870 }
871
872 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
873 {
874 struct file *file = iocb->ki_filp;
875 struct socket *sock = file->private_data;
876 struct msghdr msg = {.msg_iter = *to,
877 .msg_iocb = iocb};
878 ssize_t res;
879
880 if (file->f_flags & O_NONBLOCK)
881 msg.msg_flags = MSG_DONTWAIT;
882
883 if (iocb->ki_pos != 0)
884 return -ESPIPE;
885
886 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
887 return 0;
888
889 res = sock_recvmsg(sock, &msg, msg.msg_flags);
890 *to = msg.msg_iter;
891 return res;
892 }
893
894 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
895 {
896 struct file *file = iocb->ki_filp;
897 struct socket *sock = file->private_data;
898 struct msghdr msg = {.msg_iter = *from,
899 .msg_iocb = iocb};
900 ssize_t res;
901
902 if (iocb->ki_pos != 0)
903 return -ESPIPE;
904
905 if (file->f_flags & O_NONBLOCK)
906 msg.msg_flags = MSG_DONTWAIT;
907
908 if (sock->type == SOCK_SEQPACKET)
909 msg.msg_flags |= MSG_EOR;
910
911 res = sock_sendmsg(sock, &msg);
912 *from = msg.msg_iter;
913 return res;
914 }
915
916 /*
917 * Atomic setting of ioctl hooks to avoid race
918 * with module unload.
919 */
920
921 static DEFINE_MUTEX(br_ioctl_mutex);
922 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
923
924 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
925 {
926 mutex_lock(&br_ioctl_mutex);
927 br_ioctl_hook = hook;
928 mutex_unlock(&br_ioctl_mutex);
929 }
930 EXPORT_SYMBOL(brioctl_set);
931
932 static DEFINE_MUTEX(vlan_ioctl_mutex);
933 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
934
935 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
936 {
937 mutex_lock(&vlan_ioctl_mutex);
938 vlan_ioctl_hook = hook;
939 mutex_unlock(&vlan_ioctl_mutex);
940 }
941 EXPORT_SYMBOL(vlan_ioctl_set);
942
943 static DEFINE_MUTEX(dlci_ioctl_mutex);
944 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
945
946 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
947 {
948 mutex_lock(&dlci_ioctl_mutex);
949 dlci_ioctl_hook = hook;
950 mutex_unlock(&dlci_ioctl_mutex);
951 }
952 EXPORT_SYMBOL(dlci_ioctl_set);
953
954 static long sock_do_ioctl(struct net *net, struct socket *sock,
955 unsigned int cmd, unsigned long arg)
956 {
957 int err;
958 void __user *argp = (void __user *)arg;
959
960 err = sock->ops->ioctl(sock, cmd, arg);
961
962 /*
963 * If this ioctl is unknown try to hand it down
964 * to the NIC driver.
965 */
966 if (err == -ENOIOCTLCMD)
967 err = dev_ioctl(net, cmd, argp);
968
969 return err;
970 }
971
972 /*
973 * With an ioctl, arg may well be a user mode pointer, but we don't know
974 * what to do with it - that's up to the protocol still.
975 */
976
977 static struct ns_common *get_net_ns(struct ns_common *ns)
978 {
979 return &get_net(container_of(ns, struct net, ns))->ns;
980 }
981
982 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
983 {
984 struct socket *sock;
985 struct sock *sk;
986 void __user *argp = (void __user *)arg;
987 int pid, err;
988 struct net *net;
989
990 sock = file->private_data;
991 sk = sock->sk;
992 net = sock_net(sk);
993 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
994 err = dev_ioctl(net, cmd, argp);
995 } else
996 #ifdef CONFIG_WEXT_CORE
997 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
998 err = dev_ioctl(net, cmd, argp);
999 } else
1000 #endif
1001 switch (cmd) {
1002 case FIOSETOWN:
1003 case SIOCSPGRP:
1004 err = -EFAULT;
1005 if (get_user(pid, (int __user *)argp))
1006 break;
1007 err = f_setown(sock->file, pid, 1);
1008 break;
1009 case FIOGETOWN:
1010 case SIOCGPGRP:
1011 err = put_user(f_getown(sock->file),
1012 (int __user *)argp);
1013 break;
1014 case SIOCGIFBR:
1015 case SIOCSIFBR:
1016 case SIOCBRADDBR:
1017 case SIOCBRDELBR:
1018 err = -ENOPKG;
1019 if (!br_ioctl_hook)
1020 request_module("bridge");
1021
1022 mutex_lock(&br_ioctl_mutex);
1023 if (br_ioctl_hook)
1024 err = br_ioctl_hook(net, cmd, argp);
1025 mutex_unlock(&br_ioctl_mutex);
1026 break;
1027 case SIOCGIFVLAN:
1028 case SIOCSIFVLAN:
1029 err = -ENOPKG;
1030 if (!vlan_ioctl_hook)
1031 request_module("8021q");
1032
1033 mutex_lock(&vlan_ioctl_mutex);
1034 if (vlan_ioctl_hook)
1035 err = vlan_ioctl_hook(net, argp);
1036 mutex_unlock(&vlan_ioctl_mutex);
1037 break;
1038 case SIOCADDDLCI:
1039 case SIOCDELDLCI:
1040 err = -ENOPKG;
1041 if (!dlci_ioctl_hook)
1042 request_module("dlci");
1043
1044 mutex_lock(&dlci_ioctl_mutex);
1045 if (dlci_ioctl_hook)
1046 err = dlci_ioctl_hook(cmd, argp);
1047 mutex_unlock(&dlci_ioctl_mutex);
1048 break;
1049 case SIOCGSKNS:
1050 err = -EPERM;
1051 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1052 break;
1053
1054 err = open_related_ns(&net->ns, get_net_ns);
1055 break;
1056 default:
1057 err = sock_do_ioctl(net, sock, cmd, arg);
1058 break;
1059 }
1060 return err;
1061 }
1062
1063 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1064 {
1065 int err;
1066 struct socket *sock = NULL;
1067
1068 err = security_socket_create(family, type, protocol, 1);
1069 if (err)
1070 goto out;
1071
1072 sock = sock_alloc();
1073 if (!sock) {
1074 err = -ENOMEM;
1075 goto out;
1076 }
1077
1078 sock->type = type;
1079 err = security_socket_post_create(sock, family, type, protocol, 1);
1080 if (err)
1081 goto out_release;
1082
1083 out:
1084 *res = sock;
1085 return err;
1086 out_release:
1087 sock_release(sock);
1088 sock = NULL;
1089 goto out;
1090 }
1091 EXPORT_SYMBOL(sock_create_lite);
1092
1093 /* No kernel lock held - perfect */
1094 static unsigned int sock_poll(struct file *file, poll_table *wait)
1095 {
1096 unsigned int busy_flag = 0;
1097 struct socket *sock;
1098
1099 /*
1100 * We can't return errors to poll, so it's either yes or no.
1101 */
1102 sock = file->private_data;
1103
1104 if (sk_can_busy_loop(sock->sk)) {
1105 /* this socket can poll_ll so tell the system call */
1106 busy_flag = POLL_BUSY_LOOP;
1107
1108 /* once, only if requested by syscall */
1109 if (wait && (wait->_key & POLL_BUSY_LOOP))
1110 sk_busy_loop(sock->sk, 1);
1111 }
1112
1113 return busy_flag | sock->ops->poll(file, sock, wait);
1114 }
1115
1116 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1117 {
1118 struct socket *sock = file->private_data;
1119
1120 return sock->ops->mmap(file, sock, vma);
1121 }
1122
1123 static int sock_close(struct inode *inode, struct file *filp)
1124 {
1125 sock_release(SOCKET_I(inode));
1126 return 0;
1127 }
1128
1129 /*
1130 * Update the socket async list
1131 *
1132 * Fasync_list locking strategy.
1133 *
1134 * 1. fasync_list is modified only under process context socket lock
1135 * i.e. under semaphore.
1136 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1137 * or under socket lock
1138 */
1139
1140 static int sock_fasync(int fd, struct file *filp, int on)
1141 {
1142 struct socket *sock = filp->private_data;
1143 struct sock *sk = sock->sk;
1144 struct socket_wq *wq;
1145
1146 if (sk == NULL)
1147 return -EINVAL;
1148
1149 lock_sock(sk);
1150 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1151 fasync_helper(fd, filp, on, &wq->fasync_list);
1152
1153 if (!wq->fasync_list)
1154 sock_reset_flag(sk, SOCK_FASYNC);
1155 else
1156 sock_set_flag(sk, SOCK_FASYNC);
1157
1158 release_sock(sk);
1159 return 0;
1160 }
1161
1162 /* This function may be called only under rcu_lock */
1163
1164 int sock_wake_async(struct socket_wq *wq, int how, int band)
1165 {
1166 if (!wq || !wq->fasync_list)
1167 return -1;
1168
1169 switch (how) {
1170 case SOCK_WAKE_WAITD:
1171 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1172 break;
1173 goto call_kill;
1174 case SOCK_WAKE_SPACE:
1175 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1176 break;
1177 /* fall through */
1178 case SOCK_WAKE_IO:
1179 call_kill:
1180 kill_fasync(&wq->fasync_list, SIGIO, band);
1181 break;
1182 case SOCK_WAKE_URG:
1183 kill_fasync(&wq->fasync_list, SIGURG, band);
1184 }
1185
1186 return 0;
1187 }
1188 EXPORT_SYMBOL(sock_wake_async);
1189
1190 int __sock_create(struct net *net, int family, int type, int protocol,
1191 struct socket **res, int kern)
1192 {
1193 int err;
1194 struct socket *sock;
1195 const struct net_proto_family *pf;
1196
1197 /*
1198 * Check protocol is in range
1199 */
1200 if (family < 0 || family >= NPROTO)
1201 return -EAFNOSUPPORT;
1202 if (type < 0 || type >= SOCK_MAX)
1203 return -EINVAL;
1204
1205 /* Compatibility.
1206
1207 This uglymoron is moved from INET layer to here to avoid
1208 deadlock in module load.
1209 */
1210 if (family == PF_INET && type == SOCK_PACKET) {
1211 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1212 current->comm);
1213 family = PF_PACKET;
1214 }
1215
1216 err = security_socket_create(family, type, protocol, kern);
1217 if (err)
1218 return err;
1219
1220 /*
1221 * Allocate the socket and allow the family to set things up. if
1222 * the protocol is 0, the family is instructed to select an appropriate
1223 * default.
1224 */
1225 sock = sock_alloc();
1226 if (!sock) {
1227 net_warn_ratelimited("socket: no more sockets\n");
1228 return -ENFILE; /* Not exactly a match, but its the
1229 closest posix thing */
1230 }
1231
1232 sock->type = type;
1233
1234 #ifdef CONFIG_MODULES
1235 /* Attempt to load a protocol module if the find failed.
1236 *
1237 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1238 * requested real, full-featured networking support upon configuration.
1239 * Otherwise module support will break!
1240 */
1241 if (rcu_access_pointer(net_families[family]) == NULL)
1242 request_module("net-pf-%d", family);
1243 #endif
1244
1245 rcu_read_lock();
1246 pf = rcu_dereference(net_families[family]);
1247 err = -EAFNOSUPPORT;
1248 if (!pf)
1249 goto out_release;
1250
1251 /*
1252 * We will call the ->create function, that possibly is in a loadable
1253 * module, so we have to bump that loadable module refcnt first.
1254 */
1255 if (!try_module_get(pf->owner))
1256 goto out_release;
1257
1258 /* Now protected by module ref count */
1259 rcu_read_unlock();
1260
1261 err = pf->create(net, sock, protocol, kern);
1262 if (err < 0)
1263 goto out_module_put;
1264
1265 /*
1266 * Now to bump the refcnt of the [loadable] module that owns this
1267 * socket at sock_release time we decrement its refcnt.
1268 */
1269 if (!try_module_get(sock->ops->owner))
1270 goto out_module_busy;
1271
1272 /*
1273 * Now that we're done with the ->create function, the [loadable]
1274 * module can have its refcnt decremented
1275 */
1276 module_put(pf->owner);
1277 err = security_socket_post_create(sock, family, type, protocol, kern);
1278 if (err)
1279 goto out_sock_release;
1280 *res = sock;
1281
1282 return 0;
1283
1284 out_module_busy:
1285 err = -EAFNOSUPPORT;
1286 out_module_put:
1287 sock->ops = NULL;
1288 module_put(pf->owner);
1289 out_sock_release:
1290 sock_release(sock);
1291 return err;
1292
1293 out_release:
1294 rcu_read_unlock();
1295 goto out_sock_release;
1296 }
1297 EXPORT_SYMBOL(__sock_create);
1298
1299 int sock_create(int family, int type, int protocol, struct socket **res)
1300 {
1301 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1302 }
1303 EXPORT_SYMBOL(sock_create);
1304
1305 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1306 {
1307 return __sock_create(net, family, type, protocol, res, 1);
1308 }
1309 EXPORT_SYMBOL(sock_create_kern);
1310
1311 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1312 {
1313 int retval;
1314 struct socket *sock;
1315 int flags;
1316
1317 /* Check the SOCK_* constants for consistency. */
1318 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1319 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1320 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1321 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1322
1323 flags = type & ~SOCK_TYPE_MASK;
1324 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1325 return -EINVAL;
1326 type &= SOCK_TYPE_MASK;
1327
1328 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1329 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1330
1331 retval = sock_create(family, type, protocol, &sock);
1332 if (retval < 0)
1333 goto out;
1334
1335 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1336 if (retval < 0)
1337 goto out_release;
1338
1339 out:
1340 /* It may be already another descriptor 8) Not kernel problem. */
1341 return retval;
1342
1343 out_release:
1344 sock_release(sock);
1345 return retval;
1346 }
1347
1348 /*
1349 * Create a pair of connected sockets.
1350 */
1351
1352 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1353 int __user *, usockvec)
1354 {
1355 struct socket *sock1, *sock2;
1356 int fd1, fd2, err;
1357 struct file *newfile1, *newfile2;
1358 int flags;
1359
1360 flags = type & ~SOCK_TYPE_MASK;
1361 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1362 return -EINVAL;
1363 type &= SOCK_TYPE_MASK;
1364
1365 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1366 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1367
1368 /*
1369 * Obtain the first socket and check if the underlying protocol
1370 * supports the socketpair call.
1371 */
1372
1373 err = sock_create(family, type, protocol, &sock1);
1374 if (err < 0)
1375 goto out;
1376
1377 err = sock_create(family, type, protocol, &sock2);
1378 if (err < 0)
1379 goto out_release_1;
1380
1381 err = sock1->ops->socketpair(sock1, sock2);
1382 if (err < 0)
1383 goto out_release_both;
1384
1385 fd1 = get_unused_fd_flags(flags);
1386 if (unlikely(fd1 < 0)) {
1387 err = fd1;
1388 goto out_release_both;
1389 }
1390
1391 fd2 = get_unused_fd_flags(flags);
1392 if (unlikely(fd2 < 0)) {
1393 err = fd2;
1394 goto out_put_unused_1;
1395 }
1396
1397 newfile1 = sock_alloc_file(sock1, flags, NULL);
1398 if (IS_ERR(newfile1)) {
1399 err = PTR_ERR(newfile1);
1400 goto out_put_unused_both;
1401 }
1402
1403 newfile2 = sock_alloc_file(sock2, flags, NULL);
1404 if (IS_ERR(newfile2)) {
1405 err = PTR_ERR(newfile2);
1406 goto out_fput_1;
1407 }
1408
1409 err = put_user(fd1, &usockvec[0]);
1410 if (err)
1411 goto out_fput_both;
1412
1413 err = put_user(fd2, &usockvec[1]);
1414 if (err)
1415 goto out_fput_both;
1416
1417 audit_fd_pair(fd1, fd2);
1418
1419 fd_install(fd1, newfile1);
1420 fd_install(fd2, newfile2);
1421 /* fd1 and fd2 may be already another descriptors.
1422 * Not kernel problem.
1423 */
1424
1425 return 0;
1426
1427 out_fput_both:
1428 fput(newfile2);
1429 fput(newfile1);
1430 put_unused_fd(fd2);
1431 put_unused_fd(fd1);
1432 goto out;
1433
1434 out_fput_1:
1435 fput(newfile1);
1436 put_unused_fd(fd2);
1437 put_unused_fd(fd1);
1438 sock_release(sock2);
1439 goto out;
1440
1441 out_put_unused_both:
1442 put_unused_fd(fd2);
1443 out_put_unused_1:
1444 put_unused_fd(fd1);
1445 out_release_both:
1446 sock_release(sock2);
1447 out_release_1:
1448 sock_release(sock1);
1449 out:
1450 return err;
1451 }
1452
1453 /*
1454 * Bind a name to a socket. Nothing much to do here since it's
1455 * the protocol's responsibility to handle the local address.
1456 *
1457 * We move the socket address to kernel space before we call
1458 * the protocol layer (having also checked the address is ok).
1459 */
1460
1461 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1462 {
1463 struct socket *sock;
1464 struct sockaddr_storage address;
1465 int err, fput_needed;
1466
1467 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1468 if (sock) {
1469 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1470 if (err >= 0) {
1471 err = security_socket_bind(sock,
1472 (struct sockaddr *)&address,
1473 addrlen);
1474 if (!err)
1475 err = sock->ops->bind(sock,
1476 (struct sockaddr *)
1477 &address, addrlen);
1478 }
1479 fput_light(sock->file, fput_needed);
1480 }
1481 return err;
1482 }
1483
1484 /*
1485 * Perform a listen. Basically, we allow the protocol to do anything
1486 * necessary for a listen, and if that works, we mark the socket as
1487 * ready for listening.
1488 */
1489
1490 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1491 {
1492 struct socket *sock;
1493 int err, fput_needed;
1494 int somaxconn;
1495
1496 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1497 if (sock) {
1498 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1499 if ((unsigned int)backlog > somaxconn)
1500 backlog = somaxconn;
1501
1502 err = security_socket_listen(sock, backlog);
1503 if (!err)
1504 err = sock->ops->listen(sock, backlog);
1505
1506 fput_light(sock->file, fput_needed);
1507 }
1508 return err;
1509 }
1510
1511 /*
1512 * For accept, we attempt to create a new socket, set up the link
1513 * with the client, wake up the client, then return the new
1514 * connected fd. We collect the address of the connector in kernel
1515 * space and move it to user at the very end. This is unclean because
1516 * we open the socket then return an error.
1517 *
1518 * 1003.1g adds the ability to recvmsg() to query connection pending
1519 * status to recvmsg. We need to add that support in a way thats
1520 * clean when we restucture accept also.
1521 */
1522
1523 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1524 int __user *, upeer_addrlen, int, flags)
1525 {
1526 struct socket *sock, *newsock;
1527 struct file *newfile;
1528 int err, len, newfd, fput_needed;
1529 struct sockaddr_storage address;
1530
1531 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1532 return -EINVAL;
1533
1534 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1535 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1536
1537 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 if (!sock)
1539 goto out;
1540
1541 err = -ENFILE;
1542 newsock = sock_alloc();
1543 if (!newsock)
1544 goto out_put;
1545
1546 newsock->type = sock->type;
1547 newsock->ops = sock->ops;
1548
1549 /*
1550 * We don't need try_module_get here, as the listening socket (sock)
1551 * has the protocol module (sock->ops->owner) held.
1552 */
1553 __module_get(newsock->ops->owner);
1554
1555 newfd = get_unused_fd_flags(flags);
1556 if (unlikely(newfd < 0)) {
1557 err = newfd;
1558 sock_release(newsock);
1559 goto out_put;
1560 }
1561 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1562 if (IS_ERR(newfile)) {
1563 err = PTR_ERR(newfile);
1564 put_unused_fd(newfd);
1565 sock_release(newsock);
1566 goto out_put;
1567 }
1568
1569 err = security_socket_accept(sock, newsock);
1570 if (err)
1571 goto out_fd;
1572
1573 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1574 if (err < 0)
1575 goto out_fd;
1576
1577 if (upeer_sockaddr) {
1578 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1579 &len, 2) < 0) {
1580 err = -ECONNABORTED;
1581 goto out_fd;
1582 }
1583 err = move_addr_to_user(&address,
1584 len, upeer_sockaddr, upeer_addrlen);
1585 if (err < 0)
1586 goto out_fd;
1587 }
1588
1589 /* File flags are not inherited via accept() unlike another OSes. */
1590
1591 fd_install(newfd, newfile);
1592 err = newfd;
1593
1594 out_put:
1595 fput_light(sock->file, fput_needed);
1596 out:
1597 return err;
1598 out_fd:
1599 fput(newfile);
1600 put_unused_fd(newfd);
1601 goto out_put;
1602 }
1603
1604 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1605 int __user *, upeer_addrlen)
1606 {
1607 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1608 }
1609
1610 /*
1611 * Attempt to connect to a socket with the server address. The address
1612 * is in user space so we verify it is OK and move it to kernel space.
1613 *
1614 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1615 * break bindings
1616 *
1617 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1618 * other SEQPACKET protocols that take time to connect() as it doesn't
1619 * include the -EINPROGRESS status for such sockets.
1620 */
1621
1622 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1623 int, addrlen)
1624 {
1625 struct socket *sock;
1626 struct sockaddr_storage address;
1627 int err, fput_needed;
1628
1629 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1630 if (!sock)
1631 goto out;
1632 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1633 if (err < 0)
1634 goto out_put;
1635
1636 err =
1637 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1638 if (err)
1639 goto out_put;
1640
1641 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1642 sock->file->f_flags);
1643 out_put:
1644 fput_light(sock->file, fput_needed);
1645 out:
1646 return err;
1647 }
1648
1649 /*
1650 * Get the local address ('name') of a socket object. Move the obtained
1651 * name to user space.
1652 */
1653
1654 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1655 int __user *, usockaddr_len)
1656 {
1657 struct socket *sock;
1658 struct sockaddr_storage address;
1659 int len, err, fput_needed;
1660
1661 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1662 if (!sock)
1663 goto out;
1664
1665 err = security_socket_getsockname(sock);
1666 if (err)
1667 goto out_put;
1668
1669 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1670 if (err)
1671 goto out_put;
1672 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1673
1674 out_put:
1675 fput_light(sock->file, fput_needed);
1676 out:
1677 return err;
1678 }
1679
1680 /*
1681 * Get the remote address ('name') of a socket object. Move the obtained
1682 * name to user space.
1683 */
1684
1685 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1686 int __user *, usockaddr_len)
1687 {
1688 struct socket *sock;
1689 struct sockaddr_storage address;
1690 int len, err, fput_needed;
1691
1692 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1693 if (sock != NULL) {
1694 err = security_socket_getpeername(sock);
1695 if (err) {
1696 fput_light(sock->file, fput_needed);
1697 return err;
1698 }
1699
1700 err =
1701 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1702 1);
1703 if (!err)
1704 err = move_addr_to_user(&address, len, usockaddr,
1705 usockaddr_len);
1706 fput_light(sock->file, fput_needed);
1707 }
1708 return err;
1709 }
1710
1711 /*
1712 * Send a datagram to a given address. We move the address into kernel
1713 * space and check the user space data area is readable before invoking
1714 * the protocol.
1715 */
1716
1717 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1718 unsigned int, flags, struct sockaddr __user *, addr,
1719 int, addr_len)
1720 {
1721 struct socket *sock;
1722 struct sockaddr_storage address;
1723 int err;
1724 struct msghdr msg;
1725 struct iovec iov;
1726 int fput_needed;
1727
1728 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1729 if (unlikely(err))
1730 return err;
1731 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1732 if (!sock)
1733 goto out;
1734
1735 msg.msg_name = NULL;
1736 msg.msg_control = NULL;
1737 msg.msg_controllen = 0;
1738 msg.msg_namelen = 0;
1739 if (addr) {
1740 err = move_addr_to_kernel(addr, addr_len, &address);
1741 if (err < 0)
1742 goto out_put;
1743 msg.msg_name = (struct sockaddr *)&address;
1744 msg.msg_namelen = addr_len;
1745 }
1746 if (sock->file->f_flags & O_NONBLOCK)
1747 flags |= MSG_DONTWAIT;
1748 msg.msg_flags = flags;
1749 err = sock_sendmsg(sock, &msg);
1750
1751 out_put:
1752 fput_light(sock->file, fput_needed);
1753 out:
1754 return err;
1755 }
1756
1757 /*
1758 * Send a datagram down a socket.
1759 */
1760
1761 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1762 unsigned int, flags)
1763 {
1764 return sys_sendto(fd, buff, len, flags, NULL, 0);
1765 }
1766
1767 /*
1768 * Receive a frame from the socket and optionally record the address of the
1769 * sender. We verify the buffers are writable and if needed move the
1770 * sender address from kernel to user space.
1771 */
1772
1773 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1774 unsigned int, flags, struct sockaddr __user *, addr,
1775 int __user *, addr_len)
1776 {
1777 struct socket *sock;
1778 struct iovec iov;
1779 struct msghdr msg;
1780 struct sockaddr_storage address;
1781 int err, err2;
1782 int fput_needed;
1783
1784 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1785 if (unlikely(err))
1786 return err;
1787 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1788 if (!sock)
1789 goto out;
1790
1791 msg.msg_control = NULL;
1792 msg.msg_controllen = 0;
1793 /* Save some cycles and don't copy the address if not needed */
1794 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1795 /* We assume all kernel code knows the size of sockaddr_storage */
1796 msg.msg_namelen = 0;
1797 msg.msg_iocb = NULL;
1798 msg.msg_flags = 0;
1799 if (sock->file->f_flags & O_NONBLOCK)
1800 flags |= MSG_DONTWAIT;
1801 err = sock_recvmsg(sock, &msg, flags);
1802
1803 if (err >= 0 && addr != NULL) {
1804 err2 = move_addr_to_user(&address,
1805 msg.msg_namelen, addr, addr_len);
1806 if (err2 < 0)
1807 err = err2;
1808 }
1809
1810 fput_light(sock->file, fput_needed);
1811 out:
1812 return err;
1813 }
1814
1815 /*
1816 * Receive a datagram from a socket.
1817 */
1818
1819 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1820 unsigned int, flags)
1821 {
1822 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1823 }
1824
1825 /*
1826 * Set a socket option. Because we don't know the option lengths we have
1827 * to pass the user mode parameter for the protocols to sort out.
1828 */
1829
1830 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1831 char __user *, optval, int, optlen)
1832 {
1833 int err, fput_needed;
1834 struct socket *sock;
1835
1836 if (optlen < 0)
1837 return -EINVAL;
1838
1839 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1840 if (sock != NULL) {
1841 err = security_socket_setsockopt(sock, level, optname);
1842 if (err)
1843 goto out_put;
1844
1845 if (level == SOL_SOCKET)
1846 err =
1847 sock_setsockopt(sock, level, optname, optval,
1848 optlen);
1849 else
1850 err =
1851 sock->ops->setsockopt(sock, level, optname, optval,
1852 optlen);
1853 out_put:
1854 fput_light(sock->file, fput_needed);
1855 }
1856 return err;
1857 }
1858
1859 /*
1860 * Get a socket option. Because we don't know the option lengths we have
1861 * to pass a user mode parameter for the protocols to sort out.
1862 */
1863
1864 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1865 char __user *, optval, int __user *, optlen)
1866 {
1867 int err, fput_needed;
1868 struct socket *sock;
1869
1870 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1871 if (sock != NULL) {
1872 err = security_socket_getsockopt(sock, level, optname);
1873 if (err)
1874 goto out_put;
1875
1876 if (level == SOL_SOCKET)
1877 err =
1878 sock_getsockopt(sock, level, optname, optval,
1879 optlen);
1880 else
1881 err =
1882 sock->ops->getsockopt(sock, level, optname, optval,
1883 optlen);
1884 out_put:
1885 fput_light(sock->file, fput_needed);
1886 }
1887 return err;
1888 }
1889
1890 /*
1891 * Shutdown a socket.
1892 */
1893
1894 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1895 {
1896 int err, fput_needed;
1897 struct socket *sock;
1898
1899 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1900 if (sock != NULL) {
1901 err = security_socket_shutdown(sock, how);
1902 if (!err)
1903 err = sock->ops->shutdown(sock, how);
1904 fput_light(sock->file, fput_needed);
1905 }
1906 return err;
1907 }
1908
1909 /* A couple of helpful macros for getting the address of the 32/64 bit
1910 * fields which are the same type (int / unsigned) on our platforms.
1911 */
1912 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1913 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1914 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1915
1916 struct used_address {
1917 struct sockaddr_storage name;
1918 unsigned int name_len;
1919 };
1920
1921 static int copy_msghdr_from_user(struct msghdr *kmsg,
1922 struct user_msghdr __user *umsg,
1923 struct sockaddr __user **save_addr,
1924 struct iovec **iov)
1925 {
1926 struct user_msghdr msg;
1927 ssize_t err;
1928
1929 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1930 return -EFAULT;
1931
1932 kmsg->msg_control = (void __force *)msg.msg_control;
1933 kmsg->msg_controllen = msg.msg_controllen;
1934 kmsg->msg_flags = msg.msg_flags;
1935
1936 kmsg->msg_namelen = msg.msg_namelen;
1937 if (!msg.msg_name)
1938 kmsg->msg_namelen = 0;
1939
1940 if (kmsg->msg_namelen < 0)
1941 return -EINVAL;
1942
1943 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1944 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1945
1946 if (save_addr)
1947 *save_addr = msg.msg_name;
1948
1949 if (msg.msg_name && kmsg->msg_namelen) {
1950 if (!save_addr) {
1951 err = move_addr_to_kernel(msg.msg_name,
1952 kmsg->msg_namelen,
1953 kmsg->msg_name);
1954 if (err < 0)
1955 return err;
1956 }
1957 } else {
1958 kmsg->msg_name = NULL;
1959 kmsg->msg_namelen = 0;
1960 }
1961
1962 if (msg.msg_iovlen > UIO_MAXIOV)
1963 return -EMSGSIZE;
1964
1965 kmsg->msg_iocb = NULL;
1966
1967 return import_iovec(save_addr ? READ : WRITE,
1968 msg.msg_iov, msg.msg_iovlen,
1969 UIO_FASTIOV, iov, &kmsg->msg_iter);
1970 }
1971
1972 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1973 struct msghdr *msg_sys, unsigned int flags,
1974 struct used_address *used_address,
1975 unsigned int allowed_msghdr_flags)
1976 {
1977 struct compat_msghdr __user *msg_compat =
1978 (struct compat_msghdr __user *)msg;
1979 struct sockaddr_storage address;
1980 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1981 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1982 __aligned(sizeof(__kernel_size_t));
1983 /* 20 is size of ipv6_pktinfo */
1984 unsigned char *ctl_buf = ctl;
1985 int ctl_len;
1986 ssize_t err;
1987
1988 msg_sys->msg_name = &address;
1989
1990 if (MSG_CMSG_COMPAT & flags)
1991 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1992 else
1993 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1994 if (err < 0)
1995 return err;
1996
1997 err = -ENOBUFS;
1998
1999 if (msg_sys->msg_controllen > INT_MAX)
2000 goto out_freeiov;
2001 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2002 ctl_len = msg_sys->msg_controllen;
2003 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2004 err =
2005 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2006 sizeof(ctl));
2007 if (err)
2008 goto out_freeiov;
2009 ctl_buf = msg_sys->msg_control;
2010 ctl_len = msg_sys->msg_controllen;
2011 } else if (ctl_len) {
2012 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2013 CMSG_ALIGN(sizeof(struct cmsghdr)));
2014 if (ctl_len > sizeof(ctl)) {
2015 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2016 if (ctl_buf == NULL)
2017 goto out_freeiov;
2018 }
2019 err = -EFAULT;
2020 /*
2021 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2022 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2023 * checking falls down on this.
2024 */
2025 if (copy_from_user(ctl_buf,
2026 (void __user __force *)msg_sys->msg_control,
2027 ctl_len))
2028 goto out_freectl;
2029 msg_sys->msg_control = ctl_buf;
2030 }
2031 msg_sys->msg_flags = flags;
2032
2033 if (sock->file->f_flags & O_NONBLOCK)
2034 msg_sys->msg_flags |= MSG_DONTWAIT;
2035 /*
2036 * If this is sendmmsg() and current destination address is same as
2037 * previously succeeded address, omit asking LSM's decision.
2038 * used_address->name_len is initialized to UINT_MAX so that the first
2039 * destination address never matches.
2040 */
2041 if (used_address && msg_sys->msg_name &&
2042 used_address->name_len == msg_sys->msg_namelen &&
2043 !memcmp(&used_address->name, msg_sys->msg_name,
2044 used_address->name_len)) {
2045 err = sock_sendmsg_nosec(sock, msg_sys);
2046 goto out_freectl;
2047 }
2048 err = sock_sendmsg(sock, msg_sys);
2049 /*
2050 * If this is sendmmsg() and sending to current destination address was
2051 * successful, remember it.
2052 */
2053 if (used_address && err >= 0) {
2054 used_address->name_len = msg_sys->msg_namelen;
2055 if (msg_sys->msg_name)
2056 memcpy(&used_address->name, msg_sys->msg_name,
2057 used_address->name_len);
2058 }
2059
2060 out_freectl:
2061 if (ctl_buf != ctl)
2062 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2063 out_freeiov:
2064 kfree(iov);
2065 return err;
2066 }
2067
2068 /*
2069 * BSD sendmsg interface
2070 */
2071
2072 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2073 {
2074 int fput_needed, err;
2075 struct msghdr msg_sys;
2076 struct socket *sock;
2077
2078 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2079 if (!sock)
2080 goto out;
2081
2082 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2083
2084 fput_light(sock->file, fput_needed);
2085 out:
2086 return err;
2087 }
2088
2089 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2090 {
2091 if (flags & MSG_CMSG_COMPAT)
2092 return -EINVAL;
2093 return __sys_sendmsg(fd, msg, flags);
2094 }
2095
2096 /*
2097 * Linux sendmmsg interface
2098 */
2099
2100 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2101 unsigned int flags)
2102 {
2103 int fput_needed, err, datagrams;
2104 struct socket *sock;
2105 struct mmsghdr __user *entry;
2106 struct compat_mmsghdr __user *compat_entry;
2107 struct msghdr msg_sys;
2108 struct used_address used_address;
2109 unsigned int oflags = flags;
2110
2111 if (vlen > UIO_MAXIOV)
2112 vlen = UIO_MAXIOV;
2113
2114 datagrams = 0;
2115
2116 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2117 if (!sock)
2118 return err;
2119
2120 used_address.name_len = UINT_MAX;
2121 entry = mmsg;
2122 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2123 err = 0;
2124 flags |= MSG_BATCH;
2125
2126 while (datagrams < vlen) {
2127 if (datagrams == vlen - 1)
2128 flags = oflags;
2129
2130 if (MSG_CMSG_COMPAT & flags) {
2131 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2132 &msg_sys, flags, &used_address, MSG_EOR);
2133 if (err < 0)
2134 break;
2135 err = __put_user(err, &compat_entry->msg_len);
2136 ++compat_entry;
2137 } else {
2138 err = ___sys_sendmsg(sock,
2139 (struct user_msghdr __user *)entry,
2140 &msg_sys, flags, &used_address, MSG_EOR);
2141 if (err < 0)
2142 break;
2143 err = put_user(err, &entry->msg_len);
2144 ++entry;
2145 }
2146
2147 if (err)
2148 break;
2149 ++datagrams;
2150 if (msg_data_left(&msg_sys))
2151 break;
2152 cond_resched();
2153 }
2154
2155 fput_light(sock->file, fput_needed);
2156
2157 /* We only return an error if no datagrams were able to be sent */
2158 if (datagrams != 0)
2159 return datagrams;
2160
2161 return err;
2162 }
2163
2164 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2165 unsigned int, vlen, unsigned int, flags)
2166 {
2167 if (flags & MSG_CMSG_COMPAT)
2168 return -EINVAL;
2169 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2170 }
2171
2172 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2173 struct msghdr *msg_sys, unsigned int flags, int nosec)
2174 {
2175 struct compat_msghdr __user *msg_compat =
2176 (struct compat_msghdr __user *)msg;
2177 struct iovec iovstack[UIO_FASTIOV];
2178 struct iovec *iov = iovstack;
2179 unsigned long cmsg_ptr;
2180 int len;
2181 ssize_t err;
2182
2183 /* kernel mode address */
2184 struct sockaddr_storage addr;
2185
2186 /* user mode address pointers */
2187 struct sockaddr __user *uaddr;
2188 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2189
2190 msg_sys->msg_name = &addr;
2191
2192 if (MSG_CMSG_COMPAT & flags)
2193 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2194 else
2195 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2196 if (err < 0)
2197 return err;
2198
2199 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2200 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2201
2202 /* We assume all kernel code knows the size of sockaddr_storage */
2203 msg_sys->msg_namelen = 0;
2204
2205 if (sock->file->f_flags & O_NONBLOCK)
2206 flags |= MSG_DONTWAIT;
2207 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2208 if (err < 0)
2209 goto out_freeiov;
2210 len = err;
2211
2212 if (uaddr != NULL) {
2213 err = move_addr_to_user(&addr,
2214 msg_sys->msg_namelen, uaddr,
2215 uaddr_len);
2216 if (err < 0)
2217 goto out_freeiov;
2218 }
2219 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2220 COMPAT_FLAGS(msg));
2221 if (err)
2222 goto out_freeiov;
2223 if (MSG_CMSG_COMPAT & flags)
2224 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2225 &msg_compat->msg_controllen);
2226 else
2227 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2228 &msg->msg_controllen);
2229 if (err)
2230 goto out_freeiov;
2231 err = len;
2232
2233 out_freeiov:
2234 kfree(iov);
2235 return err;
2236 }
2237
2238 /*
2239 * BSD recvmsg interface
2240 */
2241
2242 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2243 {
2244 int fput_needed, err;
2245 struct msghdr msg_sys;
2246 struct socket *sock;
2247
2248 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2249 if (!sock)
2250 goto out;
2251
2252 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2253
2254 fput_light(sock->file, fput_needed);
2255 out:
2256 return err;
2257 }
2258
2259 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2260 unsigned int, flags)
2261 {
2262 if (flags & MSG_CMSG_COMPAT)
2263 return -EINVAL;
2264 return __sys_recvmsg(fd, msg, flags);
2265 }
2266
2267 /*
2268 * Linux recvmmsg interface
2269 */
2270
2271 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2272 unsigned int flags, struct timespec *timeout)
2273 {
2274 int fput_needed, err, datagrams;
2275 struct socket *sock;
2276 struct mmsghdr __user *entry;
2277 struct compat_mmsghdr __user *compat_entry;
2278 struct msghdr msg_sys;
2279 struct timespec64 end_time;
2280 struct timespec64 timeout64;
2281
2282 if (timeout &&
2283 poll_select_set_timeout(&end_time, timeout->tv_sec,
2284 timeout->tv_nsec))
2285 return -EINVAL;
2286
2287 datagrams = 0;
2288
2289 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2290 if (!sock)
2291 return err;
2292
2293 err = sock_error(sock->sk);
2294 if (err) {
2295 datagrams = err;
2296 goto out_put;
2297 }
2298
2299 entry = mmsg;
2300 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2301
2302 while (datagrams < vlen) {
2303 /*
2304 * No need to ask LSM for more than the first datagram.
2305 */
2306 if (MSG_CMSG_COMPAT & flags) {
2307 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2308 &msg_sys, flags & ~MSG_WAITFORONE,
2309 datagrams);
2310 if (err < 0)
2311 break;
2312 err = __put_user(err, &compat_entry->msg_len);
2313 ++compat_entry;
2314 } else {
2315 err = ___sys_recvmsg(sock,
2316 (struct user_msghdr __user *)entry,
2317 &msg_sys, flags & ~MSG_WAITFORONE,
2318 datagrams);
2319 if (err < 0)
2320 break;
2321 err = put_user(err, &entry->msg_len);
2322 ++entry;
2323 }
2324
2325 if (err)
2326 break;
2327 ++datagrams;
2328
2329 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2330 if (flags & MSG_WAITFORONE)
2331 flags |= MSG_DONTWAIT;
2332
2333 if (timeout) {
2334 ktime_get_ts64(&timeout64);
2335 *timeout = timespec64_to_timespec(
2336 timespec64_sub(end_time, timeout64));
2337 if (timeout->tv_sec < 0) {
2338 timeout->tv_sec = timeout->tv_nsec = 0;
2339 break;
2340 }
2341
2342 /* Timeout, return less than vlen datagrams */
2343 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2344 break;
2345 }
2346
2347 /* Out of band data, return right away */
2348 if (msg_sys.msg_flags & MSG_OOB)
2349 break;
2350 cond_resched();
2351 }
2352
2353 if (err == 0)
2354 goto out_put;
2355
2356 if (datagrams == 0) {
2357 datagrams = err;
2358 goto out_put;
2359 }
2360
2361 /*
2362 * We may return less entries than requested (vlen) if the
2363 * sock is non block and there aren't enough datagrams...
2364 */
2365 if (err != -EAGAIN) {
2366 /*
2367 * ... or if recvmsg returns an error after we
2368 * received some datagrams, where we record the
2369 * error to return on the next call or if the
2370 * app asks about it using getsockopt(SO_ERROR).
2371 */
2372 sock->sk->sk_err = -err;
2373 }
2374 out_put:
2375 fput_light(sock->file, fput_needed);
2376
2377 return datagrams;
2378 }
2379
2380 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2381 unsigned int, vlen, unsigned int, flags,
2382 struct timespec __user *, timeout)
2383 {
2384 int datagrams;
2385 struct timespec timeout_sys;
2386
2387 if (flags & MSG_CMSG_COMPAT)
2388 return -EINVAL;
2389
2390 if (!timeout)
2391 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2392
2393 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2394 return -EFAULT;
2395
2396 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2397
2398 if (datagrams > 0 &&
2399 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2400 datagrams = -EFAULT;
2401
2402 return datagrams;
2403 }
2404
2405 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2406 /* Argument list sizes for sys_socketcall */
2407 #define AL(x) ((x) * sizeof(unsigned long))
2408 static const unsigned char nargs[21] = {
2409 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2410 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2411 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2412 AL(4), AL(5), AL(4)
2413 };
2414
2415 #undef AL
2416
2417 /*
2418 * System call vectors.
2419 *
2420 * Argument checking cleaned up. Saved 20% in size.
2421 * This function doesn't need to set the kernel lock because
2422 * it is set by the callees.
2423 */
2424
2425 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2426 {
2427 unsigned long a[AUDITSC_ARGS];
2428 unsigned long a0, a1;
2429 int err;
2430 unsigned int len;
2431
2432 if (call < 1 || call > SYS_SENDMMSG)
2433 return -EINVAL;
2434
2435 len = nargs[call];
2436 if (len > sizeof(a))
2437 return -EINVAL;
2438
2439 /* copy_from_user should be SMP safe. */
2440 if (copy_from_user(a, args, len))
2441 return -EFAULT;
2442
2443 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2444 if (err)
2445 return err;
2446
2447 a0 = a[0];
2448 a1 = a[1];
2449
2450 switch (call) {
2451 case SYS_SOCKET:
2452 err = sys_socket(a0, a1, a[2]);
2453 break;
2454 case SYS_BIND:
2455 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2456 break;
2457 case SYS_CONNECT:
2458 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2459 break;
2460 case SYS_LISTEN:
2461 err = sys_listen(a0, a1);
2462 break;
2463 case SYS_ACCEPT:
2464 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2465 (int __user *)a[2], 0);
2466 break;
2467 case SYS_GETSOCKNAME:
2468 err =
2469 sys_getsockname(a0, (struct sockaddr __user *)a1,
2470 (int __user *)a[2]);
2471 break;
2472 case SYS_GETPEERNAME:
2473 err =
2474 sys_getpeername(a0, (struct sockaddr __user *)a1,
2475 (int __user *)a[2]);
2476 break;
2477 case SYS_SOCKETPAIR:
2478 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2479 break;
2480 case SYS_SEND:
2481 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2482 break;
2483 case SYS_SENDTO:
2484 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2485 (struct sockaddr __user *)a[4], a[5]);
2486 break;
2487 case SYS_RECV:
2488 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2489 break;
2490 case SYS_RECVFROM:
2491 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2492 (struct sockaddr __user *)a[4],
2493 (int __user *)a[5]);
2494 break;
2495 case SYS_SHUTDOWN:
2496 err = sys_shutdown(a0, a1);
2497 break;
2498 case SYS_SETSOCKOPT:
2499 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2500 break;
2501 case SYS_GETSOCKOPT:
2502 err =
2503 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2504 (int __user *)a[4]);
2505 break;
2506 case SYS_SENDMSG:
2507 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2508 break;
2509 case SYS_SENDMMSG:
2510 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2511 break;
2512 case SYS_RECVMSG:
2513 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2514 break;
2515 case SYS_RECVMMSG:
2516 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2517 (struct timespec __user *)a[4]);
2518 break;
2519 case SYS_ACCEPT4:
2520 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2521 (int __user *)a[2], a[3]);
2522 break;
2523 default:
2524 err = -EINVAL;
2525 break;
2526 }
2527 return err;
2528 }
2529
2530 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2531
2532 /**
2533 * sock_register - add a socket protocol handler
2534 * @ops: description of protocol
2535 *
2536 * This function is called by a protocol handler that wants to
2537 * advertise its address family, and have it linked into the
2538 * socket interface. The value ops->family corresponds to the
2539 * socket system call protocol family.
2540 */
2541 int sock_register(const struct net_proto_family *ops)
2542 {
2543 int err;
2544
2545 if (ops->family >= NPROTO) {
2546 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2547 return -ENOBUFS;
2548 }
2549
2550 spin_lock(&net_family_lock);
2551 if (rcu_dereference_protected(net_families[ops->family],
2552 lockdep_is_held(&net_family_lock)))
2553 err = -EEXIST;
2554 else {
2555 rcu_assign_pointer(net_families[ops->family], ops);
2556 err = 0;
2557 }
2558 spin_unlock(&net_family_lock);
2559
2560 pr_info("NET: Registered protocol family %d\n", ops->family);
2561 return err;
2562 }
2563 EXPORT_SYMBOL(sock_register);
2564
2565 /**
2566 * sock_unregister - remove a protocol handler
2567 * @family: protocol family to remove
2568 *
2569 * This function is called by a protocol handler that wants to
2570 * remove its address family, and have it unlinked from the
2571 * new socket creation.
2572 *
2573 * If protocol handler is a module, then it can use module reference
2574 * counts to protect against new references. If protocol handler is not
2575 * a module then it needs to provide its own protection in
2576 * the ops->create routine.
2577 */
2578 void sock_unregister(int family)
2579 {
2580 BUG_ON(family < 0 || family >= NPROTO);
2581
2582 spin_lock(&net_family_lock);
2583 RCU_INIT_POINTER(net_families[family], NULL);
2584 spin_unlock(&net_family_lock);
2585
2586 synchronize_rcu();
2587
2588 pr_info("NET: Unregistered protocol family %d\n", family);
2589 }
2590 EXPORT_SYMBOL(sock_unregister);
2591
2592 static int __init sock_init(void)
2593 {
2594 int err;
2595 /*
2596 * Initialize the network sysctl infrastructure.
2597 */
2598 err = net_sysctl_init();
2599 if (err)
2600 goto out;
2601
2602 /*
2603 * Initialize skbuff SLAB cache
2604 */
2605 skb_init();
2606
2607 /*
2608 * Initialize the protocols module.
2609 */
2610
2611 init_inodecache();
2612
2613 err = register_filesystem(&sock_fs_type);
2614 if (err)
2615 goto out_fs;
2616 sock_mnt = kern_mount(&sock_fs_type);
2617 if (IS_ERR(sock_mnt)) {
2618 err = PTR_ERR(sock_mnt);
2619 goto out_mount;
2620 }
2621
2622 /* The real protocol initialization is performed in later initcalls.
2623 */
2624
2625 #ifdef CONFIG_NETFILTER
2626 err = netfilter_init();
2627 if (err)
2628 goto out;
2629 #endif
2630
2631 ptp_classifier_init();
2632
2633 out:
2634 return err;
2635
2636 out_mount:
2637 unregister_filesystem(&sock_fs_type);
2638 out_fs:
2639 goto out;
2640 }
2641
2642 core_initcall(sock_init); /* early initcall */
2643
2644 static int __init jit_init(void)
2645 {
2646 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2647 bpf_jit_enable = 1;
2648 #endif
2649 return 0;
2650 }
2651 pure_initcall(jit_init);
2652
2653 #ifdef CONFIG_PROC_FS
2654 void socket_seq_show(struct seq_file *seq)
2655 {
2656 int cpu;
2657 int counter = 0;
2658
2659 for_each_possible_cpu(cpu)
2660 counter += per_cpu(sockets_in_use, cpu);
2661
2662 /* It can be negative, by the way. 8) */
2663 if (counter < 0)
2664 counter = 0;
2665
2666 seq_printf(seq, "sockets: used %d\n", counter);
2667 }
2668 #endif /* CONFIG_PROC_FS */
2669
2670 #ifdef CONFIG_COMPAT
2671 static int do_siocgstamp(struct net *net, struct socket *sock,
2672 unsigned int cmd, void __user *up)
2673 {
2674 mm_segment_t old_fs = get_fs();
2675 struct timeval ktv;
2676 int err;
2677
2678 set_fs(KERNEL_DS);
2679 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2680 set_fs(old_fs);
2681 if (!err)
2682 err = compat_put_timeval(&ktv, up);
2683
2684 return err;
2685 }
2686
2687 static int do_siocgstampns(struct net *net, struct socket *sock,
2688 unsigned int cmd, void __user *up)
2689 {
2690 mm_segment_t old_fs = get_fs();
2691 struct timespec kts;
2692 int err;
2693
2694 set_fs(KERNEL_DS);
2695 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2696 set_fs(old_fs);
2697 if (!err)
2698 err = compat_put_timespec(&kts, up);
2699
2700 return err;
2701 }
2702
2703 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2704 {
2705 struct ifreq __user *uifr;
2706 int err;
2707
2708 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2709 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2710 return -EFAULT;
2711
2712 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2713 if (err)
2714 return err;
2715
2716 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2717 return -EFAULT;
2718
2719 return 0;
2720 }
2721
2722 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2723 {
2724 struct compat_ifconf ifc32;
2725 struct ifconf ifc;
2726 struct ifconf __user *uifc;
2727 struct compat_ifreq __user *ifr32;
2728 struct ifreq __user *ifr;
2729 unsigned int i, j;
2730 int err;
2731
2732 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2733 return -EFAULT;
2734
2735 memset(&ifc, 0, sizeof(ifc));
2736 if (ifc32.ifcbuf == 0) {
2737 ifc32.ifc_len = 0;
2738 ifc.ifc_len = 0;
2739 ifc.ifc_req = NULL;
2740 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2741 } else {
2742 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2743 sizeof(struct ifreq);
2744 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2745 ifc.ifc_len = len;
2746 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2747 ifr32 = compat_ptr(ifc32.ifcbuf);
2748 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2749 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2750 return -EFAULT;
2751 ifr++;
2752 ifr32++;
2753 }
2754 }
2755 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2756 return -EFAULT;
2757
2758 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2759 if (err)
2760 return err;
2761
2762 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2763 return -EFAULT;
2764
2765 ifr = ifc.ifc_req;
2766 ifr32 = compat_ptr(ifc32.ifcbuf);
2767 for (i = 0, j = 0;
2768 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2769 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2770 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2771 return -EFAULT;
2772 ifr32++;
2773 ifr++;
2774 }
2775
2776 if (ifc32.ifcbuf == 0) {
2777 /* Translate from 64-bit structure multiple to
2778 * a 32-bit one.
2779 */
2780 i = ifc.ifc_len;
2781 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2782 ifc32.ifc_len = i;
2783 } else {
2784 ifc32.ifc_len = i;
2785 }
2786 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2787 return -EFAULT;
2788
2789 return 0;
2790 }
2791
2792 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2793 {
2794 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2795 bool convert_in = false, convert_out = false;
2796 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2797 struct ethtool_rxnfc __user *rxnfc;
2798 struct ifreq __user *ifr;
2799 u32 rule_cnt = 0, actual_rule_cnt;
2800 u32 ethcmd;
2801 u32 data;
2802 int ret;
2803
2804 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2805 return -EFAULT;
2806
2807 compat_rxnfc = compat_ptr(data);
2808
2809 if (get_user(ethcmd, &compat_rxnfc->cmd))
2810 return -EFAULT;
2811
2812 /* Most ethtool structures are defined without padding.
2813 * Unfortunately struct ethtool_rxnfc is an exception.
2814 */
2815 switch (ethcmd) {
2816 default:
2817 break;
2818 case ETHTOOL_GRXCLSRLALL:
2819 /* Buffer size is variable */
2820 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2821 return -EFAULT;
2822 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2823 return -ENOMEM;
2824 buf_size += rule_cnt * sizeof(u32);
2825 /* fall through */
2826 case ETHTOOL_GRXRINGS:
2827 case ETHTOOL_GRXCLSRLCNT:
2828 case ETHTOOL_GRXCLSRULE:
2829 case ETHTOOL_SRXCLSRLINS:
2830 convert_out = true;
2831 /* fall through */
2832 case ETHTOOL_SRXCLSRLDEL:
2833 buf_size += sizeof(struct ethtool_rxnfc);
2834 convert_in = true;
2835 break;
2836 }
2837
2838 ifr = compat_alloc_user_space(buf_size);
2839 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2840
2841 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2842 return -EFAULT;
2843
2844 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2845 &ifr->ifr_ifru.ifru_data))
2846 return -EFAULT;
2847
2848 if (convert_in) {
2849 /* We expect there to be holes between fs.m_ext and
2850 * fs.ring_cookie and at the end of fs, but nowhere else.
2851 */
2852 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2853 sizeof(compat_rxnfc->fs.m_ext) !=
2854 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2855 sizeof(rxnfc->fs.m_ext));
2856 BUILD_BUG_ON(
2857 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2858 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2859 offsetof(struct ethtool_rxnfc, fs.location) -
2860 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2861
2862 if (copy_in_user(rxnfc, compat_rxnfc,
2863 (void __user *)(&rxnfc->fs.m_ext + 1) -
2864 (void __user *)rxnfc) ||
2865 copy_in_user(&rxnfc->fs.ring_cookie,
2866 &compat_rxnfc->fs.ring_cookie,
2867 (void __user *)(&rxnfc->fs.location + 1) -
2868 (void __user *)&rxnfc->fs.ring_cookie) ||
2869 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2870 sizeof(rxnfc->rule_cnt)))
2871 return -EFAULT;
2872 }
2873
2874 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2875 if (ret)
2876 return ret;
2877
2878 if (convert_out) {
2879 if (copy_in_user(compat_rxnfc, rxnfc,
2880 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2881 (const void __user *)rxnfc) ||
2882 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2883 &rxnfc->fs.ring_cookie,
2884 (const void __user *)(&rxnfc->fs.location + 1) -
2885 (const void __user *)&rxnfc->fs.ring_cookie) ||
2886 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2887 sizeof(rxnfc->rule_cnt)))
2888 return -EFAULT;
2889
2890 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2891 /* As an optimisation, we only copy the actual
2892 * number of rules that the underlying
2893 * function returned. Since Mallory might
2894 * change the rule count in user memory, we
2895 * check that it is less than the rule count
2896 * originally given (as the user buffer size),
2897 * which has been range-checked.
2898 */
2899 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2900 return -EFAULT;
2901 if (actual_rule_cnt < rule_cnt)
2902 rule_cnt = actual_rule_cnt;
2903 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2904 &rxnfc->rule_locs[0],
2905 rule_cnt * sizeof(u32)))
2906 return -EFAULT;
2907 }
2908 }
2909
2910 return 0;
2911 }
2912
2913 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2914 {
2915 void __user *uptr;
2916 compat_uptr_t uptr32;
2917 struct ifreq __user *uifr;
2918
2919 uifr = compat_alloc_user_space(sizeof(*uifr));
2920 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2921 return -EFAULT;
2922
2923 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2924 return -EFAULT;
2925
2926 uptr = compat_ptr(uptr32);
2927
2928 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2929 return -EFAULT;
2930
2931 return dev_ioctl(net, SIOCWANDEV, uifr);
2932 }
2933
2934 static int bond_ioctl(struct net *net, unsigned int cmd,
2935 struct compat_ifreq __user *ifr32)
2936 {
2937 struct ifreq kifr;
2938 mm_segment_t old_fs;
2939 int err;
2940
2941 switch (cmd) {
2942 case SIOCBONDENSLAVE:
2943 case SIOCBONDRELEASE:
2944 case SIOCBONDSETHWADDR:
2945 case SIOCBONDCHANGEACTIVE:
2946 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2947 return -EFAULT;
2948
2949 old_fs = get_fs();
2950 set_fs(KERNEL_DS);
2951 err = dev_ioctl(net, cmd,
2952 (struct ifreq __user __force *) &kifr);
2953 set_fs(old_fs);
2954
2955 return err;
2956 default:
2957 return -ENOIOCTLCMD;
2958 }
2959 }
2960
2961 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2962 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2963 struct compat_ifreq __user *u_ifreq32)
2964 {
2965 struct ifreq __user *u_ifreq64;
2966 char tmp_buf[IFNAMSIZ];
2967 void __user *data64;
2968 u32 data32;
2969
2970 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2971 IFNAMSIZ))
2972 return -EFAULT;
2973 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2974 return -EFAULT;
2975 data64 = compat_ptr(data32);
2976
2977 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2978
2979 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2980 IFNAMSIZ))
2981 return -EFAULT;
2982 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2983 return -EFAULT;
2984
2985 return dev_ioctl(net, cmd, u_ifreq64);
2986 }
2987
2988 static int dev_ifsioc(struct net *net, struct socket *sock,
2989 unsigned int cmd, struct compat_ifreq __user *uifr32)
2990 {
2991 struct ifreq __user *uifr;
2992 int err;
2993
2994 uifr = compat_alloc_user_space(sizeof(*uifr));
2995 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2996 return -EFAULT;
2997
2998 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2999
3000 if (!err) {
3001 switch (cmd) {
3002 case SIOCGIFFLAGS:
3003 case SIOCGIFMETRIC:
3004 case SIOCGIFMTU:
3005 case SIOCGIFMEM:
3006 case SIOCGIFHWADDR:
3007 case SIOCGIFINDEX:
3008 case SIOCGIFADDR:
3009 case SIOCGIFBRDADDR:
3010 case SIOCGIFDSTADDR:
3011 case SIOCGIFNETMASK:
3012 case SIOCGIFPFLAGS:
3013 case SIOCGIFTXQLEN:
3014 case SIOCGMIIPHY:
3015 case SIOCGMIIREG:
3016 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3017 err = -EFAULT;
3018 break;
3019 }
3020 }
3021 return err;
3022 }
3023
3024 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3025 struct compat_ifreq __user *uifr32)
3026 {
3027 struct ifreq ifr;
3028 struct compat_ifmap __user *uifmap32;
3029 mm_segment_t old_fs;
3030 int err;
3031
3032 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3033 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3034 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3035 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3036 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3037 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3038 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3039 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3040 if (err)
3041 return -EFAULT;
3042
3043 old_fs = get_fs();
3044 set_fs(KERNEL_DS);
3045 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3046 set_fs(old_fs);
3047
3048 if (cmd == SIOCGIFMAP && !err) {
3049 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3050 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3051 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3052 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3053 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3054 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3055 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3056 if (err)
3057 err = -EFAULT;
3058 }
3059 return err;
3060 }
3061
3062 struct rtentry32 {
3063 u32 rt_pad1;
3064 struct sockaddr rt_dst; /* target address */
3065 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3066 struct sockaddr rt_genmask; /* target network mask (IP) */
3067 unsigned short rt_flags;
3068 short rt_pad2;
3069 u32 rt_pad3;
3070 unsigned char rt_tos;
3071 unsigned char rt_class;
3072 short rt_pad4;
3073 short rt_metric; /* +1 for binary compatibility! */
3074 /* char * */ u32 rt_dev; /* forcing the device at add */
3075 u32 rt_mtu; /* per route MTU/Window */
3076 u32 rt_window; /* Window clamping */
3077 unsigned short rt_irtt; /* Initial RTT */
3078 };
3079
3080 struct in6_rtmsg32 {
3081 struct in6_addr rtmsg_dst;
3082 struct in6_addr rtmsg_src;
3083 struct in6_addr rtmsg_gateway;
3084 u32 rtmsg_type;
3085 u16 rtmsg_dst_len;
3086 u16 rtmsg_src_len;
3087 u32 rtmsg_metric;
3088 u32 rtmsg_info;
3089 u32 rtmsg_flags;
3090 s32 rtmsg_ifindex;
3091 };
3092
3093 static int routing_ioctl(struct net *net, struct socket *sock,
3094 unsigned int cmd, void __user *argp)
3095 {
3096 int ret;
3097 void *r = NULL;
3098 struct in6_rtmsg r6;
3099 struct rtentry r4;
3100 char devname[16];
3101 u32 rtdev;
3102 mm_segment_t old_fs = get_fs();
3103
3104 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3105 struct in6_rtmsg32 __user *ur6 = argp;
3106 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3107 3 * sizeof(struct in6_addr));
3108 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3109 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3110 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3111 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3112 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3113 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3114 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3115
3116 r = (void *) &r6;
3117 } else { /* ipv4 */
3118 struct rtentry32 __user *ur4 = argp;
3119 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3120 3 * sizeof(struct sockaddr));
3121 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3122 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3123 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3124 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3125 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3126 ret |= get_user(rtdev, &(ur4->rt_dev));
3127 if (rtdev) {
3128 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3129 r4.rt_dev = (char __user __force *)devname;
3130 devname[15] = 0;
3131 } else
3132 r4.rt_dev = NULL;
3133
3134 r = (void *) &r4;
3135 }
3136
3137 if (ret) {
3138 ret = -EFAULT;
3139 goto out;
3140 }
3141
3142 set_fs(KERNEL_DS);
3143 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3144 set_fs(old_fs);
3145
3146 out:
3147 return ret;
3148 }
3149
3150 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3151 * for some operations; this forces use of the newer bridge-utils that
3152 * use compatible ioctls
3153 */
3154 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3155 {
3156 compat_ulong_t tmp;
3157
3158 if (get_user(tmp, argp))
3159 return -EFAULT;
3160 if (tmp == BRCTL_GET_VERSION)
3161 return BRCTL_VERSION + 1;
3162 return -EINVAL;
3163 }
3164
3165 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3166 unsigned int cmd, unsigned long arg)
3167 {
3168 void __user *argp = compat_ptr(arg);
3169 struct sock *sk = sock->sk;
3170 struct net *net = sock_net(sk);
3171
3172 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3173 return compat_ifr_data_ioctl(net, cmd, argp);
3174
3175 switch (cmd) {
3176 case SIOCSIFBR:
3177 case SIOCGIFBR:
3178 return old_bridge_ioctl(argp);
3179 case SIOCGIFNAME:
3180 return dev_ifname32(net, argp);
3181 case SIOCGIFCONF:
3182 return dev_ifconf(net, argp);
3183 case SIOCETHTOOL:
3184 return ethtool_ioctl(net, argp);
3185 case SIOCWANDEV:
3186 return compat_siocwandev(net, argp);
3187 case SIOCGIFMAP:
3188 case SIOCSIFMAP:
3189 return compat_sioc_ifmap(net, cmd, argp);
3190 case SIOCBONDENSLAVE:
3191 case SIOCBONDRELEASE:
3192 case SIOCBONDSETHWADDR:
3193 case SIOCBONDCHANGEACTIVE:
3194 return bond_ioctl(net, cmd, argp);
3195 case SIOCADDRT:
3196 case SIOCDELRT:
3197 return routing_ioctl(net, sock, cmd, argp);
3198 case SIOCGSTAMP:
3199 return do_siocgstamp(net, sock, cmd, argp);
3200 case SIOCGSTAMPNS:
3201 return do_siocgstampns(net, sock, cmd, argp);
3202 case SIOCBONDSLAVEINFOQUERY:
3203 case SIOCBONDINFOQUERY:
3204 case SIOCSHWTSTAMP:
3205 case SIOCGHWTSTAMP:
3206 return compat_ifr_data_ioctl(net, cmd, argp);
3207
3208 case FIOSETOWN:
3209 case SIOCSPGRP:
3210 case FIOGETOWN:
3211 case SIOCGPGRP:
3212 case SIOCBRADDBR:
3213 case SIOCBRDELBR:
3214 case SIOCGIFVLAN:
3215 case SIOCSIFVLAN:
3216 case SIOCADDDLCI:
3217 case SIOCDELDLCI:
3218 case SIOCGSKNS:
3219 return sock_ioctl(file, cmd, arg);
3220
3221 case SIOCGIFFLAGS:
3222 case SIOCSIFFLAGS:
3223 case SIOCGIFMETRIC:
3224 case SIOCSIFMETRIC:
3225 case SIOCGIFMTU:
3226 case SIOCSIFMTU:
3227 case SIOCGIFMEM:
3228 case SIOCSIFMEM:
3229 case SIOCGIFHWADDR:
3230 case SIOCSIFHWADDR:
3231 case SIOCADDMULTI:
3232 case SIOCDELMULTI:
3233 case SIOCGIFINDEX:
3234 case SIOCGIFADDR:
3235 case SIOCSIFADDR:
3236 case SIOCSIFHWBROADCAST:
3237 case SIOCDIFADDR:
3238 case SIOCGIFBRDADDR:
3239 case SIOCSIFBRDADDR:
3240 case SIOCGIFDSTADDR:
3241 case SIOCSIFDSTADDR:
3242 case SIOCGIFNETMASK:
3243 case SIOCSIFNETMASK:
3244 case SIOCSIFPFLAGS:
3245 case SIOCGIFPFLAGS:
3246 case SIOCGIFTXQLEN:
3247 case SIOCSIFTXQLEN:
3248 case SIOCBRADDIF:
3249 case SIOCBRDELIF:
3250 case SIOCSIFNAME:
3251 case SIOCGMIIPHY:
3252 case SIOCGMIIREG:
3253 case SIOCSMIIREG:
3254 return dev_ifsioc(net, sock, cmd, argp);
3255
3256 case SIOCSARP:
3257 case SIOCGARP:
3258 case SIOCDARP:
3259 case SIOCATMARK:
3260 return sock_do_ioctl(net, sock, cmd, arg);
3261 }
3262
3263 return -ENOIOCTLCMD;
3264 }
3265
3266 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3267 unsigned long arg)
3268 {
3269 struct socket *sock = file->private_data;
3270 int ret = -ENOIOCTLCMD;
3271 struct sock *sk;
3272 struct net *net;
3273
3274 sk = sock->sk;
3275 net = sock_net(sk);
3276
3277 if (sock->ops->compat_ioctl)
3278 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3279
3280 if (ret == -ENOIOCTLCMD &&
3281 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3282 ret = compat_wext_handle_ioctl(net, cmd, arg);
3283
3284 if (ret == -ENOIOCTLCMD)
3285 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3286
3287 return ret;
3288 }
3289 #endif
3290
3291 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3292 {
3293 return sock->ops->bind(sock, addr, addrlen);
3294 }
3295 EXPORT_SYMBOL(kernel_bind);
3296
3297 int kernel_listen(struct socket *sock, int backlog)
3298 {
3299 return sock->ops->listen(sock, backlog);
3300 }
3301 EXPORT_SYMBOL(kernel_listen);
3302
3303 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3304 {
3305 struct sock *sk = sock->sk;
3306 int err;
3307
3308 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3309 newsock);
3310 if (err < 0)
3311 goto done;
3312
3313 err = sock->ops->accept(sock, *newsock, flags, true);
3314 if (err < 0) {
3315 sock_release(*newsock);
3316 *newsock = NULL;
3317 goto done;
3318 }
3319
3320 (*newsock)->ops = sock->ops;
3321 __module_get((*newsock)->ops->owner);
3322
3323 done:
3324 return err;
3325 }
3326 EXPORT_SYMBOL(kernel_accept);
3327
3328 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3329 int flags)
3330 {
3331 return sock->ops->connect(sock, addr, addrlen, flags);
3332 }
3333 EXPORT_SYMBOL(kernel_connect);
3334
3335 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3336 int *addrlen)
3337 {
3338 return sock->ops->getname(sock, addr, addrlen, 0);
3339 }
3340 EXPORT_SYMBOL(kernel_getsockname);
3341
3342 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3343 int *addrlen)
3344 {
3345 return sock->ops->getname(sock, addr, addrlen, 1);
3346 }
3347 EXPORT_SYMBOL(kernel_getpeername);
3348
3349 int kernel_getsockopt(struct socket *sock, int level, int optname,
3350 char *optval, int *optlen)
3351 {
3352 mm_segment_t oldfs = get_fs();
3353 char __user *uoptval;
3354 int __user *uoptlen;
3355 int err;
3356
3357 uoptval = (char __user __force *) optval;
3358 uoptlen = (int __user __force *) optlen;
3359
3360 set_fs(KERNEL_DS);
3361 if (level == SOL_SOCKET)
3362 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3363 else
3364 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3365 uoptlen);
3366 set_fs(oldfs);
3367 return err;
3368 }
3369 EXPORT_SYMBOL(kernel_getsockopt);
3370
3371 int kernel_setsockopt(struct socket *sock, int level, int optname,
3372 char *optval, unsigned int optlen)
3373 {
3374 mm_segment_t oldfs = get_fs();
3375 char __user *uoptval;
3376 int err;
3377
3378 uoptval = (char __user __force *) optval;
3379
3380 set_fs(KERNEL_DS);
3381 if (level == SOL_SOCKET)
3382 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3383 else
3384 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3385 optlen);
3386 set_fs(oldfs);
3387 return err;
3388 }
3389 EXPORT_SYMBOL(kernel_setsockopt);
3390
3391 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3392 size_t size, int flags)
3393 {
3394 if (sock->ops->sendpage)
3395 return sock->ops->sendpage(sock, page, offset, size, flags);
3396
3397 return sock_no_sendpage(sock, page, offset, size, flags);
3398 }
3399 EXPORT_SYMBOL(kernel_sendpage);
3400
3401 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3402 size_t size, int flags)
3403 {
3404 struct socket *sock = sk->sk_socket;
3405
3406 if (sock->ops->sendpage_locked)
3407 return sock->ops->sendpage_locked(sk, page, offset, size,
3408 flags);
3409
3410 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3411 }
3412 EXPORT_SYMBOL(kernel_sendpage_locked);
3413
3414 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3415 {
3416 mm_segment_t oldfs = get_fs();
3417 int err;
3418
3419 set_fs(KERNEL_DS);
3420 err = sock->ops->ioctl(sock, cmd, arg);
3421 set_fs(oldfs);
3422
3423 return err;
3424 }
3425 EXPORT_SYMBOL(kernel_sock_ioctl);
3426
3427 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3428 {
3429 return sock->ops->shutdown(sock, how);
3430 }
3431 EXPORT_SYMBOL(kernel_sock_shutdown);
3432
3433 /* This routine returns the IP overhead imposed by a socket i.e.
3434 * the length of the underlying IP header, depending on whether
3435 * this is an IPv4 or IPv6 socket and the length from IP options turned
3436 * on at the socket. Assumes that the caller has a lock on the socket.
3437 */
3438 u32 kernel_sock_ip_overhead(struct sock *sk)
3439 {
3440 struct inet_sock *inet;
3441 struct ip_options_rcu *opt;
3442 u32 overhead = 0;
3443 #if IS_ENABLED(CONFIG_IPV6)
3444 struct ipv6_pinfo *np;
3445 struct ipv6_txoptions *optv6 = NULL;
3446 #endif /* IS_ENABLED(CONFIG_IPV6) */
3447
3448 if (!sk)
3449 return overhead;
3450
3451 switch (sk->sk_family) {
3452 case AF_INET:
3453 inet = inet_sk(sk);
3454 overhead += sizeof(struct iphdr);
3455 opt = rcu_dereference_protected(inet->inet_opt,
3456 sock_owned_by_user(sk));
3457 if (opt)
3458 overhead += opt->opt.optlen;
3459 return overhead;
3460 #if IS_ENABLED(CONFIG_IPV6)
3461 case AF_INET6:
3462 np = inet6_sk(sk);
3463 overhead += sizeof(struct ipv6hdr);
3464 if (np)
3465 optv6 = rcu_dereference_protected(np->opt,
3466 sock_owned_by_user(sk));
3467 if (optv6)
3468 overhead += (optv6->opt_flen + optv6->opt_nflen);
3469 return overhead;
3470 #endif /* IS_ENABLED(CONFIG_IPV6) */
3471 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3472 return overhead;
3473 }
3474 }
3475 EXPORT_SYMBOL(kernel_sock_ip_overhead);