Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
252 }
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static int init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
296 }
297
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
302 };
303
304 /*
305 * sockfs_dname() is called from d_path().
306 */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
311 }
312
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
315 };
316
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
319 {
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323
324 static struct vfsmount *sock_mnt __read_mostly;
325
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
330 };
331
332 /*
333 * Obtains the first available file descriptor and sets it up for use.
334 *
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
342 *
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
347 */
348
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
350 {
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354 int fd;
355
356 fd = get_unused_fd_flags(flags);
357 if (unlikely(fd < 0))
358 return fd;
359
360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 if (unlikely(!path.dentry)) {
362 put_unused_fd(fd);
363 return -ENOMEM;
364 }
365 path.mnt = mntget(sock_mnt);
366
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
369
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(!file)) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 put_unused_fd(fd);
377 return -ENFILE;
378 }
379
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
384
385 *f = file;
386 return fd;
387 }
388
389 int sock_map_fd(struct socket *sock, int flags)
390 {
391 struct file *newfile;
392 int fd = sock_alloc_file(sock, &newfile, flags);
393
394 if (likely(fd >= 0))
395 fd_install(fd, newfile);
396
397 return fd;
398 }
399 EXPORT_SYMBOL(sock_map_fd);
400
401 static struct socket *sock_from_file(struct file *file, int *err)
402 {
403 if (file->f_op == &socket_file_ops)
404 return file->private_data; /* set in sock_map_fd */
405
406 *err = -ENOTSOCK;
407 return NULL;
408 }
409
410 /**
411 * sockfd_lookup - Go from a file number to its socket slot
412 * @fd: file handle
413 * @err: pointer to an error code return
414 *
415 * The file handle passed in is locked and the socket it is bound
416 * too is returned. If an error occurs the err pointer is overwritten
417 * with a negative errno code and NULL is returned. The function checks
418 * for both invalid handles and passing a handle which is not a socket.
419 *
420 * On a success the socket object pointer is returned.
421 */
422
423 struct socket *sockfd_lookup(int fd, int *err)
424 {
425 struct file *file;
426 struct socket *sock;
427
428 file = fget(fd);
429 if (!file) {
430 *err = -EBADF;
431 return NULL;
432 }
433
434 sock = sock_from_file(file, err);
435 if (!sock)
436 fput(file);
437 return sock;
438 }
439 EXPORT_SYMBOL(sockfd_lookup);
440
441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
442 {
443 struct file *file;
444 struct socket *sock;
445
446 *err = -EBADF;
447 file = fget_light(fd, fput_needed);
448 if (file) {
449 sock = sock_from_file(file, err);
450 if (sock)
451 return sock;
452 fput_light(file, *fput_needed);
453 }
454 return NULL;
455 }
456
457 /**
458 * sock_alloc - allocate a socket
459 *
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
462 * NULL is returned.
463 */
464
465 static struct socket *sock_alloc(void)
466 {
467 struct inode *inode;
468 struct socket *sock;
469
470 inode = new_inode_pseudo(sock_mnt->mnt_sb);
471 if (!inode)
472 return NULL;
473
474 sock = SOCKET_I(inode);
475
476 kmemcheck_annotate_bitfield(sock, type);
477 inode->i_ino = get_next_ino();
478 inode->i_mode = S_IFSOCK | S_IRWXUGO;
479 inode->i_uid = current_fsuid();
480 inode->i_gid = current_fsgid();
481
482 this_cpu_add(sockets_in_use, 1);
483 return sock;
484 }
485
486 /*
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
490 */
491
492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
493 {
494 return -ENXIO;
495 }
496
497 const struct file_operations bad_sock_fops = {
498 .owner = THIS_MODULE,
499 .open = sock_no_open,
500 .llseek = noop_llseek,
501 };
502
503 /**
504 * sock_release - close a socket
505 * @sock: socket to close
506 *
507 * The socket is released from the protocol stack if it has a release
508 * callback, and the inode is then released if the socket is bound to
509 * an inode not a file.
510 */
511
512 void sock_release(struct socket *sock)
513 {
514 if (sock->ops) {
515 struct module *owner = sock->ops->owner;
516
517 sock->ops->release(sock);
518 sock->ops = NULL;
519 module_put(owner);
520 }
521
522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
523 printk(KERN_ERR "sock_release: fasync list not empty!\n");
524
525 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
526 return;
527
528 this_cpu_sub(sockets_in_use, 1);
529 if (!sock->file) {
530 iput(SOCK_INODE(sock));
531 return;
532 }
533 sock->file = NULL;
534 }
535 EXPORT_SYMBOL(sock_release);
536
537 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
538 {
539 *tx_flags = 0;
540 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
541 *tx_flags |= SKBTX_HW_TSTAMP;
542 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
543 *tx_flags |= SKBTX_SW_TSTAMP;
544 if (sock_flag(sk, SOCK_WIFI_STATUS))
545 *tx_flags |= SKBTX_WIFI_STATUS;
546 return 0;
547 }
548 EXPORT_SYMBOL(sock_tx_timestamp);
549
550 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
551 struct msghdr *msg, size_t size)
552 {
553 struct sock_iocb *si = kiocb_to_siocb(iocb);
554
555 sock_update_classid(sock->sk);
556
557 sock_update_netprioidx(sock->sk);
558
559 si->sock = sock;
560 si->scm = NULL;
561 si->msg = msg;
562 si->size = size;
563
564 return sock->ops->sendmsg(iocb, sock, msg, size);
565 }
566
567 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
568 struct msghdr *msg, size_t size)
569 {
570 int err = security_socket_sendmsg(sock, msg, size);
571
572 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
573 }
574
575 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
576 {
577 struct kiocb iocb;
578 struct sock_iocb siocb;
579 int ret;
580
581 init_sync_kiocb(&iocb, NULL);
582 iocb.private = &siocb;
583 ret = __sock_sendmsg(&iocb, sock, msg, size);
584 if (-EIOCBQUEUED == ret)
585 ret = wait_on_sync_kiocb(&iocb);
586 return ret;
587 }
588 EXPORT_SYMBOL(sock_sendmsg);
589
590 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
591 {
592 struct kiocb iocb;
593 struct sock_iocb siocb;
594 int ret;
595
596 init_sync_kiocb(&iocb, NULL);
597 iocb.private = &siocb;
598 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
599 if (-EIOCBQUEUED == ret)
600 ret = wait_on_sync_kiocb(&iocb);
601 return ret;
602 }
603
604 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
605 struct kvec *vec, size_t num, size_t size)
606 {
607 mm_segment_t oldfs = get_fs();
608 int result;
609
610 set_fs(KERNEL_DS);
611 /*
612 * the following is safe, since for compiler definitions of kvec and
613 * iovec are identical, yielding the same in-core layout and alignment
614 */
615 msg->msg_iov = (struct iovec *)vec;
616 msg->msg_iovlen = num;
617 result = sock_sendmsg(sock, msg, size);
618 set_fs(oldfs);
619 return result;
620 }
621 EXPORT_SYMBOL(kernel_sendmsg);
622
623 static int ktime2ts(ktime_t kt, struct timespec *ts)
624 {
625 if (kt.tv64) {
626 *ts = ktime_to_timespec(kt);
627 return 1;
628 } else {
629 return 0;
630 }
631 }
632
633 /*
634 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
635 */
636 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
637 struct sk_buff *skb)
638 {
639 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
640 struct timespec ts[3];
641 int empty = 1;
642 struct skb_shared_hwtstamps *shhwtstamps =
643 skb_hwtstamps(skb);
644
645 /* Race occurred between timestamp enabling and packet
646 receiving. Fill in the current time for now. */
647 if (need_software_tstamp && skb->tstamp.tv64 == 0)
648 __net_timestamp(skb);
649
650 if (need_software_tstamp) {
651 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
652 struct timeval tv;
653 skb_get_timestamp(skb, &tv);
654 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
655 sizeof(tv), &tv);
656 } else {
657 skb_get_timestampns(skb, &ts[0]);
658 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
659 sizeof(ts[0]), &ts[0]);
660 }
661 }
662
663
664 memset(ts, 0, sizeof(ts));
665 if (skb->tstamp.tv64 &&
666 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
667 skb_get_timestampns(skb, ts + 0);
668 empty = 0;
669 }
670 if (shhwtstamps) {
671 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
672 ktime2ts(shhwtstamps->syststamp, ts + 1))
673 empty = 0;
674 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
675 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
676 empty = 0;
677 }
678 if (!empty)
679 put_cmsg(msg, SOL_SOCKET,
680 SCM_TIMESTAMPING, sizeof(ts), &ts);
681 }
682 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
683
684 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
685 struct sk_buff *skb)
686 {
687 int ack;
688
689 if (!sock_flag(sk, SOCK_WIFI_STATUS))
690 return;
691 if (!skb->wifi_acked_valid)
692 return;
693
694 ack = skb->wifi_acked;
695
696 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
697 }
698 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
699
700 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
701 struct sk_buff *skb)
702 {
703 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
704 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
705 sizeof(__u32), &skb->dropcount);
706 }
707
708 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
709 struct sk_buff *skb)
710 {
711 sock_recv_timestamp(msg, sk, skb);
712 sock_recv_drops(msg, sk, skb);
713 }
714 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
715
716 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
717 struct msghdr *msg, size_t size, int flags)
718 {
719 struct sock_iocb *si = kiocb_to_siocb(iocb);
720
721 sock_update_classid(sock->sk);
722
723 si->sock = sock;
724 si->scm = NULL;
725 si->msg = msg;
726 si->size = size;
727 si->flags = flags;
728
729 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
730 }
731
732 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
733 struct msghdr *msg, size_t size, int flags)
734 {
735 int err = security_socket_recvmsg(sock, msg, size, flags);
736
737 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
738 }
739
740 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
741 size_t size, int flags)
742 {
743 struct kiocb iocb;
744 struct sock_iocb siocb;
745 int ret;
746
747 init_sync_kiocb(&iocb, NULL);
748 iocb.private = &siocb;
749 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
750 if (-EIOCBQUEUED == ret)
751 ret = wait_on_sync_kiocb(&iocb);
752 return ret;
753 }
754 EXPORT_SYMBOL(sock_recvmsg);
755
756 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
757 size_t size, int flags)
758 {
759 struct kiocb iocb;
760 struct sock_iocb siocb;
761 int ret;
762
763 init_sync_kiocb(&iocb, NULL);
764 iocb.private = &siocb;
765 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
766 if (-EIOCBQUEUED == ret)
767 ret = wait_on_sync_kiocb(&iocb);
768 return ret;
769 }
770
771 /**
772 * kernel_recvmsg - Receive a message from a socket (kernel space)
773 * @sock: The socket to receive the message from
774 * @msg: Received message
775 * @vec: Input s/g array for message data
776 * @num: Size of input s/g array
777 * @size: Number of bytes to read
778 * @flags: Message flags (MSG_DONTWAIT, etc...)
779 *
780 * On return the msg structure contains the scatter/gather array passed in the
781 * vec argument. The array is modified so that it consists of the unfilled
782 * portion of the original array.
783 *
784 * The returned value is the total number of bytes received, or an error.
785 */
786 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
787 struct kvec *vec, size_t num, size_t size, int flags)
788 {
789 mm_segment_t oldfs = get_fs();
790 int result;
791
792 set_fs(KERNEL_DS);
793 /*
794 * the following is safe, since for compiler definitions of kvec and
795 * iovec are identical, yielding the same in-core layout and alignment
796 */
797 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
798 result = sock_recvmsg(sock, msg, size, flags);
799 set_fs(oldfs);
800 return result;
801 }
802 EXPORT_SYMBOL(kernel_recvmsg);
803
804 static void sock_aio_dtor(struct kiocb *iocb)
805 {
806 kfree(iocb->private);
807 }
808
809 static ssize_t sock_sendpage(struct file *file, struct page *page,
810 int offset, size_t size, loff_t *ppos, int more)
811 {
812 struct socket *sock;
813 int flags;
814
815 sock = file->private_data;
816
817 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
818 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
819 flags |= more;
820
821 return kernel_sendpage(sock, page, offset, size, flags);
822 }
823
824 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
825 struct pipe_inode_info *pipe, size_t len,
826 unsigned int flags)
827 {
828 struct socket *sock = file->private_data;
829
830 if (unlikely(!sock->ops->splice_read))
831 return -EINVAL;
832
833 sock_update_classid(sock->sk);
834
835 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
836 }
837
838 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
839 struct sock_iocb *siocb)
840 {
841 if (!is_sync_kiocb(iocb)) {
842 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
843 if (!siocb)
844 return NULL;
845 iocb->ki_dtor = sock_aio_dtor;
846 }
847
848 siocb->kiocb = iocb;
849 iocb->private = siocb;
850 return siocb;
851 }
852
853 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
854 struct file *file, const struct iovec *iov,
855 unsigned long nr_segs)
856 {
857 struct socket *sock = file->private_data;
858 size_t size = 0;
859 int i;
860
861 for (i = 0; i < nr_segs; i++)
862 size += iov[i].iov_len;
863
864 msg->msg_name = NULL;
865 msg->msg_namelen = 0;
866 msg->msg_control = NULL;
867 msg->msg_controllen = 0;
868 msg->msg_iov = (struct iovec *)iov;
869 msg->msg_iovlen = nr_segs;
870 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
871
872 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
873 }
874
875 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
876 unsigned long nr_segs, loff_t pos)
877 {
878 struct sock_iocb siocb, *x;
879
880 if (pos != 0)
881 return -ESPIPE;
882
883 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
884 return 0;
885
886
887 x = alloc_sock_iocb(iocb, &siocb);
888 if (!x)
889 return -ENOMEM;
890 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
891 }
892
893 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
894 struct file *file, const struct iovec *iov,
895 unsigned long nr_segs)
896 {
897 struct socket *sock = file->private_data;
898 size_t size = 0;
899 int i;
900
901 for (i = 0; i < nr_segs; i++)
902 size += iov[i].iov_len;
903
904 msg->msg_name = NULL;
905 msg->msg_namelen = 0;
906 msg->msg_control = NULL;
907 msg->msg_controllen = 0;
908 msg->msg_iov = (struct iovec *)iov;
909 msg->msg_iovlen = nr_segs;
910 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
911 if (sock->type == SOCK_SEQPACKET)
912 msg->msg_flags |= MSG_EOR;
913
914 return __sock_sendmsg(iocb, sock, msg, size);
915 }
916
917 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
918 unsigned long nr_segs, loff_t pos)
919 {
920 struct sock_iocb siocb, *x;
921
922 if (pos != 0)
923 return -ESPIPE;
924
925 x = alloc_sock_iocb(iocb, &siocb);
926 if (!x)
927 return -ENOMEM;
928
929 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
930 }
931
932 /*
933 * Atomic setting of ioctl hooks to avoid race
934 * with module unload.
935 */
936
937 static DEFINE_MUTEX(br_ioctl_mutex);
938 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
939
940 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
941 {
942 mutex_lock(&br_ioctl_mutex);
943 br_ioctl_hook = hook;
944 mutex_unlock(&br_ioctl_mutex);
945 }
946 EXPORT_SYMBOL(brioctl_set);
947
948 static DEFINE_MUTEX(vlan_ioctl_mutex);
949 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
950
951 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
952 {
953 mutex_lock(&vlan_ioctl_mutex);
954 vlan_ioctl_hook = hook;
955 mutex_unlock(&vlan_ioctl_mutex);
956 }
957 EXPORT_SYMBOL(vlan_ioctl_set);
958
959 static DEFINE_MUTEX(dlci_ioctl_mutex);
960 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
961
962 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
963 {
964 mutex_lock(&dlci_ioctl_mutex);
965 dlci_ioctl_hook = hook;
966 mutex_unlock(&dlci_ioctl_mutex);
967 }
968 EXPORT_SYMBOL(dlci_ioctl_set);
969
970 static long sock_do_ioctl(struct net *net, struct socket *sock,
971 unsigned int cmd, unsigned long arg)
972 {
973 int err;
974 void __user *argp = (void __user *)arg;
975
976 err = sock->ops->ioctl(sock, cmd, arg);
977
978 /*
979 * If this ioctl is unknown try to hand it down
980 * to the NIC driver.
981 */
982 if (err == -ENOIOCTLCMD)
983 err = dev_ioctl(net, cmd, argp);
984
985 return err;
986 }
987
988 /*
989 * With an ioctl, arg may well be a user mode pointer, but we don't know
990 * what to do with it - that's up to the protocol still.
991 */
992
993 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
994 {
995 struct socket *sock;
996 struct sock *sk;
997 void __user *argp = (void __user *)arg;
998 int pid, err;
999 struct net *net;
1000
1001 sock = file->private_data;
1002 sk = sock->sk;
1003 net = sock_net(sk);
1004 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1005 err = dev_ioctl(net, cmd, argp);
1006 } else
1007 #ifdef CONFIG_WEXT_CORE
1008 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1009 err = dev_ioctl(net, cmd, argp);
1010 } else
1011 #endif
1012 switch (cmd) {
1013 case FIOSETOWN:
1014 case SIOCSPGRP:
1015 err = -EFAULT;
1016 if (get_user(pid, (int __user *)argp))
1017 break;
1018 err = f_setown(sock->file, pid, 1);
1019 break;
1020 case FIOGETOWN:
1021 case SIOCGPGRP:
1022 err = put_user(f_getown(sock->file),
1023 (int __user *)argp);
1024 break;
1025 case SIOCGIFBR:
1026 case SIOCSIFBR:
1027 case SIOCBRADDBR:
1028 case SIOCBRDELBR:
1029 err = -ENOPKG;
1030 if (!br_ioctl_hook)
1031 request_module("bridge");
1032
1033 mutex_lock(&br_ioctl_mutex);
1034 if (br_ioctl_hook)
1035 err = br_ioctl_hook(net, cmd, argp);
1036 mutex_unlock(&br_ioctl_mutex);
1037 break;
1038 case SIOCGIFVLAN:
1039 case SIOCSIFVLAN:
1040 err = -ENOPKG;
1041 if (!vlan_ioctl_hook)
1042 request_module("8021q");
1043
1044 mutex_lock(&vlan_ioctl_mutex);
1045 if (vlan_ioctl_hook)
1046 err = vlan_ioctl_hook(net, argp);
1047 mutex_unlock(&vlan_ioctl_mutex);
1048 break;
1049 case SIOCADDDLCI:
1050 case SIOCDELDLCI:
1051 err = -ENOPKG;
1052 if (!dlci_ioctl_hook)
1053 request_module("dlci");
1054
1055 mutex_lock(&dlci_ioctl_mutex);
1056 if (dlci_ioctl_hook)
1057 err = dlci_ioctl_hook(cmd, argp);
1058 mutex_unlock(&dlci_ioctl_mutex);
1059 break;
1060 default:
1061 err = sock_do_ioctl(net, sock, cmd, arg);
1062 break;
1063 }
1064 return err;
1065 }
1066
1067 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1068 {
1069 int err;
1070 struct socket *sock = NULL;
1071
1072 err = security_socket_create(family, type, protocol, 1);
1073 if (err)
1074 goto out;
1075
1076 sock = sock_alloc();
1077 if (!sock) {
1078 err = -ENOMEM;
1079 goto out;
1080 }
1081
1082 sock->type = type;
1083 err = security_socket_post_create(sock, family, type, protocol, 1);
1084 if (err)
1085 goto out_release;
1086
1087 out:
1088 *res = sock;
1089 return err;
1090 out_release:
1091 sock_release(sock);
1092 sock = NULL;
1093 goto out;
1094 }
1095 EXPORT_SYMBOL(sock_create_lite);
1096
1097 /* No kernel lock held - perfect */
1098 static unsigned int sock_poll(struct file *file, poll_table *wait)
1099 {
1100 struct socket *sock;
1101
1102 /*
1103 * We can't return errors to poll, so it's either yes or no.
1104 */
1105 sock = file->private_data;
1106 return sock->ops->poll(file, sock, wait);
1107 }
1108
1109 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1110 {
1111 struct socket *sock = file->private_data;
1112
1113 return sock->ops->mmap(file, sock, vma);
1114 }
1115
1116 static int sock_close(struct inode *inode, struct file *filp)
1117 {
1118 /*
1119 * It was possible the inode is NULL we were
1120 * closing an unfinished socket.
1121 */
1122
1123 if (!inode) {
1124 printk(KERN_DEBUG "sock_close: NULL inode\n");
1125 return 0;
1126 }
1127 sock_release(SOCKET_I(inode));
1128 return 0;
1129 }
1130
1131 /*
1132 * Update the socket async list
1133 *
1134 * Fasync_list locking strategy.
1135 *
1136 * 1. fasync_list is modified only under process context socket lock
1137 * i.e. under semaphore.
1138 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1139 * or under socket lock
1140 */
1141
1142 static int sock_fasync(int fd, struct file *filp, int on)
1143 {
1144 struct socket *sock = filp->private_data;
1145 struct sock *sk = sock->sk;
1146 struct socket_wq *wq;
1147
1148 if (sk == NULL)
1149 return -EINVAL;
1150
1151 lock_sock(sk);
1152 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1153 fasync_helper(fd, filp, on, &wq->fasync_list);
1154
1155 if (!wq->fasync_list)
1156 sock_reset_flag(sk, SOCK_FASYNC);
1157 else
1158 sock_set_flag(sk, SOCK_FASYNC);
1159
1160 release_sock(sk);
1161 return 0;
1162 }
1163
1164 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1165
1166 int sock_wake_async(struct socket *sock, int how, int band)
1167 {
1168 struct socket_wq *wq;
1169
1170 if (!sock)
1171 return -1;
1172 rcu_read_lock();
1173 wq = rcu_dereference(sock->wq);
1174 if (!wq || !wq->fasync_list) {
1175 rcu_read_unlock();
1176 return -1;
1177 }
1178 switch (how) {
1179 case SOCK_WAKE_WAITD:
1180 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1181 break;
1182 goto call_kill;
1183 case SOCK_WAKE_SPACE:
1184 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1185 break;
1186 /* fall through */
1187 case SOCK_WAKE_IO:
1188 call_kill:
1189 kill_fasync(&wq->fasync_list, SIGIO, band);
1190 break;
1191 case SOCK_WAKE_URG:
1192 kill_fasync(&wq->fasync_list, SIGURG, band);
1193 }
1194 rcu_read_unlock();
1195 return 0;
1196 }
1197 EXPORT_SYMBOL(sock_wake_async);
1198
1199 int __sock_create(struct net *net, int family, int type, int protocol,
1200 struct socket **res, int kern)
1201 {
1202 int err;
1203 struct socket *sock;
1204 const struct net_proto_family *pf;
1205
1206 /*
1207 * Check protocol is in range
1208 */
1209 if (family < 0 || family >= NPROTO)
1210 return -EAFNOSUPPORT;
1211 if (type < 0 || type >= SOCK_MAX)
1212 return -EINVAL;
1213
1214 /* Compatibility.
1215
1216 This uglymoron is moved from INET layer to here to avoid
1217 deadlock in module load.
1218 */
1219 if (family == PF_INET && type == SOCK_PACKET) {
1220 static int warned;
1221 if (!warned) {
1222 warned = 1;
1223 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1224 current->comm);
1225 }
1226 family = PF_PACKET;
1227 }
1228
1229 err = security_socket_create(family, type, protocol, kern);
1230 if (err)
1231 return err;
1232
1233 /*
1234 * Allocate the socket and allow the family to set things up. if
1235 * the protocol is 0, the family is instructed to select an appropriate
1236 * default.
1237 */
1238 sock = sock_alloc();
1239 if (!sock) {
1240 net_warn_ratelimited("socket: no more sockets\n");
1241 return -ENFILE; /* Not exactly a match, but its the
1242 closest posix thing */
1243 }
1244
1245 sock->type = type;
1246
1247 #ifdef CONFIG_MODULES
1248 /* Attempt to load a protocol module if the find failed.
1249 *
1250 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1251 * requested real, full-featured networking support upon configuration.
1252 * Otherwise module support will break!
1253 */
1254 if (rcu_access_pointer(net_families[family]) == NULL)
1255 request_module("net-pf-%d", family);
1256 #endif
1257
1258 rcu_read_lock();
1259 pf = rcu_dereference(net_families[family]);
1260 err = -EAFNOSUPPORT;
1261 if (!pf)
1262 goto out_release;
1263
1264 /*
1265 * We will call the ->create function, that possibly is in a loadable
1266 * module, so we have to bump that loadable module refcnt first.
1267 */
1268 if (!try_module_get(pf->owner))
1269 goto out_release;
1270
1271 /* Now protected by module ref count */
1272 rcu_read_unlock();
1273
1274 err = pf->create(net, sock, protocol, kern);
1275 if (err < 0)
1276 goto out_module_put;
1277
1278 /*
1279 * Now to bump the refcnt of the [loadable] module that owns this
1280 * socket at sock_release time we decrement its refcnt.
1281 */
1282 if (!try_module_get(sock->ops->owner))
1283 goto out_module_busy;
1284
1285 /*
1286 * Now that we're done with the ->create function, the [loadable]
1287 * module can have its refcnt decremented
1288 */
1289 module_put(pf->owner);
1290 err = security_socket_post_create(sock, family, type, protocol, kern);
1291 if (err)
1292 goto out_sock_release;
1293 *res = sock;
1294
1295 return 0;
1296
1297 out_module_busy:
1298 err = -EAFNOSUPPORT;
1299 out_module_put:
1300 sock->ops = NULL;
1301 module_put(pf->owner);
1302 out_sock_release:
1303 sock_release(sock);
1304 return err;
1305
1306 out_release:
1307 rcu_read_unlock();
1308 goto out_sock_release;
1309 }
1310 EXPORT_SYMBOL(__sock_create);
1311
1312 int sock_create(int family, int type, int protocol, struct socket **res)
1313 {
1314 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1315 }
1316 EXPORT_SYMBOL(sock_create);
1317
1318 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1319 {
1320 return __sock_create(&init_net, family, type, protocol, res, 1);
1321 }
1322 EXPORT_SYMBOL(sock_create_kern);
1323
1324 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1325 {
1326 int retval;
1327 struct socket *sock;
1328 int flags;
1329
1330 /* Check the SOCK_* constants for consistency. */
1331 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1332 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1333 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1334 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1335
1336 flags = type & ~SOCK_TYPE_MASK;
1337 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1338 return -EINVAL;
1339 type &= SOCK_TYPE_MASK;
1340
1341 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1342 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1343
1344 retval = sock_create(family, type, protocol, &sock);
1345 if (retval < 0)
1346 goto out;
1347
1348 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1349 if (retval < 0)
1350 goto out_release;
1351
1352 out:
1353 /* It may be already another descriptor 8) Not kernel problem. */
1354 return retval;
1355
1356 out_release:
1357 sock_release(sock);
1358 return retval;
1359 }
1360
1361 /*
1362 * Create a pair of connected sockets.
1363 */
1364
1365 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1366 int __user *, usockvec)
1367 {
1368 struct socket *sock1, *sock2;
1369 int fd1, fd2, err;
1370 struct file *newfile1, *newfile2;
1371 int flags;
1372
1373 flags = type & ~SOCK_TYPE_MASK;
1374 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1375 return -EINVAL;
1376 type &= SOCK_TYPE_MASK;
1377
1378 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1379 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1380
1381 /*
1382 * Obtain the first socket and check if the underlying protocol
1383 * supports the socketpair call.
1384 */
1385
1386 err = sock_create(family, type, protocol, &sock1);
1387 if (err < 0)
1388 goto out;
1389
1390 err = sock_create(family, type, protocol, &sock2);
1391 if (err < 0)
1392 goto out_release_1;
1393
1394 err = sock1->ops->socketpair(sock1, sock2);
1395 if (err < 0)
1396 goto out_release_both;
1397
1398 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1399 if (unlikely(fd1 < 0)) {
1400 err = fd1;
1401 goto out_release_both;
1402 }
1403
1404 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1405 if (unlikely(fd2 < 0)) {
1406 err = fd2;
1407 fput(newfile1);
1408 put_unused_fd(fd1);
1409 sock_release(sock2);
1410 goto out;
1411 }
1412
1413 audit_fd_pair(fd1, fd2);
1414 fd_install(fd1, newfile1);
1415 fd_install(fd2, newfile2);
1416 /* fd1 and fd2 may be already another descriptors.
1417 * Not kernel problem.
1418 */
1419
1420 err = put_user(fd1, &usockvec[0]);
1421 if (!err)
1422 err = put_user(fd2, &usockvec[1]);
1423 if (!err)
1424 return 0;
1425
1426 sys_close(fd2);
1427 sys_close(fd1);
1428 return err;
1429
1430 out_release_both:
1431 sock_release(sock2);
1432 out_release_1:
1433 sock_release(sock1);
1434 out:
1435 return err;
1436 }
1437
1438 /*
1439 * Bind a name to a socket. Nothing much to do here since it's
1440 * the protocol's responsibility to handle the local address.
1441 *
1442 * We move the socket address to kernel space before we call
1443 * the protocol layer (having also checked the address is ok).
1444 */
1445
1446 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1447 {
1448 struct socket *sock;
1449 struct sockaddr_storage address;
1450 int err, fput_needed;
1451
1452 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1453 if (sock) {
1454 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1455 if (err >= 0) {
1456 err = security_socket_bind(sock,
1457 (struct sockaddr *)&address,
1458 addrlen);
1459 if (!err)
1460 err = sock->ops->bind(sock,
1461 (struct sockaddr *)
1462 &address, addrlen);
1463 }
1464 fput_light(sock->file, fput_needed);
1465 }
1466 return err;
1467 }
1468
1469 /*
1470 * Perform a listen. Basically, we allow the protocol to do anything
1471 * necessary for a listen, and if that works, we mark the socket as
1472 * ready for listening.
1473 */
1474
1475 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1476 {
1477 struct socket *sock;
1478 int err, fput_needed;
1479 int somaxconn;
1480
1481 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1482 if (sock) {
1483 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1484 if ((unsigned int)backlog > somaxconn)
1485 backlog = somaxconn;
1486
1487 err = security_socket_listen(sock, backlog);
1488 if (!err)
1489 err = sock->ops->listen(sock, backlog);
1490
1491 fput_light(sock->file, fput_needed);
1492 }
1493 return err;
1494 }
1495
1496 /*
1497 * For accept, we attempt to create a new socket, set up the link
1498 * with the client, wake up the client, then return the new
1499 * connected fd. We collect the address of the connector in kernel
1500 * space and move it to user at the very end. This is unclean because
1501 * we open the socket then return an error.
1502 *
1503 * 1003.1g adds the ability to recvmsg() to query connection pending
1504 * status to recvmsg. We need to add that support in a way thats
1505 * clean when we restucture accept also.
1506 */
1507
1508 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1509 int __user *, upeer_addrlen, int, flags)
1510 {
1511 struct socket *sock, *newsock;
1512 struct file *newfile;
1513 int err, len, newfd, fput_needed;
1514 struct sockaddr_storage address;
1515
1516 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1517 return -EINVAL;
1518
1519 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1520 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1521
1522 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1523 if (!sock)
1524 goto out;
1525
1526 err = -ENFILE;
1527 newsock = sock_alloc();
1528 if (!newsock)
1529 goto out_put;
1530
1531 newsock->type = sock->type;
1532 newsock->ops = sock->ops;
1533
1534 /*
1535 * We don't need try_module_get here, as the listening socket (sock)
1536 * has the protocol module (sock->ops->owner) held.
1537 */
1538 __module_get(newsock->ops->owner);
1539
1540 newfd = sock_alloc_file(newsock, &newfile, flags);
1541 if (unlikely(newfd < 0)) {
1542 err = newfd;
1543 sock_release(newsock);
1544 goto out_put;
1545 }
1546
1547 err = security_socket_accept(sock, newsock);
1548 if (err)
1549 goto out_fd;
1550
1551 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1552 if (err < 0)
1553 goto out_fd;
1554
1555 if (upeer_sockaddr) {
1556 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1557 &len, 2) < 0) {
1558 err = -ECONNABORTED;
1559 goto out_fd;
1560 }
1561 err = move_addr_to_user(&address,
1562 len, upeer_sockaddr, upeer_addrlen);
1563 if (err < 0)
1564 goto out_fd;
1565 }
1566
1567 /* File flags are not inherited via accept() unlike another OSes. */
1568
1569 fd_install(newfd, newfile);
1570 err = newfd;
1571
1572 out_put:
1573 fput_light(sock->file, fput_needed);
1574 out:
1575 return err;
1576 out_fd:
1577 fput(newfile);
1578 put_unused_fd(newfd);
1579 goto out_put;
1580 }
1581
1582 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583 int __user *, upeer_addrlen)
1584 {
1585 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1586 }
1587
1588 /*
1589 * Attempt to connect to a socket with the server address. The address
1590 * is in user space so we verify it is OK and move it to kernel space.
1591 *
1592 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1593 * break bindings
1594 *
1595 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1596 * other SEQPACKET protocols that take time to connect() as it doesn't
1597 * include the -EINPROGRESS status for such sockets.
1598 */
1599
1600 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1601 int, addrlen)
1602 {
1603 struct socket *sock;
1604 struct sockaddr_storage address;
1605 int err, fput_needed;
1606
1607 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1608 if (!sock)
1609 goto out;
1610 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1611 if (err < 0)
1612 goto out_put;
1613
1614 err =
1615 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1616 if (err)
1617 goto out_put;
1618
1619 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1620 sock->file->f_flags);
1621 out_put:
1622 fput_light(sock->file, fput_needed);
1623 out:
1624 return err;
1625 }
1626
1627 /*
1628 * Get the local address ('name') of a socket object. Move the obtained
1629 * name to user space.
1630 */
1631
1632 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1633 int __user *, usockaddr_len)
1634 {
1635 struct socket *sock;
1636 struct sockaddr_storage address;
1637 int len, err, fput_needed;
1638
1639 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 if (!sock)
1641 goto out;
1642
1643 err = security_socket_getsockname(sock);
1644 if (err)
1645 goto out_put;
1646
1647 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1648 if (err)
1649 goto out_put;
1650 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1651
1652 out_put:
1653 fput_light(sock->file, fput_needed);
1654 out:
1655 return err;
1656 }
1657
1658 /*
1659 * Get the remote address ('name') of a socket object. Move the obtained
1660 * name to user space.
1661 */
1662
1663 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1664 int __user *, usockaddr_len)
1665 {
1666 struct socket *sock;
1667 struct sockaddr_storage address;
1668 int len, err, fput_needed;
1669
1670 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671 if (sock != NULL) {
1672 err = security_socket_getpeername(sock);
1673 if (err) {
1674 fput_light(sock->file, fput_needed);
1675 return err;
1676 }
1677
1678 err =
1679 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1680 1);
1681 if (!err)
1682 err = move_addr_to_user(&address, len, usockaddr,
1683 usockaddr_len);
1684 fput_light(sock->file, fput_needed);
1685 }
1686 return err;
1687 }
1688
1689 /*
1690 * Send a datagram to a given address. We move the address into kernel
1691 * space and check the user space data area is readable before invoking
1692 * the protocol.
1693 */
1694
1695 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1696 unsigned int, flags, struct sockaddr __user *, addr,
1697 int, addr_len)
1698 {
1699 struct socket *sock;
1700 struct sockaddr_storage address;
1701 int err;
1702 struct msghdr msg;
1703 struct iovec iov;
1704 int fput_needed;
1705
1706 if (len > INT_MAX)
1707 len = INT_MAX;
1708 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1709 if (!sock)
1710 goto out;
1711
1712 iov.iov_base = buff;
1713 iov.iov_len = len;
1714 msg.msg_name = NULL;
1715 msg.msg_iov = &iov;
1716 msg.msg_iovlen = 1;
1717 msg.msg_control = NULL;
1718 msg.msg_controllen = 0;
1719 msg.msg_namelen = 0;
1720 if (addr) {
1721 err = move_addr_to_kernel(addr, addr_len, &address);
1722 if (err < 0)
1723 goto out_put;
1724 msg.msg_name = (struct sockaddr *)&address;
1725 msg.msg_namelen = addr_len;
1726 }
1727 if (sock->file->f_flags & O_NONBLOCK)
1728 flags |= MSG_DONTWAIT;
1729 msg.msg_flags = flags;
1730 err = sock_sendmsg(sock, &msg, len);
1731
1732 out_put:
1733 fput_light(sock->file, fput_needed);
1734 out:
1735 return err;
1736 }
1737
1738 /*
1739 * Send a datagram down a socket.
1740 */
1741
1742 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1743 unsigned int, flags)
1744 {
1745 return sys_sendto(fd, buff, len, flags, NULL, 0);
1746 }
1747
1748 /*
1749 * Receive a frame from the socket and optionally record the address of the
1750 * sender. We verify the buffers are writable and if needed move the
1751 * sender address from kernel to user space.
1752 */
1753
1754 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1755 unsigned int, flags, struct sockaddr __user *, addr,
1756 int __user *, addr_len)
1757 {
1758 struct socket *sock;
1759 struct iovec iov;
1760 struct msghdr msg;
1761 struct sockaddr_storage address;
1762 int err, err2;
1763 int fput_needed;
1764
1765 if (size > INT_MAX)
1766 size = INT_MAX;
1767 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768 if (!sock)
1769 goto out;
1770
1771 msg.msg_control = NULL;
1772 msg.msg_controllen = 0;
1773 msg.msg_iovlen = 1;
1774 msg.msg_iov = &iov;
1775 iov.iov_len = size;
1776 iov.iov_base = ubuf;
1777 msg.msg_name = (struct sockaddr *)&address;
1778 msg.msg_namelen = sizeof(address);
1779 if (sock->file->f_flags & O_NONBLOCK)
1780 flags |= MSG_DONTWAIT;
1781 err = sock_recvmsg(sock, &msg, size, flags);
1782
1783 if (err >= 0 && addr != NULL) {
1784 err2 = move_addr_to_user(&address,
1785 msg.msg_namelen, addr, addr_len);
1786 if (err2 < 0)
1787 err = err2;
1788 }
1789
1790 fput_light(sock->file, fput_needed);
1791 out:
1792 return err;
1793 }
1794
1795 /*
1796 * Receive a datagram from a socket.
1797 */
1798
1799 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1800 unsigned int flags)
1801 {
1802 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1803 }
1804
1805 /*
1806 * Set a socket option. Because we don't know the option lengths we have
1807 * to pass the user mode parameter for the protocols to sort out.
1808 */
1809
1810 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1811 char __user *, optval, int, optlen)
1812 {
1813 int err, fput_needed;
1814 struct socket *sock;
1815
1816 if (optlen < 0)
1817 return -EINVAL;
1818
1819 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1820 if (sock != NULL) {
1821 err = security_socket_setsockopt(sock, level, optname);
1822 if (err)
1823 goto out_put;
1824
1825 if (level == SOL_SOCKET)
1826 err =
1827 sock_setsockopt(sock, level, optname, optval,
1828 optlen);
1829 else
1830 err =
1831 sock->ops->setsockopt(sock, level, optname, optval,
1832 optlen);
1833 out_put:
1834 fput_light(sock->file, fput_needed);
1835 }
1836 return err;
1837 }
1838
1839 /*
1840 * Get a socket option. Because we don't know the option lengths we have
1841 * to pass a user mode parameter for the protocols to sort out.
1842 */
1843
1844 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1845 char __user *, optval, int __user *, optlen)
1846 {
1847 int err, fput_needed;
1848 struct socket *sock;
1849
1850 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1851 if (sock != NULL) {
1852 err = security_socket_getsockopt(sock, level, optname);
1853 if (err)
1854 goto out_put;
1855
1856 if (level == SOL_SOCKET)
1857 err =
1858 sock_getsockopt(sock, level, optname, optval,
1859 optlen);
1860 else
1861 err =
1862 sock->ops->getsockopt(sock, level, optname, optval,
1863 optlen);
1864 out_put:
1865 fput_light(sock->file, fput_needed);
1866 }
1867 return err;
1868 }
1869
1870 /*
1871 * Shutdown a socket.
1872 */
1873
1874 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1875 {
1876 int err, fput_needed;
1877 struct socket *sock;
1878
1879 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880 if (sock != NULL) {
1881 err = security_socket_shutdown(sock, how);
1882 if (!err)
1883 err = sock->ops->shutdown(sock, how);
1884 fput_light(sock->file, fput_needed);
1885 }
1886 return err;
1887 }
1888
1889 /* A couple of helpful macros for getting the address of the 32/64 bit
1890 * fields which are the same type (int / unsigned) on our platforms.
1891 */
1892 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1893 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1894 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1895
1896 struct used_address {
1897 struct sockaddr_storage name;
1898 unsigned int name_len;
1899 };
1900
1901 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1902 struct msghdr *msg_sys, unsigned int flags,
1903 struct used_address *used_address)
1904 {
1905 struct compat_msghdr __user *msg_compat =
1906 (struct compat_msghdr __user *)msg;
1907 struct sockaddr_storage address;
1908 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1909 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1910 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1911 /* 20 is size of ipv6_pktinfo */
1912 unsigned char *ctl_buf = ctl;
1913 int err, ctl_len, total_len;
1914
1915 err = -EFAULT;
1916 if (MSG_CMSG_COMPAT & flags) {
1917 if (get_compat_msghdr(msg_sys, msg_compat))
1918 return -EFAULT;
1919 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1920 return -EFAULT;
1921
1922 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1923 err = -EMSGSIZE;
1924 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1925 goto out;
1926 err = -ENOMEM;
1927 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1928 GFP_KERNEL);
1929 if (!iov)
1930 goto out;
1931 }
1932
1933 /* This will also move the address data into kernel space */
1934 if (MSG_CMSG_COMPAT & flags) {
1935 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1936 } else
1937 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1938 if (err < 0)
1939 goto out_freeiov;
1940 total_len = err;
1941
1942 err = -ENOBUFS;
1943
1944 if (msg_sys->msg_controllen > INT_MAX)
1945 goto out_freeiov;
1946 ctl_len = msg_sys->msg_controllen;
1947 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1948 err =
1949 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1950 sizeof(ctl));
1951 if (err)
1952 goto out_freeiov;
1953 ctl_buf = msg_sys->msg_control;
1954 ctl_len = msg_sys->msg_controllen;
1955 } else if (ctl_len) {
1956 if (ctl_len > sizeof(ctl)) {
1957 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1958 if (ctl_buf == NULL)
1959 goto out_freeiov;
1960 }
1961 err = -EFAULT;
1962 /*
1963 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1964 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1965 * checking falls down on this.
1966 */
1967 if (copy_from_user(ctl_buf,
1968 (void __user __force *)msg_sys->msg_control,
1969 ctl_len))
1970 goto out_freectl;
1971 msg_sys->msg_control = ctl_buf;
1972 }
1973 msg_sys->msg_flags = flags;
1974
1975 if (sock->file->f_flags & O_NONBLOCK)
1976 msg_sys->msg_flags |= MSG_DONTWAIT;
1977 /*
1978 * If this is sendmmsg() and current destination address is same as
1979 * previously succeeded address, omit asking LSM's decision.
1980 * used_address->name_len is initialized to UINT_MAX so that the first
1981 * destination address never matches.
1982 */
1983 if (used_address && msg_sys->msg_name &&
1984 used_address->name_len == msg_sys->msg_namelen &&
1985 !memcmp(&used_address->name, msg_sys->msg_name,
1986 used_address->name_len)) {
1987 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1988 goto out_freectl;
1989 }
1990 err = sock_sendmsg(sock, msg_sys, total_len);
1991 /*
1992 * If this is sendmmsg() and sending to current destination address was
1993 * successful, remember it.
1994 */
1995 if (used_address && err >= 0) {
1996 used_address->name_len = msg_sys->msg_namelen;
1997 if (msg_sys->msg_name)
1998 memcpy(&used_address->name, msg_sys->msg_name,
1999 used_address->name_len);
2000 }
2001
2002 out_freectl:
2003 if (ctl_buf != ctl)
2004 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2005 out_freeiov:
2006 if (iov != iovstack)
2007 kfree(iov);
2008 out:
2009 return err;
2010 }
2011
2012 /*
2013 * BSD sendmsg interface
2014 */
2015
2016 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2017 {
2018 int fput_needed, err;
2019 struct msghdr msg_sys;
2020 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2021
2022 if (!sock)
2023 goto out;
2024
2025 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2026
2027 fput_light(sock->file, fput_needed);
2028 out:
2029 return err;
2030 }
2031
2032 /*
2033 * Linux sendmmsg interface
2034 */
2035
2036 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2037 unsigned int flags)
2038 {
2039 int fput_needed, err, datagrams;
2040 struct socket *sock;
2041 struct mmsghdr __user *entry;
2042 struct compat_mmsghdr __user *compat_entry;
2043 struct msghdr msg_sys;
2044 struct used_address used_address;
2045
2046 if (vlen > UIO_MAXIOV)
2047 vlen = UIO_MAXIOV;
2048
2049 datagrams = 0;
2050
2051 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052 if (!sock)
2053 return err;
2054
2055 used_address.name_len = UINT_MAX;
2056 entry = mmsg;
2057 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2058 err = 0;
2059
2060 while (datagrams < vlen) {
2061 if (MSG_CMSG_COMPAT & flags) {
2062 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2063 &msg_sys, flags, &used_address);
2064 if (err < 0)
2065 break;
2066 err = __put_user(err, &compat_entry->msg_len);
2067 ++compat_entry;
2068 } else {
2069 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2070 &msg_sys, flags, &used_address);
2071 if (err < 0)
2072 break;
2073 err = put_user(err, &entry->msg_len);
2074 ++entry;
2075 }
2076
2077 if (err)
2078 break;
2079 ++datagrams;
2080 }
2081
2082 fput_light(sock->file, fput_needed);
2083
2084 /* We only return an error if no datagrams were able to be sent */
2085 if (datagrams != 0)
2086 return datagrams;
2087
2088 return err;
2089 }
2090
2091 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2092 unsigned int, vlen, unsigned int, flags)
2093 {
2094 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2095 }
2096
2097 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2098 struct msghdr *msg_sys, unsigned int flags, int nosec)
2099 {
2100 struct compat_msghdr __user *msg_compat =
2101 (struct compat_msghdr __user *)msg;
2102 struct iovec iovstack[UIO_FASTIOV];
2103 struct iovec *iov = iovstack;
2104 unsigned long cmsg_ptr;
2105 int err, total_len, len;
2106
2107 /* kernel mode address */
2108 struct sockaddr_storage addr;
2109
2110 /* user mode address pointers */
2111 struct sockaddr __user *uaddr;
2112 int __user *uaddr_len;
2113
2114 if (MSG_CMSG_COMPAT & flags) {
2115 if (get_compat_msghdr(msg_sys, msg_compat))
2116 return -EFAULT;
2117 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2118 return -EFAULT;
2119
2120 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2121 err = -EMSGSIZE;
2122 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2123 goto out;
2124 err = -ENOMEM;
2125 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2126 GFP_KERNEL);
2127 if (!iov)
2128 goto out;
2129 }
2130
2131 /*
2132 * Save the user-mode address (verify_iovec will change the
2133 * kernel msghdr to use the kernel address space)
2134 */
2135
2136 uaddr = (__force void __user *)msg_sys->msg_name;
2137 uaddr_len = COMPAT_NAMELEN(msg);
2138 if (MSG_CMSG_COMPAT & flags) {
2139 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2140 } else
2141 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2142 if (err < 0)
2143 goto out_freeiov;
2144 total_len = err;
2145
2146 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2147 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2148
2149 if (sock->file->f_flags & O_NONBLOCK)
2150 flags |= MSG_DONTWAIT;
2151 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2152 total_len, flags);
2153 if (err < 0)
2154 goto out_freeiov;
2155 len = err;
2156
2157 if (uaddr != NULL) {
2158 err = move_addr_to_user(&addr,
2159 msg_sys->msg_namelen, uaddr,
2160 uaddr_len);
2161 if (err < 0)
2162 goto out_freeiov;
2163 }
2164 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2165 COMPAT_FLAGS(msg));
2166 if (err)
2167 goto out_freeiov;
2168 if (MSG_CMSG_COMPAT & flags)
2169 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2170 &msg_compat->msg_controllen);
2171 else
2172 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2173 &msg->msg_controllen);
2174 if (err)
2175 goto out_freeiov;
2176 err = len;
2177
2178 out_freeiov:
2179 if (iov != iovstack)
2180 kfree(iov);
2181 out:
2182 return err;
2183 }
2184
2185 /*
2186 * BSD recvmsg interface
2187 */
2188
2189 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2190 unsigned int, flags)
2191 {
2192 int fput_needed, err;
2193 struct msghdr msg_sys;
2194 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195
2196 if (!sock)
2197 goto out;
2198
2199 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2200
2201 fput_light(sock->file, fput_needed);
2202 out:
2203 return err;
2204 }
2205
2206 /*
2207 * Linux recvmmsg interface
2208 */
2209
2210 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2211 unsigned int flags, struct timespec *timeout)
2212 {
2213 int fput_needed, err, datagrams;
2214 struct socket *sock;
2215 struct mmsghdr __user *entry;
2216 struct compat_mmsghdr __user *compat_entry;
2217 struct msghdr msg_sys;
2218 struct timespec end_time;
2219
2220 if (timeout &&
2221 poll_select_set_timeout(&end_time, timeout->tv_sec,
2222 timeout->tv_nsec))
2223 return -EINVAL;
2224
2225 datagrams = 0;
2226
2227 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2228 if (!sock)
2229 return err;
2230
2231 err = sock_error(sock->sk);
2232 if (err)
2233 goto out_put;
2234
2235 entry = mmsg;
2236 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2237
2238 while (datagrams < vlen) {
2239 /*
2240 * No need to ask LSM for more than the first datagram.
2241 */
2242 if (MSG_CMSG_COMPAT & flags) {
2243 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2244 &msg_sys, flags & ~MSG_WAITFORONE,
2245 datagrams);
2246 if (err < 0)
2247 break;
2248 err = __put_user(err, &compat_entry->msg_len);
2249 ++compat_entry;
2250 } else {
2251 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2252 &msg_sys, flags & ~MSG_WAITFORONE,
2253 datagrams);
2254 if (err < 0)
2255 break;
2256 err = put_user(err, &entry->msg_len);
2257 ++entry;
2258 }
2259
2260 if (err)
2261 break;
2262 ++datagrams;
2263
2264 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265 if (flags & MSG_WAITFORONE)
2266 flags |= MSG_DONTWAIT;
2267
2268 if (timeout) {
2269 ktime_get_ts(timeout);
2270 *timeout = timespec_sub(end_time, *timeout);
2271 if (timeout->tv_sec < 0) {
2272 timeout->tv_sec = timeout->tv_nsec = 0;
2273 break;
2274 }
2275
2276 /* Timeout, return less than vlen datagrams */
2277 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2278 break;
2279 }
2280
2281 /* Out of band data, return right away */
2282 if (msg_sys.msg_flags & MSG_OOB)
2283 break;
2284 }
2285
2286 out_put:
2287 fput_light(sock->file, fput_needed);
2288
2289 if (err == 0)
2290 return datagrams;
2291
2292 if (datagrams != 0) {
2293 /*
2294 * We may return less entries than requested (vlen) if the
2295 * sock is non block and there aren't enough datagrams...
2296 */
2297 if (err != -EAGAIN) {
2298 /*
2299 * ... or if recvmsg returns an error after we
2300 * received some datagrams, where we record the
2301 * error to return on the next call or if the
2302 * app asks about it using getsockopt(SO_ERROR).
2303 */
2304 sock->sk->sk_err = -err;
2305 }
2306
2307 return datagrams;
2308 }
2309
2310 return err;
2311 }
2312
2313 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2314 unsigned int, vlen, unsigned int, flags,
2315 struct timespec __user *, timeout)
2316 {
2317 int datagrams;
2318 struct timespec timeout_sys;
2319
2320 if (!timeout)
2321 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2322
2323 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2324 return -EFAULT;
2325
2326 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2327
2328 if (datagrams > 0 &&
2329 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2330 datagrams = -EFAULT;
2331
2332 return datagrams;
2333 }
2334
2335 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2336 /* Argument list sizes for sys_socketcall */
2337 #define AL(x) ((x) * sizeof(unsigned long))
2338 static const unsigned char nargs[21] = {
2339 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2340 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2341 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2342 AL(4), AL(5), AL(4)
2343 };
2344
2345 #undef AL
2346
2347 /*
2348 * System call vectors.
2349 *
2350 * Argument checking cleaned up. Saved 20% in size.
2351 * This function doesn't need to set the kernel lock because
2352 * it is set by the callees.
2353 */
2354
2355 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2356 {
2357 unsigned long a[6];
2358 unsigned long a0, a1;
2359 int err;
2360 unsigned int len;
2361
2362 if (call < 1 || call > SYS_SENDMMSG)
2363 return -EINVAL;
2364
2365 len = nargs[call];
2366 if (len > sizeof(a))
2367 return -EINVAL;
2368
2369 /* copy_from_user should be SMP safe. */
2370 if (copy_from_user(a, args, len))
2371 return -EFAULT;
2372
2373 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2374
2375 a0 = a[0];
2376 a1 = a[1];
2377
2378 switch (call) {
2379 case SYS_SOCKET:
2380 err = sys_socket(a0, a1, a[2]);
2381 break;
2382 case SYS_BIND:
2383 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2384 break;
2385 case SYS_CONNECT:
2386 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2387 break;
2388 case SYS_LISTEN:
2389 err = sys_listen(a0, a1);
2390 break;
2391 case SYS_ACCEPT:
2392 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2393 (int __user *)a[2], 0);
2394 break;
2395 case SYS_GETSOCKNAME:
2396 err =
2397 sys_getsockname(a0, (struct sockaddr __user *)a1,
2398 (int __user *)a[2]);
2399 break;
2400 case SYS_GETPEERNAME:
2401 err =
2402 sys_getpeername(a0, (struct sockaddr __user *)a1,
2403 (int __user *)a[2]);
2404 break;
2405 case SYS_SOCKETPAIR:
2406 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2407 break;
2408 case SYS_SEND:
2409 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2410 break;
2411 case SYS_SENDTO:
2412 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2413 (struct sockaddr __user *)a[4], a[5]);
2414 break;
2415 case SYS_RECV:
2416 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2417 break;
2418 case SYS_RECVFROM:
2419 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2420 (struct sockaddr __user *)a[4],
2421 (int __user *)a[5]);
2422 break;
2423 case SYS_SHUTDOWN:
2424 err = sys_shutdown(a0, a1);
2425 break;
2426 case SYS_SETSOCKOPT:
2427 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2428 break;
2429 case SYS_GETSOCKOPT:
2430 err =
2431 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2432 (int __user *)a[4]);
2433 break;
2434 case SYS_SENDMSG:
2435 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2436 break;
2437 case SYS_SENDMMSG:
2438 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2439 break;
2440 case SYS_RECVMSG:
2441 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2442 break;
2443 case SYS_RECVMMSG:
2444 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2445 (struct timespec __user *)a[4]);
2446 break;
2447 case SYS_ACCEPT4:
2448 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2449 (int __user *)a[2], a[3]);
2450 break;
2451 default:
2452 err = -EINVAL;
2453 break;
2454 }
2455 return err;
2456 }
2457
2458 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2459
2460 /**
2461 * sock_register - add a socket protocol handler
2462 * @ops: description of protocol
2463 *
2464 * This function is called by a protocol handler that wants to
2465 * advertise its address family, and have it linked into the
2466 * socket interface. The value ops->family coresponds to the
2467 * socket system call protocol family.
2468 */
2469 int sock_register(const struct net_proto_family *ops)
2470 {
2471 int err;
2472
2473 if (ops->family >= NPROTO) {
2474 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2475 NPROTO);
2476 return -ENOBUFS;
2477 }
2478
2479 spin_lock(&net_family_lock);
2480 if (rcu_dereference_protected(net_families[ops->family],
2481 lockdep_is_held(&net_family_lock)))
2482 err = -EEXIST;
2483 else {
2484 rcu_assign_pointer(net_families[ops->family], ops);
2485 err = 0;
2486 }
2487 spin_unlock(&net_family_lock);
2488
2489 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2490 return err;
2491 }
2492 EXPORT_SYMBOL(sock_register);
2493
2494 /**
2495 * sock_unregister - remove a protocol handler
2496 * @family: protocol family to remove
2497 *
2498 * This function is called by a protocol handler that wants to
2499 * remove its address family, and have it unlinked from the
2500 * new socket creation.
2501 *
2502 * If protocol handler is a module, then it can use module reference
2503 * counts to protect against new references. If protocol handler is not
2504 * a module then it needs to provide its own protection in
2505 * the ops->create routine.
2506 */
2507 void sock_unregister(int family)
2508 {
2509 BUG_ON(family < 0 || family >= NPROTO);
2510
2511 spin_lock(&net_family_lock);
2512 RCU_INIT_POINTER(net_families[family], NULL);
2513 spin_unlock(&net_family_lock);
2514
2515 synchronize_rcu();
2516
2517 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2518 }
2519 EXPORT_SYMBOL(sock_unregister);
2520
2521 static int __init sock_init(void)
2522 {
2523 int err;
2524 /*
2525 * Initialize the network sysctl infrastructure.
2526 */
2527 err = net_sysctl_init();
2528 if (err)
2529 goto out;
2530
2531 /*
2532 * Initialize sock SLAB cache.
2533 */
2534
2535 sk_init();
2536
2537 /*
2538 * Initialize skbuff SLAB cache
2539 */
2540 skb_init();
2541
2542 /*
2543 * Initialize the protocols module.
2544 */
2545
2546 init_inodecache();
2547
2548 err = register_filesystem(&sock_fs_type);
2549 if (err)
2550 goto out_fs;
2551 sock_mnt = kern_mount(&sock_fs_type);
2552 if (IS_ERR(sock_mnt)) {
2553 err = PTR_ERR(sock_mnt);
2554 goto out_mount;
2555 }
2556
2557 /* The real protocol initialization is performed in later initcalls.
2558 */
2559
2560 #ifdef CONFIG_NETFILTER
2561 netfilter_init();
2562 #endif
2563
2564 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2565 skb_timestamping_init();
2566 #endif
2567
2568 out:
2569 return err;
2570
2571 out_mount:
2572 unregister_filesystem(&sock_fs_type);
2573 out_fs:
2574 goto out;
2575 }
2576
2577 core_initcall(sock_init); /* early initcall */
2578
2579 #ifdef CONFIG_PROC_FS
2580 void socket_seq_show(struct seq_file *seq)
2581 {
2582 int cpu;
2583 int counter = 0;
2584
2585 for_each_possible_cpu(cpu)
2586 counter += per_cpu(sockets_in_use, cpu);
2587
2588 /* It can be negative, by the way. 8) */
2589 if (counter < 0)
2590 counter = 0;
2591
2592 seq_printf(seq, "sockets: used %d\n", counter);
2593 }
2594 #endif /* CONFIG_PROC_FS */
2595
2596 #ifdef CONFIG_COMPAT
2597 static int do_siocgstamp(struct net *net, struct socket *sock,
2598 unsigned int cmd, void __user *up)
2599 {
2600 mm_segment_t old_fs = get_fs();
2601 struct timeval ktv;
2602 int err;
2603
2604 set_fs(KERNEL_DS);
2605 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2606 set_fs(old_fs);
2607 if (!err)
2608 err = compat_put_timeval(up, &ktv);
2609
2610 return err;
2611 }
2612
2613 static int do_siocgstampns(struct net *net, struct socket *sock,
2614 unsigned int cmd, void __user *up)
2615 {
2616 mm_segment_t old_fs = get_fs();
2617 struct timespec kts;
2618 int err;
2619
2620 set_fs(KERNEL_DS);
2621 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2622 set_fs(old_fs);
2623 if (!err)
2624 err = compat_put_timespec(up, &kts);
2625
2626 return err;
2627 }
2628
2629 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2630 {
2631 struct ifreq __user *uifr;
2632 int err;
2633
2634 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2636 return -EFAULT;
2637
2638 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2639 if (err)
2640 return err;
2641
2642 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2643 return -EFAULT;
2644
2645 return 0;
2646 }
2647
2648 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2649 {
2650 struct compat_ifconf ifc32;
2651 struct ifconf ifc;
2652 struct ifconf __user *uifc;
2653 struct compat_ifreq __user *ifr32;
2654 struct ifreq __user *ifr;
2655 unsigned int i, j;
2656 int err;
2657
2658 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2659 return -EFAULT;
2660
2661 if (ifc32.ifcbuf == 0) {
2662 ifc32.ifc_len = 0;
2663 ifc.ifc_len = 0;
2664 ifc.ifc_req = NULL;
2665 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2666 } else {
2667 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2668 sizeof(struct ifreq);
2669 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2670 ifc.ifc_len = len;
2671 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2672 ifr32 = compat_ptr(ifc32.ifcbuf);
2673 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2674 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2675 return -EFAULT;
2676 ifr++;
2677 ifr32++;
2678 }
2679 }
2680 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2681 return -EFAULT;
2682
2683 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2684 if (err)
2685 return err;
2686
2687 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2688 return -EFAULT;
2689
2690 ifr = ifc.ifc_req;
2691 ifr32 = compat_ptr(ifc32.ifcbuf);
2692 for (i = 0, j = 0;
2693 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2694 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2695 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2696 return -EFAULT;
2697 ifr32++;
2698 ifr++;
2699 }
2700
2701 if (ifc32.ifcbuf == 0) {
2702 /* Translate from 64-bit structure multiple to
2703 * a 32-bit one.
2704 */
2705 i = ifc.ifc_len;
2706 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2707 ifc32.ifc_len = i;
2708 } else {
2709 ifc32.ifc_len = i;
2710 }
2711 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2712 return -EFAULT;
2713
2714 return 0;
2715 }
2716
2717 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2718 {
2719 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2720 bool convert_in = false, convert_out = false;
2721 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2722 struct ethtool_rxnfc __user *rxnfc;
2723 struct ifreq __user *ifr;
2724 u32 rule_cnt = 0, actual_rule_cnt;
2725 u32 ethcmd;
2726 u32 data;
2727 int ret;
2728
2729 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2730 return -EFAULT;
2731
2732 compat_rxnfc = compat_ptr(data);
2733
2734 if (get_user(ethcmd, &compat_rxnfc->cmd))
2735 return -EFAULT;
2736
2737 /* Most ethtool structures are defined without padding.
2738 * Unfortunately struct ethtool_rxnfc is an exception.
2739 */
2740 switch (ethcmd) {
2741 default:
2742 break;
2743 case ETHTOOL_GRXCLSRLALL:
2744 /* Buffer size is variable */
2745 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2746 return -EFAULT;
2747 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2748 return -ENOMEM;
2749 buf_size += rule_cnt * sizeof(u32);
2750 /* fall through */
2751 case ETHTOOL_GRXRINGS:
2752 case ETHTOOL_GRXCLSRLCNT:
2753 case ETHTOOL_GRXCLSRULE:
2754 case ETHTOOL_SRXCLSRLINS:
2755 convert_out = true;
2756 /* fall through */
2757 case ETHTOOL_SRXCLSRLDEL:
2758 buf_size += sizeof(struct ethtool_rxnfc);
2759 convert_in = true;
2760 break;
2761 }
2762
2763 ifr = compat_alloc_user_space(buf_size);
2764 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2765
2766 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2767 return -EFAULT;
2768
2769 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2770 &ifr->ifr_ifru.ifru_data))
2771 return -EFAULT;
2772
2773 if (convert_in) {
2774 /* We expect there to be holes between fs.m_ext and
2775 * fs.ring_cookie and at the end of fs, but nowhere else.
2776 */
2777 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2778 sizeof(compat_rxnfc->fs.m_ext) !=
2779 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2780 sizeof(rxnfc->fs.m_ext));
2781 BUILD_BUG_ON(
2782 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2783 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2784 offsetof(struct ethtool_rxnfc, fs.location) -
2785 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2786
2787 if (copy_in_user(rxnfc, compat_rxnfc,
2788 (void *)(&rxnfc->fs.m_ext + 1) -
2789 (void *)rxnfc) ||
2790 copy_in_user(&rxnfc->fs.ring_cookie,
2791 &compat_rxnfc->fs.ring_cookie,
2792 (void *)(&rxnfc->fs.location + 1) -
2793 (void *)&rxnfc->fs.ring_cookie) ||
2794 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2795 sizeof(rxnfc->rule_cnt)))
2796 return -EFAULT;
2797 }
2798
2799 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2800 if (ret)
2801 return ret;
2802
2803 if (convert_out) {
2804 if (copy_in_user(compat_rxnfc, rxnfc,
2805 (const void *)(&rxnfc->fs.m_ext + 1) -
2806 (const void *)rxnfc) ||
2807 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2808 &rxnfc->fs.ring_cookie,
2809 (const void *)(&rxnfc->fs.location + 1) -
2810 (const void *)&rxnfc->fs.ring_cookie) ||
2811 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2812 sizeof(rxnfc->rule_cnt)))
2813 return -EFAULT;
2814
2815 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2816 /* As an optimisation, we only copy the actual
2817 * number of rules that the underlying
2818 * function returned. Since Mallory might
2819 * change the rule count in user memory, we
2820 * check that it is less than the rule count
2821 * originally given (as the user buffer size),
2822 * which has been range-checked.
2823 */
2824 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2825 return -EFAULT;
2826 if (actual_rule_cnt < rule_cnt)
2827 rule_cnt = actual_rule_cnt;
2828 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2829 &rxnfc->rule_locs[0],
2830 rule_cnt * sizeof(u32)))
2831 return -EFAULT;
2832 }
2833 }
2834
2835 return 0;
2836 }
2837
2838 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2839 {
2840 void __user *uptr;
2841 compat_uptr_t uptr32;
2842 struct ifreq __user *uifr;
2843
2844 uifr = compat_alloc_user_space(sizeof(*uifr));
2845 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2846 return -EFAULT;
2847
2848 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2849 return -EFAULT;
2850
2851 uptr = compat_ptr(uptr32);
2852
2853 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2854 return -EFAULT;
2855
2856 return dev_ioctl(net, SIOCWANDEV, uifr);
2857 }
2858
2859 static int bond_ioctl(struct net *net, unsigned int cmd,
2860 struct compat_ifreq __user *ifr32)
2861 {
2862 struct ifreq kifr;
2863 struct ifreq __user *uifr;
2864 mm_segment_t old_fs;
2865 int err;
2866 u32 data;
2867 void __user *datap;
2868
2869 switch (cmd) {
2870 case SIOCBONDENSLAVE:
2871 case SIOCBONDRELEASE:
2872 case SIOCBONDSETHWADDR:
2873 case SIOCBONDCHANGEACTIVE:
2874 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875 return -EFAULT;
2876
2877 old_fs = get_fs();
2878 set_fs(KERNEL_DS);
2879 err = dev_ioctl(net, cmd,
2880 (struct ifreq __user __force *) &kifr);
2881 set_fs(old_fs);
2882
2883 return err;
2884 case SIOCBONDSLAVEINFOQUERY:
2885 case SIOCBONDINFOQUERY:
2886 uifr = compat_alloc_user_space(sizeof(*uifr));
2887 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2888 return -EFAULT;
2889
2890 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2891 return -EFAULT;
2892
2893 datap = compat_ptr(data);
2894 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2895 return -EFAULT;
2896
2897 return dev_ioctl(net, cmd, uifr);
2898 default:
2899 return -ENOIOCTLCMD;
2900 }
2901 }
2902
2903 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2904 struct compat_ifreq __user *u_ifreq32)
2905 {
2906 struct ifreq __user *u_ifreq64;
2907 char tmp_buf[IFNAMSIZ];
2908 void __user *data64;
2909 u32 data32;
2910
2911 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2912 IFNAMSIZ))
2913 return -EFAULT;
2914 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2915 return -EFAULT;
2916 data64 = compat_ptr(data32);
2917
2918 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2919
2920 /* Don't check these user accesses, just let that get trapped
2921 * in the ioctl handler instead.
2922 */
2923 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2924 IFNAMSIZ))
2925 return -EFAULT;
2926 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2927 return -EFAULT;
2928
2929 return dev_ioctl(net, cmd, u_ifreq64);
2930 }
2931
2932 static int dev_ifsioc(struct net *net, struct socket *sock,
2933 unsigned int cmd, struct compat_ifreq __user *uifr32)
2934 {
2935 struct ifreq __user *uifr;
2936 int err;
2937
2938 uifr = compat_alloc_user_space(sizeof(*uifr));
2939 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2940 return -EFAULT;
2941
2942 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2943
2944 if (!err) {
2945 switch (cmd) {
2946 case SIOCGIFFLAGS:
2947 case SIOCGIFMETRIC:
2948 case SIOCGIFMTU:
2949 case SIOCGIFMEM:
2950 case SIOCGIFHWADDR:
2951 case SIOCGIFINDEX:
2952 case SIOCGIFADDR:
2953 case SIOCGIFBRDADDR:
2954 case SIOCGIFDSTADDR:
2955 case SIOCGIFNETMASK:
2956 case SIOCGIFPFLAGS:
2957 case SIOCGIFTXQLEN:
2958 case SIOCGMIIPHY:
2959 case SIOCGMIIREG:
2960 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2961 err = -EFAULT;
2962 break;
2963 }
2964 }
2965 return err;
2966 }
2967
2968 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2969 struct compat_ifreq __user *uifr32)
2970 {
2971 struct ifreq ifr;
2972 struct compat_ifmap __user *uifmap32;
2973 mm_segment_t old_fs;
2974 int err;
2975
2976 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2977 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2978 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2982 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2983 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2984 if (err)
2985 return -EFAULT;
2986
2987 old_fs = get_fs();
2988 set_fs(KERNEL_DS);
2989 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2990 set_fs(old_fs);
2991
2992 if (cmd == SIOCGIFMAP && !err) {
2993 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2994 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2995 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2996 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2997 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2998 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2999 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3000 if (err)
3001 err = -EFAULT;
3002 }
3003 return err;
3004 }
3005
3006 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3007 {
3008 void __user *uptr;
3009 compat_uptr_t uptr32;
3010 struct ifreq __user *uifr;
3011
3012 uifr = compat_alloc_user_space(sizeof(*uifr));
3013 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3014 return -EFAULT;
3015
3016 if (get_user(uptr32, &uifr32->ifr_data))
3017 return -EFAULT;
3018
3019 uptr = compat_ptr(uptr32);
3020
3021 if (put_user(uptr, &uifr->ifr_data))
3022 return -EFAULT;
3023
3024 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3025 }
3026
3027 struct rtentry32 {
3028 u32 rt_pad1;
3029 struct sockaddr rt_dst; /* target address */
3030 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3031 struct sockaddr rt_genmask; /* target network mask (IP) */
3032 unsigned short rt_flags;
3033 short rt_pad2;
3034 u32 rt_pad3;
3035 unsigned char rt_tos;
3036 unsigned char rt_class;
3037 short rt_pad4;
3038 short rt_metric; /* +1 for binary compatibility! */
3039 /* char * */ u32 rt_dev; /* forcing the device at add */
3040 u32 rt_mtu; /* per route MTU/Window */
3041 u32 rt_window; /* Window clamping */
3042 unsigned short rt_irtt; /* Initial RTT */
3043 };
3044
3045 struct in6_rtmsg32 {
3046 struct in6_addr rtmsg_dst;
3047 struct in6_addr rtmsg_src;
3048 struct in6_addr rtmsg_gateway;
3049 u32 rtmsg_type;
3050 u16 rtmsg_dst_len;
3051 u16 rtmsg_src_len;
3052 u32 rtmsg_metric;
3053 u32 rtmsg_info;
3054 u32 rtmsg_flags;
3055 s32 rtmsg_ifindex;
3056 };
3057
3058 static int routing_ioctl(struct net *net, struct socket *sock,
3059 unsigned int cmd, void __user *argp)
3060 {
3061 int ret;
3062 void *r = NULL;
3063 struct in6_rtmsg r6;
3064 struct rtentry r4;
3065 char devname[16];
3066 u32 rtdev;
3067 mm_segment_t old_fs = get_fs();
3068
3069 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3070 struct in6_rtmsg32 __user *ur6 = argp;
3071 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3072 3 * sizeof(struct in6_addr));
3073 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3074 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3075 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3076 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3077 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3078 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3079 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3080
3081 r = (void *) &r6;
3082 } else { /* ipv4 */
3083 struct rtentry32 __user *ur4 = argp;
3084 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3085 3 * sizeof(struct sockaddr));
3086 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3087 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3088 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3089 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3090 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3091 ret |= __get_user(rtdev, &(ur4->rt_dev));
3092 if (rtdev) {
3093 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3094 r4.rt_dev = (char __user __force *)devname;
3095 devname[15] = 0;
3096 } else
3097 r4.rt_dev = NULL;
3098
3099 r = (void *) &r4;
3100 }
3101
3102 if (ret) {
3103 ret = -EFAULT;
3104 goto out;
3105 }
3106
3107 set_fs(KERNEL_DS);
3108 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3109 set_fs(old_fs);
3110
3111 out:
3112 return ret;
3113 }
3114
3115 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3116 * for some operations; this forces use of the newer bridge-utils that
3117 * use compatible ioctls
3118 */
3119 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3120 {
3121 compat_ulong_t tmp;
3122
3123 if (get_user(tmp, argp))
3124 return -EFAULT;
3125 if (tmp == BRCTL_GET_VERSION)
3126 return BRCTL_VERSION + 1;
3127 return -EINVAL;
3128 }
3129
3130 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3131 unsigned int cmd, unsigned long arg)
3132 {
3133 void __user *argp = compat_ptr(arg);
3134 struct sock *sk = sock->sk;
3135 struct net *net = sock_net(sk);
3136
3137 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3138 return siocdevprivate_ioctl(net, cmd, argp);
3139
3140 switch (cmd) {
3141 case SIOCSIFBR:
3142 case SIOCGIFBR:
3143 return old_bridge_ioctl(argp);
3144 case SIOCGIFNAME:
3145 return dev_ifname32(net, argp);
3146 case SIOCGIFCONF:
3147 return dev_ifconf(net, argp);
3148 case SIOCETHTOOL:
3149 return ethtool_ioctl(net, argp);
3150 case SIOCWANDEV:
3151 return compat_siocwandev(net, argp);
3152 case SIOCGIFMAP:
3153 case SIOCSIFMAP:
3154 return compat_sioc_ifmap(net, cmd, argp);
3155 case SIOCBONDENSLAVE:
3156 case SIOCBONDRELEASE:
3157 case SIOCBONDSETHWADDR:
3158 case SIOCBONDSLAVEINFOQUERY:
3159 case SIOCBONDINFOQUERY:
3160 case SIOCBONDCHANGEACTIVE:
3161 return bond_ioctl(net, cmd, argp);
3162 case SIOCADDRT:
3163 case SIOCDELRT:
3164 return routing_ioctl(net, sock, cmd, argp);
3165 case SIOCGSTAMP:
3166 return do_siocgstamp(net, sock, cmd, argp);
3167 case SIOCGSTAMPNS:
3168 return do_siocgstampns(net, sock, cmd, argp);
3169 case SIOCSHWTSTAMP:
3170 return compat_siocshwtstamp(net, argp);
3171
3172 case FIOSETOWN:
3173 case SIOCSPGRP:
3174 case FIOGETOWN:
3175 case SIOCGPGRP:
3176 case SIOCBRADDBR:
3177 case SIOCBRDELBR:
3178 case SIOCGIFVLAN:
3179 case SIOCSIFVLAN:
3180 case SIOCADDDLCI:
3181 case SIOCDELDLCI:
3182 return sock_ioctl(file, cmd, arg);
3183
3184 case SIOCGIFFLAGS:
3185 case SIOCSIFFLAGS:
3186 case SIOCGIFMETRIC:
3187 case SIOCSIFMETRIC:
3188 case SIOCGIFMTU:
3189 case SIOCSIFMTU:
3190 case SIOCGIFMEM:
3191 case SIOCSIFMEM:
3192 case SIOCGIFHWADDR:
3193 case SIOCSIFHWADDR:
3194 case SIOCADDMULTI:
3195 case SIOCDELMULTI:
3196 case SIOCGIFINDEX:
3197 case SIOCGIFADDR:
3198 case SIOCSIFADDR:
3199 case SIOCSIFHWBROADCAST:
3200 case SIOCDIFADDR:
3201 case SIOCGIFBRDADDR:
3202 case SIOCSIFBRDADDR:
3203 case SIOCGIFDSTADDR:
3204 case SIOCSIFDSTADDR:
3205 case SIOCGIFNETMASK:
3206 case SIOCSIFNETMASK:
3207 case SIOCSIFPFLAGS:
3208 case SIOCGIFPFLAGS:
3209 case SIOCGIFTXQLEN:
3210 case SIOCSIFTXQLEN:
3211 case SIOCBRADDIF:
3212 case SIOCBRDELIF:
3213 case SIOCSIFNAME:
3214 case SIOCGMIIPHY:
3215 case SIOCGMIIREG:
3216 case SIOCSMIIREG:
3217 return dev_ifsioc(net, sock, cmd, argp);
3218
3219 case SIOCSARP:
3220 case SIOCGARP:
3221 case SIOCDARP:
3222 case SIOCATMARK:
3223 return sock_do_ioctl(net, sock, cmd, arg);
3224 }
3225
3226 return -ENOIOCTLCMD;
3227 }
3228
3229 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3230 unsigned long arg)
3231 {
3232 struct socket *sock = file->private_data;
3233 int ret = -ENOIOCTLCMD;
3234 struct sock *sk;
3235 struct net *net;
3236
3237 sk = sock->sk;
3238 net = sock_net(sk);
3239
3240 if (sock->ops->compat_ioctl)
3241 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3242
3243 if (ret == -ENOIOCTLCMD &&
3244 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3245 ret = compat_wext_handle_ioctl(net, cmd, arg);
3246
3247 if (ret == -ENOIOCTLCMD)
3248 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3249
3250 return ret;
3251 }
3252 #endif
3253
3254 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3255 {
3256 return sock->ops->bind(sock, addr, addrlen);
3257 }
3258 EXPORT_SYMBOL(kernel_bind);
3259
3260 int kernel_listen(struct socket *sock, int backlog)
3261 {
3262 return sock->ops->listen(sock, backlog);
3263 }
3264 EXPORT_SYMBOL(kernel_listen);
3265
3266 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3267 {
3268 struct sock *sk = sock->sk;
3269 int err;
3270
3271 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3272 newsock);
3273 if (err < 0)
3274 goto done;
3275
3276 err = sock->ops->accept(sock, *newsock, flags);
3277 if (err < 0) {
3278 sock_release(*newsock);
3279 *newsock = NULL;
3280 goto done;
3281 }
3282
3283 (*newsock)->ops = sock->ops;
3284 __module_get((*newsock)->ops->owner);
3285
3286 done:
3287 return err;
3288 }
3289 EXPORT_SYMBOL(kernel_accept);
3290
3291 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3292 int flags)
3293 {
3294 return sock->ops->connect(sock, addr, addrlen, flags);
3295 }
3296 EXPORT_SYMBOL(kernel_connect);
3297
3298 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3299 int *addrlen)
3300 {
3301 return sock->ops->getname(sock, addr, addrlen, 0);
3302 }
3303 EXPORT_SYMBOL(kernel_getsockname);
3304
3305 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3306 int *addrlen)
3307 {
3308 return sock->ops->getname(sock, addr, addrlen, 1);
3309 }
3310 EXPORT_SYMBOL(kernel_getpeername);
3311
3312 int kernel_getsockopt(struct socket *sock, int level, int optname,
3313 char *optval, int *optlen)
3314 {
3315 mm_segment_t oldfs = get_fs();
3316 char __user *uoptval;
3317 int __user *uoptlen;
3318 int err;
3319
3320 uoptval = (char __user __force *) optval;
3321 uoptlen = (int __user __force *) optlen;
3322
3323 set_fs(KERNEL_DS);
3324 if (level == SOL_SOCKET)
3325 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3326 else
3327 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3328 uoptlen);
3329 set_fs(oldfs);
3330 return err;
3331 }
3332 EXPORT_SYMBOL(kernel_getsockopt);
3333
3334 int kernel_setsockopt(struct socket *sock, int level, int optname,
3335 char *optval, unsigned int optlen)
3336 {
3337 mm_segment_t oldfs = get_fs();
3338 char __user *uoptval;
3339 int err;
3340
3341 uoptval = (char __user __force *) optval;
3342
3343 set_fs(KERNEL_DS);
3344 if (level == SOL_SOCKET)
3345 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3346 else
3347 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3348 optlen);
3349 set_fs(oldfs);
3350 return err;
3351 }
3352 EXPORT_SYMBOL(kernel_setsockopt);
3353
3354 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3355 size_t size, int flags)
3356 {
3357 sock_update_classid(sock->sk);
3358
3359 if (sock->ops->sendpage)
3360 return sock->ops->sendpage(sock, page, offset, size, flags);
3361
3362 return sock_no_sendpage(sock, page, offset, size, flags);
3363 }
3364 EXPORT_SYMBOL(kernel_sendpage);
3365
3366 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3367 {
3368 mm_segment_t oldfs = get_fs();
3369 int err;
3370
3371 set_fs(KERNEL_DS);
3372 err = sock->ops->ioctl(sock, cmd, arg);
3373 set_fs(oldfs);
3374
3375 return err;
3376 }
3377 EXPORT_SYMBOL(kernel_sock_ioctl);
3378
3379 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3380 {
3381 return sock->ops->shutdown(sock, how);
3382 }
3383 EXPORT_SYMBOL(kernel_sock_shutdown);